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Frequentism✩

Aad VAN DER VAART

Abstract
Discussion of “Four types of frequentism and their interplay with Bayesianism” by Jim Berger.

While the title of Berger’s paper speaks of “types of fre-
quentism”, the introduction quickly makes it personal and
promises a discussion of “types of frequentists”. It made me
immediately curious to learn my type, if any. Although I am
quite pragmatic in these matters, and easily happy to play
the 46.657th type of Bayesian, being a “frequentist” part of
the time, I would consider a possibility.

Type III is out. Nobody wants to be this type. This is
the type who misuses p-values. Berger is done with them in
half a page.

Type IV, conditional frequentism, does not quite live up
to Berger’s promise of “ordering them from best to worst”.
He actually seems sympathetic to this type, but notes that
finding good conditioning variables is difficult and the type
is therefore limited to restrict their activities to a small spec-
trum of situations. For a moment Berger even seems to por-
tray objective Bayesianism, which also gives conditioning,
as a poor man’s substitute to being Type IV frequentist. As
an additional connection, I would refer to recent work (e.g.
[11]) on post-selection inference, which tries to make con-
fidence statements following model selection conditional on
data. It is agreed that such ideas are interesting, but usually
complicated.

Type I, empirical frequentism, is in for me. But it is not
a discerning type. Berger argues that the principle set forth
here is so natural that any Bayesian should belong to this
type. In vague terms, persons of this type accept that if they
repeatedly make a numerical claim on the accuracy of their
statistical procedure, then they would lose their trustwor-
thiness if the actual accuracy of their claim turned out to
be wrong “on the average in the long run”. It seems to me
that the vague wording is what makes the principle so easy
to accept. Berger’s example of a statistical procedure is a
confidence set {θ ∈ C(X)}, with a percentage of correct-
ness as accuracy claim, and the would-be Type I frequentist
is then judged by the average frequency of coverage given a
large number of confidence sets computed “in practice”. This
multitude of computed confidence sets need not be repeti-
tions of a similar situation, making the principle stronger
than a simplistic textbook description, but the principle is
✩Main article: https://doi.org/10.51387/22-NEJSDS4.

deliberately vague in not specifying how the θ and the X
are obtained in the sequence of uses. The textbook frequen-
tist may think of experiments when only the X is random
and θ is fixed as a “true value”, while the Bayesian may
think of both θ and X being random, produced on a case-
by-case basis, or with the θ repeatedly sampled from a prior,
in the empirical Bayes formulation. In fact, no model or as-
sumption on the origin of the multiple (θ,X) underlies the
Type I frequentist principle, by its definition. The Type I
frequentist is engaged in a sequence of “practical uses” of a
statistical procedure and then does not want to be caught
having made claims about frequencies that turn out to be
untrue “in the long-run”.

While everybody is a Type I frequentist, I must prob-
ably confess to be a Type II frequentist too, a procedural
frequentist. Berger explains that I am in good company, be-
cause even though “less compelling”, the principle includes
“consistency” and even to a Bayesian this should be reason-
able.

Actually I dislike the frequentist label, although I am oc-
casionally categorised as “one of the consistency people” and
when presenting theoretical findings on posterior distribu-
tions, often feel forced to use the term “frequentist Bayes”,
by lack of a better term. Berger defines “procedural frequen-
tism” as the “evaluation of statistical procedures according
to their frequentist properties, defined as properties that
would arise from repeated imaginary application of the pro-
cedure to a specific problem”. So while a Type I frequentist is
a practising statistician, a Type II frequentist is a theoreti-
cian. There is no obstacle to being both, because these are
not “types”, but different activities. Certainly every Type I
statistician will be interested in the “evaluation of statisti-
cal procedures”. A measure of quality that is very relevant
for the Type I frequentist, is the frequentist behaviour of
their claimed accuracy levels. Given a model that allows to
produce a sequence of pairs (θ,X), the Type I frequentist’s
desire to be correct on-the-average-in-the-long-run, can be
proved to be fulfilled or not on this sequence. While the
Type I frequentist is working in practice, the Type II fre-
quentist can prove the accuracy without actually generating
this sequence, or even imagining generating this sequence,
by evaluating probabilities and expectations.
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What I dislike about the frequentist label, is the unnec-
essary demand to think of a probability as a long-run fre-
quency. One can perfectly think of probability without intro-
ducing imaginary sequences of averages converging to some
number. Is this not what we teach (or should teach) students
in their probability class? It is a level more abstract than the
practicality of type I frequentists, but if our aim is to inves-
tigate theoretical properties, such abstraction is desirable.
In this sense I don’t want to be a Type II frequentist.

