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Abstract
Modern machine learning algorithms are capable of providing remarkably accurate point-predictions; however, questions

remain about their statistical reliability. Unlike conventional machine learning methods, conformal prediction algorithms
return confidence sets (i.e., set-valued predictions) that correspond to a given significance level. Moreover, these confidence
sets are valid in the sense that they guarantee finite sample control over type 1 error probabilities, allowing the practitioner
to choose an acceptable error rate. In our paper, we propose inductive conformal prediction (ICP) algorithms for the tasks
of text infilling and part-of-speech (POS) prediction for natural language data. We construct new ICP-enhanced algorithms
for POS tagging based on BERT (bidirectional encoder representations from transformers) and BiLSTM (bidirectional
long short-term memory) models. For text infilling, we design a new ICP-enhanced BERT algorithm. We analyze the
performance of the algorithms in simulations using the Brown Corpus, which contains over 57,000 sentences. Our results
demonstrate that the ICP algorithms are able to produce valid set-valued predictions that are small enough to be applicable
in real-world applications. We also provide a real data example for how our proposed set-valued predictions can improve
machine generated audio transcriptions.

keywords and phrases: BERT, BiLSTM, Natural language processing, Set-valued prediction, Uncertainty quantifica-
tion.

1. INTRODUCTION
In recent years, machine learning algorithms have domi-

nated the realm of natural language processing (NLP). Over
time, these algorithms have achieved higher and higher ac-
curacy in various NLP tasks. However, such algorithms are
specialized for point prediction, and as such, a significant
limitation of many machine learning algorithms is that they
do not offer any uncertainty quantification to measure how
reliable these point predictions are actually correct.

To address this limitation, we make the following con-
tributions. We construct three new conformal prediction-
enhanced algorithms for two important NLP tasks. The al-
gorithms we construct inherently provide uncertainty quan-
tification guarantees by yielding calibrated set-valued pre-
dictions at any user-specified type 1 error rate. In particu-
lar, we apply conformal prediction to the masked language
modeling (MLM) and POS tagging tasks; to our knowledge,
conformal prediction has not yet been applied to these two
key tasks in NLP. We construct new conformal prediction-
enhanced BERT and BiLSTM algorithms for POS tagging
and a new conformal prediction-enhanced BERT algorithm
for MLM. Using the Brown Corpus [14], we empirically
demonstrate that BERT provides smaller prediction sets for
POS tagging than a BiLSTM model, and we show that
∗Corresponding author.

BERT generates usefully small prediction sets for MLM.
Moreover, we show that these conformal prediction sets
achieve their nominal coverage for any level of significance
and produce relatively small prediction sets at reasonably
high confidence levels. Finally, we provide a real data exam-
ple to illustrate how our proposed set-valued predictions are
effective at improving machine generated audio transcrip-
tions.

Conformal prediction is an approach introduced in [54]
that allows, for example, a point prediction method to
be extended to form confidence sets, guaranteeing that
the set contains the true unknown predictor value with
some nominal coverage probability. It has been shown that
deep learning architectures such as multilayer perceptrons
(MLP), convolutional neural networks (CNN), and gated
recurrent units (GRU) often improve in their robustness
when enhanced by a conformal prediction algorithm [34].
Conformal prediction has been applied to text classifica-
tion NLP tasks. For example, similar results are demon-
strated in [32] and [31] for conformal prediction-enhanced
BERT and artificial neural network (ANN)-based senti-
ment classification and multi-label text classification, re-
spectively. Other experiments in the literature, such as [38]
with deep neural network (DNN)-based multi-label text
classifiers and [4] with tree-based classifiers, replicate these
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findings for other multi-label classification models. Con-
formal prediction-enhanced BERT-based models for para-
phrase detection are constructed in [16], and a definition and
analysis of credibility – relevant to Section 4.1 – is provided.
Conformal prediction has also been successful in relation
classification, identifying relationships between two entities
in a sentence, as demonstrated in [11] and for open-domain
question answering and information retrieval for fact veri-
fication in [12]. To our knowledge, however, conformal pre-
diction has not yet been applied to two key tasks in NLP:
the text infilling task and POS tagging.

The text infilling task (also known as the Cloze task) is
a standard NLP task, asking a model to “fill in the blank”
given an otherwise complete sentence. Since its conception,
the task has greatly expanded in scope due to the great suc-
cess of various text infilling algorithms developed. For exam-
ple, generative adversarial networks are used to great effect
in the MaskGAN algorithm in [10] to generalize the prob-
lem to full text generation. Another generalization of the
text infilling task was introduced in [36] in the form of the
story cloze test, determining the “right ending” to a story.
The story cloze test has been further explored in the form of
neural network solutions [51] and generative pre-training of
language models [46], among other methods. Yet another ex-
tension to the text infilling task comes in the form of filling in
blanks of arbitrary length, as explored in [61] (utilizing self-
attention mechanisms) and in [50] (using the blank language
model). Although many techniques have been proposed to
solve the text infilling task, such as gradient-search-based
inference [28] and infilling by language modeling [8], text
infilling in practice has been dominated by the BERT al-
gorithm [7], which uses an MLM pre-training objective to
attain word embeddings. Though trained on the text infill-
ing task, the resulting word embeddings remain competitive
in many standard NLP tasks.

The POS tagging task is another standard NLP task in
which a model assigns the correct grammatical POS to each
word in a sentence. This task is unusual in the NLP realm
in that the most naive algorithm of simply assigning each
word its most common POS already achieves a very high
baseline accuracy of roughly 92% [23, Chapter 8, end of Sec-
tion 2]. The introduction of some classical models such as
hidden Markov models (HMM) [25] and conditional random
fields (CRF) [26] improved the accuracy to about 96%; more
modern techniques currently used such as the BiLSTM pro-
posed in [57] and transformer models such as BERT [7] of-
fer further marginal improvements, reaching about 97–98%
accuracy. Similar to the text infilling task, it does not ap-
pear that the application of conformal prediction to POS
tagging is present in the literature. However, a method of
set-valued prediction introduced in [35] has been applied
to POS tagging of a middle-lower German corpus in [18],
demonstrating more robust predictions than standard POS
tagging algorithms, but these set-valued predictions do not
offer the guaranteed control over type 1 error probabilities

that are inherent in conformal prediction sets. As discussed
in [18], POS tagging of historical corpora remains one area
where linguistics experts do not necessarily know or agree on
the POS for particular words because the languages are no
longer in use. In these applications, set-valued predictions
are most sensible.

