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Abstract
Bayesian model averaging (BMA) provides a coherent way to account for model uncertainty in statistical inference

tasks. BMA requires specification of model space priors and parameter space priors. In this article we focus on comparing
different model space priors in the presence of model uncertainty. We consider eight reference model space priors used in
the literature and three adaptive parameter priors recommended by Porwal and Raftery [37]. We assess the performance
of these combinations of prior specifications for variable selection in linear regression models for the statistical tasks of
parameter estimation, interval estimation, inference, point and interval prediction. We carry out an extensive simulation
study based on 14 real datasets representing a range of situations encountered in practice. We found that beta-binomial
model space priors specified in terms of the prior probability of model size performed best on average across various
statistical tasks and datasets, outperforming priors that were uniform across models. Recently proposed complexity priors
performed relatively poorly.

keywords and phrases: Bayesian model averaging, Zellner’s g-prior, Model space prior, Beta-Binomial prior, Com-
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1. INTRODUCTION
Analysis of data in the presence of model uncertainty is

a critical problem in statistical modeling applications. Ac-
counting for model uncertainty, rather than selecting a sin-
gle statistical model, improves predictive performance and
robustness in estimation and inference of model parameters
[40, 37].

One common instance of model uncertainty is that of
variable selection in linear regression model. Given an n-
dimensional continuous response variable, Y , and a set of
p potential predictor variables X = (X1, . . . , Xp) ∈ Rn×p,
the aim is to do statistical analysis of the data when it is
not known in advance which of the 2p possible models is
most appropriate. Consider a binary indexing vector γ =
(γ1, γ2, . . . , γp) for the model space which indicates which
explanatory variables are part of a model Mγ . Under Mγ ,
the linear regression model can then be expressed as:

Mγ : Y = 1nα+Xγβγ + ε,

where ε ∼ N (0, σ2In), and Xγ is a n × pγ matrix where
each column is centered around its mean and pγ denotes
the number of explanatory variables in the model Mγ .

The Bayesian framework provides a straightforward way
to account for model uncertainty by treating the model as
a parameter itself, using Bayesian model averaging (BMA)
[29, 38, 20, 34]. BMA requires the specification of a model
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space prior and a parameter space prior. However, subjec-
tive elicitation of these priors is often not feasible, particu-
larly when p is large, motivating the use of default reference
priors.

Several default parameter prior choices have been pro-
posed in the last thirty years (see Porwal and Raftery [37] for
an overview) and several other comparisons of these meth-
ods have been carried out [4, 8, 11, 13, 15, 32]. However,
similar comparisons of default model space priors remain
limited. In this article, our focus is on understanding the
effect of model space priors on the statistical tasks of pa-
rameter estimation, interval estimation, statistical inference,
point and interval prediction.

We compare combinations of three default parameter pri-
ors with eight choices of model space priors that have been
advocated in the literature. These model space priors corre-
spond to different flavors of Bayesian inference with: (i) fixed
hyper-parameter choices, (ii) with Bayesian treatment of
hyper-parameters, and (iii) estimation of hyper-parameters
in an empirical Bayes (EB) manner. The comparison is car-
ried out over an extensive simulation study closely based on
14 real datasets that span a wide range of practical data
analysis situations.

The article is organized as follows. Section 2 provides a
brief review of BMA and discusses in detail the parameter
and model prior choices considered in this article. We dis-
cuss the simulation design, metrics and datasets used for
comparison, and the results in Section 3, followed by discus-
sion and concluding remarks in Section 4.
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2. BAYESIAN MODEL AVERAGING:
A REVIEW

Bayesian model averaging [24, 28] provides a formal
way to account for model uncertainty in statistical infer-
ence. Several reviews of the BMA literature are available
[28, 25, 13, 50, 7, 15]. The basic idea of BMA is that it uses
prior probabilities for the models considered, and Bayes’ the-
orem to deal with model uncertainty by calculating their
posterior probabilities.

Assuming that there is one true model among the set of
2p candidate models, the posterior probability of a model
Mγ is

P (Mγ |Y ) =
P (Y |Mγ)P (Mγ)∑
γ′ P (Y |Mγ′)P (Mγ′)

,

where P (Mγ) is the prior model probability of Mγ , and
P (Y |Mγ) is the marginal likelihood of the model after inte-
grating out parameters with respect to the prior πγ , namely:

P (Y |Mγ) =

∫
N (Y |1nα+Xγβγ , σ

2In)

πγ(βγ , α, σ
2)dβγdαdσ

2.

