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Abstract
Platform trials are multiarm clinical studies that allow the addition of new experimental arms after the activation of

the trial. Statistical issues concerning “adding new arms”, however, have not been thoroughly discussed. This work was
motivated by a “two-period” pediatric osteosarcoma study, starting with two experimental arms and one control arm and
later adding two more pre-planned experimental arms. The common control arm will be shared among experimental arms
across the trial. In this paper, we provide a principled approach, including how to modify the critical boundaries to control
the family-wise error rate as new arms are added, how to re-estimate the sample sizes and provide the optimal control-
to-experimental arms allocation ratio, in terms of minimizing the total sample size to achieve a desirable marginal power
level. We examined the influence of the timing of adding new arms on the design’s operating characteristics, which provides
a practical guide for deciding the timing. Other various numerical evaluations have also been conducted. A method for
controlling the pair-wise error rate (PWER) has also been developed. We have published an R package, PlatformDesign,
on CRAN for practitioners to easily implement this platform trial approach. A detailed step-by-step tutorial is provided
in Appendix A.2.
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1. INTRODUCTION
Two-period multiarm platform trials are defined as trials

requiring two or more arms during the first period that have
the ability to add a new experimental arm(s) during the sec-
ond period. This paper was motivated by a recent pediatric
osteosarcoma study at St. Jude Children’s Research Hospi-
tal (St. Jude). This trial includes two planned periods, be-
fore and after the addition of new experimental arms. During
the first period, the study has two experimental arms and a
common control arm. During the second period, two more
experimental arms will be added. One reason for adding two
additional arms is that not all potential treatments are avail-
able at the same time. Details about drug information are
concealed because the study is still in the design stage.

The primary endpoint of this osteosarcoma study is
progression-free survival; however, for the sake of simplic-
ity, here we use the continuous endpoint to show our pro-
posed methods. To be specific, we use Dunnett’s multiple
correction method [7] to control the family-wise error rate
(FWER) in the multiarm setting. We also adopt an opti-
mal control-to-experimental arms allocation ratio rule, the
root-K rule [22], to achieve a targeted marginal power while
minimizing the overall sample size of the first period. De-
spite adding two new experimental arms during the second
period, the goal of the design is to have the same targeted
∗Corresponding author.
1The first two authors contributed equally.

marginal power and FWER as the trial with two experimen-
tal arms and one control without adding new arms. How to
achieve this will be introduced in this paper.

This type of two-period multiarm trials has been dis-
cussed in Ren et al. [16] and Roig et al. [17]. In the for-
mer, the authors discussed a simplified version, with one
experimental arm in the first period and a second experi-
mental arm added later. Under this framework, Ren et al.
presented statistical considerations, including type-I error
control and power, as well as an optimal allocation ratio. In
Ren et al., the total sample size is fixed and determined by
a conventional three-arm design with equal randomization:
each experimental arm has a marginal power of 1−β to de-
tect a standardized treatment effect Δ and a marginal type-I
error controlled at α (one-sided). Ren et al. discussed the op-
timal allocation and optimal timing of adding the new arm
to maximize the disjunctive power of the study. However,
marginal (pair-wise) power is often an interesting metric for
possible registrational purposes. In Ren et al.’s method, the
marginal power for each experimental arm cannot be main-
tained at its original level 1 − β, mainly due to the fixed
total sample size.

In Roig et al. [17], the authors assessed the robustness
of model-based approaches to adjust for time trends when
utilizing non-concurrent controls. The focus of that research
is the consequences of incorporating a nonconcurrent con-
trol with various time-trend models and assumptions for
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the different arms. In our method, we use only the con-
current control data (i.e., patients are recruited and allo-
cated to the control group after a new arm is added) and
do not discuss how to use nonconcurrent control data (i.e.,
patients are allocated in the control arm before the new
arm is open). Specifically, data from patients allocated to
a new experimental arm are only compared to that from
patients randomized to the control arm contemporaneously.
For the non-concurrent control discussion, a good resource is
the EU-PEARL webinar, “Non-concurrent controls in plat-
form trials” where different multi-stakeholder perspectives
on challenges and opportunities for the use of nonconcur-
rent control data are discussed. In a more general setting of
how to leverage information from external or non-concurrent
sources to potentially gain power and precision or reduce the
sample size, especially based on Bayesian models, people can
refer to Normington et al. [14]. It is worth noting that a re-
cent paper [4] describes how to apply the estimands concept
when adding new arms.

The two-period multiarm trial is a special case of the
platform trial in which a new arm(s) is added only once after
the start of a trial. The general platform design is defined as
a multiarm multistage (MAMS) trial that adds and removes
experimental arms during the trial course. For the general
platform design, unlimited times of “adding” are allowed;
therefore, a platform trial is also called a perpetual or non-
ending trial. For the general platform design, there is a rich
body of literature [20, 9, 5, 15, 3].

The rest of the paper is organized as follows. In Section 2,
after defining the notations, we introduce the two-period
K+M-experimental arm platform design methods. Specifi-
cally, we use a 2+2-experimental arm trial to illustrate the
design’s components and the developed method in detail.
A design to control the pairwise type I error rate (PWER)
is also introduced. In Section 3, we briefly showcase how
to use the R package PlatformDesign to design our mo-
tivating pediatric osteosarcoma study and other examples.
Comprehensive numerical evaluations are presented in Sec-
tion 4. Section 5 concludes the paper with a discussion.

2. METHODS
We discuss a general format of the two-period K+M-

experimental arm platform design. The first period includes
K experimental arms, and during the second period, M ex-
perimental arms will be added. K and M can be equal to 1.
The second period includes two parts: an overlapping part
and a non-overlapping part (see below for details). One com-
mon control arm is shared throughout the two periods.

We first introduce a K-experimental arm trial design
upon which the K+M-experimental arm trial is based. The
K-experimental arm trial we refer to in this paper is equiv-
alent to a traditional K+1-arm trial, which has K experi-
mental arms and one control arm. The K+M-experimental
arm trial is based on the K-experimental arm trial, in the

sense that we will retain the same FWER (or PWER) and
marginal power for the K+M-experimental arm trial as in
the K-experimental arm trial, despite adding M new ex-
perimental arms during the second period of the K+M-
experimental arm trial. Then we describe the proposed
methods for the K+M-experimental arm trial, detailing how
to add a new experimental arm(s) during the second period
of the trial and determine the critical value and allocation
ratios.

2.1 Design Components for the
K-Experimental Arm Trial

In the K-experimental arm trial, we test K experimental
arms against a control arm. We define Xki as the treatment
response of the i-th patient on arm k (k = 0, 1, . . . ,K, where
k = 0 represents the control arm). We then assume that
Xki ∼ N(μk, σ

2
k) and the family of K null hypotheses to be

tested is

H01 : δ1 = μ1 − μ0 ≤ 0, . . . , H0K : δK = μK − μ0 ≤ 0.

We use δk to denote the effect size for each experimental arm
k, k ∈ {1, . . . ,K}. For simplification, we assume σ0 = σ1 =
· · · = σK = σ, where σ is the common standard deviation.
We also denote the standardized effect size using Δk = δk/σ.

To test the hypothesis H0k, k ∈ {1, 2, . . . ,K} for experi-
mental arm k versus control, we assume that a standardized
test statistic, Zk, is computed as

Zk =
δk√

Var(δ
k
)
, k ∈ {1, . . . ,K}.

Under H0k, the distribution of the Z-test statistics is stan-
dard normal, N(0, 1). A marginal (or pair-wise) type-I error
rate of level α can be computed as 1−Φ(z1−α), where Φ(·)
is the standard normal probability distribution function.

