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Abstract
Joint species distribution modeling is attracting increasing attention in the literature these days, recognizing the fact

that single species modeling fails to take into account expected dependence/interaction between species. This short paper
offers discussion that attempts to illuminate five noteworthy technical issues associated with such modeling in the context
of plant data. In this setting, the joint species distribution work in the literature considers several types of species data
collection. For convenience of discussion, we focus on joint modeling of presence/absence data. For such data, the primary
modeling strategy has been through introduction of latent multivariate normal random variables.

These issues address the following: (i) how the observed presence/absence data is linked to the latent normal variables
as well as the resulting implications with regard to modeling the data sites as independent or spatially dependent, (ii) the
incompatibility of point referenced and areal referenced presence/absence data in spatial modeling of species distribution,
(iii) the effect of modeling species independently/marginally rather than jointly within site, with regard to assessing species
distribution, (iv) the interpretation of species dependence under the use of latent multivariate normal specification, and
(v) the interpretation of clustering of species associated with specific joint species distribution modeling specifications.

It is hoped that, by attempting to clarify these issues, ecological modelers and quantitative ecologists will be able to
better appreciate some subtleties that are implicit in this growing collection of modeling ideas. In this regard, this paper
can serve as a useful companion piece to the recent survey/comparison article by [33] in Methods in Ecology and Evolution.

keywords and phrases: Dirichlet process, Gaussian process, Latent factor analysis, Latent variables, Model-based
clustering, Odds ratios, Spatial dependence, Species richness.

1. INTRODUCTION
Recently, in the context of plants, there has been a

flood of publication on joint species distribution modeling
(JSDM) in the literature [22, 29, 19, 9]. A useful compari-
son of such modeling has been presented in [33]. Such effort
reflects the realization that observation of a community at
a site anticipates dependence between the species present at
that site. That is, so-called stacked species distribution mod-
eling [13, 6], modeling the species marginally but looking at
the results jointly, need not perform well. For example, with
presence/absence data, such modeling tends to overestimate
probability of presence for each species at a site, hence the
number of presences at a site [9]. Below, we will elaborate
this issue further.

Joint species distribution modeling has been developed
for presence/absence data, for count (abundance) data, and
for composition data [9]. Here, for simplicity in discussing
the challenges of interest, we focus solely on presence/ab-
sence data. We have primary concern with the setting con-
sisting of a large number S of species and a large number n
of sites. Site i, i = 1, 2, . . . , n provides an S × 1, vector, Yi

with entries 1 (presence) or 0 (absence). The sites may be
viewed, hence modeled, as independent or spatially depen-

dent, as appropriate. The joint species distribution modeling
challenge is the need to model the set of 2S probabilities as-
sociated with the set of possible realizations of Yi. Direct
modeling of these probabilities is clearly infeasible even for
relatively small S while we imagine S of order 102 or even
103. The common solution that has been adopted in the lit-
erature is to introduce latent variables, Zi which drive the
responses Yi. The Zi are modeled as multivariate normal
vectors which enables tractable model specification though
still computationally demanding model fitting. There is in-
creasing literature on this demanding model fitting when n
and S are large [27] and, further, when we introduce spatial
dependence [26]. However, we do not consider the computa-
tional challenge here. Rather, our focus is on issues associ-
ated with model specification.

This takes us to the specific contribution of this note. We
attempt to illuminate five consequential technical issues as-
sociated with joint species distribution modeling, presented
in the context of presence-absence data. We address the fol-
lowing: (i) how the observed presence/absence data is linked
to the latent normal variables as well as the resulting im-
plications with regard to modeling the data sites as inde-
pendent or spatially dependent, (ii) the incompatibility of
point referenced and areal referenced presence/absence data
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in spatial modeling of species distribution, (iii) the effect of
modeling species independently rather than jointly within
site, with regard to assessing species distribution, (iv) the
interpretation of species dependence under the use of latent
multivariate normal specification, and (v) the interpretation
of clustering of species associated with specific joint species
distribution modeling specifications.

Species distribution modeling for animals offers a much
more difficult challenge due to animal movement and the
scale of animal range. There is a very active literature on
animal movement, almost all of it at the single species level;
there is certainly nothing at the order O(102) species which
we find in the plant literature. The proposed modeling is in a
very different spirit from that for plant data, both dynamic
and at larger spatial scale, (see, e.g., [15]) and we do not
pursue it further here.