Under BMA inference, we can express the predictive dis-
tribution of a quantity of interest, Δ, such as a parameter or
an observable future quantity, as a weighted average of its
predictive distributions under the different candidate mod-
els:

P (Δ|Y ) =
∑
γ

P (Δ|Mγ)P (Mγ |Y ),

where the posterior model probabilities P (Mγ |Y ) serve as
averaging weights. In the case where Δ is a regression co-
efficient, the resulting posterior distribution, P (Δ|Y ), is a
mixture of a point mass at 0 and a continuous density.

BMA has several desirable theoretical properties [39].
When choosing between two models, one of which is nested
within the other, choosing the one with the higher posterior
probability minimizes the total error rate (sum of Type I
and Type II error probabilities); BMA point estimators and
predictions minimize mean squared error (MSE); BMA es-
timation and prediction intervals are calibrated; and BMA
predictive distributions have optimal performance in the log
score sense.

The next subsection discusses the choice of parameter
and model space priors that need to be specified by the user
when implementing BMA.

2.1 Choice of Parameter Priors
Despite the wide adoption of Bayesian methods in linear

models, prior elicitation for linear models is still an open
problem. The parameter prior distribution πγ can be ex-
pressed as

πγ(βγ , α, σ
2) = πγ(βγ |α, σ2)πγ(α, σ

2).

A standard Jeffreys’ prior is often used for the intercept
and error variance, which are often common to all models
considered, i.e. πγ(α, σ

2) ∝ σ−2. One of the most popular
priors used for the model parameters βγ is Zellner’s g-prior
[53], namely

βγ |σ2,Mγ ∼ N (0, gσ2(XT
γ Xγ)

−1).

This is popular because of its computational efficiency
in evaluating marginal likelihoods and performing model
search. It is also attractive because of its intuitive interpreta-
tion arising from analysis of a conceptual sample generated
using the same design matrix Xγ as in the data at hand. It
is a special case of spike-and-lab family with the slab den-
sity given by the Normal density above and the spike being
a point mass at zero. Also, g-priors are appealing in vari-
able selection problems since they require the user to specify
only value (or hyper-prior) for the scalar hyper-parameter
g. This controls the prior variance of the parameters; the
effective prior sample size is n/g. Several choices of g have
been proposed [6, 13, 19, 23, 28, 32, 48, 54].

Based on an extensive simulation study, Porwal and
Raftery [37] found that in comparing parameter priors for
BMA, three adaptive g-priors performed the best among
many popular choices across the statistical tasks of param-
eter estimation, interval estimation, model inference, point
prediction and interval prediction. In what follows, we shall
focus only on these three parameter prior choices, namely:

• g =
√
n: First proposed by [13], it corresponds to a

prior sample size equal to
√
n and has been found to

work well in high dimensional settings [52]. The com-
plexity penalty for a model using this specification is
effectively half that in the BIC [37].

• EB-local: An alternative to fixing g to a pre-specified
value is to instead estimate it from the data in an em-
pirical Bayes (EB) manner. The local EB approach es-
timates a different g for each model. Let P (Y |Mγ , g)
denotes the marginal likelihood of the data under a g-
prior. Then

ĝγ = argmax
g≥0

P (Y |Mγ , g).

For a linear model, Hansen and Yu [23] showed that
it reduces to ĝγ = max{Fγ − 1, 0} where Fγ is the F
statistic for testing βγ = 0.

• Hyper-g: A natural Bayesian way to account for un-
certainty about the scale parameter g is to specify a
hyper-prior for g and perform fully Bayesian inference.
Liang et al [32] proposed the hyper-g prior

π(g) =
a− 2

2
(1 + g)−a/2,

which is proper for a > 2. Liang et al [32] recommended a =
3 as a default choice for the hyper-g prior. One advantage of
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using a hyper-g prior is that the posterior distribution of g
given the model Mγ is available in closed form, simplifying
Bayesian inference.

In terms of theoretical properties, all three priors are
model-selection consistent [32], except when the true model
is the null model. This means that if the true model, de-
noted by MγT

belongs to the model space, then the poste-
rior probability of the true model, P (Mγ = MγT

|y) → 1
as the sample size n → ∞. None of the above priors suffers
from Bartlett’s paradox [1]. BMA with g =

√
n is subject

to the “information paradox”, but it has been argued that
information consistency is of little practical importance in
real data applications [37]. The EB-local and Hyper-g BMA
methods are not subject to the information paradox.