Furthermore, in machine learning applications, since the
accuracy of POS tagging is typically high, it can be expected
that many set-valued POS predictions will be of size 1, and
greater than 1 for occasional ambiguous cases. Accordingly,
the set-valued POS tagging algorithms that we contribute
combine the speed of automated tagging with the accuracy
of manual tagging.

A brief overview of BiLSTM models, transformers and
BERT, and conformal predictions is given in Section 2.
Section 3 presents our proposed algorithms, followed by
a discussion of our empirical studies in Section 4. The
utility of the enhanced BERT model for MLM in a re-
alistic setting is illustrated in Section 5 by running the
model on missing words from a transcript of a TED Talk
generated by automatic speech recognition software, and
the paper closes with concluding remarks provided in Sec-
tion 6. The code and workflow for reproducing our results,
along with documented software for implementing our al-
gorithms on new data sets, are available at https://github.
com/jackferrellncsu/drums-nlp-codesnapshot.

2. EXISTING MACHINE LEARNING
APPROACHES

Currently, the state-of-art methods for MLM tasks are
BERT-based [6]. Other models include TagLM [43] and
ELMo [44]. TagLM and ELMo both use recurrent neural
networks (RNN), and ELMo specifically constructs a two-
layer BiLSTM, commonly used as a pre-trained model for
the embedding layer for other models. Alternatively, BERT
models use transformers instead of an LSTM in the deep
embedding layer.

POS tagging takes a sequence of words and assigns each
word a particular POS. It is a sequence labeling task because
each word can represent a different POS depending on its
context. POS tagging is useful in syntactic parsing, reorder-
ing in translation, sentiment tasks, text-to-speech tasks, etc.
Classic POS labeling algorithms include HMM and linear
chain CRF. HMM is a probabilistic sequence model that
computes a probability distribution over possible sequences
of labels and chooses the label sequence with highest likeli-
hood. However, as a generative model, HMM does not incor-
porate arbitrary features for unknown words in a clean way.
An HMM is implemented in [3] that handles unknown words
using suffix features and attains an accuracy of 96.46% on a
particular corpus. CRF is a log-linear model that assigns a
probability to an entire output (label) sequence with respect
to all the possible sequences, given the entire sequence of in-
put words. A CRF method for structure regularization, pro-
posed in [52], achieved 97.36% accuracy on the corpus they
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consider (though, this accuracy cannot be directly compared
to that reported in [3] due to the difference in data sets).

Modern POS labeling algorithms include RNNs and
transformer networks, which both manage to deal directly
with the sequential nature of language surrounding a target
word. RNN architectures contain a cycle within the net-
work connections, where the value of a unit is directly or
indirectly dependent on the earlier output as an input. The
BiLSTM architecture has achieved wide attention due to its
effectiveness for sequence classification. It solves the “van-
ishing gradient” problem by forgetting information that is
no longer needed, carrying information that is required for
decisions to come, and combining the forward and back-
ward network results. Researchers have applied BiLSTMs
and obtained accuracies ranging from 97.22% to 97.76%
[27, 45, 59, 2, 58, 30]. As an alternative solution, transform-
ers are made up of blocks including self-attention layers,
feedforward networks, and custom connections. Transformer
based models, such as BERT, are pre-trained on large con-
text corpora and are well-suited for POS tagging.

Although it appears promising that the accuracy of POS
tagging has reached 97% for English language texts, the
baseline accuracy is 92% [23, Chapter 8, end of Section 2]
because many words have only a single POS, and those that
have multiple POS overwhelmingly occur with their most
common class. However, a single bad tagging in a sentence
can lead to a huge error in downstream tasks such as depen-
dency parsing. It is thus more meaningful to view the ac-
curacy of the whole-sentence POS tagging, which is around
55–57% [33]. Researchers have been trying to improve the
accuracy of POS tagging via improvements in features, pa-
rameters, and learning methods without breakthrough suc-
cess. Meanwhile, there are concerns regarding the correct-
ness of the treebank and whether POS labels are well-defined
to allow us to assign each word a single symbolic label [33].
That is to say, it is possible that the error in POS labeling
is due to linguistically justified definitions and cannot be
further improved without improvement in the field of lin-
guistics.

One way to deal with the current error in POS tagging is
to add associated confidence values for each prediction. All
the aforementioned approaches only output a simple point
prediction without evaluating how likely it is for each pre-
diction to be correct. The likelihood of each prediction en-
ables us to assess to what extent a prediction can be relied
on, and generates alternative POS tags. This serves as a
filtering mechanism with regard to the corresponding con-
fidence level and can help avoid the problem that a single
mistake in a sentence limits the usefulness of a tagger for
downstream tasks. Conformal prediction [48] is well-suited
to provide such confidence information on top of the tra-
ditional algorithms, and the more computationally feasible,
ICP approach for neural network predictions is introduced
in [39]. ICP is applied to a binary text classification prob-
lem in [32] using a BERT model for contextualized word

embeddings. The results show that the prediction accuracy
for the BERT classifier was maintained, while the predic-
tion sets calculated using the conformal prediction algorithm
provided more useful information. The conformal prediction
correctness criterion is expanded in [12] by adding admissi-
ble labels to reduce the size of prediction sets, and by filter-
ing out implausible labels early on by using conformal pre-
diction cascades to decrease the computational cost. The
application of conformal prediction for “multi-label” text
classification using DNNs based on contextualized and non-
contextualized word embeddings is considered in [31]. They
reduced the computational complexity by eliminating label-
sets that would surely have p-values below the specified sig-
nificance level. Their results show that the context-based
classifier with conformal predictions has good performance
and small prediction sets that are practically useful. Further
work is provided in [13] to expand the use of conformal pre-
dictions for information retrieval with a cascading approach,
filtering out incorrect options at every step with the hopes of
keeping at least one “admissible” option after all the layers.
This approach was found to improve both computational
and predictive efficiency by giving the model fewer items to
sort through at each step.

