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Abstract
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and

Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental system that
jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration
is achieved through the formulation of a general statistical-mechanistic Bayesian hierarchical model. The open-source
probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-
sample forecasting, we find our simple and interpretable model provides quantifiable evidence for how reductions in human
mobility altered early case dynamics in New York City.
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1. INTRODUCTION
The global Covid-19 pandemic has underscored the im-

portance of mathematical and statistical models in under-
standing disease dynamics, assessing policy efficacy, and
examining counterfactual scenarios to formulate thorough
cost-benefit analyses. Lockdown measures can have drastic
impact on individual well-being as well as society and the
economy at large [2], [4]. Therefore a retrospective study of
Covid-19 lockdown and mitigation measures can help poli-
cymakers and public health officials understand to what end
such efforts were effective. The formulation of a mechanis-
tic compartmental model is a pathway towards such goals.
In this article, we review compartmental model methodol-
ogy, construct our new Bayesian hierarchical model, and
discuss numerical methods relevant for implementation and
fitting to real-world data. The new compartmental model is
a simple modification of the classical susceptible-infectious-
removed (SIR) model and enables a mechanistic correspon-
dence between smartphone mobility data and infection dy-
namics. This can provide evidence of how reduced mobil-
ity due to early lockdowns or mitigation measures within
New York City influenced Covid-19 spread dynamics. Case
count data is obtained from the official website of the City
of New York, available at https://www1.nyc.gov/site/doh/
covid/covid-19-data.page. Population transit mobility data
is obtained from https://covid19.apple.com/mobility and
consists of anonymized Apple iPhone transit usage reported
as a percent relative to baseline. Starting from the day af-
ter Governor Andrew Cuomo declared a state of emergency
in New York State on March 7th, 2020, both the raw case
count and transit mobility time series are presented below.
Our end goal is then to establish a relationship between the
two series shown in Figure 1.

Figure 1: Raw Daily Case Counts and Mobility Time Series.

2. BACKGROUND
Mathematical modeling in epidemiology has a long his-

tory, famously dating back to the eighteenth century with
the work of Bernoulli [6] or the mid-nineteenth century
through John Snow’s modeling of the cholera outbreak in
London [24]. However, at the turn of the early twentieth
century, mathematical epidemiology turned to the modern
theory of dynamical systems analysis to understand out-
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break evolution. In this section, we review the popular SIR
model and subsequent mathematical analysis used to glean
both qualitative and quantitative understanding of the dy-
namical system. This simple framework provides the neces-
sary foundation for more complicated compartmental mod-
els with more population states. For examples of other com-
partment models designed to study early Covid-19 outbreak
dynamics, see [11] or [30].

2.1 SIR Compartmental Model
In modeling population-level data with a compartmental

system, the population is typically subdivided into separate
homogeneous groups. Here we focus on reviewing the simple
SIR model developed in 1927 by A. G. McKendrick and W.
O. Kermack to model a plague outbreak in Bombay [15].
In such a model, the population is divided into suscepti-
ble (S), infectious (I), and removed (R) groups. Individuals
then progress through the various states at certain rates over
time. The mathematical description of this changing system
is the coupled set of ordinary differential equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βS(t)I(t)/N

dI(t)

dt
= βS(t)I(t)/N − γI(t)

dR(t)

dt
= γI(t).

(2.1)

The progression of the disease throughout the popula-
tion depends upon the contact rate between susceptible and
infectious individuals, the probability of transmission upon
contact, and the prevalence of disease. To mathematically
capture these factors and express the rate of new infections,
let λ be defined as a per capita contact rate among indi-
viduals. In this way, λS(t) will give the average number of
susceptible contacts over time. Now let p be the probabil-
ity that a contact results in a new infection. Finally, the
prevalence of the disease at time t is by definition I(t)/N .
Combining these terms gives pλS(t)I(t)/N as the incidence
rate. In defining the effective contact rate β as the product
of the per capita contact rate λ and transmission probability
p, the necessary form in equation (2.1) is recovered.

The remaining parameter γ is interpreted by consider-
ing that 1/γ is the average sojourn time of an individuals
within compartment I. It should also be noted the popula-
tion is fixed throughout time since N = S + I + R. This
can alternatively be seen since adding the terms in (2.1)
gives zero. With meaning associated to the compartmental
parameters, we next turn to an overview of the mathemat-
ical analysis involved in analyzing the basic SIR dynamical
system.

2.2 Linear Stability Analysis and the Basic
Reproductive Number

The system of differential equations in (2.1) are nonlin-
ear, arising from the term S(t)I(t). Linear stability analysis

is the workhorse to understand the behavior of nonlinear dy-
namical systems and has a fundamental connection to the
basic reproductive number R0, popularized recently through
media coverage of the Covid-19 pandemic. R0 is defined
roughly to be the expected number of subsequent infections
resulting from a single infected individual. In this section, we
briefly review linear stability analysis and make the connec-
tion to R0. In the next section, we highlight the computation
of R0 for a general class of compartmental models.