2.2 Choice of Model Space Priors
Model space priors require specification of the prior prob-

abilities of all models Mγ , indexed by the binary variable
inclusion vector γ. A common approach is to consider the in-
clusion of each variable as an independent and exchangeable
Bernoulli random variable with a common prior probability
of inclusion θ, i.e.

p(Mγ |θ) =
p∏

i=1

θγi(1− θ)1−γi = θpγ (1− θ)p−pγ , (2.1)

where θ is the prior expected fraction of the βj ’s that are
not zero and pγ =

∑p
i=1 γi is the total number of covariates

included in the model Mγ .
In the absence of prior information, a common choice is

to set θ = 0.5. This induces a uniform prior over all models
with p(Mγ) = 2−p for all γ ∈ {0, 1}p, where p is the total
number of covariates considered. The expected prior model
size under the uniform model prior is p/2. However, choosing
θ = 0.5 does not provide any multiplicity control [19].

For a fixed value of θ, the above prior induces a binomial
prior for model size S =

∑p
i=1 γi i.e. S ∼ Bin(p, θ), with

prior mean pθ and prior variance pθ(1 − θ). Another way
to specify θ is by using the researcher’s prior belief about
expected model size E[S]. Sala-i-Martin et al [46] (hereafter
SDM) recommended a prior expected model size of 7 based
on their growth regression analysis. Similar priors for ex-
pected model size have also been proposed elsewhere [45, 30].
Hence, we can define an SDM version of the above prior with
θSDM = 7/p.

Any fixed choice of θ can lead to rather informative pri-
ors on model size pγ . One way to address this issue is by
estimating θ from the data using an empirical Bayes (EB)
approach [19]. The EB approach involves maximizing the
marginal likelihood of the data given θ:

θ̂EB = argmax
θ∈[0,1]

∑
γ

P (Y |Mγ)P (Mγ |θ). (2.2)

However, maximization of (2.2) can be computationally
challenging, especially when p is large since the sum is over

all models. Moreover, when p is large, marginal likelihood
evaluation for all models is not feasible and the sum is ap-
proximated based on the models explored by MCMC. To
optimize the marginal likelihood in (2.2), we implement Al-
gorithm 1, iterating between fitting the BMA approach to
find likely models given θ and solving (2.2) using the fitted
models to find a new θ:

Algorithm 1 EB optimisation algorithm for θ̂EB .
probs ← 0.5
Fit mod← bas.lm(. . . , model.prior=bernoulli(probs))
Initialize θ(0) ← p̂

p
� p̂ is avg. posterior model size

i ← 1
repeat

probs ← θ(i−1)

mod← bas.lm(. . . , model.prior=bernoulli(probs))
Optimise (2.2) over models explored in mod to find θ(i)

i ← i+ 1
until convergence

An alternative way to reduce the sensitivity of the poste-
rior distribution to prior assumptions is to use hierarchical
modeling and specify a weak hyper-prior for θ. One choice
of such a hyper-prior is a Beta distribution, θ ∼ Beta(a, b).
Marginalizing out θ in (2.1), gives

P (Mγ |a, b) =
∫ 1

0

p(Mγ |θ)p(θ)dθ

=
B(pγ + a, p− pγ + b)

B(a, b)
, (2.3)

where B(a′, b′) = Γ(a′)Γ(b′)
Γ(a′+b′) is the Beta function. It thus in-

duces a Beta-Binomial(a, b) prior on the model size S with
probability mass function

PS(s) =

(
p

s

)
B(s+ a, p− s+ b)

B(a, b)
.

Under a uniform prior on θ, i.e. when a = b = 1, (2.3)
simplifies to p(Mγ) =

1
p+1

(
p
pγ

)−1. This is a combination of
a uniform prior over model size with a uniform prior over
the models of same size given the model size.

Under a Beta-Binomial (BB) prior, the prior expected
model size is E[S] = a

a+bp. Similarly to a Bernoulli prior,
we can elicit the prior in terms of the prior expected model
size E[S]. To facilitate prior elicitation, we fix a = 1. We can
then define an SDM version of the BB prior (BB-SDM) with
an expected prior model size, such as E[S] = 7, by setting
bSDM = p

E[S] − 1. Note that SDM themselves [46] did not
use a Beta-Binomial prior on models, but only a Bernouilli
prior.