So, the format for the paper is simple. We devote a section
to each of the five foregoing issues and then present a brief
concluding section.

2. ISSUE (I): LINKING BINARY
RESPONSES TO LATENT NORMAL

VARIABLES
This issue concerns how the observed presence/absence

data is linked to the latent normal variables as well as the
resulting implications with regard to modeling the data sites
as independent or spatially dependent. Starting with the
nonspatial case, let Yij denote the response of species j at
site i and let Zij denote the associated Gaussian variable.
We adopt notation in the spirit of [20], letting LF

ij and LR
ij

denote the fixed and random effects contributions which are
included additively in the modeling of Zij . More will be said
about the forms of these L’s below. However, as the defini-
tions suggest, we will view LF

ij as a nonrandom component
in the specification for Zij (though it will have parameters –
regression coefficients – in it and, in a Bayesian hierarchical
modeling framework, these coefficients would be viewed and
modeled as random). We will view LR

i as an S×1 multivari-
ate normal random variable with mean 0 and dependence
structure given by an S × S correlation matrix, H. Then,
marginally, LR

ij ∼ N(0, 1).
Should we model Yij as a function of Zij , i.e., Yij =

I(Zij > 0) where I is the indicator function [as in, e.g., 22,
9] or should we model Yij using a conditional distribution,
[Yij |Zij ] [as in 19]? Does it matter? We now clarify that the
answer is NO if we view the sites as independent but YES
if we view the sites as spatially dependent.

Under the functional relationship between Yij and Zij ,
since Yij = I(Zij > 0), we have P (Yij = 1) = P (Zij > 0).
Consider the following two specifications for Zij :

(i) Zij = LF
ij + LR

ij

(ii) Zij = LF
ij + LR

ij + εij

where, in (ii), the εij are pure error terms, i.e., independent
and identically distributed normal random variables with
mean 0 and variance 1. Then, with Φ denoting the standard
normal cumulative distribution function, under (i), given
LF
ij ,

P (Yij = 1) = P (Zij > 0) = Φ(LF
ij). (2.1)

Under (ii), given LF
ij and LR

ij ,

P (Yij = 1) = P (Zij > 0) = Φ(LF
ij + LR

ij). (2.2)

Working with model (i) for Zij , we have dependence
at the first stage specification. The Zij are dependent,
corr(Zij , Zij′) = corr(LR

ij , L
R
ij′), and therefore, so are the Yij .

Indeed, this direct dependence approach is advocated in [9].
The concern here is that now the probability of presence has
no random effects in it; simply, P (Yij = 1) = Φ(LF

ij) is en-
tirely driven by covariates. We have a basic probit regression
for every species. Moreover, how do we usefully interpret a
correlation between normal random variables with regard to
the association between the binary variables, Yij and Yij′?
We take up this question under challenge (iv) in Section 5
below.

If we adopt (ii) above, we model P (Yij = 1) to include
both fixed and random effects. It is clear that dependence
is introduced through the specification for LR

ij . Under this
specification, dependence between species is captured in the
probability of presence, the so-called second stage of a hier-
archical model, as we see from (2.2). In fact, it is the corre-
lation between Φ−1(P (Yij = 1)) and Φ−1(P (Yij′ = 1)). In
different words, P (Yij = 1) and P (Yij′ = 1) are dependent
but the events Yij = 1 and Yij′ are conditionally indepen-
dent given these probabilities.

Furthermore, stochastic dependence between probability
of presence replaces explicit modeling of interaction [9]. This
raises the question of what the resulting correlation means.
In this regard, it is associated with residuals as (ii) reveals,
i.e., adjusted for the mean, LF

ij . Moreover, at any site, we
will find only a small subset of the S species present. That
is, Yi will be predominantly comprised of 0’s. Nonetheless,
we create pairwise associations for all pairs of species. So, it
is evident that these associations have little to do with the
actual realization of Yi at site i.

Furthermore, is a positive association suggestive of en-
couraging co-occurrence or of a potential substitution effect,
i.e., a particular species is present but another, say simi-
lar one, could equally well have been successful there? This
leads to discussion presented in, e.g., [35] and [20] regard-
ing the global species pool (all existing species), the regional
species pool (those able to colonize an area), and the local
species pool (those found at the finest scale considered). Re-
cent discussion clarifying that species co-occurrences from
JSDMs are not able to be interpreted directly as species
interactions appears in [3] and in [5]. However, further eco-
logical elaboration of species interaction/dependence is be-
yond our interest here. In the sequel, under the foregoing
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modeling, we view pairwise correlation/dependence between
species as a surrogate for species interaction.