If we assume that σ is unknown, then we would use the
T-test statistic, Tk = X̄k−X̄0

s
√

1/n+1/n0
, k ∈ {1, . . . ,K}. Here,

X̄ is the sample mean, and s is the sample standard de-
viation. The design parameters n and n0 are the numbers
of patients enrolled in each experimental arm and the con-
trol arm (assuming an equal number of patients is recruited
for each experimental arm). Under the null, Tk ∼ t1,v with
v = n + n0 − 2. We can then compute the marginal type-I
error rate using the T distribution. In this paper, we will
use the Z-test statistic to introduce the methods.

2.1.1 Error Rate

For a set (or family) of hypotheses, a type-I error is de-
fined as rejecting any true null hypothesis. In this paper,
we use the Dunnett’s correction [7] to control the FWER in
the strong sense, which means that the probability of reject-
ing any true null hypothesis is controlled at a pre-specified
level for any possible values of (δ1, . . . , δK). The situation in
which PWER (instead of FWER) is controlled is discussed



88 H. Pan, X. Yuan, and J. Ye

in Section 2.4. The guidance on multiplicity issues in clini-
cal trials from the regulatory bodies (FDA 2017 and EMA
2012) states that controlling the family-wise type-I error in
the strong sense is required for confirmatory trials.

To be explicit, by setting a global null hypothesis HG
0 ,

HG
0 : δ1 = · · · = δk = · · · = δK = 0,

Magirr et al. [13] showed that the FWER is maximized un-
der HG

0 . Then, the FWER is defined as follows:

FWER = Pr(reject at least one H0k, k ∈ {1, . . . ,K}|HG
0 )

(2.1)

Dunnett [7] provided an analytical formula to estimate
the FWER when all the comparisons start and conclude at
the same time. The FWER can be calculated using

FWERD = 1− ΦK(z1−α1 , . . . , z1−α1 ; Σ1), (2.2)

where ΦK(·; Σ1) with Σ1 = [ρkk′ ] is the standard K-variate
normal probability distribution function, and Σ1 is a K-
by-K correlation matrix, with ρkk′ denoting the correla-
tion between Zk and Zk′ at the final analysis. The z1−α1

is the critical value to control the FWERD during the K-
experimental arm trial; the subscript D refers to Dunnett’s
method.

2.1.2 Power

Sample sizes can be computed to control several types of
power at specified levels. There are multiple definitions of
power, depending on the objective of the trial in multiarm
settings.

We use ω = 1 − β to denote the marginal power (pair-
wise) for a given experimental arm against the control.

The alternative hypothesis for each of the comparisons to
be tested is

H11 : δ1 = δ11 > 0, . . . , H1K : δK = δ1K > 0.

In this paper, we focus on the global alternative hypothe-
sis, HG

1 , which is given by

HG
1 : δ1 = · · · = δk = · · · = δK = δ∗(> 0), (2.3)

where δ∗ is the common effect size. Because we assume equal
standard deviation (denoted as σ) for each experimental
arm, this is equivalent to HG

1 : Δ1 = · · · = Δk = · · · =
ΔK = Δ(> 0), where Δ is the common standardized effect
size. Then, we can define the following power based on HG

1 .
Disjunctive (any-pair) power (Ωdis) is the probability of

showing a statistically significant effect under the targeted
effects for at least one comparison

Ωdis = Pr(reject at least one H0k, k ∈ {1, . . . ,K}|HG
1 )

(2.4)

Of note, another popular alternative hypothesis is
the least favorable configuration for experimental k ∈
{1, . . . ,K}, which is given by HLFCk

1 : δk = δ∗, δ1 = · · · =
δK = 0. We will not explore this hypothesis in this paper.

Conjunctive (all-pairs) (Ωc) power is the probability of
showing a statistically significant effect under the targeted
effects for all comparisons. The conjunctive power is com-
puted as

Ωc = Pr(reject all H0k|HG
1 ) (2.5)

This power is optimistic, and we will not use it in the paper.

2.1.3 Optimal Allocation Ratio

In a traditional two-arm randomized clinical trial in
which the endpoint measured for both the control and ex-
perimental treatments has the same variance, the optimal
allocation ratio between the two arms is 1:1, which maxi-
mizes the power. However, when there are multiple experi-
mental arms compared to a control arm, the optimal alloca-
tion is no longer 1:1. If early stopping was implemented for
an experimental arm, then the optimal allocation would be
approximately

√
K patients (root-K rule) allocated to the

control group for every patient allocated to a given experi-
mental treatment [21]. Thus, as the number of experimental
arms increases, the optimal allocation ratio also increases.
The above result applies to the one-stage K-experimental
arm design.

Based on the root-K rule, we have the same alloca-
tion ratio (A1 =

√
K) across all experimental arms in K-

experimental arm trial, thus, n01 = A1 × n1, A1 ∈ (0,∞).
Here, A1 is the allocation ratio for the control arm relative
to the experimental arm. The design parameters n1 and n01

are the sample sizes of each of the K experimental arms
and the control arm, respectively, during the K-experimental
arm trial. In the first period of the K+M-experimental arm
trial, the same allocation ratio, A1, is kept. A1 = n0t/nt,
as nt and n0t are the sample size of each of the K exper-
imental arms and the control arm, respectively, during the
first period of the K+M-experimental arm trial, before the
M new arms are added. (Figure 1.) Additionally, The corre-
lation ρkk′ between Zk and Zk′ is A1/(A1 + 1) (For details,
see Step 2 of Appendix A.2). If there is an equal allocation
to the control and experimental arms, then, n01 = n1 and
ρkk′ = 0.5.

Other optimality criteria have also been proposed, in-
cluding A-optimality, D-optimality, and E-optimality. De-
tails can be found in Atkinson et al. [1]. Of note, for the
MAMS design, Wason & Jaki [22] proposed a method to
investigate the optimal allocation.

2.1.4 Design Summary for the K-Experimental Arm Trial

In the K-experimental arm trial, there are K experi-
mental arms and one common control arm. To control the
FWER (e.g., at 0.025), equation (2.2) is used to derive the
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critical value z1−α1 . Given the global alternative hypothe-
sis HG

1 defined in formula (2.3), the required sample sizes
for the control and each experimental arm are derived with
the allocation ratio based on the root-K rule to obtain a
desirable marginal power ω1 (See Step 4 in Appendix A.2).
The corresponding disjunctive power, Ω1, defined in equa-
tion (2.4), is calculated based on ω1, as described in Step 5
in Appendix A.2.

2.2 Design Components for the
K+M-Experimental Arm Trial

At the end of the first period with K experimental arms,
M experimental arms are allowed to be added, and the
study enters the second period. The second period of the
K+M-experimental arm trial has two parts. The first part
is an overlapping duration in which K initial experimental
arms and M new experimental arms overlap, and the sec-
ond part is a non-overlapping duration in which only the
M new experimental arms are open. Both parts share a
common control arm. We use a 2+2-experimental arm trial
(depicted in Figure 1) to introduce the notations used in
the K+M-experimental arm trial. As its name suggests, the
2+2-experimental arm trial includes a first period in which
there are two experimental arms, and a second period in
which two new experimental arms are added. This is the
setting of the St. Jude pediatric osteosarcoma trial.

In Figure 1, ‘Control’ denotes the common control arm,
‘Trt1’ and ‘Trt2’ denote the two initial experimental arms
opened during the first period, and ‘Trt3’ and ‘Trt4’ refer
to the two experimental arms opened during the second pe-
riod of the 2+2-experimental arm trial (the right side of
Figure 1). A1 is the randomization ratio of the control to
Trt1 or Trt2 (determined by the root-K rule), and nt is the
“information time” when Trt3 and Trt4 are added. Specif-
ically, the two arms are added when nt patients have been
enrolled in each of Trt1 and Trt2. Equivalently, the “infor-
mation time” can be defined as n0t = [A1nt], the number of
patients have been enrolled in the control arm when adding
new arms, where [·] means rounding up to the nearest in-
teger. The information time (nt and n0t) should follow the
two constraints: nt ≤ n1 and n0t ≤ n01 .