A steady state or equilibrium of a dynamical system is
a point x∗ where the system of differential equations eval-
uated at x∗ is zero for all t. In this way, compartmental
contents within the system are not changing over time. In
the SIR model of (2.1), an important steady state is the
so-called disease-free equilibrium of {(S∗, 0, 0) : S∗ ≥ 0}. A
natural subsequent question is the behavior of the system
around small perturbations of the equilibrium. In comput-
ing the Jacobian about such a point, we linearize and are
afforded tractable analysis. A heuristic justification arises
from considering a Taylor expansion of the system about
the disease-free equilibrium and ignoring high-order terms
since the perturbation is assumed small. After dropping the
explicit dependence on time t from equation (2.1) to avoid
clutter, the Jacobian of the system is computed as

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Ṡ

∂S

∂Ṡ

∂I

∂Ṡ

∂R
∂İ

∂S

∂İ

∂I

∂İ

∂R
∂Ṙ

∂S

∂Ṙ

∂I

∂Ṙ

∂R

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝−βI/N −βS/N 0

βI/N βS/N − γ 0
0 γ 0

⎞
⎠ .

(2.2)

Through elementary matrix operations, J can be trans-
formed to a triangular matrix. The eigenvalues are then
found from inspection. Evaluating the Jacobian J at
(S∗, 0, 0) to linearize about the steady state results in eigen-
values of λ1 = 0 and λ2 = βS∗/N − γ. The sign of these
eigenvalues then determine the stability of the equilibrium
point. The eigenvalue of λ1 is ignored, as it corresponds to a
line of equilibrium values S∗. In this way, the second eigen-
value of λ2 is of main interest. If N/S∗ < β/γ, then λ2 > 0
and the steady state is unstable; otherwise it is stable. In
epidemic terms, an outbreak occurs if the disease-free equi-
librium is unstable. This ratio β/γ acts as a bifurcation pa-
rameter in determining if an outbreak will occur and is thus
afforded the fancy title of basic reproductive number. Let-
ting the equilibrium point S∗ be the population size so that
S∗ = N , a simple relation emerges: if R0 > 1 the disease
continues to spread but dies out otherwise. The effective re-
productive number Rt then extends R0 by accounting for
a changing susceptible population over time and is defined
as Rt := R0S(t)/N . A general method to compute R0 for
more elaborate compartmental models will be discussed in
the next subsection.
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2.3 Spectral Radius or Next Generation
Matrix Method

For general compartment models that extend the simplis-
tic SIR framework, computing the basic reproductive num-
ber can be difficult. [5] and [12] describe a general method
to compute R0 called the Next Generation Matrix or Spec-
tral Radius Method, which we briefly review and compute
for the SIR model.

Let dX(t)/dt represent a general coupled system of differ-
ential equations describing a compartmental model with n
components and m infectious states. Define a vector-valued
F(X(t)) to be a function where each component specifies
flow rate into one of the respective m infected compart-
ments. Similarly, define a function V(X(t)) where each com-
ponent specifies the flow rate out of a respective infectious
compartment.

Next, F and V are linearized about the disease-free equi-
librium point by computing the Jacobian. [5] prove the Jaco-
bian with respect to each infectious state will take the form

J(F) =

(
A 0
0 0

)
and J(V) =

(
B 0
∗ ∗

)
, (2.3)

where A and B are m×m matrices. The next generation ma-
trix is then defined as AB−1. The basic reproductive value of
R0 is subsequently the spectral radius or largest eigenvalue
of the next generation matrix. In the case of the SIR model,
F(X(t)) := −βSI/N , while V(X(t)) := γI. It follows that
the necessary Jacobians evaluated at the disease-free equi-
librium of (N, 0, 0) results in AB−1 = β/γ and agree with
the previous section.

3. METHODS
In this section, we detail the construction of our com-

partmental model designed to formulate an understanding
of how reduction in human mobility might have altered early
infection dynamics within New York City. The model is par-
simonious, in that it consists of only four compartments
and shares many well-established mathematical properties
of the SIR model discussed in the background section. The
dynamical system proposed comprises a closed population
divided into susceptible, lockdown (L), infectious, and re-
moved states. Since the time horizon under investigation is
short, we choose to ignore demographic factors such as birth,
death, and migration. Below in Figure 2 is a visualization
of the population progression through the different states.

The system of differential equations describing the chang-
ing system are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βS(t)I(t)/N − aS(t) + bL(t)

dL(t)

dt
= aS(t)− bL(t)

dI(t)

dt
= βS(t)I(t)/N − γI(t)

dR(t)

dt
= γI(t),

(3.1)

Figure 2: Proposed SLIR compartmental model.

with initial conditions of S(0) = N−i0, L(0) = 0, I(0) = i0,
and R(0) = 0. An important qualitative feature of our model
is that susceptible individuals are temporarily moved into
the lockdown compartment to reflect social distancing, mit-
igation measures, and reduced mobility. Over time, individ-
uals are reintroduced into the susceptible population out
of the lockdown state. Through an application of the next
generation matrix method described in section 2, R0 can
be seen to be equivalent to the standard SIR model, i.e.
R0 = β/γ.