2.1 Long Short-Term Memory Neural Net
The use of RNNs in NLP tasks is very common due to the

sequential nature of language. Unlike feed-forward networks,
RNNs are able to take into account all of the preceding
words in a variable length sequence with fixed-size input and
embedding vectors when making predictions [9]. In language
tasks like next word prediction, this is desirable because the
more structured the context that a model is learning from,
the more accurate the prediction is likely to be.

In machine learning, the goal of a gradient descent algo-
rithm is to minimize the cost function by finding and updat-
ing the parameters of the model. With RNNs, using gradient
descent with an error criterion for tasks involving long-term
dependencies is inadequate and may result in exploding or
vanishing gradients [1]. This problem arises when the net-
work updates the weights while back-propagating through
time during training [20]. An extremely large gradient will
make the model that is being trained unstable, and an ex-
tremely small (≈ 0) gradient will make it impossible for the
model to learn correlations between events with a high tem-
poral span of dependencies [41]. Moreover, gradient descent
becomes less efficient the further apart the inputs are, sug-
gesting that RNNs are not desirable for tasks that require
long-term “memory.” There have been many theorized solu-
tions to these issues; however, none are as prevalent as gated
neural networks [22].

A popular type of gated neural network is the LSTM
[21]. LSTMs help prevent vanishing and exploding gradients
through the use of a memory cell, which is regulated by the
forget (ft), input (it), and output (ot) gates (see Figure 1).
Each of these gates contain a sigmoid activation alongside a
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Figure 1: LSTM Memory Cell.

component-wise multiplication operation. The sigmoid layer
outputs values that are between 0 and 1 which serve as in-
dicators for the proportion of each component that will be
“let through” the gate. The standard reference for describ-
ing the architecture and intuition for memory cells is given
in [37]. For convenience, we summarize the main ideas in
the remainder of this section.

The forget gate (ft) considers yt−1 and xt, where yt−1 is
the network output layer at time t − 1 and xt is the input
vector at time t ∈ N. These quantities are passed through
the vectorized sigmoid function

ft = σ([x�
t , y

�
t−1] ·Wf + bf ),

where Wf and bf are a weight matrix and bias vector, re-
spectively. After passing [x�

t , y
�
t−1] through the forget gate,

the past cell state Ct−1 is multiplied component-wise with
ft. Next, as shown in Figure 1, a tanh activation function
also evaluated at [x�

t , y
�
t−1], but with a different weight ma-

trix WC and bias vector bC , is used to create a vector of
values in [−1, 1]:

C∗
t = tanh

(
[x�

t , y
�
t−1] ·WC + bC

)
.

The input gate is similarly constructed as

it = σ([x�
t , y

�
t−1] ·Wi + bi)

for weight and bias terms Wi and bi and the cell is updated
as

Ct = ft � Ct−1 + it � C∗
t ,

where � denotes component-wise multiplication. The ft �
Ct−1 term controls how much of the past cell memory to
carry forward, and the it � C∗

t term controls how much of
the updated cell memory to add [17]. Lastly, the cell updates
the state yt as

ot = σ([x�
t , y

�
t−1] ·Wo + bo)

yt = ot � tanh(Ct),

using a final set of weight and bias terms, Wo and bo.

The implementation of a memory cell like the one above
is quite common; however, there is much variety when it
comes to the exact details [37]. Examples include GRUs [5],
peephole connections [15], and clockwork RNNs [24], among
others. The sophisticated nature of these memory cells have
proven to work efficiently on NLP problems [49], which is
why we consider it a favorable method to combine with a
conformal predictor.

2.2 Transformers and BERT Embeddings
Recurrent models, while useful for encapsulating informa-

tion about the structure of sentences, are extremely compu-
tationally expensive in practice. Namely, the sequential na-
ture of such models makes training them impossible to par-
allelize. Transformers were introduced to fix this issue with
an encoder/decoder structure [53]. To understand the en-
coder/decoder intuitively, consider the problem of machine
translation. If we have a sentence in written in Spanish, the
encoder will attempt to construct a mathematical represen-
tation for the meaning of the sentence. The decoder will
take this mathematical representation, as well as informa-
tion about the English language (for example), and com-
bine the two to create an English sentence. The meaning
of the sentence and information about the English language
are captured using a technique referred to as “attention”
[53]. The following description of attention closely follows
the source paper [53], and is provided for convenience.

In attention, an output is computed using a weighted
sum of values, but with weights learned from a function
that finds the compatibility between a query and the key
corresponding to a value, where the query, the key-value
pairs, and the output are all represented by vectors [53].
Attention is mathematically described as

Attention(K,V,Q) = softmax

(
QK�
√
dk

)
V,

where K is the matrix containing the key vectors with dk
number of rows, V is the matrix containing the value vectors,
and Q is the matrix containing the query vectors [53]. The
scalar dk is introduced as a normalization factor, lest dot-
products become so large as to be unusable [53]. Different
items are used as keys, values, and queries depending on the
context. In the most basic case, the query is the word cur-
rently being examined, the key vector is all words being used
as context for the query word, and the value vector is also
all the words being used as the context for the query word.
The output of the softmax function in the above equation is
used as a weighting matrix for the value vectors comprising
V .

It is often desirable for different weights to be learned
based on some number, h, of different features of text, so
the notion of “multi-head” attention is defined as

MultiHead(Q,K, V ) = [head1, . . . , headh] ·WO,
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where for each j ∈ {1, . . . , h},

headj := Attention(Q ·WQ
j ,K ·WK

j , V ·WV
j ),

with weight matrices WO,WQ
j ,WK

j , and WV
j to be learned.

Each head is empirically constructed to focus on different
aspects of the training text [53]. These multi-head layers
are stacked and then fed into a feed-forward neural network
to form the encoder and decoder.

Transformers have been used in many state-of-the-art
NLP models, such as GPT [46], BERT [7], and ERNIE [60].
In developing our conformal predictors, we choose to in-
corporate pre-trained word embeddings from BERT in par-
ticular. We focus on the use of “BERT-base” rather than
“BERT-large” due to the high computation cost associated
with the latter. Nonetheless, both deliver state-of-the-art re-
sults, so any minor trade-off in accuracy is justified. BERT-
base has 12 layers, 768 hidden states, and 12 self-attention
heads for a total parameter count of 110 million [7].