The allocation ratio changes to A2 once the Trt 3 and 4
are added. During the overlapping stage, there are n2 − nt

patients enrolled for each of the experimental arms and
n02 − n0t patients enrolled for the control. Therefore, A2 =
(n02 − n0t)/(n2 − nt). Determination of n2 and n02 will be
introduced in the next section. After the overlapping stage
(i.e., after Trt1 and Trt2 are stopped), Trt3 and Trt4 will
continue to enroll until each has reached the required sam-
ple size of n2. Therefore, both of these arms, need to enroll
an additional nt patients to “catch up” with Trt1 and Trt2
during the second part of the second period. In the same
vein, the control arm will enroll an additional n0t patients
to ensure the same number of concurrent controls across ex-
perimental arms. Therefore, the allocation ratio A3 is equal

to A1 after the completion of Trt1 and Trt2. Additionally,
we denote the overall allocation ratio as A = n02/n2.

Because the 2+2-experimental arm trial has four overlap-
ping experimental arms and therefore four test statistics, we
can not use the critical value z1−α1 from the 2-experimental
arm trial for the 2+2-experimental arm trial. For example,
if we want to control the FWER, the critical value of the
K+M-experimental arm trial, z1−α2 , should be computed
based on the correlation matrix of K + M test statistics
using formula (2.2) with K replaced by K +M .

2.3 Determination of the Optimal Allocation
Ratio A2 for the Overlapping Duration in
a Two-Period K+M-Arm Trial

We need to first determine the critical value z1−α2 be-
fore we determine the optimal allocation ratio A2. To calcu-
late the z1−α2 , we need to determine the correlation matrix
Σ2 = [ρkk′] of the K+M-experimental arm trial. This can be
derived as follows (see Appendix A.1 for the derivation):

ρk,k′ =
n0

kk
′

n2
02

n2
+ n02

.

Here, n0kk′ is the number of shared controls between ex-
perimental arms k and k′. By Figure 1, if arms k and k′

started at the same time, then n0kk′ = n02 . Otherwise,
n0kk′ = n02 − n0t.

Once we have the Σ2, we can use the following equation
to find the updated critical value z1−α2 .

FWER = 1−
∫ z1−α2

−∞

∫ z1−α2

−∞
...

∫ z1−α2

−∞
πZ(Z(z1, . . . ,

zK , zK+1, . . . zK+M ), 0,Σ2)dz1dz2...dzK+M (2.6)

Then we can use z1−α2 to calculate the marginal power,
ω2, and the disjunctive power, Ω2, of the K+M-experimental
arm trial. (See more details at the end of Section 2.3.1.)

The goal of a two-period K+M-experimental arm plat-
form design is to determine the minimum total sample size
(denoted as N2) that can have the marginal power ω2 and
disjunctive power Ω2 that are no less than their counter-
parts, ω1 and Ω1, in the K-experimental arm, while control-
ling for FWER.
2.3.1 Admissible Set for Finding the Optimal Design(s)

It is easy to see z1−α2 can not be derived without n2 and
n02 , as they are needed for computing the correlation matrix
Σ2. We define an admissible set for pairs of (n2, n02) based
on the following three constraints. The first two constraints
are related to A2, the allocation ratio after adding the new
arms.

Here we have

A2 = (n02 − n0t)/(n2 − nt) > 0,

where nt and n0t are the numbers of enrolled patients in each
of the experimental arms and the control arm, at the time
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Figure 1: Schema of a two-period 2+2-experimental arm platform trial. The left part of the figure shows a traditional
three-arm trial. In the context of this paper, we refer it as a two-experimental arm trial, as it has two experimental arms
and one common control. The right part of this figure depicts the 2+2-experimental arm trial. During the first period,
this trial has two experimental arms, Trt 1 and Trt 2 (light blue segments), and a control arm (dark blue segment). The
vertical solid line separates the first and second periods of the trial and indicates the opening of two new experimental
arms, Trt 3 and Trt 4. The dashed vertical line separates two parts of the second period and indicates the closing of
Trt 1 and Trt 2. During the first part of the second period, the control arm (dark purple segment) is shared among the
four experimental arms (light purple segments). During the second part of the second period, the control (dark green),
Trt 3, and Trt 4 (light green) continue to accrue patients until reaching the planned sample sizes. The nt and n0t (blue
brackets) indicate the numbers of patients enrolled in Trt 1, Trt 2, and the control, respectively, when Trt 3 and Trt 4
are added. The n1 and n01 (orange brackets) indicate the sample sizes for each of the two experimental arms and the
control, respectively, in the 2-experimental arm trial. The n2 and n02 (green brackets) indicate sample sizes for each of
four experimental arms and the concurrent control. A1 denotes the allocation ratio (control to experimental arm) during
the first period. A2 denotes the allocation ratio during the first part of the second period, when all four experiments arms
are open. A3 denotes the allocation ratio during the second part of the second period.

of adding the two new arms. The value of A2 needs to be a
non-infinite positive number. In our 2+2 example, if nt = 30,
then n0t = [A1 ∗ nt] = 43 (See Step 8 in Appendix A.2 for
details).

Therefore, the first two constraints are

n02 > n0t = 43,

and

n2 > nt = 30.

We also need to set an upper limit for the total sample
size of the K+M-experimental arm trial, N2. A reasonable

upper limit implies that N2 should not exceed the required
sample sizes (denoted as S) for conducting two separate
multiarm trials, i.e., a K-experimental arm trial and an M-
experimental arm trial.

Based on formulae (A.2) and (A.3),

S =
(z1−α1 + z1−β1)

2

Δ2
(1 + 2

√
K +K)

+
(z1−α∗

1
+ z1−β1)

2

Δ2
(1 + 2

√
M +M),

where z1−α1 and z1−α∗
1

are the critical values for the K-
and M-experimental arm trials, respectively. Therefore, the
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Figure 2: Admissible set of (n2, n02) (shaded triangular re-
gion), when nt = 30 and n0t = 43 in a two-period 2+2-
experimental arm platform trial.

third constraint for (n2, n02) is

N2 = (K +M)n2 + n02 + n0t < S.

In our “2+2” example, z1−α1 = z1−α∗
1

as K = M =
2, and S = 2N1 = 690. (See Step 4 in Appendix A.2 for
derivation of N1.)

Therefore, the third constraint for the “2+2” example is

N2 = 4n2 + n02 + n0t < 690.

Under the above three constraints, the admissible set of
(n2, n02) can be identified. Given nt = 30 and n0t = 43,
we can obtain the feasible region (shaded area in Figure 2).
Specifically, all integer pairs (n2, n02) in this region are po-
tential design candidates.

Once we have the feasible region for the pairs of (n2, n02),
then we can compute the correlation matrix Σ2 of the K+M
test statistics (Z1, . . . , ZK , ZK+1, . . . , ZK+M ). Derivation of
Σ2 in the “2+2” setting is presented in Step 9 of Ap-
pendix A.2. With the correlation matrix Σ2, we can use
equation (2.6) to find the marginal type I error α2 for a
specific pair (n2, n02).

With n1, n01 , α1, β1, and α2, we can use the following
equation (2.7) to calculate the marginal power ω2 = 1− β2

for each pair (n2, n02) from z1−β2 .

z1−β2 =

√√√√ 1
n1

+ 1
n01

1
n2

+ 1
n02

(z1−α1 + z1−β1)− z1−α2 (2.7)

Next, we can derive the disjunctive power Ω2 for each
pair of (n2, n02) by plugging β2 and Σ2 into the following
equation.

Ω2 = 1−
∫ zβ2

−∞

∫ zβ2

−∞
...