Now, turn to the conditional specification, again,
[Yij |Zij ]. Under a probit link function, P (Yij = 1) = Φ(Zij).
So, under (i), we obtain Φ(LF

ij + LR
ij), the form in [20]. We

can conclude that using (ii) under the functional specifica-
tion or (i) under the conditional specification produces the
same probability of presence. Therefore, if our goal is merely
to obtain Φ(LF

ij+LR
ij) as the probability of presence, we can

achieve this under either specification. However, if the func-
tional specification is used, we must adopt (ii) above for the
Z’s. This distinction seems muddled in, e.g., [33].

Next, suppose we bring in space and spatial dependence.
For plant data, we assume that the spatial scale of the study
region of interest is large enough so that we can view plots as
geo-coded locations. Hence, we modify notation by attach-
ing location si to site i and writing Yij ≡ Yj(si). Now we
conceptualize a presence/absence variable, Yj(s) for species
j at every location, s, in the study region, say D, and, in
fact, a realization of a presence/absence (binary) surface
for species j, {Yj(s) : s ∈ D}. This surface is observed at
{si, i = 1, 2, . . . , n}. With regard to the Z’s, now we have:

(i) Zj(s) = LF
j (s) + LR

j (s) or
(ii) Zj(s) = LF

j (s) + LR
j (s) + εj(s).

Here, εj(s) is pure error, so called white noise. That is,
at each s, we have an associated independent normal error
random variable.

Suppose LF
j (s) is a surface which is continuous except for

a set of measure 0 over D. What this means here is that typ-
ically, environmental regressors are available at areal scales
making LF

j (s) continuous over D except for the boundaries
between areas. The total area of these boundaries is 0 rela-
tive to the area of D. Further, suppose LR

j (s) is a realization
of a Gaussian process [2] which produces mean square con-
tinuous realizations.1 Then, under (i), Zj(s) is a continuous
surface except for a set of measure 0 while under (ii) Zj(s) is
everywhere discontinuous because the pure error εj(s) sur-
face is.

Again, consider the functional specification, now Yj(s) =
I(Zj(s) > 0) (which is referred to as a clipped Gaus-
sian field in the literature [e.g., 10]), and the conditional
specification, now [Yj(s)|Zj(s)]. Suppose, we work with (ii)
yielding a probability of presence surface, P (Yj(s) = 1) =
Φ(LF

j (s) +LR
j (s)). Then, following the previous paragraph,

for species j, the probability of presence surface is a.e. con-
tinuous over D. However, under the conditional specifica-
tion, each Yj(s) is drawn as a conditionally independent
Bernoulli variable given its probability of presence. Hence,
the realized presence/absence surface, {Yj(s) : s ∈ D}
here is everywhere discontinuous. This seems unsatisfying;
the realized presence/absence surface should manifest local
1A sufficient condition is that the correlation function of the Gaussian
process be continuous at 0.

smoothness, local subregions where it is 0, local subregions
where it is 1.

Back to the functional specification, under (ii), since
Zj(s) is everywhere discontinuous, we can not obtain lo-
cal continuity for the Yj(s) surface. However, under (i), if
the Zj(s) surface is continuous, with the functional specifi-
cation, we can obtain local continuity for the Yj(s) surface.
The point here is that, with spatial modeling, if we value lo-
cal smoothness in the realized presence/absence surface, if
we think that such smoothness more appropriately captures
real world behavior of process realizations, then we should
work with the functional specification since this smooth-
ness can never be achieved with the conditional specifica-
tion.

However, to work with the functional specification under
(i), we encounter a technical problem. Suppose we define
LF
ij = XT (si)βj and LR

ij = wj(si). The problem concerns
the difference between the probability of presence surface
under (i) vs. under (ii). Because of the spatial dependence
imposed on the presence/absence surface under (i), the re-
alized presence surface, Φ(XT (s)βj) has to “agree” with
the observed presences and absences. Under (ii), smooth-
ness is imposed on the probability of presence surface, i.e.,
Φ(XT (s)βj + wj(s)) but not on the realized presence/ab-
sence surface. With the latter, we can observe a presence
that has small probability of occurring or an absence that
has a small probability of occurring. As a result, the proba-
bility of presence surface does not have to work as hard to fit
the data. Under the functional model, the GP has to react
strongly to observed presences and absences. Under the con-
ditional modeling, it has to react less so. Therefore, when fit-
ting the functional model, the wj(s) surface becomes spiky
in the neighborhood of a presence in order to explain well
the observed presence. The flexibility of the GP produces a
posterior which is too sensitive to the data.