Alternatively, we can use an EB approach to learn b from
the data. This can be done by maximizing the marginal
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likelihood given b, namely

b̂EB = argmax
b∈(0,∞)

∑
γ

P (Y |Mγ)P (Mγ |a = 1, b). (2.4)

We find the optimal value, b̂EB, using Algorithm 2.

Algorithm 2 EB optimisation algorithm for b̂EB .
b ← 1
Fit mod← bas.lm(. . . , model.prior=beta.binomial(1,b))
Initialize b(0) ← p

p̂
− 1 � p̂ is avg. posterior model size

i ← 1
repeat

b ← b(i−1)

mod← bas.lm(. . . , model.prior=beta.binomial(1,b))
Optimise (2.4) over models explored in mod to find b(i)

i ← i+ 1
until convergence

For Zellner’s g-prior, we require the model size to be no
larger than the number of regression coefficients that can be
identified from the data, so that pγ < n−2. Thus for higher
dimensional datasets (p > n), we require that P (Mγ) = 0
for all models with model size greater than n − 2. Hence,
we use truncated versions of the priors defined in (2.1) and
(2.3), namely

p(Mγ |θ) ∝ θpγ (1− θ)p−pγ1{pγ < n− 2}, (2.5)

P (Mγ |a, b) ∝
B(pγ + a, p− pγ + b)

B(a, b)
1{pγ < n− 2}. (2.6)

Castillo et al [3] introduced complexity priors, also known
in the literature as diffusing [35] or power priors [5]. Here
the marginal probability of inclusion of any variable decays
at the rate p−κ for some κ > 0, where p is the total number
of possible covariates. This specifies a vanishing prior prob-
ability of large models and leads to a faster rate of rejection
of spurious parameters, at the cost of slower rates of detec-
tion of active parameters [44]. Similar priors have also been
used elsewhere [51, 35, 42].

The complexity prior is defined as

p(Mγ) ∝ p−κ|γ|1{|γ| ≤ s0},

where s0 is a pre-specified integer specifying the maxi-
mum number of important covariates and |γ| is the model
size. In the absence of external information, we set s0 =
min{n−2, p}. This prior is implemented in the BAS package
as tr.power.prior(kappa,trunc). We implement Com-
plexity priors with κ = 1 [43, 44], and with κ = 2 which
is the default choice in the BAS package.

2.3 Model Space Priors – A Graphical
Illustration

To illustrate the effect of different model space priors,
we use two datasets from our analysis: Boston Housing
(n = 506, p = 103) and Nutrimouse (n = 40, p = 120)
(Figure 1). The solid lines show the independent Bernoulli
prior from (2.1), while the dashed lines represent the Beta-
Binomial prior in (2.3) and the dash-dotted lines illustrate

Figure 1: Prior model size distribution for the Boston Housing and Nutrimouse datasets.
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Complexity priors. For the Nutrimouse dataset (p > n),
we use the truncated versions as discussed above. The col-
ors group different flavors of methods: (i) Uniform versions
with θ = 0.5 or b = 1 (blue), (ii) SDM versions with ex-
pected prior model size 7 (red), (iii) EB versions with θ
or b learned from the data (green), (iv) Complexity prior
with κ = 1 (orange), and (v) Complexity prior with κ = 2
(brown).

The Bernoulli model space priors are very concentrated
around their mean, pθ. The complexity priors are concen-
trated around smaller model sizes with a mode at 0. The
BB priors, on the other hand, are more diffuse, implying
more prior uncertainty about model size. For the Nutri-
mouse dataset, all the model space priors assign zero prob-
ability to any model with size greater than (n − 2) = 38.
Among the Bernoulli versions, θ = 0.5 implies a prior mode
around min{p/2, n−2} while θSDM has a prior model size of
7 (the same as the prior mean). The prior model size distri-
bution induced by the Ber(θEB) prior adapts based on the
data, with a prior mode between θ = 0.5 and θSDM for the
Boston Housing dataset, while having the lowest prior mode
among the Bernoulli priors considered for the Nutrimouse
dataset. The BB(1, 1) prior corresponds to a uniform prior
over model size. The BB(1, θSDM ) and BB(1, θEB) priors
both induce a model size distribution with prior mode at
zero.