3.1 A Bayesian Hierarchical Model
We present our methodology in a general hierarchical

framework to facilitate Bayesian inference of compartmen-
tal system parameters in equation (3.1). In this hierarchi-
cal formulation, we can be explicit about the role of the
mechanistic system, requisite numerical integration, and un-
derlying process parameters. This section will construct the
statistical model piece-by-piece. The hierarchy of connected
components in the model can be visualized bottom-up as
follows,

We first establish notation to represent the mechanistic
system of differential equations in the middle of the hierar-
chy. Let the equations in (3.1) be denoted by F, where

d

dt
X(t) = F(X(t), t), where X(t) =

⎛
⎜⎜⎝
S(t)
L(t)
I(t)
R(t)

⎞
⎟⎟⎠ (3.2)

and

F(X(t), t) =

⎛
⎜⎜⎜⎝
−γR0S(t)I(t)/N − aS(t) + bL(t)

aS(t)− bL(t)

γR0S(t)I(t)/N − γI(t)

γI(t)

⎞
⎟⎟⎟⎠ (3.3)
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and we have suppressed the dependence of {R0, γ, a, b} in
F(X(t)). The system is reparameterized in terms of R0

rather than β to be more epidemiologically interpretable
and results from a simple transformation of β = γR0. To
recover the system states X(t), the system of differential
equations must be solved. Given fixed values of R0, γ, a,
and b, the solution to the system of differential equations is
a vector-valued function

X(t) =

∫
F(X(t), t;R0, γ, a, b)dt. (3.4)

This solution will be necessary to connect with the observed
data.

The top of the hierarchy is described by formulating a
measurement process for the two outcome variables. Let the
first outcome of interest be labeled YL(t) and represent the
percent of the population removed from the susceptible com-
partment by adhering to mitigation protocol. The subscript
L is used for a reminder that this data is used to gain in-
formation on the lockdown compartment. Likewise, the sec-
ond outcome is labeled YI(t) and denotes the observed case
counts over time. To model observation error in YL(t), we
choose a Beta distribution dependent upon a parameter φ1

to control dispersion, i.e.,

YL(t)|L(t), φ1 ∼ Beta
(
φ1L(t)/N, φ1(1− L(t)/N)

)
. (3.5)

Notice L(t) is necessarily scaled by the population size N to
respect the support of the beta distribution. As we seek to
inform the L compartment through cell phone mobility data,
the beta distribution is a natural choice because the data
will be anonymized and reported as a percentage of nominal
movement. This parameterization of the beta distribution
has expectation and variance

E[YL(t)|L(t), φ1] = L(t)/N

Var(YL(t)|L(t), φ1) =
L(t)/N

(
1− L(t)/N

)
φ1 + 1

.

To model observation noise in YI(t), we use a negative bi-
nomial to account for overdispersion,

YI(t)|I(t), φ1 ∼ Negative Binomial(I(t), φ2). (3.6)

Stan provides an alternative parameterization of the neg-
ative binomial called neg_binomial_2 with first two mo-
ments of

E[YI(t)|I(t), φ2] = I(t)

Var(YI(t)|I(t), φ2) = I(t) +
I(t)2

φ2
.

In this way, φ2 is viewed as a dispersion parameter. The full
hierarchical description of the model can be completed by
introducing prior distributions on the system parameters

governing the differential equations. Writing the model in
full,

YL(t)|L(t), φ1 ∼ Beta
(
φ1L(t)/N, φ1(1− L(t)/N)

)
YI(t)|I(t), φ2 ∼ Negative Binomial(I(t), φ2)

dX(t)

dt
= F(X(t), t;R0, γ, a, b)

R0|γ ∼ log-normal(0, 1)
γ ∼ Uniform(0, 1)

φ1 ∼ Inverse Gamma(0.1, 0.1)
φ2 ∼ Inverse Gamma(0.1, 0.1)
a ∼ Beta(1, 5)
b ∼ Uniform(0, 1).

(3.7)

The prior distributions on system parameters are weakly-
informative. However, the prior distribution on a might at
first appear suspect. Through prior predictive checks, we
find that placing a uniform prior on a results in the SLIR
model a priori favoring no epidemic breakout, as suscepti-
bilities are removed from the population too quickly. Since
the classical SIR model is a special case of our SLIR model
as a → 0, we place mass closer to 0 through the Beta(1,5)
distribution to ensure the model generates reasonable pre-
dictions before seeing the data. The hierarchical model of the
previous section crucially depends upon the numerical solu-
tion to a coupled set of differential equations of (3.1). In the
appendix section, we detail the internal workings of Stan’s
numerical optimization routines. Finally, efficient Bayesian
analysis of parameters within the set of nonlinear differ-
ential equations relies upon the efficiencies gained through
Hamiltonian Monte Carlo (HMC). A detailed review of this
methodology is also included in the appendix section.

4. ANALYSIS AND RESULTS
In this section, we present two simulation studies and

conclude with the New York City analysis. First, the pro-
posed SLIR compartmental model is used to simulate data
from two lockdown scenarios that affect human mobility dif-
ferently. We then fit our Bayesian model to assess whether
the true parameter values are adequately recovered. After,
we analyze the real-world mobility and case count data that
initially inspired the model formulation.

4.1 Simulated Data
To illustrate the nonlinear dynamics of which our model

can capture, the first simulation reflects the idealized sce-
nario of strict adherence to lockdown and mitigation mea-
sures, when population movement is quickly reduced in the
early stages of the outbreak and remains reduced for the
next 90 days. In this case, individuals move from the S
compartment to the L compartment quickly and are slowly
reintroduced into the susceptible population so that popu-
lation movement decreases to about 60% relative to baseline
within the first 20 days.
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Table 1. Simulation Study.