A potential solution is to replace εj(s) with vj(s), a sec-
ond spatial Gaussian process, exchanging the discontinuity
everywhere of the former with the spatial continuity of the
latter. That is, still using the functional form, Yj(si) = 1, 0
according to Z(si) ≥ 0, < 0, we have two GP’s in specifying
Zj(s), i.e., Zj(s) = XT (s)βj + wj(s) + vj(s). Here, wj(s)
has a larger range, a smaller decay parameter while vj(s)
has a smaller range with a larger decay parameter. That is,
the w process seeks to capture the spatial dependence in
the process while the v process only serves as a device to
introduce smoothness.

3. ISSUE (II): INCOMPATIBILITY OF
POINT-REFERENCED AND AREAL UNIT

PRESENCE/ABSENCE DATA
This issue concerns the incompatibility of point refer-

enced and areal referenced presence/absence data in spatial
modeling of species distribution. To do so requires explicit
discussion regarding what an observed presence means along
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with the associated implications. The problem is whether
presence/absence is viewed as an event at point level or at
areal level. Is it a Bernoulli trial at say location s or is it the
event that the number of individuals of a species in a set,
say A, is ≥ 1?

If we model presence/absence at point level, then Y (s) =
1 is the result of a Bernoulli trial at location s. However,
under point level modeling, what does Y (A) mean? A co-
herent probabilistic definition specifies it as a block average,
i.e., a realization of Y (A) is Y (A) =

∫
A
1(Y (s) = 1)ds/|A|

(where |A| is the area of A). It is the proportion of the
Y (s) in A that equal 1; it is not a Bernoulli trial and
P (Y (A) = 1) = 0 since the probability that almost every
Bernoulli trial in A results in a 1 equals 0. We can cal-
culate E(Y (A)) =

∫
A
p(s)ds/|A| with p(s) specified as in

the previous section. That is, E(Y (A)) becomes the average
probability of presence over A. It is the probability that, at
a randomly selected location in A, the species is present. If
p(s) is constant over A then E(Y (A)) is this constant prob-
ability. It is interpreted at point level; it is the probability
of presence at any site in A.

Now, suppose we consider the locations of all individuals
in a study region as a random point pattern. Then, if N(A)
is the number of individuals in set A, P (presence in A) =
P (N(A) ≥ 1). Here, assuming say, a nonhomogeneous
Poisson process (NHPP) or, more generally a log Gaus-
sian Cox process (LGCP) with intensity λ(s) (see Illian
et al. (2008) for a full discussion of NHPPs and LGCPs),
N(A) ∼ Po(λ(A)) where λ(A) =

∫
A
λ(s)ds. Then, tak-

ing the areal unit definition of a presence in A, we seek
P (Y (A) = 1) = P (N(A) ≥ 1) = 1 − e−λ(A). Viewing the
data as a collection of observed presences imagines the data
as presence-only; there are no absences [32, 7]. This concep-
tualization enables the foregoing definition of presence/ab-
sence. However, the probability of a presence is only defined
given A and, evidently, will depend on the size/scale of A.
As a result, it is unclear how to specify a meaningful prob-
ability of presence surface. Perhaps the best option would
be a gridded surface for some choice of A? Furthermore, the
definition of probability of presence as “one or more” obser-
vations of the species in A yields local distortion to any such
surface; N(A) = 1 or N(A) = 11 are treated the same with
regard to probability of presence in A [1].

The two foregoing definitions associated with pres-
ence/absence are incompatible and the fundamental differ-
ence between them seems to have been missed in the liter-
ature (though see [11]). The conceptualization for the first
choice is that we go to fixed “point” locations and see what
is there; we are not sampling a point pattern. We model a
surface over a domain D which captures the probability of
presence at every location in D. The conceptualization for
the second is that we identify an area of interest D and, the-
oretically, we census it completely for all of the occurrences
of the point pattern (though in practice we never have the
sampling effort to a study region completely). We model an

intensity which, using the definition above, provides a prob-
ability of presence for a given A. The intensity surface can
be normalized to a density surface under which the proba-
bility of an event at a “dimensionless” point is 0. That is,
this density has nothing to do with modeling a Bernoulli
trial at a point by specifying a probability of presence at
the point, hence a probability of presence surface.