The main difference between BERT and the original
transformer is its ability to examine context in both direc-
tions simultaneously, whereas the original transformer [53]
and GPT [46] both gated the decoder layer, only allowing
it to look in the direction from which it was supposed to
be predicting. This proved effective, giving both versions of
the original BERT state-of-the-art results across all general-
ized language understanding evaluation (GLUE) [56] tasks
when the paper was published in 2019 [7]. BERT was pre-
trained using two tasks, next sentence prediction (NSP) and
MLM. In NSP, BERT is presented with two sentences and
attempts to determine whether or not they are truly sequen-
tial. In MLM, BERT is presented with a masked word and
asked to predict it given a context. During pre-training, 15%
of words were masked so as to not let the model look at the
correct answer while predicting. BERT was trained over the
entirety of Wikipedia (approximately 2.5 billion words) and
the BooksCorpus [62] in efforts to mimic language as closely
as possible. A new sub-field, “BERTology”, has surfaced in
an attempt to explain why the embeddings are so efficient
and generalizable [47]. We hope our application of confor-
mal predictors to the BERT MLM task will contribute to
this area of study.

2.3 Conformal Predictions
Conformal prediction uses knowledge gained from train-

ing a model to create confidence sets with guaranteed finite
sample control over the probability of a type 1 error [48] and
can be built on almost any machine learning tool, including
neural networks [55]. Precisely, assuming exchangeable data
examples, for any level of significance 1− ε with ε ∈ (0, 1), a
conformal predictor yields a set-valued prediction with the
property that it will fail to include the true label with proba-
bility at most ε [48]. This property, referred to as “validity,”
is mathematically guaranteed to hold for any finite sample
size, but it is possible that the conformal prediction set is

very large. The values included in the prediction sets are
based on the “strangeness” of the test data when compared
to training data, and the efficiency (i.e., size of the predic-
tion sets) is dependent on how the strangeness measure – a
so-called “nonconformity function” – is defined [55].

The only necessary assumption for the validity of confor-
mal prediction sets is that the data must be exchangeable:
a more relaxed assumption than the common assumption of
independent and identically distributed, essentially meaning
that for observed data examples z1, . . . , zn, each of the n!
possible orderings of the examples were equally probable for
being observed [48]. In that case, the collection of observed
examples are best described by a “bag”

B := �z1, . . . , zn�,

denoting a collection of values such that the order of the
elements is irrelevant [55]. For example, �1, 2, 2� = �2, 1, 2�.

A nonconformity measure A is a real-valued function that
measures how strange or different a value z is from the other
examples in the bag B. For the example values zi ∈ B for
i ∈ {1, . . . , n}, denote the nonconformity scores by

αi := A(B\{zi}, zi). (2.1)

The particular form of A is context/application-specific, but
common choices include various norms, such as the �∞ norm
in [32] or the �2 norm [48], of distances from a “center” of
the set B\{zi} to the point zi.

Next, to decide whether to include a test value z in the
conformal prediction set Γε(z1, . . . , zn) with level of signifi-
cance 1− ε, first denote zn+1 := z and update:

B := �z1, . . . , zn, zn+1 � .

Then, noting that αn+1 corresponds to the test value, in-
clude z = zn+1 ∈ Γε(z1, . . . , zn) if

p :=
|{i = 1, . . . , n+ 1 : αi ≥ αn+1}|

n+ 1
> ε.

This procedure is formally described in [55, 48] as a trans-
ductive conformal algorithm, and we summarize it here as
Algorithm 1.

Throughout the remainder of the paper we will use the
following notation. Let D denote a corpus of text, where the
index i ∈ {1, . . . , n} denotes the position of the i-th word
and n denotes the total number of words in D. For training,
testing, and calibration, the entire corpus D is randomly
split into three pieces Dtrain, Dtest, and Dcal, respectively.

For many machine learning applications, however, trans-
ductive conformal prediction would be too computationally
expensive since it requires recomputing all of the noncon-
formity scores for every new test observation/value. Moti-
vated by this issue, ICP [39] is a modification of confor-
mal prediction that greatly reduces computation costs. In
ICP, the data is first split into proper training, calibration,
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Algorithm 1: Transductive conformal algorithm.
Input: Nonconformity measure A, significance level ε,

observations of feature-label pairs
z1 = (x1, y1), . . . , zn = (xn, yn), and a new
feature-label pair z = (x, y).

Decide whether to include y in the set Γε(z1, . . . , zn, x).
zn+1 := z;
B := �z1, . . . , zn, zn+1�;
for i ∈ {1, . . . , n+ 1} do

αi := A(B\{zi}, zi);
end
p :=

|{i=1,...,n+1:αi≥αn+1}|
n+1

;
Include y in Γε(z1, . . . , zn, x) if p > ε;

and testing sets Dtrain, Dcal, and Dtest, as in our nota-
tion. Next, nonconformity scores are computed for the cal-
ibration set examples analogous to equation (2.1); letting
K := {i ∈ {1, . . . , n} : di ∈ Dcal}, the nonconformity score
for every j ∈ K is

αj := A(Dtrain, dj).

Similarly, the nonconformity score for a test observation
d∗ ∈ Dtest is defined as α∗ := A(Dtrain, d

∗), and d∗ ∈ Γε

if

p :=
|{j ∈ K : αj ≥ α∗}|+ 1

|K|+ 1
> ε.

Thus, the ICP algorithm must only be applied once to the
calibration set, and each subsequent test value only requires
calculating a single new nonconformity score to compare to
the static collection of nonconformity scores in the calibra-
tion set. While ICP is slightly less reliable empirically than
the transductive approach, the small sacrifice in empirical
reliability does not outweigh the added benefit in computa-
tional efficiency [39]. From this point forward, any reference
to conformal prediction should be interpreted as ICP unless
otherwise stated.