Data Parameter Truth Median 95%-credible interval G-R R̂

R0 5 4.93 4.720–5.130 1.00
Simulation 1 γ 0.1 0.090 0.086–0.150 1.00

a 0.05 0.045 0.040–0.051 1.00
b 0.1 0.095 0.040–0.051 1.00

R0 5 4.79 4.590–5.010 1.00
Simulation 2 γ 0.1 0.099 0.096–0.104 1.00

a 0.05 0.045 0.040–0.051 1.00
b 0.1 0.095 0.086–0.106 1.00

Figure 3: Model Fit to Simulated Data.

In the second scenario, we consider weak adherence to
mitigation measures and illustrate the substantial change
in dynamics by only altering the speed of flow back into
the susceptible population from the L compartment. In this
case, the peak percentage of the population in the lockdown
compartment is 30% but quickly diminishes. In both simula-
tions, the population size is fixed to N = 10,000, i0 = 1, and
the true data-generating process is shown below as a dashed
red line. The median of the posterior predictive distribution
and 95% credible intervals are shown in blue in Figure 3.

We fit our model to both scenarios using Stan’s NUTS
algorithm with 4 chains and 5,000 iterations each, the first
half of which are discarded as warm-up. The convergence
of the parameter chains are judged by inspecting the trace
plots along with the Gelman-Rubin R̂ values, which com-
pares the variation between chains to the variation within
[9]. Ideally, the R̂ value is close to one. These simulation
results are displayed in Table 1.

In both cases, the Bayesian hierarchical model is able to
infer the structural parameters of the SLIR model. Notice
the change in case counts of both scenarios resulting from
different susceptible population sizes.

4.2 New York City Analysis
The entire lead-up thus far was requisite background ma-

terial for compartmental model inference and application to
real-world data. As mentioned in the introduction, our main
motivation for this article was to understand how a reduc-
tion in mobility affected early Covid-19 dynamics specif-
ically within NYC. For convenience, we restate the data
sources. Case counts are reported by the official website
of the City of New York, available at https://www1.nyc.
gov/site/doh/covid/covid-19-data.page and mobility data
is hosted at https://covid19.apple.com/mobility. Since the
Apple mobility data reflects a percent decrease in move-
ment, it must first be transformed by subtraction from unity
to adhere with the SLIR compartmental model structure. In
other words, to prepare the mobility data for use in the hier-
archical model, it must first be subtracted from one so that
it no longer represents a percent decrease in transit mobility
but rather a percent increase in individuals adhering to mit-
igation measures. Finally, we mention again that although
the first case of Covid-19 in New York City was recorded
on February 29th, we align our movement and case data to
begin on March 8th, 2020, the day after Governor Andrew
Cuomo declared a state of emergency in New York State.
Finally, we take the initial number of cases to be the cases
recorded on March 8th, 2020, and the population is fixed at
8,336,817 as determined by the US Census [29].

To achieve parameter calibration, we fit in Stan our full
hierarchical model using four chains run for 10,000 iterations
each. We discard the first 5,000 as warm-up. Sufficient pos-
terior exploration is assessed by examining parameter chain
plots below and assessing R̂ values, shown in Table 2.

The fitted time series are presented below on the right,
along with the raw data used to train the model. On the left,
prior predictive distributions are included to illustrate the
degree in which Bayesian learning occurs after observing the
data. We also include the fit of an SIR model to illustrate
its inability to capture the dynamics.

To assess the structural fit of our hypothesized SLIR
mechanism, we next interpret parameter values to ensure
they are logical and consistent with outside literature. The

https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://covid19.apple.com/mobility
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Table 2. New York City Analysis.

Data Parameter Median 95%-credible interval G-R R̂

R0 5.130 4.841–5.448 1.00
New York City γ 0.212 0.191–0.234 1.00

a 0.115 0.106–0.124 1.00
b 0.022 0.019–0.024 1.00

R0 estimate is cross-referenced with those of other popu-
lar online models. Using only death statistics as reported
by Johns Hopkins University, [10] embeds a SEIR model in
a machine learning framework for many regions across the
United States and 70 countries. In this work, R0 is estimated
for NYC to be between 5.0 and 5.8, in close agreement with
our model. As an additional point of reference, [14] provide
an alternative methodology that fits a time series state-space
model to death counts and explicitly accounts for reporting
delays. R0 is estimated to be 6.3 with a 95% confidence in-
terval of 4.5–9. Our model thus has the added benefit of
mechanistic interpretability as well as a tighter credible in-
terval.

The posterior of γ has a median value of 0.21 and a 95%
credible interval of (0.191, 0.234). From this, we arrive at an
estimate of approximately 5 days for the average infectious
removal time. This estimate could be reasonable assuming
asymptomatic or presymptomatic transmission is possible
and that individuals isolate at the onset of symptoms; see [8]
for evidence. Outside work estimates symptom onset time to
also be around 5 days. For example, [17] use 181 confirmed
Covid-19 cases to estimate a median symptom onset time
of 5.1 days with a 95% confidence interval (4.5, 5.8) days.
A systematic review by [18] estimates a mean symptom on-
set time of 5.2 days with a 95% confidence interval of (4.1,
7.0) days. These estimates provide credence in establishing
a correspondence between population movement reduction
and infection dynamics with the mechanistic SLIR model.