∫ zβ2

−∞
πZ(Z(z1, z2, . . . zK+M ),

0,Σ2)dz1dz2...dzK+M

Based on the above procedure, we can compute the asso-
ciated ω2 and Ω2 for all admissible pairs in the feasible re-
gion. In the 2+2-experimental arm example, the total num-
ber of (n2, n02) pairs in the admissible set is 29,040, and
we can compute ω2 and Ω2 for each of the pairs. Then, we
can perform a two-step selection procedure to determine the
“optimal” design(s):

1. We keep only the designs in which ω2 ≥ ω1 and Ω2 ≥
Ω1, respectively (lower limits are decided in Step 7 of
Appendix A.2).

2. Among the designs selected, we recommend the one(s)
with the smallest sample size (N2) as the “optimal”
design(s).

We demonstrate how to design a two-period 2+2-
experimental arm platform design by using the R package
PlatformDesign in Appendix A.2.

2.4 An Optimal K+M-Experimental Arm
Design that Controls the PWER

We have described the method for designing a K+M-
experimental arm trial to control the FWER, i.e., to control
the multiplicity when many interventions are evaluated si-
multaneously against a common control. However, depend-
ing on the reason different treatments are included in the
same platform trials, they may not be considered “a fam-
ily” simply because they are included in the same trial.
For master protocols like platform trials, if different exper-
imental arms are included solely for operational efficiency
(e.g., reducing the sample size of the control arm by using
a shared control to save resources expended during recruit-
ment), we would not necessarily need to perform multiplicity
adjustment to control the FWER. Therefore, in this section
we introduce an alternative version of the optimal K+M-
experimental arm design controlling for the pair-wise type I
error rate (PWER). The PWER is the probability of incor-
rectly rejecting the null hypothesis for the primary outcome
in a particular experimental arm, regardless of outcomes in
the other experimental arms. In this case, the critical value
zα can be derived directly from the equation below:

zα = Φ−1(1− α), (2.8)

where α is a prespecified pair-wise type-I error for each com-
parison in the trial, which will not be changed due to adding
new arms. That is, α1 = α2 = α. Therefore, the main differ-
ence between the K+M-experimental arm trial designs con-
trolling for FWER and PWER is that the latter does not
use the Dunnett method to derive critical values. Instead,
the design derives it directly from Equation 2.8. Notably, the
upper limit S for the total sample size N2 when controlling
for PWER, is constructed using the total sample sizes from
the multiarm trials which also control the PWER. Other
procedures are similar between the two versions of the de-
sign. For more details, see Appendix A.3 for an example to
design a “2+2” trial controlling the PWER.
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3. SOFTWARE EXAMPLE
We developed an R package, PlatformDesign for imple-

menting the proposed two-period multiarm platform meth-
ods. In this section, we demonstrate our package with three
examples of 1) a “2+2” trial with nt = 30, 2) a “2+2” trial
with nt = 50 and 3) a “1+3” trial with nt = 30.

Example 1 If no arms are to be added during the course of
a study, we can use the functions one_stage_multiarm(·)
to compute the sample sizes for the experimental and con-
trol arms. For instance, in a study planned to have only
two experimental arms and one common control, given a
FWER of 0.025 and marginal power of 80% and assuming
the expected standardized effective size of 0.4, by using the
following code, we found that the sample size for the control
is 143, and that for each of the experimental arms is 101.
Thus, the planned total sample size in the first period is 345.

> l i b r a r y ( PlatformDesign )
> re s1 <− one_stage_multiarm (K = 2 , fwer = 0 .025 ,
marginal . power = 0 .8 , d e l t a = 0 . 4 )
> re s1 $n0_1
#[ 1 ] 143
> re s1 $n1
#[ 1 ] 101
> re s1 $N1
#[ 1 ] 345

However for our pediatric osteosarcoma study, the plan
is to add two new experimental arms during the trial. As-
suming that the new arms will be added when 30 pa-
tients have been enrolled in each experimental arm, and
that the study controls the FWER at 0.025 and achieves
marginal power at 80%, we can use the following function
platform_design(· · ·) to find the optimal design(s).

The first part of the outputs ($design_Karm) contains
the parameters for the K-experimental arm trial. The sec-
ond part ($designs) contains the parameters for the K+M-
experimental arm trial designed based on the former. From
above, four designs are recommended ($designs), all of
which meet the requirements, in terms of controlling the
FWER and obtaining power levels equal to or greater than
that of the K-experimental arm trial. If we choose design
#16632 (the last row), then the sample sizes for each ex-
perimental arm and its corresponding concurrent control in

Figure 3: An example of adding two experimental arms to
a two-experimental arm trial comparing Trt 1 and Trt2 to
control. Key design parameters are shown. The vertical solid
line represents when the new experimental arms (Trt3 and
Trt 4) are added to the trial. The dashed vertical line rep-
resents when the Trt 1 and Trt 2 arms close to accrual. The
blue brackets represent the “information time”, when the
two new experimental arms are added. They indicate the
number of patients enrolled in each of the two initial experi-
mental arms and in the control at the time. The green brack-
ets represent the sample sizes required per experimental arm
and the corresponding control in the 2+2-experimental arm
trial.The orange brackets indicate the sample sizes for each
of the two experimental arms and the control for the 2-
experimental arm trial without adding a new arm(s). The
optimal allocation ratios (A1, A2, and A3) for each period
are shown at the bottom of the figure.

the 2+2-experimental arm trial are 104 and 210, respec-
tively. The sample size for the entire control arm (including
non-concurrent controls) is 253. Using this design, A2, the
allocation ratio in the first part of the second period is 2.26,
control-to-experimental arm. Other parameters of this de-
sign are shown in Figure 3.

Once we decide n2 = 104 and n02 = 210, the sample
sizes for each of the experimental arms (Trt 1 to Trt 4) and
the control arm in the first part of the second period are
104−30 = 74 and 210−43 = 167, respectively. Accordingly,
we can determine the sample sizes of Trt 3, Trt 4 and the
control arm for the second part of the second period to be
104−74 = 30 and 210−167 = 43, respectively. The optimal
allocation for the second part of the second period A3 can
be computed accordingly as A3 = 43/30 = 1.41.
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Example 2 With the constraints on sample sizes described
in Section 2.3.1, the optimal design(s) may not exist when
nt, i.e., the timing of adding new arm(s) is relatively “late”.
For instance, in the above “2+2” example, if nt = 50, no
optimal design is identified if a marginal power of 80% needs
to be maintained, as shown in the following code.

The platform_design(·) function returns criteria
indicators (i.e., flag.dp, flag.mp, and flag.dpmp) to show
if any optimal design exists, given FWER, marginal power,
the timing of adding a new arm(s), and the number of
experimental arms for each period in a K+M-experimental
arm trial. If flag.dpmp = 0, the optimal design can
maintain both marginal and disjunctive power levels no
less than those in the K-experimenal arm trial. Otherwise,
the algorithm will check if we can find a design(s) that
maintains either the marginal or disjunctive power. When
nt = 50, flag.dpmp = 1, and flag.dp = 0, it indicates that
we can only find designs that keep the disjunctive power no
less than its counterpart in the K-experimenal arm trial.
However, the marginal power in the designs found is less
than 80%. The accompanying warning message conveys
the same information.

Example 3 The PlatformDesign package can be used to
design any K+M-experimental arm platform trial with K
and M as positive integers. Here, we show a hypothetical ex-
ample for designing a 1+3-experimental arm platform trial
using this R package.

Based on the output above, one design with N2 = 654 is
recommended. In addition, we can see that all the criteria
indicators are equal to zero, implying that the criteria for
both marginal and disjunctive power levels have been met.

More explanations of the above results and step-by-step
instructions for using this package can be found in Ap-
pendix A.2. Details of how to use Platform_Design(.)
and other functions can also be found in documents and
vignettes of the R package PlatformDesign.

4. NUMERICAL EVALUATIONS
Unless otherwise specified, all numerical evaluations are

conducted in the setting of a two-period 2+2-experimental
arm trial (except for Figure 14 in Section 4.4), which con-
trols the FWER at 0.025 and achieving a marginal power of
0.8, given the standardized effect size Δ is 0.4. Therefore,
the disjunctive power exceeds 0.922. In this section, we will
examine the relations among various design parameters in
the 2+2-experimental arm trial.