3. NUMERICAL COMPARISON
We investigate the performance of different model space

priors and parameter prior combinations using an extensive
simulation study based closely on real datasets. We evalu-
ate the effect of prior choices for the statistical tasks of pa-
rameter point and interval estimation, inference, point and
interval prediction, and computation time.

All the parameter and model space prior combinations
were implemented using the BAS R package [5] with skele-
ton code shown in Table 1. A combination of the MC3

Metropolis-Hastings algorithm for sampling from the pos-
terior distribution of models [40], along with a random
swap between a currently included and a currently ex-
cluded variable is used for model space exploration. This
is implemented by setting the option method=”MCMC” in the
bas.lm() function. We used a default of 10,000 MCMC it-
erations for all methods.

For the EB methods, we used Algorithm 1 (or 2)
to find the optimal θEB (or bEB) before fitting a BAS
model with the estimated hyperparameter value. For

higher dimensional datasets (p > n), a truncated ver-
sion of the Beta-Binomial prior (2.6) was implemented by
setting the option model.prior=”tr.beta.binomial(al-
pha,beta,trunc=n-2)” in BAS. Similarly, a truncated ver-
sion of complexity prior is implemented in the BAS pack-
age. A truncated version of the Bernoulli prior (2.5) is not
available in BAS. We implemented it by (i) implementing
bas.lm() with tr.beta.binomial(1,1,trunc=n-2), and
then (ii) using importance sampling to calculate updated
posterior model probabilities with weights proportional to
the ratio of the prior model space densities in (2.5) and
(2.6).

3.1 Datasets
We based our analysis on 14 publicly avail-

able datasets, of which six are available from
UCI machine learning repository and the others are
examples available in the literature. The sample size and
number of candidate variables along with the data sources
for the different datasets are listed in Table 2. These include
the classical statistical setting with n > p, high dimensional
datasets with p > n, and intermediate settings where n ≈ p.
For each dataset, continuous covariates are standardized to
have zero mean and variance 1 and the response variable
is centered to have zero mean. Details of the choice of
datasets and additional pre-processing can be found in [37].

Table 2. Datasets used in the study.
Dataset Name Sample size (N) Covariates (p) Source

College 777 14 ISLR [27]
Bias Correction-Tmax 7590 21 UCI ML repository
Bias Correction-Tmin 7590 21 UCI ML repository

SML2010 1373 22 UCI ML repository
Bike sharing-daily 731 28 UCI ML repository

Bike sharing-hourly 17379 32 UCI ML repository
Superconductivity 21263 81 UCI ML repository

Diabetes 442 64 spikeslab [26]
Ozone 330 44 gss [22]

Boston housing 506 103 mlbench [36]
NIR 166 225 chemometrics [14]

Nutrimouse 40 120 mixOmics [41]
Multidrug 60 853 mixOmics [41]

Liver toxicity 64 3116 mixOmics [41]

3.2 Simulation Design
For each dataset, we selected a data generating model

that closely approximates the real dataset. We carry out all-
subsets regression for datasets with p < 30 using the leaps
package [33] in R. We then selected the largest model with

Table 1. Summary of prior moments of model size S under different model space priors and BAS code to implement them.
Model prior E[S] Var(S) BAS code
Bernoulli(θ) pθ pθ(1− θ) bas.lm(. . . , model.prior=bernoulli(probs))

Beta-Binomial(a, b) pa
a+b

pab(a+b+p)

(a+b)2(a+b+1)
bas.lm(. . . , model.prior=beta.binomial(alpha,beta))

Complexity(κ) – – bas.lm(. . . , model.prior=tr.power.prior(kappa,trunc))

https://archive.ics.uci.edu/ml/index.php
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all variables significant at the 0.05 level. For datasets with
p > 30, all subsets regression is not computationally feasi-
ble. For these datasets, we obtained a filtered list of variables
using iterative sure independence screening [12]. If the fil-
tered list contained more than 30 variables, we selected the
top 30 variables with the highest R2 values under univariate
regression. All-subsets regression was then applied to the fil-
tered list of covariates to obtain the data generating model
for our study. A summary of the data generating model used
for each dataset can be found in the supplementary materi-
als.