I would also comment that the theoretical study of “con-
sistency” is not necessarily linked to repetitions. The most
common case, where the data is a sample of size n and
n → ∞, does include repetitions, but they are actually not
of Type II nature, because they happen within the proce-
dure under investigation, and are not repetitions of the pro-
cedure. In the usual consistency theory our aim would be
to investigate a procedure at a given n, which we could do
by computing probabilities and expectations (in my view
preferably not viewed as limits of averages) at that n or
possibly simulations (and then as average of many repeated
simulations), also at that n. In theoretical study n → ∞ only
to make this investigation tractable. In consistency studies
n need not be sample size, but is a measure of the informa-
tiveness of the data. By considering the case that the data
becomes more informative, we hope to gain insight in the
finite n situation. For instance, the role of n → ∞ could eas-
ily be played by the noise level tending to zero in an inverse
problem, where the output of a system is observed with ad-
ditive noise or the system is stochastic with intrinsic noise.
Asymptotics are relevant if the noise is small, and do not
involve frequencies.

Berger’s description of the Type II frequentist also con-
tains the reference to a “specific problem”. This is an impor-
tant aspect of his discussion, and it is a source for contro-
versy, but it has nothing to do with frequentism in the sense
of repetitions. Decision theory [2] takes as input a set of data
distributions indexed by a parameter, and then for a given
loss (or utility) function produces a risk function as a func-
tion of the parameter. This is the basis for the evaluation of
statistical procedures as in the Type II principle, although
it uses an expectation and not an average. Bayesians may
add a prior over the parameter space. Non-Bayesians must
deal with a full risk function. Asymptotic study of risk func-
tions may yield insight [7, 13] without involving frequencies
or repetitions.

It is viewed by some as a weakness that a risk function
does not satisfy the likelihood principle, as it takes an ex-
pected value under a model and does involve potential obser-
vations that have not realised. There is plenty of discussion
of this in the literature, too much to add to it here. My feel-
ing is that the controversy often arises from having different
aims. If one aims to evaluate procedures, then first one has
to agree on a set of rules.

Decision theory is the basis of one set of rules, but even
if this is accepted as a proper framework, one must still

agree on the description of the “specific problem”. The typ-
ical Bayesian framework consists of a generative model for
the observed data, with a hierarchy of steps. For frequentist-
Bayesian analysis (for lack of better terminology) within this
framework, we have to draw a line in the hierarchy between
the steps that are considered the prior and the steps that
are considered to have really occurred in the real world. We
may put the line above the top of the hierarchy, leaving no
priors steps. Then the parameter was generated in the real
world (from a known prior) and the Type II analysis will
conclude that the Bayesian method (for instance a credi-
ble set, quoted with its credible level) works fine. We are in
a situation that a statistician of any Type will agree that
Bayes’s rule is all that is needed. Berger’s Type I frequentist
principle, with its insistence on performance in practice, will
be satisfied, because the prior describes the real world.

However, usually there will be a prior part to the hierar-
chy. Then frequentist-Bayesian-consistency analysis will ask
the question whether, for any possible parameter value pro-
duced at the prior level, if that parameter gave the true state
of the world, the Bayesian procedure satisfies the Type I fre-
quentist principle. This Type II style question may not be so
easily answered. Finite sample analysis is notably difficult,
and even asymptotical insights are incomplete. In partic-
ular, we still have only a starting knowledge of Bayesian
credible sets in high-dimensional parameter spaces or with
high-dimensional data. We know credible sets may be mis-
leading (see for instance Figure 1 in [6]), but there are also
encouraging results (e.g. [10, 9, 12]).

In the empirical Bayes setting, mentioned by Berger in
his discussion of Type I frequentism, the Bayesian hierar-
chy contains a layer in which for every individual observa-
tion a parameter (or latent variable) is generated: the likeli-
hood becomes a mixture distribution. The line can be drawn
above the distribution of these latent variables (the mixing
distribution), or just below it, giving the so-called structural
and incidental versions of the model. Which of the two is
chosen makes a difference for the Type II analysis, which
seems more convincing if carried out for the incidental ver-
sion of the model, as this makes fewer assumptions. This
was indeed the point of view of [8], which uses the mixing
distribution as a working hypothesis. The Type I criterion,
set by Berger, averages over the latent variables and seems
in the spirit of the incidental version too.