4.1 Correlations
We explored the relations between the correlations of

Z-test statistics and the disjunctive power Ω2 in the 2+2-
experimental arm trial. Specifically, during the second pe-
riod, two types of correlations occur. We denote ρ1 as the
correlation between any pair of experimental arms that start
at the same time, and ρ2 as the correlation between any pair
of experimental arms that start at different times.

In the “2+2” example, the change in disjunctive power
Ω2 is driven by ρ2 (Figure 5) instead of ρ1 (Figure 4). The
disjunctive power (Ω2) decreases as ρ2 increases (Figure 5).
Given a specified marginal power, an optimal design(s) may
not exist if the timing of adding new arms is relatively late
(i.e., the value of nt is large). Therefore, in Figures 4 and 5,
for nt = 50, 60, 70, or 80, the lower limit of marginal power
Ω2 is 75%. We must choose a lower limit for ω2 when nt > 40
to ensure that N2 < S. More detailed reasoning for this is
provided in Appendix A.2.

4.2 Influence of the Timing of Adding New
Arms

To design a platform trial, we must know how the timing
of adding a new arm(s) affects the design’s properties. Here
we examine the relations between the timing of adding new
arms (i.e., “information time”, nt) and various design pa-
rameters in the K+M-experimental arm trial (e.g., the total
required sample size N2, the disjunctive power Ω2, and the
marginal type-I error rate α2) using a “2+2” example.

As shown in Figure 6, the total sample size N2 increases
with increased information time nt. Thus, the earlier the
timing of adding new arms, the more patients can be saved
by conducting a 2+2-experimenatal arm trial compared to
two separate 2-experimental arm trials (shown as a red line
in Figure 6). For instance, if two experimental arms are
added to the trial when nt = 30, the total required sample
size is 669. This means that 21 fewer patients are needed,
keeping the FWER at 0.025 and marginal power of 80%,
and assuming a standardized effect size of 0.4.
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Figure 4: Relations between the correlation ρ1 and disjunc-
tive power Ω2 in a two-period 2+2 platform trial setting,
given the FWER of 0.025, a disjunctive power level repre-
sented by Ω2 ≥ 0.922, the marginal power represented ω2 ≥
0.8 (for nt = 10, 20, 30, or 40; blue dots) or 0.75 (for nt = 50,
60, 70, or 80; red dots), and the standardized effect size Δ =
0.4. The value associated with each dot is the corresponding
nt value.

Figure 5: Relations between the correlation ρ2 and disjunc-
tive power Ω2 in a two-period 2+2 platform trial setting,
given the FWER of 0.025, disjunctive power Ω2 ≥ 0.922,
the marginal power ω2 ≥ 0.8 (for nt = 10, 20, 30, or 40;
blue dots) or 0.75 (for nt = 50, 60, 70, or 80; red dots), and
the standardized effect size Δ = 0.4. The value associated
with each dot is the corresponding nt value.

Figure 7 suggests that the disjunctive power Ω2 also
increases with the delay of adding new arms in the “2+2”
scenario. This is expected, as the delay decreases the
correlations between any pair of arms starting at different
times (ρ2), caused by a briefer overlapping period. There-
fore, experimental arms become more independent, which
increases Ω2.

Figure 6: The timing of adding new arms (nt) affects the
total sample size N2, given the FWER of 0.025, disjunctive
power Ω2 ≥ 0.922, and the marginal power ω2 ≥ 0.8 (for nt

= 10, 20, 30, or 40; blue dots) or ≥0.75 (for nt = 50, 60, 70,
or 80; red dots), and the standardized effect size Δ = 0.4.
The value associated with each dot is the corresponding nt

value. The red line indicates the total sample size needed for
conducting two separate 2-experimental arm trials. The val-
ues associated with each dot is the corresponding N2 value.

Figure 7: The timing of adding new arms (nt) affects the dis-
junctive power (Ω2). Given FWER = 0.025, the marginal
power ω2 ≥ 0.8 (for nt = 10, 20, 30, or 40; blue dots) or
≥0.75 (for nt = 50, 60, 70, or 80; red dots), and the stan-
dardized effect size Δ = 0.4.

We also examined the relations between the marginal
type-I error rate (α2) and the timing of adding new arms
(nt) in the “2+2” example. The marginal type-I error rate α2

decreases when nt increases (Figure 8), though this change
is negligible (range of α2, 0.00650 to 0.00665). This finding
indicates that the timing of adding new experimental arms
to an existing platform protocol has a minimal impact on
the marginal type-I error rate.
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Figure 8: The timing of adding new arms (nt) has a minimal
impact on the marginal type-I error rate (α2) in the “2+2”
example.

Figure 9: Relations between the overlapping parameter and
the disjunctive power Ω2.

4.3 Overlapping Parameter
We define an overlapping parameter as n2−nt

n2
, which rep-

resents the percentage of patients in an experimental arm
who are enrolled during the overlapping stage. We explored
the relations between the overlapping parameter and vari-
ous design parameters, including the disjunctive power Ω2

and the marginal type-I error rate α2 in the “2+2” scenario.
As illustrated in Figure 9, the disjunctive power Ω2 de-

creases as the overlapping parameter increases. This is the
opposite of what we observed for the relation between nt

and Ω2.
Unlike the relation with Ω2, the marginal type I error

α2 increases with the increase in the overlapping parameter
(Figure 10).

We also explore the relation between the overlapping pa-
rameter and test statistics correlations for two types of cor-
relations. In Figure 11, there is no obvious trend between

Figure 10: The relation between the overlapping parameter
and the marginal type-I error α2.

Figure 11: The relation between the correlation ρ1 and over-
lapping parameter. The value associated with each dot is the
value of nt.

the overlapping parameter and ρ1, but in Figure 12, there
is a positive trend between the overlapping parameter and
ρ2.

4.4 Optimal Overall Allocation Ratio A

The overall allocation ratio (defined as A = n02/n2) stays
very close to the value of

√
4 = 2 with various nt (Figure

13). The value of A ranges from 1.95 to slightly less than
2.10.

Given the timing of adding new arms at nt = 30 and
choosing only the optimal design with the largest disjunc-
tive power, we explored how the overall allocation ratio A
changes with varied K = 1, 2, 3, 4, or 5 and M = 1, 2, 3, 4,
or 5. From Figure 14, given the same M , the overall alloca-
tion ratio A increases if K increases. Given the same K, A
increases as M increases.



96 H. Pan, X. Yuan, and J. Ye

Figure 12: The relation between the correlation ρ2 and over-
lapping parameter. The value associated with each dot is the
value of nt.

Figure 13: The relation between the overall allocation ratio
A = n02/n2 and the timing of adding new arms (nt) in a
two-period 2+2-experimental arm platform trial. The red
dashed line represents the optimal allocation ratio used in
the first period, based on the root-K method.

5. CONCLUSION
The popularity of platform trials has increased in recent

years. However, due to the complexity of such trial designs,
many design-related questions remain, and the use of plat-
form trials is still limited, especially in the confirmatory
late-phase setting. To facilitate the use of platform trials,
we propose an optimal design for two-period multiarm plat-
form trials, in terms of minimizing the total sample size to
control the FWER or PWER. Instead of adding new arms
without end, this type of trial considers two periods, before
and after new experimental arms are added. Each period
can have one or more experimental arms, and a common
control arm is shared by both periods. A two-period multi-
arm platform trial is usually very useful in the setting of a

Figure 14: Relations between the overall allocation ratio
A = n02/n2 and the numbers of experimental arms initially
opened (K = 1, 2, 3, 4, or 5) and added later (M = 1, 2, 3, 4,
or 5), given nt = 30, FWER = 0.025, disjunctive power
Ω2 ≥ 0.922, the marginal power ω2 ≥ 0.8, and the stan-
dardized effect size Δ = 0.4. The results are shown for each
combination of K and M , where the optimal design with the
greatest Ω2 is presented. In the “5+1” scenario, the optimal
design does not exist due to sample size constraints and the
prespecified goal for the marginal power to be at least 80%.

single institution and is a special type of MAMS platform.
In this paper, to meet registrational purposes, we system-

atically described how to control the FWER or PWER when
adding new arms, re-estimate the sample size to achieve the
desirable power, and determine the optimal allocation ra-
tio. Numerical evaluations were conducted to comprehen-
sively examine the properties of the proposed design. The
advantage of this design over conducting separate multiarm
trials is that we can reduce the sample size and use a shared
infrastructure. We also provide a step-by-step tutorial in
Appendix A.2, that demonstrates how to use the R package
PlatformDesign.