We used the data generating model and parametric boot-
strapping to generate 100 bootstrapped datasets with the
same design matrix X and different simulated response vec-
tors Y . Each of the resulting simulated datasets had the
same design matrix and error distribution as the real dataset
on it was based.

We compared the performance of different parameter and
model space prior combinations on these simulated datasets
using the following metrics:

• PointEst: We use root mean squared error (RMSE)
as a metric to evaluate the parameter point estimation
performance of different combinations. RMSE is evalu-
ated as

RMSE =

√√√√1

p

p∑
i=1

(βi,DG − β̂i)2, (3.1)

where βi,DG, i = 1, . . . , p denote the coefficients in the
data generating model, and β̂i, i = 1, . . . , p denote the
posterior means of the coefficients.

• IntEst: The interval score (IS) [21] evaluates the per-
formance of interval estimators in terms of both their
coverage and width. It is the sum of two terms, the first
of which rewards narrow intervals while the second re-
wards accurate coverage. For a variable z, the IS is

ISα(l, u, z) = (u− l)+
2

α
(l − z)1{z < l}

+
2

α
(z − u)1{u < z},

(3.2)

where l and u denote the upper and lower bounds of the
(1−α)×100% posterior interval of z. The Mean Interval
Score (MIS) is the average of the IS values for the quan-
tities being estimated. In order to assess the quality of
the interval estimation, we compute the Mean Interval
score (MIS) for the coefficients and calculate the aver-
age MIS across coefficients for each of the datasets. We
use α = 0.05.

• Inference: We calculate the area under the precision
recall curve (AUPRC) using the posterior inclusion
probabilities of the covariates to evaluate the model se-
lection performance of different combinations of priors.
We assess the quality of the resulting inference using

(1−AUPRC) as our metric, where a lower value is bet-
ter.

We also compared methods based on their out-of-sample
predictive performance. We divided each dataset into 100
random 75%–25% train-test splits. We trained the methods
on the training data and used the test data to assess the
predictive performance using the metrics described below:

• Prediction: We calculate R2
test to evaluate accuracy of

point predictions as follows:

R2
test = 1−

∑
i∈test(yi − ŷi)

2∑
i∈test(yi − ȳtrain)2

, (3.3)

where {yi : i ∈ test} denotes the response variable of
the test set, ŷi denotes the corresponding predictions,
and ȳtrain denotes the mean of the response variable in
the training set.

• IntPred: To assess the quality of the prediction inter-
vals, we calculate the interval score using (3.2) for each
of the test set observations. Here, l and u represent the
lower and upper bounds of the (1−α)×100% posterior
predictive interval for the test observation. We calcu-
late the mean interval score (MIS), averaging IS over
test set observations for each of the train-test splits. A
lower MIS corresponds to a better interval forecast.

We also recorded the average size of the sampled models
for each dataset and the average CPU time (in seconds) to
carry out BMA for one bootstrapped dataset.

3.3 Results
The results are shown in Table 3. We used the combi-

nation of the g-prior with g =
√
n as the parameter prior

and the Beta-Binomial(1, 1) model space prior as the ref-
erence. Note that the g-prior with g =

√
n was found to

the best parameter prior by [37]. Metrics for all other com-
binations were calculated relative to the reference metric,
and averaged across datasets. Detailed results of perfor-
mance metrics for the simulation studies based on each of
the 14 datasets can be found in the Supplementary materi-
als. The “Score” column contains the average of the scores
for PointEst, IntEst, Inference, Prediction and IntPred un-
der each method. We used the Score column to rank the
methods.

For each metric, we color the methods based on their
performance relative to the reference metric. A method is
colored green if it performed similarly or better than the
reference method, yellow if it performed somewhat worse,
and orange if it performed substantially worse.

For all choices of parameter prior, Beta-Binomial(1, 1)
was the top scoring model space prior. The three Beta-
Binomial versions with g =

√
n were the top three methods

across statistical tasks. The Complexity priors with κ = 1
and κ = 2 were the worst performing model space priors.
The uniform prior denoted by Ber(θ = 0.5) also performed
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Table 3. Performance of different parameter prior and model space prior combinations for inference in linear regression under
model uncertainty: “PointEst” is the RMSE for point estimation, “IntEst” is the Mean Interval Score (MIS) for interval

estimation, “Inference” is the 1- area under the precision-recall curve (AUPRC), “Prediction” is the RMSE for point prediction,
while “IntPred” is the MIS for interval prediction. “N vars” is the average number of variables used for the task. All metrics

are standardized to equal 1 for the g =
√
n with BB(1, 1) prior on model space. For each column, lower value is better.