The empirical Bayes setting is intriguing, and perhaps de-
serves its own Type. A textbook frequentist may adopt as
a working hypothesis that the parameters were generated
from a distribution, and could call on (e.g.) maximum like-
lihood for estimation of this distribution, as well as other
parameters of the generative process. A Bayesian will see
this distribution as just one part of the generative hierar-
chy, and perform a full Bayesian analysis or apply maxi-
mum likelihood as a computationally more efficient method
to estimate hyper parameters. It seems that the resulting
procedures work well in the Type I and Type II frameworks
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in both the structural and incidental versions of the model
(e.g. [5]). Empirical Bayes type of thinking can also bring
multiple practical uses of statistical procedures, for instance
in big data settings, together in a single analysis. Frequentist
and Bayes may come together in procedures that estimate
a prior, possibly even an nonparametric one. Which Type
does this belong to?

If Type II analysis can start from decision theory, then
considering type 1 test error should be fine. Type 1 test er-
ror is just one arm of the risk function, and we can use it
for evaluation according to whichever rules we can agree on.
In Section 2.2.5 Berger also calls it “useful” and together
with type 2 test error “a key quantity to consider”. How-
ever, the main message in his discussion is that it does “not
satisfy the empirical frequentist principle”. This seems to be
in disaccord with the fact that we previously decided that
everybody is a Type I frequentist. Can we both acknowledge
that type 1 test error is a “key quantity” and that it does
not satisfy a desirable first principle?

Half of Berger’s paper is about testing. My understanding
of his arguments is that the main trouble with the type 1 test
error is not that it “does not satisfy” the Type I frequentist
principle, but that it “cannot or should not be used” as a
number to report the accuracy of a test. That seems obvious.
It is just as true that the risk function at a specific param-
eter value cannot serve as a report of accuracy in a specific
practical situation. However, it does not help me, that part
of Berger’s criticism is that “it is not unusual for people to
interpret a level α as a surrogate”, for what Berger feels
should be a measure of accuracy. I am unconvinced that my
medical colleagues do not understand the true meaning of
α. They are smart, and it is not so difficult in the first place.
However, it is an ongoing debate that already has raised too
much emotion and I shall not add to it here.

Berger is a Bayesian. That is no news. I highlight it, be-
cause in his discussion of testing, Berger slips without much
warning in the Bayesian mode. The warning comes in a
clause in parentheses at the end of the first paragraph of Sec-
tion 3: “(when we are incorporating Bayesian concepts)”. Ac-
tually, Berger will be incorporating Bayesian concepts from
thereon, all the time.

The question is what to report as “accuracy” when per-
forming a statistical test, or multiple such tests. Berger’s
first answer is that it should be on-the-average-in-the-long-
run the (average) probability Pr(H0|H0 is rejected). For
textbook frequentists this quantity does not make sense:
they will chastise their students for even thinking that
there is something random about the null hypothesis, and
so the expression Pr(H0|H0 is rejected) is illegal. In the
Bayesian world, the probability arises naturally through
Bayes’s rule from the (Bayesian) prior probability Pr(H0)
of H0 being true, and the (“frequentist”) probabilities of
the first and second kind, α = Pr(H0 is rejected|H0) and
1−β = Pr(H0 is rejected|H1). Formula (5) in Berger shows
that Pr(H0|H0 is rejected) does arise as the limit of the

(empirical) false discovery rate (FDR), when the tests would
be repeated indefinitely. The empirical FDR is the fraction
of rejected correct null hypotheses out of all rejected null hy-
potheses, and is not an observed quantity and so cannot be
quoted as a measure of accuracy. Is that why Berger writes
that it has a Type II frequentist but not a Type I frequentist
justification?

Berger seems to have made the choice that
Pr(H0|H0 is rejected) is the target for accuracy, and
then quoting just α is miserable, and Type I invalid. But it
seems that Berger’s Type I principle leaves free the choice
of what is to be correct on-the-average-in-the-long-run.
If I evaluate the Type I validity of reporting α by one
of the fractions Nr

0 /N0 or Nr
0 /N , for Nr

0 the number of
correct null hypotheses rejected and N0 the number of
correct null hypotheses out of N test, then in both cases
the limit is smaller than α. Can I then not conclude that
(conservative) Type I validity is satisfied? Berger wants
to quote Pr(H0|H0 is rejected), but it is impossible to do
so, even on-the-average-in-the-long-run, without being a
Bayesian and having a prior.