Furthermore, if presented with a collection of plots and
observed presence/absence for those plots, one would not
model the data as a point pattern. No point pattern was
observed; there is no way to model an intensity. We would
treat the plots as points in space and use a version of the
foregoing presence/absence regression models. To reconcile
the differences above it may be useful to think more carefully
about what the distribution of a species looks like within a
specified region, D and the associated implications. See [11]
for further discussion in this regard.

4. ISSUE (III): THE EFFECT OF
DEPENDENCE VS. INDEPENDENCE AT

SITE LEVEL
With regard to assessing species distribution, this issue

concerns the effect of modeling species independently rather
than jointly within site. For example, with presence/absence
data, stacking may tend to overestimate probability of pres-
ence for each species at a site. Hence the number of pres-
ences, the richness, at a site [13, 9] may be overestimated.
This can be potentially more problematic when a large num-
ber of species are examined.

Specifically, [13] offer the following criticisms of stacked
species distribution modeling: (i) without adding a dispersal
filter (e.g., seed dispersal pathways) it may incorrectly pre-
dict species in areas that appear environmentally suitable
but that are outside their colonizable or historical range;
(ii) it does not consider any constraints based on the carry-
ing capacity of the local environment which determine the
maximum number of species that may co-occur; and (iii) it
does not explicitly consider any rules based on biotic inter-
actions that control species co-occurrences and can exclude
species from a community. As a result, it is anticipated that
too many species can be predicted to occur in a geographical
unit by stacked species distribution models.

We offer a stochastic perspective through formalization
of species richness. Species richness records the number of
distinct species present at a site and is commonly used to
characterize species distributions at sites. With the forego-
ing notation, the observed richness at site s is Rich(s) =∑S

j=1 1j(s). To be clear, 1j(s) is the indicator of whether
species j is present at location s. Further, {1j(s), j =
1, 2, . . . , S} does not constitute a multinomial trial but,
rather, a set of dependent Bernoulli trials. Whether we
model species independently using stacked species distribu-
tion models or dependently using JSDM’s, E(Rich(s)) =∑S

j=1 E(1j(s)) =
∑S

j=1 P (Yj(s) = 1) =
∑S

j=1 pj(s) with
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forms for pj(s) supplied above. Though the forms are the
same, these expectations need not agree since, following the
argument of the previous paragraph, the pj(s) are expected
to be different under an independence model vs. a JSDM.
Probabilistically, because the joint model considers the data
for all of the species at a site while the individual models
consider the data only for the individual species at the site,
unconstrained by the overall presence/absence at the site,
intuitively, we might anticipate the latter expectations to
be larger, suggesting prediction of higher richness using a
stacked species distribution model.

Turning to the second moments, we expect to in-
correctly estimate uncertainty in richness when the in-
dicator variables in the sum are not independent.
That is, Var(Rich(s)) = Var(

∑S
j=1 1j(s)) should re-

flect the chance of joint presence or absence. Formally,
Var(Rich(s)) = Var(

∑S
j=1 1j(s)) =

∑S
j=1 Var(1j(s)) +

2
∑

j<j′ Cov(1j(s), 1j′(s)). However, in obvious notation,
Cov(1j(s), 1j′(s)) = p(j,j′)(s)− pj(s)pj′(s). Departure from
independence will affect this term and there how departure
from independence can affect the variance in observed rich-
ness. Finally, the above is all in the context of a single site
so the same conclusions apply whether we are building a
spatial or a nonspatial specification.

As a last thought here, perhaps the most direct way to
demonstrate the benefit of the joint modeling is with con-
ditional prediction. This strategy does not depend upon
whether or not the model fitting was done spatially. At a
site, suppose we attempt to predict presence/absence for a
species, given we know the presence/absence state of some
other species at that site. The conditional prediction proba-
bilities will be suitably adjusted given this information. The
model for the species under stacking will ignore this infor-
mation. See [34] in this regard.