3. METHODOLOGY
In this section we present our methodological contribu-

tions, namely ICP algorithms with nonconformity measures
for POS tagging based on BERT and BiLSTM neural net-
works (both described by Algorithm 2), and for MLM based
on a BERT neural network (described by Algorithm 3).
Throughout this section, we overload the variable y: In POS
tasks, yi represents the true POS for the i-th word in D,
whereas in the MLM tasks, yj represents the true masked
word for the j-th sentence in D, for j ∈ {1, . . . , k} where k
is the total number of sentences in D.

3.1 POS Prediction
POS prediction involves finding the context of a word and

then outputting the corresponding POS. Here we present

Algorithm 2: ICP POS Prediction.
Result: Returns the conformal prediction set Γε

containing POS labels for a test word d∗ ∈ Dtest
and significance level ε.

K := {i ∈ {1, . . . , n} : di ∈ Dcal};
train the model using Dtrain to produce {ŷi : i ∈ K};
for j in K do

s := yj ; # Recall yj is the true masked POS
αj := 1− ŷj,s;

end
for s in S do

α∗
s := 1− ŷ∗,s;

ps :=
|{j∈K : αj≥α∗

s}|+1

|K|+1
;

if ps > ε then
s ∈ Γε;

end
end
return Γε;

Algorithm 3: ICP MLM.
Result: Returns the conformal prediction set Γε

containing candidate words for a masked token
d∗ ∈ Dtest and significance level ε.

˜K := {i ∈ {1, . . . , n} : di ∈ Dcal and di is masked};
train the model using Dtrain to produce {ŷi : i ∈ ˜K};
for j in ˜K do

u := yj ; # Recall yj is the true masked token
αj := 1− ŷj,u

end
;
for u in U do

α∗
u := 1− ŷ∗,u;

pu :=
|{j∈ ˜K : αj≥α∗

u}|+1

| ˜K|+1
;

if pu > ε then
u ∈ Γε;

end
end
return Γε;

our ICP Algorithm 2 for POS prediction. Let S represent
the set of all unique POS in D, and for the i-th word in
D, let ŷi ∈ [0, 1]|S| represent the softmax vector produced
by one of our two POS models, namely the subsequently
described BERT POS (BPS) model or the BiLSTM model.
In addition, let ŷi,s denote the specific softmax value for any
POS s ∈ S.

The nonconformity measure αj = 1 − ŷj,s used in Algo-
rithm 2 (and later, in Algorithm 3) represents the deviation
from assigning softmax probability 1 (i.e., highest sensitiv-
ity) to the true label s = yj for the j-th word in the cali-
bration set. Accordingly, the collection {αj}j∈K represents
the distribution of the deviations in sensitivity that are con-
sistent with the assigned softmax probabilities for the true
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POS labels in the calibration set; if the noncomformity score
associated with some POS s ∈ S for a given word in the test
sets falls in the tail of the distribution of {αj}j∈K , then this
is evidence at level ε suggesting that s is not a likely POS for
the given test set word. Moreover, the nonconformity score
αj = 1 − ŷj,s is consistent with the general form of non-
conformity scores commonly used for neural networks [see
Chapter 4.2 of 55].

3.1.1 BERT POS Prediction

BERT creates custom embeddings for words based on the
words themselves and the context around them. These em-
beddings can be fine-tuned to specific NLP tasks, such as
POS prediction. We extend these predictions to form confor-
mal prediction sets to quantify prediction uncertainty. The
parameters of BERT that we implement for POS prediction
have been pre-trained and are available from [7]. However,
we must adjust the BERT parameters in addition to the pa-
rameters of a dense feed-forward network that we construct
for mapping the BERT-base length 768 output embedding
for a word to our |S| component softmax vector [7].

There is some nuance to how we format the data to be
usable with BERT. First, we address the BERT tokenizer.
BERT separates a word root from its tense, but the prac-
titioner must choose whether the root or the tense will be
assigned a POS tag. We choose to assign the tag to the
last token of a word (e.g., the word “wanted” is tokenized
as “want” and “##ed”, which are given the POS tags of
[PAD] and [VBD] (verb past tense), respectively). This is so
that BERT is able to identify the tense of the POS tag for
prediction.

Second, it is necessary for a BERT input to have a fixed
length of input tokens per batch. We chose to split sentences
into token sequences of size 100 (i.e., each sentence was
split at every 100th consecutive token). If the last sequence
of the sentence was of length less than 100, we padded it
with dummy [PAD] tokens to attain the desired length. The
choice of a length of 100 tokens was a compromise due to
the computational demands of fine-tuning BERT. Moreover,
since most of the sentences in the Brown Corpus consist of
less than 100 tokens, this truncation should have minimal
effect on our results.

On top of BERT, we place a single softmax layer which
reduces the 768 length vector into a |S| length probability
vector. Our model is trained by inputting a sentence and
each word has its fine-tuned embedding vector run through
the dense layer. We train the parameters for 3 epochs using
the binary cross entropy loss with the RADAM optimizer
[29]. A schematic illustration of our BERT architecture it
is given in Figure 2. The softmax output vector from this
neural network is then used in Algorithm 2 to yield the re-
sulting conformal prediction sets. This combined BERT ar-
chitecture with the conformal prediction algorithm for POS
tagging is what we refer to as our BPS model.

Figure 2: Illustration of the BERT POS model. The left most
layer is the input sentence which is then transformed into
the last token of each word. This 2nd layer is then input into
BERT and an optimized embedding for the POS is made for
each word. Each embedding is passed through a single layer
dense neural net with sigmoid and softmax activation to
produce the probability of each POS tag for each word in
the sentence.

3.1.2 BiLSTM POS Prediction

In addition to our BPS model, we also construct a BiL-
STM architecture for the task of POS tagging with con-
formal prediction sets, also using Algorithm 2. For word
embeddings, we use Stanford’s GloVe embeddings [42]. The
GloVe embeddings are desirable because of their ability to
balance local and global relationships between words. To
make the model more generalizable, we chose to use pre-
trained embeddings. Specifically, we use the GloVe embed-
dings which are of length 300 and trained on 6 billion tokens
from Wikipedia and Gigaword [40]. Any word in our corpus
that does not have a defined, pre-trained GloVe embedding
is instead represented by a 300 length zero vector.