4.3 Sensitivity Analysis and Out-of-Sample
Forecasting

We conclude the New York City analysis by assessing the
sensitivity of the model to changing mobility levels. Addi-
tionally, we assess out-of-sample predictive capacity of the
SLIR model. To perform the sensitivity analysis, we first
generate a range of hypothetical mobility scenarios, from
full mobility reduction through extremely stringent lock-
down measures to a more mild decline. This is displayed
in Figure 4, with the true, real-world observed mobility lev-
els highlighted as blue. It is important to note the explosive
case growth with mobility reduction levels under 60% due
to the nonlinear dynamics present in SIR-type models. This
is evidence that a mobility reduction significantly altered
infections within the city, assuming SIR-type dynamics.

Figure 4: SLIR Prior and Posterior Predictive Checks.

Figure 5: SLIR Out-of-sample Forecasts.

To conclude this section, we analyse the out-of-sample
forecasting ability of the SLIR model when trained on only a
subset of the ninety day period. We consider for illustration
a two, three, and four week training intervals. These are
indicated by vertical dashed lines in Figure 5.

The predictive median is illustrated with a solid line.
With only two weeks observed, the predictive median is rea-
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sonably representative of the future trajectory but with very
large uncertainty. The upper 95% predictive curve for the
two week window reaches roughly 400,000 infections, but is
clear that the predictive interval quickly contracts as more
data is observed (cf. Figure 4). Both the three week and four
week training periods have contracted credible interval fore-
casts that contain the observed data. Finally, we mention
that we were unable to fit the standard SIR model to the
New York City data. Using the quasi-Newton optimization
functions available in Stan, we found the SIR model fit was
highly unstable across a range of starting values indicating
extreme multi-modality in the likelihood surface.

5. DISCUSSION AND FUTURE WORK
5.1 New York City Analysis

In this work, we have formulated a basic extension of the
classical SIR model to jointly fit cell phone transit mobility
data and case counts. By jointly modeling two outcome vari-
ables, we establish a mechanistic correspondence between re-
duced mobility and infection dynamics. The applied analysis
and findings, however, are limited to NYC during the first
90 days. The disease progression throughout the region was
well-approximated by deterministic dynamics and modeling
with a simple compartment system. In other geographic re-
gions, the dynamics might not be as suitably well-behaved
or understood. It is difficult to capture the myriad of factors
contributing to disease spread throughout a population, and
often a stochastic model may be more appropriate. Addi-
tionally, the time horizon considered in our applied analysis
is relatively short. As a disease progresses throughout the
population and becomes more widespread, the strategy of
informing the susceptible population numbers through cell
phone mobility data becomes more difficult. It is also worth
consideration about whether in general smartphone mobil-
ity data can be considered a representative sample of in-
dividuals’ adherence to mitigation protocols. It is therefore
difficult to build a quantitative understanding of the dy-
namics between lockdown measures and disease progression
over long periods of time. A direction for future research is
to establish modeling strategies for such scenarios. This will
introduce additional challenges of accounting for population
immunity, vaccinations, and natural seasonality effects.

5.2 Stochastic Model Extensions
We briefly discuss for both discrete and continuous time

how the deterministic SLIR model can be relaxed through
a state-space (or Hidden Markov Model) framework, where
stochasticity is introduced into the underlying driving epi-
demic process. We first discuss a discrete-time extension by
modifying equation (3.7) so that the numerical solution to
dX(t)
dt is embedded within a likelihood function at the dis-

crete observation time points. In this way, equation (3.7)
is modified to include p(X(t)|θ,R0, γ, a, b), where θ is in-
troduce to accommodate new parameters. In other words,

stochasticity is introduced to the driving dynamics through
the choice of suitable probability distribution that is a func-
tion of the numerical solution of the system of differen-
tial equations. This approach has been successfully applied
to forecast seasonal influenza [21], [7], as well as to assess
Covid-19 interventions in China [31] and Japan [16].

An alternative approach is to incorporate continuous-
time stochasticity directly by expressing dX(t) as a stochas-
tic differential equation (SDEs) [20]. In this case, one mod-
ification of equation (3.7) could be

dX(t) = μ(X(t), t)dt+ L(X(t), t)dW(t), (5.1)

where W(t) = (W1(t),W2(t),W3(t),W4(t))
� is a vector of

standard Wiener processes or Brownian motions, μ is some
vector-valued function, and L is a compatible matrix. De-
pending on the structure of μ, there may or may not exist an
explicit solution. A SDE that affords a closed form solution
is the Ornstein-Uhlenbeck (OU) process. See [3] for Stan
code in the case where the infectious compartment of the
SIR model is endowed an OU process to allow for random
fluctuations. See also [32] for an analysis of the susceptible-
infectious-susceptible model where time-varying parameters
are introduced through an OU process. In both examples,
the analytic nature of the solution to the SDE enables ef-
ficient implementation in Stan or alternative software. In
cases where no closed-form solution to (5.1) exists, inference
in such a system is closely related to Bayesian filtering and
smoothing, amenable to such methods as the Kalman filter
and extensions [27]. The New York City data was captured
well by deterministic dynamics, but often elsewhere disease
progression is not suitably captured within such a frame-
work. Bayesian inference for SDEs modeling infectious dis-
ease dynamics is thus an attractive area of future research.