In the case of multiple testing, FDR seems precisely the
relevant target, but in his discussion of multiple testing
Berger changes the desired average measure of accuracy into
the fraction of times that the sequence of tests rejects at
least one correct null hypothesis out of the number of times
that the sequence rejects at least one time. Berger’s anal-
ysis then concludes that the Bonferroni procedure, which
performs the individual tests at level α/m if m tests are
performed, does only satisfy the Type I frequentist princi-
ple in the situation that Pr(H0) is small and “is as bad as it
can be” if Pr(H0)

m → 1, as m → ∞. But why is Bonferroni
evaluated on a criterion that it was never meant to adhere
to? The correct frequentist calculation is that the probabil-
ity that the Bonferroni procedure rejects one or more correct
null hypotheses is ≤ 1− (1−α/m)m ≈ α. In his calculation
(7), Berger has smuggled in the Bayesian quantity Pr(H0),
and changed the rules of the game by taking the probability
relative to another one.

I don’t want to imply that reporting α when performing
a Bonferroni procedure is very informative about the data,
but this is not different from reporting α when performing
a single test. The Bonferroni method is simple and has the
advantage of strong control: it is valid no matter the con-
figuration of true and false hypotheses. As a sanity check,
it makes perfect sense. It is definitely more useful than the
claims by some Bayesians that their approaches “automati-
cally” correct for multiple testing, put forward in the early
days of genomics.

For many applications (like GWAS) controlling the
family-wise error rate, as does the Bonferroni procedure,
is considered unnatural and FDR is the standard. “Rejec-
tions” become “discoveries”, which will be subjected to fur-
ther scrutiny, and we wish to minimise the fraction of false
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discoveries. The Benjamini-Hochberg (BH) procedure con-
trols the FDR at level α in the strong sense of any config-
uration of true and false hypotheses. Therefore, it seems to
me that this procedure with quoted accuracy α would be
Type I and Type II frequentist valid, if interpreted in the
way as was meant.

Interestingly, the BH procedure was developed in a fre-
quentist setting, but it can be viewed as empirical Bayesian.
We assume that Pr(H0) makes sense, then obtain a data-
dependent error probability Pr(H0,i|Pi ≤ x)|x=pi

using
Bayes’s rule and finally replace the unknown Pr(H0) and
distribution of the p-values Pi by estimates ([4]). This is
intriguing, as are histograms of observed p-values in the
multiple testing situation, and what we can conclude from
them. Not much of this intriguing interplay of frequentist
and Bayesian reasoning seems to be captured in the Type I–
IV discussion, but in my view it indicates that there is some-
thing valid about the procedure and its associated number
α. Recent empirical Bayes and full Bayes testing procedures
controlling FDR were considered in [1, 3].

In his discussion of data-dependent error proba-
bilities, Berger returns to the Bayesian quantity
Pr(H0|H0 is rejected) as the target for accuracy. He con-
siders statistical procedures that reject the null hypothesis
if a p-value is smaller than a pre-given number α, and then
investigates the validity of quoting some transformation
α(p) as the accuracy. Type I frequentist validity then holds
if E

(
α(p)| 0 ≤ p ≤ α

)
= Pr(H0|H0 is rejected). The “obvi-

ous” accuracy measure, which works, is α(p) = Pr(H0| p),
but this Bayesian quantity has the problem that it depends
on the unknown Pr(H0) and the unknown density f1 of p
given H1. Reporting the p-value α(p) = p as measure of
accuracy comes out as “terrible” from the Type I point
of view. Berger discusses Pr(H0) = 1/2 and known f1, a
certain upper bound on f1 or using odds ratios, but in my
feeling the conclusion is that there is no real solution here.

And this concerns just the case of simple hypotheses.
Berger refers to his earlier papers for composite hypotheses.

Perhaps the conclusion is that testing is just a way of be-
having, in case we are forced to choose between alternatives?
We can shield ourselves from making a wrong, harmful deci-
sion, but we cannot say how accurate we are. If there really
are things like Pr(H0), then it is a different story, and we go
the Bayesian way, but setting Pr(H0) = 1/2 as a default has
its own problems. If we do many tests simultaneously, it is
a different story too. Then we may learn Pr(H0) and other
unknowns from the data, and can make statements on the
“average H0”. In my feeling this empirical Bayes approach,
also for estimation, still remains to be fully explored.
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