To train the BiLSTM model, we first create sentence em-
beddings to represent all of the sentences in our corpus. We
create these sentence embeddings by concatenating the or-
dered, pre-trained GloVe word embeddings for the words in
a given sentence. Accordingly, the sentence embedding for
the j-th sentence is a matrix of dimension 300 × nj , where
nj is the number of words in the j-th sentence. These sen-
tence embedding matrices are then passed through a layer
in the BiLSTM model. The BiLSTM layer consists of two
sub-layers, a forward LSTM layer and a backward LSTM
layer. For any individual sentence indexed by j, the forward
LSTM layer takes in the matrix of embeddings and returns
a matrix of dimension 150 × nj . Similarly, the backward
LSTM layer takes in the reversed matrix of embeddings and
returns a matrix of dimensions 150 × nj . Each column in
these returned matrices contains a 150 length embedding
suited for predicting the respective POS for each word. The
idea is that the forward layer is capturing the context of
a sentence that is processed from beginning to end, while
the backward layer is capturing the context of a sentence
that is processed from end to beginning. This extra context
allows for the model to get a better understanding of the
sequential patterns of POS in sentences. To combine the
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Figure 3: Illustration of the BiLSTM POS model processing
a sample sentence embedding matrix. The top row illustrates
the functionality of the BiLSTM layer within the model,
with the leftmost matrix in the second row symbolizing the
output of the BiLSTM layer. As seen, this output is simply
the concatenation of the output matrix for forward LSTM
layer and the reversed output matrix for backward LSTM
layer. The rest of the second row provides a visualization of
the dense layer processes which eventually result in the POS
softmax matrix shown in the bottom right.

information gathered by the forward LSTM layer and the
backward LSTM layer, we reverse the order of the columns
of the matrix that were returned by the backward LSTM
and concatenate it with the matrix that was output by the
forward LSTM. This results in a 300×nj matrix, with each
column representing an optimal embedding for predicting
POS.

After training the BiLSTM matrix of optimal embed-
dings, we pass the columns of this matrix through a feed-
forward neural net. This net reduces the 300 length embed-
ding to a 250 length vector with a ReLU activation, which is
further reduced to a |S| length softmax vector correspond-
ing to the |S| POS labels. Each softmax output vector rep-
resents an estimated probability distribution over the POS
labels for a given word. This procedure is repeated for the
nj columns in the input matrix (each column correspond-
ing to a word in the input sentence). The schematic for this
BiLSTM architecture is displayed in Figure 3.

For training the parameters, we implement exponential
decay in the popular RADAM optimizer [29]. We train for
700 epochs to avoid overfitting and we use cross entropy as
our loss function. Finally, similarly to our BPS model, the
softmax output vector from this neural network is then used
in Algorithm 2 to yield the resulting conformal prediction
sets.

Figure 4: Illustration of the BERT MLM model. The top
layer is the input sentence, which is then tokenized. A sin-
gle token is then replaced with [MASK]. This tokenized sen-
tence is then passed into BERT which outputs a softmax
probability distribution corresponding to the masked token.

3.2 Masked Language Modeling
The MLM task is similar to POS tagging with two ex-

ceptions. First, the word to be predicted is masked or un-
known (for training/testing, when a sentence is passed into
the model, the target word is assigned the [MASK] token).
Second, instead of classifying a word using |S| POS labels,
unknown words are inferred using a massive vocabulary of
words. Though, these changes actually do not affect the ba-
sic conformal algorithm too much, as presented in Algo-
rithm 3. From here on, “token” and “word” will be used
interchangeably.

For MLM, we construct a BERT-based conformal predic-
tion algorithm similar to the BPS model for POS tagging de-
scribed in the previous section. BERT was designed for the
task of predicting a masked word. Our BERT model takes
the context and position of a [MASK] token and returns a
softmax distribution over the 30,522 candidate tokens, and
then Algorithm 3 is implemented to construct the conformal
prediction set of candidate tokens for a given masked word of
interest. Within Algorithm 3, U denotes the set of all 30,522
unique tokens comprising the set of pre-defined BERT to-
kens. For the j-th masked token in D, ŷj ∈ [0, 1]30,522 rep-
resents the softmax vector for the MLM model. In addition,
ŷj,u denotes the specific softmax value for any token u ∈ U .
A schematic of our BERT MLM is given in Figure 4.

4. EMPIRICAL RESULTS
Using the Brown Corpus, we evaluate the conformal pre-

diction sets produced by our three algorithms. The Brown
Corpus contains 500 documents, with each word in these
documents having a corresponding POS label. In total, there
are just over 57,000 sentences and around 49,800 unique
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words. We consider each sentence in the corpus as a data
instance and randomly allocate 80% of these sentences for
training, 10% for calibration, and 10% for testing. To ac-
count for sampling variability, the random allocation of the
data into training, calibration, and testing sets is repeated
5 times, and all metrics are evaluated on and averaged over
the 5 test sets.

For all POS tags (and combination of POS tags) we re-
move the hyphenated portion (if any). This includes head-
line (-HL), title (-TL), and emphasis (-NC) hyphenations,
as well as foreign word prefix (FW-). If a word has a POS
listed as a combination of multiple POS, the specific mul-
tiple POS combination is added as a new unique POS to
our label set. After these preprocessing steps there remain
q = 190 unique POS tags in the label set.

We consider the Brown Corpus because it has comprehen-
sive, human-labeled POS tags. Further, the Brown Corpus
has a significantly larger number of individual POS tags
than most modern datasets, and is one of the only hand-
tagged large corpora. These are valuable features for the
development of our methods, and allow for better represen-
tations of how language is actually used. Moreover, as we
illustrate in our real data example in Section 5, training
on the Brown Corpus still yields reasonable performance for
modern language applications. Finally, while the pre-trained
BERT model is no longer new, it is still a very powerful
algorithm even when compared to its more recent peers.
Furthermore, there exists a large amount of reliable litera-
ture on the performance of BERT, which is important for
evaluating the relative performance gains of our proposed
ICP-enhanced BERT algorithms.