In this paper, we considered conducting the main anal-
yses using only the concurrent controls. Because osteosar-
coma is a relatively rare disease, patient accrual can take a
long time. Therefore, we need to be careful about the po-
tential changes in treatment effect over time. For clinical
studies with relatively faster accrual rates, the difference
between the two periods may not be substantial. In those
cases, a nonconcurrent control may still be used. Neverthe-
less, in the design of our pediatric osteosarcoma study, we
plan to include all control arm data for sensitivity analy-
ses (i.e., to increase the estimation precision and power).
There are three rationales for using a pooled control arm:
(1) Pediatric osteosarcoma is a rare disease, so patients are
scarce. (2) If the timing of adding new arms is early and
the medical landscape is stable, there is little concern about
any potential shift in the treatment effect over time. (3) The
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nonconcurrent control is essentially part of the control arm.
Those patients are enrolled in the same study, screened with
the same inclusion/exclusion criteria, and participate at the
same institution, just like the concurrent controls. How to
use nonconcurrent controls has been described in many pa-
pers [15, 6, 19, 18].

We also examined the timing of adding new arms in plat-
form trials because practical guidance about deciding the
timing of adding and closing arms will help increase the up-
take of this approach. However, we have focused primarily
on the statistical aspects of adding arms. The optimal tim-
ing of adding (or closing) arms in platform trials depends
on the clinical context, the nature of the interventions, and
the capability of stakeholders to deliver amendments [12]. It
should also be noted that whether to add a new treatment
arm to a multiarm study in the two-period setting (called
two-stage in [11]) has been discussed based on a decision-
theoretic framework.

Future works will involve extending the current method
to a multiperiod, multiarm, multistage setting. The design
will include more than two periods and will be not only mul-
tiarm but also multistage, allowing early closing of arms or
graduating during the interim analyses. In this paper, we do
not consider the presence of time trends, which is an effect
of a treatment (either an experimental or control treatment)
that may vary with time as the study period of platform tri-
als is often longer than that of fixed trials. This happens, for
example, when there is a learning curve amongst the study
personnel or when standard care changes over time. In the
future, we may use models that incorporate time trends in
the proposed framework. We also may study how to use
nonconcurrent control arm data when time trends are con-
sidered.

APPENDIX A
A.1 Derivation of the Correlation Between

Test Statistics
For a comparison between the experimental arm k (k =

1, 2, 3, . . . ) and the control arm, we have the test statistics

Zk =
X̄k − X̄0k

σ
√

1
n + 1

n0

where n refers to the number of patients in each experimen-
tal arm and n0 refers to that in its control.X̄k and X̄0k are
sample means for experimental arm k and its correspond-
ing control, respectively. We assume standard deviation σ is
equal for all arms.

The correlation between the test statistics of experimen-
tal arms k and k′ is

ρk,k′ = Cov(
X̄k − X̄0k√

1
n + 1

n0

,
X̄k′ − X̄0k′√

1
n + 1

n0

)/σ2

where X̄k (X̄k′) and X̄0k (X̄0k′ ) are sample means of exper-
imental arm k (k′) and its associated control, respectively.
Although for both arms k and k′, the control sample size
is n0 patients, the patients enrolled are not necessary the
same individuals. Therefore, for arms k and k′, we use X̄0k

and X̄0k′ , respectively, to denote their sample means.
Let

κ =
1

1
n + 1

n0

Then,

Cov(
X̄k − X̄0k√

1
n + 1

n0

,
X̄k′ − X̄0k′√

1
n + 1

n0

)

= κCov(X̄0k , X̄0k′ )

= κCov(

∑n0

i=1 X0ki

n0
,

∑n0

j=1 X0
k
′
j

n0
)

= κ
1

n2
0

Cov(

n0∑
i=1

X0ki
,

n0∑
j=1

X0
k
′
j
)

= κ
1

n2
0

n0
kk

′ σ
2

where n0
kk

′ is the number of the shared controls between
the experimental arms k and k′. The first equality satisfies
because X̄k and X̄k′ are independent.X̄k and X̄0k′ (X̄k′ and
X̄0k) are also independent, while X̄0k and X̄0k′ share the
overlapping control data.

Therefore,

ρk,k′ = κ
1

n2
0

n0
kk

′ =
1

1
n + 1

n0

n0
kk

′

n2
0

=
n0

kk
′

n2
0

n + n0

(A.1)

A.2 Step-by-Step Explanation of the Proposed
Design Using the R Package
PlatformDesign

The following steps contain two parts: 1) Steps 1 to 5 de-
rive the design parameters in the K-experimental arm trial
unpon which the K+M-experimental arm trial is based. 2)
Steps 6 to 14 illustrate how the design parameters are cal-
culated for the K+M-experimental arm trial, to control the
FWER and marginal power at their pre-specified levels.

Step 1: Initial Setup Four design parameters for the K-
experimental arm trial should be pre-specified: the num-
ber of experimental arms (K), the family-wise error rate
(FWER1), the marginal type-II error (β1), and the allo-
cation ratio (control-to-each experimental arm, denoted as
A1). In our method, we use A1 =

√
K, according to the

K-root optimal allocation rule. In the following code, we as-
sume K = 2, FWER1 = 0.025, β1 = 0.2, and A1 =

√
2.

In addition, zβ1 (z_beta1 in the following code) is the cor-
responding critical value for the power of 1− β1.
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K <− 2
FWER_1 <− 0 .025
beta1 <− 0 .2
z_beta1 <− qnorm(1−beta1 ) #z_(1−beta1 )
A1 <− sq r t (K)

Step 2: Correlation Matrix 1 We use Z1 and Z2 to denote
the two test statistics for comparing each experimental arm
to the control in the K-experimental arm trial. Given A1,
the correlation between Z1 and Z2 (denoted as ρ0) and the
correlation matrix (denoted as Σ1) can be calculated as be-
low.

First, by plugging n1 and n01 into formula (A.1), we have

ρ0 =
n0

kk
′

(n01 )
2

n1
+ n01

where n1 is the number of patients in each experimental
arm, and n01 is the number of patients in the control arm
in the K-experimental arm trial.

Because the two experimental arms share a common con-
trol arm and n0

kk
′ = n01 , the correlation of Z1 and Z2 can

be computed as

ρ0 =
1

(n01/n1 + 1)
=

1

(A1 + 1)

In our “2+2”-experimental arm example, where K = 2,
we have

Σ1 =

[
1 ρ0
ρ0 1

]
=

[
1 0.4142

0.4142 1

]

Based on the above derivations, the function
one_stage_multiarm(·) can be used to find ρ0 and
the correlation matrix Σ1 as shown below.

mult i <− one_stage_multiarm (K = 2 , fwer = 0 .025 ,
marginal . power = 0 .8 , d e l t a = 0 . 4 )
corMat1 <− mult i $corMat1
corMat1
## [ , 1 ] [ , 2 ]
## [ 1 , ] 1 .0000000 0.4142136
## [ 2 , ] 0 .4142136 1.0000000

Step 3: Critical Value 1 Given K, Σ1, and FWER1, we can
determine the associated critical value (denoted as z1−α1)
for the marginal type-I error rate in the two-experimental
arm trial (denoted as α1) based on the following equation:

FWER1 = 1−
∫ z1−α1

−∞

∫ z1−α1

−∞
...