Rank Parameter prior P (Mγ) Score PointEst IntEst Inference Prediction IntPred N vars CPU time
1 g =

√
n BB(1, 1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 g =
√
n BB(1, bSDM ) 1.005 1.005 1.005 1.013 1.001 1.001 0.918 1.009

3 g =
√
n BB(1, bEB) 1.012 1.004 1.025 1.026 1.004 1.001 0.960 3.136

4 Hyper-g BB(1, 1) 1.015 1.024 1.062 0.988 1.006 0.994 0.837 3.271
5 EB-local BB(1, 1) 1.024 1.037 1.071 1.001 1.012 0.999 0.853 0.803
6 EB-local BB(1, bEB) 1.025 1.039 1.091 0.992 1.007 0.994 0.811 2.441
7 Hyper-g BB(1, bEB) 1.025 1.026 1.091 0.996 1.015 0.996 0.793 9.849
8 EB-local BB(1, bSDM ) 1.042 1.053 1.124 1.006 1.023 1.002 0.805 0.812
9 Hyper-g BB(1, bSDM ) 1.042 1.047 1.139 1.009 1.017 0.996 0.786 3.287
10 g =

√
n Ber(θSDM ) 1.052 1.062 1.150 1.036 1.000 1.011 0.837 0.849

11 g =
√
n Ber(θEB) 1.085 1.091 1.275 1.053 1.004 1.005 1.068 2.595

12 EB-local Ber(θEB) 1.104 1.115 1.360 1.011 1.026 1.009 0.988 2.163
13 Hyper-g Ber(θEB) 1.105 1.115 1.358 1.021 1.025 1.010 0.964 9.483
14 Hyper-g Ber(θSDM ) 1.130 1.121 1.472 1.030 1.020 1.007 0.761 3.179
15 EB-local Ber(θSDM ) 1.143 1.132 1.500 1.034 1.037 1.014 0.772 0.730
16 g =

√
n Uniform 1.200 1.184 1.400 1.165 1.179 1.070 1.343 0.846

17 Hyper-g Uniform 1.215 1.186 1.482 1.083 1.198 1.125 1.200 3.172
18 EB-local Uniform 1.256 1.181 1.508 1.092 1.295 1.204 1.211 0.721
19 g =

√
n Complexity(1) 1.298 1.222 2.045 1.152 1.047 1.023 0.558 0.670

20 EB-local Complexity(1) 1.409 1.303 2.515 1.162 1.046 1.020 0.546 0.707
21 Hyper-g Complexity(1) 1.415 1.305 2.526 1.171 1.054 1.017 0.537 3.492
22 g =

√
n Complexity(2) 1.787 1.490 3.652 1.444 1.255 1.096 0.406 0.680

23 EB-local Complexity(2) 1.863 1.544 4.032 1.432 1.227 1.081 0.411 0.732
24 Hyper-g Complexity(2) 1.872 1.553 4.045 1.434 1.245 1.085 0.407 4.023

less well than the Beta-Binomial priors. This ranking of
methods was consistent across different performance met-
rics.

Most parameter and model prior combinations selected
sparser models than the g =

√
n and BB(1, 1) prior com-

bination, with the exception of methods involving the uni-
form model space prior. The complexity priors selected very
sparse models compared to our baseline, which may be ex-
plained by the strong sparsity induced by the prior. This
may also explain the poor performance of the complexity
priors across statistical tasks. Notably, the rankings of the
prior combinations are similar for the different tasks. In par-
ticular, the rankings for prediction are consistent with those
for point estimation and parameter inference, with a corre-
lation of 0.77 between scores for point estimation and point
prediction.

We also note that the EB model space priors tended
to outperform the corresponding SDM model space priors
when combined with the Hyper-g and EB-local parameter
priors. However, the results with the EB model space priors
took longer to computer on average because of the opti-
misation procedure. The hyper-g parameter priors are the
slowest due to the integral calculations required in the poste-
rior computation. In general, the Beta-Binomial priors per-
formed better than the Bernoulli and complexity priors.