APPENDIX
A.1 Numerical Solvers

The hierarchical model of the previous section crucially
depends upon the numerical solution to a coupled set of dif-
ferential equations. We briefly review the popular numerical
integration schemes and connect them with our hierarchical
model of the compartmental system in (3.1). In practice,
solutions to the SIR model are numerically approximated
and entail specific computational challenges. Runge-Kutta
(RK) is a classical numerical method [26, 23] in which we
employ to numerically solve this set of nonlinear differential
equations. RK generalizes the well-known Euler method for
iteratively solving systems of differential equations. In the
following, we formulate the RK method in vector notation
for the proposed SLIR compartmental model.

Consider X(t) in (3.2). From the fundamental theorem of
Calculus, we know that

X(t+Δt) = X(t) +

∫ t+Δt

t

F(X(u), u)du . (A.1)
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Given the initial value X(t0) at time t0, numerically solving
for X(t) amounts to constructing a sequence {Xn : n =
0, 1, . . . , T}, where Xn := X(tn) and tn = tn−1 + Δt are
equispaced time points for n = 0, 1, . . . , T , by approximating
the integral of F(X(t), t) in (A.1). Using this approximation,
a sequence is generated starting from some t0 as,

Xn+1 = Xn +

∫ tn+Δt

tn

F(X(u), u)du , (A.2)

where the initial condition X0 := X(t0) is given. There are
several customary choices for such approximations, but for
most practical purposes one need not look beyond the fol-
lowing:∫ t+Δt

t

F(X(t), t)dt =⎧⎨
⎩

(Δt)F(X(t), t)
(Δt)
2 (F(X(t), t) + F(X(t+Δt), t+Δt))
(Δt)F(X(t+ (Δt)/2), t+ (Δt)/2) .

(A.3)

Euler’s approximation (first equation in (A.3)) is the sim-
plest of the approximations which yields Euler’s Method. In
this case, the sequence is constructed for n = 0, 1, . . . , T − 1
as

Xn+1 = Xn + (Δt)F(Xn, tn) . (A.4)

Starting with X0, each element of the sequence in (A.4) is
computed since F(Xn, tn) is available. The spacing between
the time points, Δt, is specified by the user and controls the
resolution of the numerical solution.

Euler’s approximation is easy to execute and based upon
a first order Taylor expansion. It is also the least accu-
rate. The Trapezoidal and Modified Euler approximations
in (A.3) are based upon numerical integration using trape-
zoidal areas and the midpoint approximation. Both these
methods help improve Euler’s method with the Modified
Euler outperforming the trapezoidal rule in terms of ac-
curacy. However, the Trapezoidal and the Modified Eu-
ler methods involve Xn+1 and Xn+1/2 := X(tn+1/2) with
tn+1/2 := tn + (Δ)t/2, respectively, which are unknown at
iteration n. In fact, Xn+1 is the very quantity we wish to
compute at iteration n. Therefore, we substitute these un-
known quantities with their first order (Euler) approxima-
tions in (A.4) that are available at iteration n. For each
n = 0, 1, . . . , T − 1, we compute

an = F (Xn, tn)

bn = F (Xn + (Δt)an, tn+1)

cn = F
(
Xn + (Δt/2)an, tn+1/2

) (A.5)

and the transition from Xn to Xn+1 as

Xn+1 =

{
Xn + (Δt) (an+bn)

2 (Trapezoidal) ;
Xn + (Δt)cn (Modified Euler) (A.6)

Both methods in (A.6) deliver noticeable improvements over
Euler’s method in (A.4). Numerical error from (A.6) are
much smaller in magnitude and grow less quickly. This can
be explained by observing that while (A.4) depends only
upon the data available at tn (only one data point), the two
methods in (A.6) use current data at tn along with estimates
of the slope at a point that lies in the future. While these
estimates are computed using only the currently available
data, they still produce substantially improved estimates.
Also see [28] for comparisons among different numerical in-
tegration schemes.

Higher order Taylor expansions produce other iterative
schemes. Thus, second order methods emerge from

X(t+Δt) = X(t) + (Δt)F(X(t), t)

+
(Δt)2

2

d

dt
F(X(t), t) +O((Δt)2) .

(A.7)

A second order iterative scheme corresponding to (A.7) up-
dates

Xn+1 = Xn + (Δt)F(Xn, tn)

+
(Δt)2

2

{
∂F

∂t

∣∣∣∣
t=tn

+

[
∂F

∂X

]∣∣∣∣
X=Xn

d

dt
X(t)

∣∣∣∣
t=tn

}
,

(A.8)

where we have used the multivariable chain-rule of deriva-
tives to evaluate the derivative of F(X(t), t) with respect to

t,
[
∂F

∂X

]
is the matrix with (i, j)-th element being the par-

tial derivative of the i-th element of F(X(t), t) with respect

to the j-th variable in X, and d

dt
X(t)

∣∣∣∣
t=tn

= F(Xn, tn).