5. ISSUE (IV): INTERPRETATION OF
DEPENDENCE UNDER LATENT

MULTIVARIATE NORMAL
DISTRIBUTIONS

This issue concerns the interpretation of species depen-
dence under the use of latent multivariate normal specifica-
tion. As pointed out in Section 2, the pairwise associations
arising under the latent multivariate normal have little to do
with the actual realization of Yi at site i. Perhaps more im-
portantly, the pairwise correlations between species arising
under the normal model provide little understanding of the
nature of/strength of dependence between species. For a pair
of species, envisioning a 2×2 table for presence/absence, the
odds ratio provides a useful tool for learning about species
dependence with regard to presence/absence. Specifically, a
positive log odds ratio captures sympatry, i.e., encouraging
joint occurrence or joint absence. A negative log odds ra-
tio captures allopatry, i.e., discouragement of co-occurrence.
As an aside, since independence modeling underlies stacked

species distribution models, such models will not be able to
capture sympatric or allopatric behavior for pairs of species.
[12] provide a full discussion of the role of odds ratios in
interpretation of species dependence in JSDMs. Here, we
extract a few thoughts.

For the JSDMs above, again, dependence across species
is captured through the pairwise correlation between species
in the latent bivariate normal distribution. We do not model
the 2 × 2 table of probabilities, p(j,j

′)
a,b , a, b = 0, 1 associated

with species j and j′ directly but, rather, we model the
parameters in the latent multivariate normal distribution
and, as a result, each of these probabilities is a function of
these parameters.

However, there is no direct connection between say ρ(j,j
′),

the correlation in the latent multivariate normal between
species j and species j′, and the odds ratio associated with
the induced 2× 2 table of joint probabilities for the species
pair, j, j′) at site i. Specifically, suppose the latent bivariate

normal distribution for
(

Zij

Zij′

)
has mean

(
μ
(j)
i

μ
(j′)
i

)
and

correlation matrix
(

1 ρ(j,j
′)

ρ(j,j
′) 1

)
. Then, the odds ratio

for species j and j′ at site i,

θ
(j,j′)
i =

p
(j,j′)
i,00 p

(j,j′)
i,11

p
(j,j′)
i,10 p

(j,j′)
i,01

=
P (Zij < 0, Zij′ < 0)P (Zij ≥ 0, Zij′ ≥ 0)

P (Zij ≥ 0, Zij′ < 0)P (Zij < 0, Zij′ ≥ 0)
. (5.1)

The expressions for the double integrals in (5.1) show that
each probability is a function of μ(j)

i , μ(j′)
i , and ρ(j,j

′). [12]
prove that θ

(j,j′)
i is non-decreasing in ρ(j,j

′) for fixed μ
(j)
i

and μ
(j′)
i . However, in the presence of μ(j)

i , μ(j′)
i , the latent

correlations do not determine the strength/magnitude of the
odds ratios.

Specifically, this result should be applied to Wij =

Zij − μ
(j)
i where say, μ(j)

i = XT
i βj and Wij′ = Zij′ − μ

(j′)
i

where again, μ(j′)
i = XT

i βj′ . As a result, P (Zij < 0, Zij′ <

0) = P (Wij < cij ,Wij′ < cij′), where cij = −XT
i βj and

cij′ = −XT
i βj′ , is non-decreasing in ρ(j,j

′) for any Xi,
βj , and βj′ and therefore so is the associated odds ratio,
θ(Xi,βj ,βj′). As a result, for a given ρ(j,j

′), we can see the
response of θ(Xi,βj ,βj′) to changes in Xi for given coeffi-
cient vectors; we can understand how the odds ratio varies
across environmental niches. In different words, JSDMs dis-
entangle the role of the environment from the role of biotic
interactions in the model specification. With these models,
odds ratios provide a measure of association that unifies the
effects of the biotic and abiotic conditions while enabling as-
sessment of the effect of each on the association.
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6. ISSUE (V): INTERPRETATION OF
CLUSTERING OF SPECIES

This issue concerns interpretation for joint species distri-
bution modeling specifications which impose clustering of
species. When S is large, it is natural to attempt to cluster
the species, here seeking data-driven clustering rather than
say taxonomic or morphological clustering. Further, we seek
model-based clustering rather than ad hoc clustering. With
independent sites, such clustering has been proposed by [27].
Can we attach useful interpretation to the resulting cluster-
ing? Suppose we include spatial dependence between sites
and again seek model-based clustering. An approach for such
clustering has been proposed by [26]. Again, can we attach
useful interpretation to the resulting clustering?