4. DISCUSSION
We have compared BMA techniques with different choices

of model space priors and parameter priors using an empir-
ical study based closely on real datasets. We found that the
Beta-Binomial(1, 1) model space prior performed the best
across various statistical tasks and choices of parameter pri-
ors. We found that the hierarchical model space priors with
a hyper-prior on the prior inclusion probability θ was more
diffuse and led to more efficient exploration of the model
space. Fixed choices of θ led to worse performance across
statistical tasks and were often quite concentrated. Com-
plexity priors that induce high sparsity on model complexity
performed worst among all the methods considered.

We are not the first to compare model space priors in the
presence of model uncertainty. Past comparisons have either
focused on a subset of the model priors discussed here, or
evaluated BMA methods for only a subset of the statistical
tasks considered here. In several cases, they also tended to
use simulation designs that are at best loosely related to
empirical data observed in practice.

Ley and Steel [31] evaluated the effect of different model
priors on model selection performance using three real eco-
nomic growth regressions datasets. However, they used only
two fixed choices of g-priors: the Unit Information prior
(UIP) with g = n [28] and the risk inflation criterion (RIC)
with g = p2 [16], motivated by the simulation study of [13].
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Porwal and Raftery [37] found both of these parameter prior
choices to be outperformed by the parameter priors used
in this study. Also, their comparison was based only on
tall datasets (n > p) and their comparison of methods was
limited to the statistical tasks of inference and probabilis-
tic prediction using the log-predictive score. They also did
not consider EB versions of the Binomial(p, θ) and Beta-
Binomial(1, b) model space priors and complexity priors.
Like Ley and Steel, we found that random θ versions (or
Beta-Binomial versions) performed better since the hierar-
chical prior is less sensitive to the choice of prior model size
E[S]. Similarly, they found that priors specified by a fixed
θ tended to be quite informative, casting doubt on their
appropriateness as default reference priors.

Scott and Berger [47] discussed the multiplicity correc-
tion effect of a subset of the model space priors discussed
here, specifically Ber(θ = 0.5), Ber(θEB) and BB(1, 1). They
used a non-empirical simulation design, and did not compare
methods based on the statistical tasks discussed here. Eicher
et al [11] compared 12 parameter priors (of which g =

√
n

is common with ours) along with two fixed model priors:
Uniform model priors with θ = 0.5 and Ber(θSDM ) with a
prior expected model size of 7. The comparison was based
on non-empirical simulation studies and one real growth re-
gression dataset using predictive performance and inference
measures. They found that the UIP with a uniform model
prior performed better than Ber(θSDM ) on the three statis-
tical tasks common with ours. In contrast, we found that
Ber(θSDM ) was ranked higher than Uniform model priors
for all our three preferred parameter priors across the sta-
tistical tasks considered.

We found the complexity priors [3] to perform relatively
poorly. At first sight, this seems to be in conflict with the
theoretical results of Castillo et al [3], who showed that un-
der certain assumptions the posterior distribution contracts
optimally to recover an unknown sparse parameter vector
and gives optimal predictions. However, their theoretical re-
sults assume that the data are generated from a spike and
slab prior with the Laplace distribution as the slab density,
and that the error variance σ2 is known, which rarely holds
in practice. Also, Rossell [44] argued that complexity pri-
ors can introduce very strong sparsity a priori, and showed
empirically that when the true model is not sparse, com-
plexity priors may perform suboptimally for finite n. This
is consistent with our results.

We have focused attention on independent model priors,
i.e. priors in which the inclusion of each variable is statis-
tically independent of that of the other variables. However,
non-independent default priors have been proposed as well.
George [17, 18] proposed dilution priors which dilute the
prior model probability within subsets of similar models
with highly correlated predictors. There is also research de-
signing dependent model priors based on domain knowledge
[2, 10]. Dellaportas et al [9] proposed a joint specification of
the prior distribution across models so that the sensitivity

of posterior model probabilities to the dispersion of prior
distributions for the parameters of individual models (Lind-
ley’s paradox) is diminished. Villa and Walker [49] assigned
prior mass to models on the basis of their worth, based on
the KL-divergence between densities under different models.
However, all of these dependent model space priors lead to
increased computational complexity and have been shown
to work only when p is relatively small. They have also not
yet been implemented in publicly available software.

SUPPLEMENTARY MATERIAL
The supplementary material contains detailed summary

results for each metric and dataset used in the study. It also
contains a summary of data-generating models for each of
the datasets.
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