∫ z1−α1

−∞
πZ(Z(z1, z2,

. . . zK), 0,Σ1)dz1dz2...dzK .

This calculation can also be achieved using the function
one_stage_multiarm.

mult i $z_alpha1
# [ 1 ] 2 .220604

Step 4: Sample Sizes 1 Given β1, A1 =
√
K, an effective

standardized effect size Δ (assumed to be 0.4), and z1−α1

derived from the above Step 3 ($z_alpha1), we can de-
rive the required sample sizes for the experimental (n1) and
control arms n01(= A1n1 =

√
Kn1), respectively, as shown

below.
We have

z1−α1 + z1−β1 =
μi − μ0

σ
√

1
n1

+ 1√
Kn1

=
Δ√

1
n1

+ 1√
Kn1

therefore,

n1 =
(zα1 + zβ1)

2

Δ2
(1 +

√
K)

K
) (A.2)

and

n01 =
(zα1 + zβ1)

2

Δ2
(
√
K + 1) (A.3)

Thus, the total sample size of the K-experimental arm
trial is

N1 = Kn1 + n01

We can use the function one_stage_multiarm(.) to de-
termine the required sample sizes for the two-experimental
arm trial. Based on the outputs below, 101 patients are
needed for each experimental arm, and 143 patients are
needed for the control arm. The total sample size is 345
patients.

mult i <− one_stage_multiarm (K = 2 , fwer = 0 .025 ,
marginal . power = 0 .8 , d e l t a = 0 . 4 )

mult i $n1
mult i $n0_1
mult i $N1
# $n1
# [ 1 ] 101
# $n0_1
# [ 1 ] 143
# $N1
# [ 1 ] 345

Step 5: Disjunctive Power 1 Given β1 and Σ1 computed
above, we can derive the disjunctive power,Ω1, based on
the following equation:

Ω1 = 1−
∫ zβ1

−∞

∫ zβ1

−∞
...

∫ zβ1

−∞
πZ(Z(z1, z2, . . . zK),

0,Σ1)dz1dz2...dzK .

This result is also included as part of the output from the
function one_stage_multiarm(.), i.e., $Power1. Here, the
computed disjunctive power is 0.922.

mult i $Power1
# [ 1 ] 0 .9222971
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From Steps 1 to 5, we demonstrated how to derive the
marginal type-I error rate (α1), the sample size for each
experimental arm (n1), the sample size for the control arm
(n01), and the disjunctive power (Ω1) in the K-experimental
arm trial, given K, FWER1, marginal power 1 − β1, and
the standardized effect size Δ.

In summary, the function one_stage_multiarm(.) in R
package PlatformDesign can complete steps 1 to 5 at once.
Below are the outputs generated by this function.

one_stage_multiarm (K = 2 , fwer = 0 .025 ,
marginal . power = 0 .8 , d e l t a = 0 . 4 )

# $n1
# [ 1 ] 101
# $n0_1
# [ 1 ] 143
# $N1
# [ 1 ] 345
# $z_alpha1
# [ 1 ] 2 .220604
# $z_beta1
# [ 1 ] 0 .8416212
# $Power1
# [ 1 ] 0 .9222971
# $corMat1
# [ , 1 ] [ , 2 ]
# [ 1 , ] 1 .0000000 0.4142136
# [ 2 , ] 0 .4142136 1.0000000

On the basis of the above steps, we now introduce our
proposed methods for the K+M-experimental arm trial in
Steps 6 to 14.

Step 6: Timing of Adding New Arms Timing is the first
component to consider when planning to add new experi-
mental arms to a platform trial. In this paper, we use the
number of patients enrolled in each of the experimental arms
(nt) at the time new arms are added to define the timing.
By this definition, the number of patients enrolled in the
control arm when new arms are added is n0t = [A1nt].

The code below follows a scenario in which 30 patients
have enrolled in each experimental arm when new arms are
added.

nt <− 30
nt
## [ 1 ] 30
n_0 t <− c e i l i n g ( nt∗A1)
n_0 t
## [ 1 ] 43

Step 7: Initial Setup 2 Then we need to decide the family-
wise error rate in the K+M-experimental arm trial (denoted
as FWER2). In this paper, we control the FWER2 at the
same level as the FWER1. With FWER2, we can calculate
the marginal type-I error rate (denoted as α2, which is al-
ways smaller than α1). Then we can calculate the updated
marginal power, ω2, based on α2. Lastly, we can calculate
the disjunctive power,Ω2, using ω2. The details will be de-
scribed in the following steps.

Beside controlling for FWER, the goal of this two-period
K+M-experimental arm platform design is to minimize the
sample size (N2), while keeping the marginal power (ω2)

and disjunctive power (Ω2) no less than their counterparts
in the K+M-experimental arm trial (ω1 and Ω1). That is,
we set the lower limit of ω2 (denoted as ω2min) to be 0.8,
and the lower limit of Ω2 (denoted as Ω2min) to be 0.922 in
our “2+2” example. These two limits will be used to select
the recommended optimal design(s) (details shown in Step
13).

FWER_2 <− FWER_1
FWER_2
## [ 1 ] 0 .025
omega2_min <− 1−beta1
omega2_min
## [ 1 ] 0 .8
Omega2_min <− mult i $Power1
Omega2_min
## [ 1 ] 0 .9222971

Step 8: Admissible Set Because we need to keep FWER2

equal to FWER1 when adding new arms, we must update
n1 to n2 and n01 to n02 for each experimental arm and
its concurrent control (see Figures 1 and 3). Here n2 and
n02 are the sample sizes for each experimental arm and its
concurrent control in the K+M-experimental arm trial.

We define an admissible set for the pairs of (n2, n02) based
on the following three constraints. The first two constraints
for (n2, n02) are related to the allocation ratio after adding
the new arms. This ratio is denoted as A2. To reiterate, in
the first period with two experimental arms (before adding
the new arms), the allocation ratio is A1. Once the two new
experimental arms are added, we need an updated alloca-
tion ratio A2 to achieve the desired design properties (i.e.,
control the FWER and achieve the marginal power). After
the two initial experimental arms stopped recruiting, the
trial will again have only two experimental arms. Therefore,
the allocation ratio A2 will revert to A1.

Here we have

A2 = (n02 − n0t)/(n2 − nt) > 0,

where nt and n0t are the numbers of patients for each of the
experimental arms and the common control at the time of
adding new arms. The value of A2 needs to be a non-infinite
positive number. For example, the first two constraints in
our “2+2” example are

n02 > n0t = 43

and

n2 > nt = 30.

We also need to set an upper limit for the total sample size
N2 of the K+M-experimental arm trial. A reasonable upper
limit is that N2 should not exceed the required sample sizes
(denoted as S) of separately conducting two multiarm trials,
i.e., a K-experimental arm trial and an M-experimental arm
trial.
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Figure 15: The admissible set of (n2, n02) when nt = 30 in
a two-period 2+2-experimental arm platform trial.

Based on formulae (A.2) and (A.3),

S =
(z1−α1 + z1−β1)

2

Δ2
(1 + 2

√
K +K)

+
(z1−α∗

1
+ z1−β1)

2

Δ2
(1 + 2

√
M +M).

where z1−α1 and z1−α∗
1

are the critical values for the K- and
M-experimental arm trial, separately. Therefore, the third
constraint for (n2, n02) is

N2 = (K +M)n2 + n02 + n0t < S.

In our “2+2” example, z1−α1 = z1−α∗
1

as K = M =
2, and S = 2N1 = 690. Therefore, a third constraint for
(n2, n02) is

N2 = 4n2 + n02 + n0t < 690

Under these three constraints, the admissible set of
(n2, n02) can be identified using the function admiss(.) (in-
teger points in the triangular region in Figure 15). The data
set pair3 contains all (n2, n02) pairs satisfying the three
constraints introduced above.