4.1 Performance Metrics
We consider a variety of metrics that evaluate both

the “forced” point-predictions and the conformal prediction
sets. The metrics we consider are adopted from the criteria
considered in [32]. Let ntest := |Dtest|, and assume a fixed
ε ∈ (0, 1). For ease of notation, let ŷi denote a prediction for
some label yi, for some example indexed by i. The metrics
are defined as follows.

Classification accuracy (CA) is taken simply to be the
proportion of correct predictions:

CA =
1

ntest

ntest∑
i=1

I[ŷi = yi].

Average credibility (Cred) is the average maximum signif-
icance level ε required such that the prediction sets are
nonempty:

Cred =
1

ntest

ntest∑
i=1

sup{ε : |Γε
i | ≥ 1}.

The credibility of the i-th test point is the largest level ε (i.e.,
the largest type 1 error rate) such that the prediction set

Γε
i contains at least one label. Accordingly, low credibility

is an indication of little confidence in any label. The OP
criterion (for observed perceptiveness) is the average of all
test p-values for correct classifications:

OP =
1

ntest

ntest∑
i=1

pyi .

Conversely, the OF criterion (for observed fuzziness) is the
average of all test p-values for incorrect classifications:

OF =
1

ntest

ntest∑
i=1

∑
y �=yi

py.

Average empirical coverage (Coverage) is the proportion of
prediction sets that contain the true value:

Coverage =
1

ntest

ntest∑
i=1

I[yi ∈ Γε
i ].

Proportion of indecisive sets (PIS) is the proportion of sets
(for a fixed ε) that contain more than one label:

PIS =
1

ntest

ntest∑
i=1

I[|Γε
i | > 1].

The average confidence of decisive sets (ACDS) is the pro-
portion of confidence sets of size 1 that contain the true
label:

ACDS =

∑ntest
i=1 I[|Γε

i | = 1, yi ∈ Γε
i ]∑ntest

i=1 I[|Γε
i | = 1]

.

Lastly, the Nε criterion is the mean size of prediction sets
at level of significance 1− ε:

Nε =
1

ntest

ntest∑
i=1

|Γε
i |.

4.2 POS prediction Results
Figure 5 and 6 present the results for both POS models.

The metrics in Figure 6 require a forced point-prediction,
which we take to be the label that maximizes the softmax
vector that is returned by either the BPS model or the BiL-
STM model.

It is observed in Figure 5 that for the 99% nominal con-
fidence level, both models produce sets that average around
1–2 POS per set. This illustrates that the conformal pre-
diction algorithm produces efficient sets at high confidence
levels, and also suggests that the softmax probability vec-
tors from the underlying neural nets are highly concentrated
on 1–2 POS labels. Moreover, the Coverage and ACDS val-
ues in Figure 5 demonstrate that these conformal prediction
sets achieve their nominal coverage. Excessively small values
for PIS with Nε ≈ 1 at the 95% confidence level indicate a
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Figure 5: Set-value prediction criterion results for POS pre-
diction.

Model CA Cred. OP OF

BiLSTM 0.9536 0.5055 0.5012 0.0493
BPS 0.9793 0.5020 0.5008 0.0126

Figure 6: Forced-value prediction criterion results for POS
prediction.

high proportion of conformal prediction sets containing zero
or one POS label.

To offer further insight, Figure 7 displays histograms of
the set sizes for both models at the 99% confidence level.
Many of the sets are of size one, which accounts for the
height of the leftmost bins. However, the sizes of the sets
vary greatly for different levels of nominal confidence, and
so the uncertainty quantification afforded by the conformal
prediction sets has utility. In particular, the models we con-
structed are able to provide 99.9% confidence for 3–4 POS
labels, on average, for a given word. Such a quantified guar-
antee about the uncertainty in a prediction is not possible
to provide from neural network architectures alone.

To demonstrate the validity for values of Coverage at
more levels than the 99.9%, 99%, and 95% levels displayed
in Figure 5, Figure 8 plots the average empirical coverage
of the conformal prediction sets against their nominal levels
for levels of significance ranging from 0 to 1. It is observed
in Figure 8 that the solid and dotted lines are close together,
as expected; this signifies that our prediction sets for both
the BiLSTM and the BPS achieve approximately the desired
amount of coverage.

Next, Figure 6 provides an assessment of the forced point-
predictions of the underlying BPS and BiLSTM models.
Being the state-of-the-art, it is found that the BPS model
is marginally more accurate with respect to CA. However,
both models perform relatively similar with regard to the
other metrics in Figure 6. The difference in values between
OP and OF indicate that the models are able to discrim-
inate the correct POS label from the incorrect labels, on
average.

Lastly, for further assessment of the conformal predic-
tion algorithm, we present histograms of the nonconformity
scores for the calibration sets in Figures 9 and 10. With

Figure 7: Histograms of conformal prediction set sizes for
POS prediction at the 99% confidence level for BiLSTM
(top) and BPS (bottom).

respect to the distributions of nonconformity scores, BPS
produces smaller values than BiLSTM—as expected since
transformers are a more complex model. When restricting
the horizontal axes to (0, 0.0002), the discrepancies in the
distributions for predictions with low nonconformity scores
become more evident. It is possible that the larger mass
of the BiLSTM nonconformity scores near zero explains its
higher ACDS.

4.3 MLM Results
For the MLM task, we mask a randomly chosen single

word in each sentence in the Brown Corpus. Sentences are
tokenized according to the “WordPiece” embeddings used
by BERT, then truncated to a length of 128 to feed into the
model. Further, we include fewer examples in the calibration
set for the MLM task than in the previous section for the
POS task due to the larger computational cost entailed by
the much larger label set for MLM (i.e., all words in a vocab-
ulary of around 30,000 words). Specifically, the calibration
set contains around 1,300 sentences, and the testing set is
also reduced to 1,000 sentences. To account for sampling
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Figure 8: Coverage of conformal prediction sets for POS
prediction for BiLSTM (top) and BPS (bottom). For refer-
ence, the dashed line is a 45 degree line.

variability in the random allocation of the data into train-
ing, calibration, and testing sets, we still repeat the process
5 times and report our results as averages of these 5 Monte
Carlo iterations.