Continuing our notation for LF
ij and LR

ij above, we have
LF
ij = XT

i βj where Xi denotes the vector of environmental
covariates associated with site i and βj is a species-specific
coefficient vector. Collecting to a vector for site i, we can
write LF

i = BXi where B is an S× p matrix whose jth row
provides the regression coefficients for species j. Similarly,
collect the LR

ij to a vector LR
i which is to be modeled as an

S×1 vector of random effects. Under independence of sites,
these vectors are independent and identically distributed as
multivariate normals, say LR

i ∼ MVN(0,Σ) where Σ is an
S × S covariance matrix.

In working with binary responses, to be able to identify
the coefficients in B, we need to work with a correlation
matrix rather than a covariance matrix. So, in model fitting
we would set R = D−1/2ΣD−1/2, where D is the diago-
nal matrix consisting of the diagonal elements of Σ. As an
aside, with regard to model fitting, this enables adaptation
of the data-augmentation algorithm proposed by [8] for mul-
tivariate probit regression and is known in the literature as
the parameter-expansion data-augmentation (PX-DA) algo-
rithm [18, 17].

Σ has S(S+1)/2 distinct entries and with S on the order
of 102 or 103 as above, it becomes infeasible to infer about Σ.
The solution that has been adopted in the fully model-based
JSDM literature is to employ a dimension reduction in the
form of a so-called latent factor analysis [4, 23]. We write
LR
ij in the form λT

j ηi where each of these vectors is r × 1
with r << S. (In applications typically r is at least 3 but
at most 10.) As a result, we can write LR

i = Ληi where Λ is
S×r. We envision r latent factors where the entries in ηi are
r independent N(0, 1) variables and the rows of Λ provide
the so-called factor loadings for the collection of species.
The induced covariance matrix for LR

i is ΛΛT , creating the
dependence structure between the species, that is (ΛΛT )jj′

is the covariance between species j and j′. Since ΛΛT is
of rank r, not full rank, a diagonal matrix V with positive
entries Vjj = σ2

j is added, yielding the diagonally dominant
matrix, Σ∗ = ΛΛT + V as the full rank approximation to
Σ. This corresponds to adding pure error to the model for
the Z’s, that is, to adopting model (ii) in Section 2 for the
Zij ’s.

We now have rS unknowns in Λ with S more in the V
matrix.2 So, the number of unknowns is now order S rather
than order S2, achieving the desired dimension reduction.
It is well known that the Λ matrix is not identified. Various
strategies have been proposed in the literature to deal with
this issue; [see e.g., 23]. However, [27] introduce model based
clustering in the specification of Λ to address the identifia-
bility problem. It is implemented through the stick-breaking
representation of the Dirichlet process [25] which provides
specification of random discrete distributions and, therefore,
results in a tie when two observations take on the same dis-
crete value. To be clear, this approach enables ties in the
λj vectors. It means that the S rows in Λ will not all be
unique. Specifically, in a Markov chain Monte Carlo model
fitting implementation, at each iteration the Dirichlet pro-
cess yields a random number (< S) of unique choices for the
rows of Λ. As a result, ties are created in the random effects
structure and, for each iteration, the number of distinct rows
in Λ is the number of clusters for the species associated with
that iteration.

So, the clustering resulting from modeling the rows of
Λ through a Dirichlet process is not clustering the species
by their means since each species gets its own vector of re-
gression coefficients from B. Rather, it is clustering on the
residual covariance structure. If λj = λj′ , then the row en-
tries for Zj and Zj′ in Σ∗ are identical. In other words,
species j and j′ have the same dependence structure with all
other species, adjusted for the regressors. If pairwise resid-
ual dependence is viewed as a surrogate for pairwise species
interaction, then, we might view common dependence with
other species as a surrogate for common interaction with
other species.

There has been some recent work to cluster the βj ’s, i.e.,
to cluster the coefficient vectors across species [16, 14]. The
Dirichlet process modeling that has been employed for the
second order dependence structure can be adopted for the
first order mean structure if such clustering is of interest.
However, since no identifiability challenges are raised with
regard to the βj ’s, such clustering is not needed for the fit-
ting the means.3 In the hierarchical setting, an S×p matrix
variate normal distribution is adopted for B. In fact, it is
greatly simplified to provide a vague independent normal
distribution for each of the entries in B [see 27, for details].