Unfortunately, computing (A.8) requires the derivatives of
F(X(t), t) and may, in general, be numerically cumber-
some.

The Runge-Kutta methods are among the most conspic-
uous of numerical methods for solving systems of ordinary
differential equations. The underlying idea is to achieve the
same accuracy as Taylor series updates without requiring
higher order derivatives of F(X(t)). We can motivate this
approach from the earlier methods. In (A.6), the Trapezoidal
and Modified Euler methods define the updates using an, bn

and cn that are completely specified. In particular, observe
that the Trapezoidal method updates using a weighted av-
erage of an and bn. Instead of prescribing an and bn, the
Runge-Kutta approach prefers to find weighted averages to
ensure that the approximation matches that from a Tay-
lor series expansion such as in (A.7) or (A.8). Therefore, a
second-order Runge-Kutta method (RK2) writes

Xn+1 = Xn + (Δt) {ω1an

+ ω2F(Xn + (Δt)βan, tn + (Δt)α)} (A.9)
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and seeks to find ω1, ω2, α and β so that the approximation
matches (A.8). Substituting the first-order expansion,

F(Xn + (Δt)βan, tn + α(Δt)) = F(Xn, tn)

+ (Δt)β

[
∂F

∂X

]∣∣∣∣
X=Xn

an + (Δt)α
∂F

∂t

∣∣∣∣
t=tn

+O((Δt)2)

= an + (Δt)β

[
∂F

∂X

]∣∣∣∣
X=Xn

an

+ (Δt)α

{
∂F

∂t

∣∣∣∣
t=tn

+

[
∂F

∂X

]
d

dt
X(t)

∣∣∣∣
t=tn

}
+O((Δt)2) ,

(A.10)

into the right hand side of (A.9) and comparing with the ex-
pansion (A.8) we find that the two expansions are equivalent
if

ω1 + ω2 = 1 ; ω2β = ω2α = 1/2 . (A.11)

RK2 specifies ω1 = ω2 = 1/2 and α = β = 1, which, when
substituted into (A.9), yields the Trapezoidal approxima-
tion.

More generally, the explicit RK methods of order s specify
updating schemes

Xn+1 = Xn + (Δt)

s∑
i=1

ωiki , (A.12)

where

k1 = F(Xn, tn + (Δt)α1)

ki = F

⎛
⎝Xn + (Δt)

i−1∑
j=1

βijkj , tn + (Δt)αi

⎞
⎠ i = 2, . . . , s.

The coefficients are found from an s-th order Taylor expan-
sion. A popular choice sets α1 = 0 and solves

s∑
i=1

ωi = 1 and
i−1∑
j=1

βij = αi for i = 2, 3, . . . , s . (A.13)

In particular, the RK4 method specifies the following values
after taking s = 4: (A.12):⎡

⎢⎢⎣
ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ =

1

6

⎡
⎢⎢⎣
1
2
2
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
α1

α2

α3

α4

⎤
⎥⎥⎦ =

1

2

⎡
⎢⎢⎣
0
1
1
2

⎤
⎥⎥⎦ ,

⎡
⎣β21

β31 β32

β41 β42 β43

⎤
⎦ =

⎡
⎣ 1

2
0 1

2
0 0 1

⎤
⎦ .

(A.14)

The appropriate step size Δt is hard to determine. An
advantage of Stan’s implementation is an adaptive step size
is used by comparing the solution obtained using the four

Figure 6: R0 and γ joint posterior.

term approximation of above as well as a five term approx-
imation. If these approximations agree, the algorithm pro-
ceeds, otherwise a new step size is calculated. More details
can be found in the user manual [25], but the result is a fast,
efficient procedure of high accuracy.

A.2 Hamiltonian Monte Carlo and the
No-U-Turn Sampler

Our choice of implementation in Stan, as opposed to more
traditional BUGS or JAGS [22], is pragmatic. First, the lat-
ter languages are declarative and built upon graphical mod-
els. In contrast, Stan is a fully imperative programming lan-
guage. Additionally, built-in differential equation routines
are included such as the Runge-Kutta numerical solver de-
scribed in the previous section. This makes the software
implementation of our model more natural and readable.
More importantly, however, the parameters in a nonlinear
compartmental model are often highly correlated, as demon-
strated in below in Figure 6.

Hamiltonian Monte Carlo (HMC) is more equipped to
sample from complex posterior distributions with high au-
tocorrelations than standard Metropolis schemes. The most
popular presentation of Hamiltonian Monte Carlo is by way
of analogy with statistical mechanics. Let θ be an arbitrary
d-dimensional parameter vector. To sample efficiently from
the posterior of θ after conditioning on data, an idealized
physical system is introduced to leverage the geometry of the
underlying manifold on which θ lives. We will not embark
upon a comprehensive development of HMC here, referring
the reader to excellent introductory expository articles by
[19] and [1]. Instead, we provide a heuristic account of the
HMC algorithm and why it works.