S <− 690 # Def ine S
pa i r3 <− admiss ( n1=101 , n0_1=143 , nt=30, n t r t =4,S=690)

Step 9: Correlation Matrix 2 For each pair of (n2, n02) in
the admissible set, the correlation matrix Σ2 of the four
test statistics (Z1, Z2, Z3, and Z4) can be derived based on
equation (A.1) by plugging in n2 and n02 ,

ρk,k′ =
n0

kk
′

(n02 )
2

n2
+ n02

Specifically, between the two initial experimental arms
(and between the two added arms), the shared control is

n0
kk

′ = n02 . Therefore, the correlation of Z statistics be-
tween the two initially opened experimental arms (and be-
tween the two added arms) is

ρ1 =
1

(n02/n2 + 1)
. (A.4)

The number of shared controls between one initially
opened and one newly added experimental arm is n0

kk
′ =

n02 − n0t . Therefore, the correlation of the Z test statistics
between these two experimental arms is

ρ2 =
n02 − n0t

(n2
02
/n2 + n02)

. (A.5)

In our “2+2” example, we have the Σ2 as

Σ2 =

⎡
⎢⎢⎣
1 ρ1 ρ2 ρ2
ρ1 1 ρ2 ρ2
ρ2 ρ2 1 ρ1
ρ2 ρ2 ρ1 1

⎤
⎥⎥⎦

Step 10: Critical Value 2 Now we can use FWER2 and
Σ2 to calculate the marginal type-I error α2 and the cor-
responding critical value z1−α2 for each pair of (n2, n02) in
the admissible set (found in Step 8) by using the following
equation.

FWER2 = 1−
∫ z1−α2

−∞

∫ z1−α2

−∞
...

∫ z1−α2

−∞
πZ(Z(z1, z2,

. . . zK+M ), 0,Σ2)dz1dz2...dzK+M (A.6)

Step 11: Marginal Power 2 With n1, n01 , α1, β1, and α2,
we can use the following equation (A.7) to calculate the
marginal power ω2 = 1 − β2 for each pair of (n2, n02) from
z1−β2 .

z1−β2 =

√√√√ 1
n1

+ 1
n01

1
n2

+ 1
n02

(z1−α1 + z1−β1)− z1−α2 (A.7)

Step 12: Disjunctive Power 2 With the marginal type-II
error β2 and Σ2, we can derive the disjunctive power Ω2 for
each pair of (n2, n02) by using equation (A.8).

Ω2 = 1−
∫ zβ2

−∞

∫ zβ2

−∞
...

∫ zβ2

−∞
πZ(Z(z1, z2,

. . . zK+M ), 0,Σ2)dz1dz2...dzK+M (A.8)

Step 13: Design Selection In our “2+2” example, we cal-
culate ω2 and Ω2 from all 29,040 pairs of (n2, n02) in the
entire admissible set. We then perform a 2-step selection
procedure to obtain the recommended design(s):

1. We keep only the designs with ω2 ≥ ω1 and Ω2 ≥ Ω1.
2. Then, among the selected designs, we choose the ones

with the smallest N2.
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Given nt, K, M , FWER1, ω1, and Δ, the func-
tion platform_Design(.) can provide the optimal K+M-
experimental arm trial designs with a minimum total sam-
ple size among designs having ω2 (marginal power) and Ω2

(disjunctive power) no less than their counterparts in the
K-experimental arm trial.

des ign <− plat form_des ign ( nt = 30 , K = 2 , M = 2 ,
fwer = 0 .025 , marginal . power = 0 .8 , d e l t a = 0 . 4 )

des ign $ de s i gns

The first part of the outputs ($design_Karm) contains
the parameters for the K-experimental arm trial. The sec-
ond part ($designs) contains the parameters for the K+M-
experimental arm trial designed based on the former. From
above ($designs), we can see it is possible to have multiple
recommended designs that have the same total sample size
N2. We provide a full list of useful parameters for each of
the recommended optimal designs.

For example, if we choose design # 15669 for this 2+2-
experimental arm trial, the corresponding critical value for
controlling the FWER at 0.025 is 2.475. The marginal
power is 0.8, and the disjunctive power is 0.985, both
of which are not less than their counterparts in the 2-
experimental arm trial. The required total sample size is
N2 = 669. Among the 669 patients, in the first period the
sample sizes for each experimental arm and the control are
nt = 30 and n0t = 43, with an allocation ratio of A1 = 1.414.
Once the two additional experimental arms are added, the
optimal allocation ratio changes to A2 = 2.01 for the over-
lapping stage of the second period. The allocation ratio will
revert to A1 once the two initial experimental arms close
to accrual. Through the entire 2+2-experimental arm trial,
the sample size for each experimental arm is n2 = 107. The
sample size for the concurrent control of each experimental
arm is n02 = 198. The sample size for the entire control arm,
concurrent and non-concurrent combined, is nc = 241. The
reduction in the total sample size, compared to two separate
2-experimental arm trials, is 21.
Step 14: Final Decision As we can see from Step 13, the to-
tal sample size is the same for all four recommended designs.
However, the other parameters can be different. Therefore,
we can choose a final design based on our needs, according
to the other parameters. For example, if we want a design
with the largest disjunctive power Ω2, then our final choice
is the design # 16632 in Figure 16.
Note If ω2min and Ω2min in Step 7 cannot be met at the
same time, the algorithm in platform_Design(.) will re-
turn the designs with the smallest N2 but only satisfying
one of the two limits. If we do not accept the result or if
neither power level is reached, we can choose from the three
options below:

• Go back to Step 7 and decrease the value of ω2min . After
that, repeat Steps 8 to 14 again. This can be done only
if a marginal power less than ω1 is acceptable, which
partially compromises the goal of the design.

Figure 16: Recommended optimal designs when nt = 30 in
a 2+2-experimental arm trial.

• Go back to Step 6 to set up a smaller nt (and n0t). This
will increase the overlap between the initial and added
experimental arms. The rationale is that the later the
new arms are added, the less likely we can find designs
satisfying both limits defined in Step 7. After that, re-
peat Steps 8 to 14 again. This approach is feasible only
if the situation allows us to change the timing of adding
new arms.

• Consider controlling for PWER instead of FWER, as
illustrated in Appendix A.3.

A.3 Planning a 2+2-Experimental Arm Trial
that Controls the PWER

If a study aims to control the PWER, we can simply
use the function platform_Design(.) with argument pwer
instead of fwer to determine the design parameters. For ex-
ample, if we plan to add 2 new experimental arms when
30 patients have already been enrolled in each of the 2 ini-
tial experimental arms, given the pair-wise type-I error con-
trolled at 0.025 and the marginal power equal to 0.8, we
can use the following code to calculate the design parame-
ters, as provided in the results. Here, five optimal designs
are recommended and each row is an individual design. No-
tably, we can save 87 patients with this design compared to
2 separate multiarm trials.

> plat form_des ign2 ( nt=30, K=2, M=2, pwer=0.025 ,
marginal . power=0.8 , d e l t a =0.4 , seed =123)

The main difference between using pwer instead of fwer
in platform_Design(.) is that it does not use the Dunnett
method to derive critical values. Instead, it calculates that
directly from the user-defined pair-wise type-I error. No-
tably, the upper limit S for the total sample size N2 that is
used to find the admissible set when controlling for PWER
is constructed using the multiarm trials (one K- and one
M-experimental arm trial), which are also controlling for
PWER in the function platform_Design(.). The sample
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Figure 17: Recommended optimal designs when nt = 30 in
a 2+2-trial that controls for PWER.

sizes for the multiarm trials (controlling for PWER) can also
be calculated with the function one_stage_multiarm(.).
Other aspects of the algorithms are similar between the two
applications of the platform_Design(.) function.
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