Next, we bring in space and spatial dependence to the
clustering problem, following the notation of Section 2.
Again, we envision a presence/absence variable, Yj(s) for
species j at every location, s, in study region D. With regard
to the Z’s, again we have: (i) Zj(s) = LF

j (s) + LR
j (s) and

(ii) Zj(s) = LF
j (s) + LR

j (s) + εj(s). Under either (i) or (ii),
we envision a multivariate spatial process for Z(s). That is,
we envision dependence within the components/species at a
2In practice, setting V = σ2I typically provides an adequate approxi-
mation.
3There is no identifiability problem for the βs because the Xs are
observed unlike with the λs where the ηs are not observed.
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given s but also, spatial dependence between Z(s) and Z(s′).
We use the functional specification, Yj(s) = I(Zj(s) > 0)
to impart spatial dependence for the Z’s to the Y ’s. Such
specification requires an S×S cross-covariance function, say
C(s, s′) which is such that (C(s, s′))jj′ = cov(Zj(s), Zj′(s

′))
[2]. Under (i) or (ii) it becomes cov(LR

j (s), L
R
j′(s

′)).
So, LR(s) becomes an S-dimensional Gaussian process

over D where, again, we consider S to be large. Coregion-
alization [31, 2] is a convenient way to introduce dimension
reduction here; we write LR(s) as a linear transformation
of a lower dimensional (say r) process. Analogous to the
nonspatial case, we write LR(s) = Λη(s) where Λ is again,
s× r (with r << S and now η(s) is an r-dimensional Gaus-
sian process with its own r×r cross-covariance function, say
Cη(s, s

′). The induced cross-covariance function for LR(s),
hence for Z(s), is ΛCη(s, s

′)ΛT .
Choices for η(s) include supplying an r-dimensional

cross-covariance function but, with dependence induced be-
tween species through Λ, independent components in η(s)
are sufficient. In fact, as noted in [26], the components can
be r independent replicates of a Gaussian process with com-
mon correlation function ρ(s, s′; θη). As a result, the induced
cross-covariance function for LR(s), hence for Z(s) simpli-
fies to ρ(s, s′; θη)ΛΛT . As far as specification for Λ, with
interest in clustering, the same specification for Λ, as in the
nonspatial case, using a Dirichlet process for the rows, can
be employed.

Returning to interpretation, again we are clustering on
the rows of Λ; we are clustering on the residual covariance
structure. If λj = λj′ , then the row entries for Zj and Zj′

in Σ∗ are identical; species j and j′ have the same local
dependence structure with all other species. In addition,
under the dimension-reduced cross-covariance function for
Z(s) and Z(s′), cov(Zj(s), Zh(s

′)) = cov(Zj′(s), Zh(s
′)) for

all h �= j, j′. The spatial modeling adds the further inter-
pretation that decay in spatial dependence, in terms of dis-
tance, for species j with all other species is identical to that
for species j′ with all other species.

7. CLOSING COMMENTS
It is useful to note that the study design may add an

extra level to the data, e.g., species occur on trees with
trees located within sites as in [20]. Suppose then we add
a subscript to the Y ’s, i.e., Yikj with design level k nested
within design level i. The design need not be balanced, we
can have k = 1, 2, . . . , ni. Now, the latent Z process be-
comes Zikj , with analogy to (i) and (ii) above. Now, we
can have LF

ikj = XT
i βj +WT

ikγj , incorporating both design
level i and design level k fixed effects. Similarly, we can have
LR
ikj = λT

1jηi + λT
2jωik, incorporating design level i and de-

sign level k random effects. All of the foregoing discussion
involving issues (i)–(v) above, both spatial and nonspatial,
can be elaborated to this setting.

We anticipate that areas for future work will include fur-
ther development for: (i) issues of missed detection or mis-
classification [30], (ii) bringing in trait information includ-
ing intra-specific trait variation [24, 19], (iii) introduction
of dynamics, i.e., data over time as well as over space [28],
(iv) data types beyond presence/absence, e.g., abundance
or composition data [9], and, perhaps most importantly, (v)
faster and more efficient computation [33, 28, 21]. Evidently,
there is still much life in attempting to explain joint distri-
bution of plant life.
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