Unlike for POS prediction in the previous section, for
MLM it is found that higher levels of confidence lead to
prediction sets that are too large to be useful (see Figure
11). In particular, to guarantee that the true masked word
is not omitted from the prediction set for more than 5% of
test sentences (i.e., at the 95% level), the average confor-
mal prediction set size is reported to be approximately 177
candidate tokens. Nonetheless, sacrificing some confidence
quickly leads to smaller sets, down to 3–4 words on average
at the 75% level. The histogram of the conformal prediction
set sizes for all test examples is shown in Figure 13.

Additionally, the conformal prediction sets do achieve
their nominal coverage at all levels displayed in Figure 11.
To infer the validity for all values of Coverage from 75%
to 95%, Figure 14 plots the average empirical coverage of
the conformal prediction sets against their nominal levels of
significance in this range.

Lastly, we provide the forced point-prediction metrics in
Figure 12, and we present a histogram of the nonconformity
scores for the calibration sets in Figure 15. The bimodal na-
ture of the histogram is due to the underlying BERT model
making overly discriminative predictions (i.e., the softmax

Figure 9: Histograms of nonconformity scores for the calibra-
tion sets for the BPS model. The histogram on the bottom
plot only includes scores less than 0.0002 to better illustrate
how these scores are distributed near zero.

vectors ŷj being close to a one-hot vector), even when these
predictions are sometimes very wrong, leading to either very
high or very low nonconformity scores and not much in-
between. Since the algorithm is picking a single word from
a massive dictionary, we consider 54% CA to be reasonable,
especially since we did not fine-tune BERT to our corpus.
Moreover, many of these misclassifications are likely syn-
onyms of the true word.

5. ILLUSTRATIVE REAL EXAMPLE
An application of our conformal prediction sets for MLM

could come in the form of a post-hoc analysis tool for speech
recognition software. The following example comes from a
voice transcription of a 2009 TED Talk given by Michelle
Obama, part of the greater TED-LIUM3 audio transcrip-
tion corpus [19]. However, not all words were able to be de-
tected by the automated speech recognition (ASR) system,
and are instead labeled with the token <UNK> to take
the place of the unknown word. Ideally, our model would
be able to fill in these unknown words with set-valued pre-
dictions for any desired confidence level. To compare with
other voice-to-text systems, we also analyzed the YouTube
closed-captioning for this TED Talk video, which appeared
to be more accurate than the ASR. Below are 3 example
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Figure 10: Histograms of nonconformity scores for the cal-
ibration sets for the BiLSTM POS model. The histogram
on the bottom plot only includes scores less than 0.0002 to
better illustrate how these scores are distributed near zero.

Figure 11: Set-value prediction criterion results for MLM.

Figure 12: Forced-value prediction criterion results for
MLM.

Figure 13: Histogram of conformal prediction set sizes for
MLM at the 95% confidence level.

Figure 14: Coverage of conformal prediction sets for MLM.
For reference, the dashed line is a 45 degree line.

Figure 15: Histogram of nonconformity scores for the cali-
bration sets for MLM.

sentences from the talk, with the italicized text representing
the YouTube closed-captioning transcriptions, and the non-
italicized text representing the ASR system transcriptions.
The correct words, along with conformal prediction sets at
the 75% confidence level (i.e., ε = 0.25), are presented next.
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Example 1.

. . . to go with him to a community meeting. But when we
met, Barack was a community organizer.

. . . to go with him to a community <UNK>. But when
we met, Barack was a community organizer.

Γ0.25 = [‘college’, ‘center’, ‘event’, ‘conference’, ‘meeting’,
‘dinner’, ‘gathering’]
Correct word: ‘meeting’

Example 2.

And he urged the people in that meeting, in that com-
munity, to devote themselves to closing the gap between
those two ideas, to work together to try to make the world
as it is and the world as it should be, one and the same.

And he urged the people in that meeting in that com-
munity to devote themselves to closing the gap between
those two ideas, to work together to try to make the world
as it is and the world as it should <UNK> one and the
same.

Γ0.25 = [‘,’, ‘be’, ‘seem’]
Correct word: ‘be’

Example 3.

And they opened many new doors for millions of female
doctors and nurses and artists and authors, all of whom
have followed them. And by getting a good education you
too can control your own destiny.

And they opened many new doors for millions of female
doctors and nurses and artists and authors all of whom
have <UNK> <UNK>. And by getting a good education
you too can control your own destiny.

Γ0.25
1 = [‘been’, ‘become’, ‘loved’]

Γ0.25
2 = [‘children’, ‘died’, ‘success’, ‘experience’, ‘careers’]

Correct words: ‘followed’, ‘them’

At the 75% confidence level, the conformal prediction sets
included the correct word in the first two examples. How-
ever, our MLM was not trained on any sentence with two
consecutive masked words, thus it fails to include the cor-
rect words in the third example. That being so, if we pass
this sentence through the model twice, each time with only
one masked word, we see the more accurate results:

Γ0.25
1 = [‘joined’, ‘followed’, ‘loved’, ‘taught’, ‘inspired’, ‘in-

fluenced’]
Correct word: ‘followed’

Γ0.25
2 = [‘you’, ‘me’, ‘them’, ‘through’, ‘suit’]

Correct word: ‘them’

This suggests that the BERT model heavily depends on
directly adjacent words to predict the token for a masked
word in a sentence.

6. CONCLUDING REMARKS
We found that BERT-based conformal prediction sets

were extremely effective in predicting both POS and masked
words, which is unsurprising seeing as BERT is the dominant
model for many NLP tasks at the moment. The complexity
of models like BERT or BiLSTM was necessary, as our pre-
vious attempts using simpler nonconformity functions were
not able to produce as efficient confidence sets. In the fu-
ture, we may explore different nonconformity scores to get
the BERT MLM prediction intervals even smaller. For ex-
ample, scaling the noncomformity scores by a tuning factor
or using a convex combination of the output for multiple
models considered might lead to improved sensitivity and
smaller prediction sets at a given level ε, where the tuning
parameter or convex combination weights are trained via
a loss function (such as PIS or average interval size) on a
further validation set. Initial investigations show promising
results, but these modifications are computationally more
expensive than the methods described in our results section
and remain a subject of future research.
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