We begin by recalling the more conspicuous Metropo-
lis random walk and the concept of detailed balance. Let
p(θ |Y) be the posterior distribution from which we wish
to sample. As it may be difficult to directly sample from
p(θ |Y), the Metropolis random-walk algorithm constructs
a Markov chain with p(θ |Y) as its stationary distribution.
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Given an initial value θ(0), at iteration t we draw a “pro-
posed” value θ∗ from a symmetric distribution q(· |θ(t−1)).
A simple yet effective choice for many applications is
q(· |θ(t−1)) = N(· |θ(t−1),V), where V is a fixed variance
covariance matrix that helps tune the algorithm, although
in general the proposal can be generated from any sym-
metric distribution. After generating θ∗ we simulate a coin

with probability of heads min

(
1,

p(θ∗ |Y)

p(θ(t−1) |Y)

)
and set

θ(t) = θ∗ if it is a head. Otherwise we set θ(t) = θ(t−1).
That p(θ |Y) is indeed the desired stationary distribution
can be seen as follows. Let us assume that the current state
θ(t−1) = a is a draw from p(θ |Y) and consider the possi-
bility of moving to θ(t) = b. This conditional probability is
given by the transition probability that a value of b is pro-
posed from q(· |a) and that this value is accepted. Hence,

T (a → b) = P (θ(t) = b |θ(t−1) = a)

= q(b |a)min

(
1,

p(b |Y)

p(a |Y)

)

= min

(
q(b |a), q(b |a)p(b |Y)

p(a |Y)

)
.

(A.15)

The form of the transition probability in (A.15) implies
time-reversibility (or detailed balance) in the following
sense:

P (θ(t−1) = a,θ(t) = b) = P (θ(t−1) = a)T (a → b)

= p(a |Y)min

(
q(b |a), q(b |a)p(b |Y)

p(a |Y)

)
= min (p(a |Y)q(b |a), q(b |a)p(b |Y))

= min (p(a |Y)q(a |b), q(a |b)p(b |Y)) (A.16)

= p(b |Y)q(a |b)min

(
p(a |Y)

p(b |Y)
, 1

)
= P (θ(t−1) = b)T (b → a)

= P (θ(t−1) = b,θ(t) = a) ,

where we have used the symmetry q(a |b) = q(b |a) in the
fourth equality in (A.16). It follows that the draw of θ(t) is
also from p(θ |Y) because

P (θ(t) = b) =

∫
P (θ(t−1) = a,θ(t) = b)da

=

∫
P (θ(t−1) = b,θ(t) = a)da

= P (θ(t−1) = b)

= p(b |Y) .

(A.17)

The underlying idea behind HMC is that instead of gen-
erating the proposed value from a random distribution, we
use a deterministic symplectic integrator to propose θ∗. This
symplectic integrator is designed based upon Hamiltonian

dynamics. Suppose that we wish to sample from p(θ |Y),
where θ ∈ R

d. We introduce an auxiliary variable r ∈ R
d

so that we can efficiently sample from the joint density
p(θ, r |Y). If (θ(t), r(t)) ∼ p(θ, r |Y), then

P (θ(t) = b) =

∫
P (θ(t) = b, r(t) = u)du

=

∫
p(b,u |Y)du

= p(b |Y) .

(A.18)

Hence, sampling from the joint density p(θ, r |Y) results in
samples from p(θ |Y).

The auxiliary variable, r, is also called the “momentum”
in Hamilton dynamics. For our purposes, it suffices to specify
that p(θ, r |Y) = p(θ |Y) × p(r). Therefore, p(r |θ,Y) =
p(r) which means that r is independent of the data Y and
the model parameters θ. More specifically, we assume that
p(r) = N(r |0, Id) ∝ exp

(
−1

2r
�r
)
. Therefore,

log p(θ, r |Y) = constant + log p(θ |Y)− 1

2
r�r . (A.19)

The above density can be looked upon as a physical system
subject to Hamiltonian dynamics, where θ is a particle’s
position in R

d and r is the particle’s momentum.
In order to sample from (A.19), a simple HMC algo-

rithm proceeds closely on the lines of the Metropolis ran-
dom walk described earlier, but replaces the random gener-
ation of a proposed value for θ by a symplectic integrator
constructed from Hamiltonian dynamics. With the current
state (θ(t−1), r(t−1)), we begin iteration t by drawing the
momentum variable r∗ ∼ N(0, Id). Setting r(t) = r∗ we
perform L steps of a symplectic integrator (also known as
“leapfrog”), where each step comprises the following:

r(t+ε/2) = r(t) +
ε

2
∇θL(θ);

θ(t−1+ε) = θ(t−1) + εr(t+ε/2);

r(t+ε) = r(t+ε/2) +
ε

2
∇θL(θ) ,

(A.20)

where L(θ) = log p(θ |Y). Let θ̃ and r̃ be the output of
(A.20) at the end of L steps. The values of θ̃ and r̃ are
considered the “proposed” values at iteration t and ac-
cepted as (θ(t), r(t)) = (θ̃,−r̃) with acceptance probability

min

(
1,

p(θ̃ |Y)p(r̃)

p(θ(t−1) |Y)p(r∗)

)
. This last Metropolis step to-

gether with the negation of the momentum variable in the
final update ensures time-reversibility as in (A.16) and, as
seen in (A.17), maintains p(θ |Y) as the stationary distri-
bution.

We provide some further intuition on the time-
reversibility of the simple HMC algorithm. The key to this
result is that the leapfrog iteration in (A.20) preserves vol-
umes. To be slightly more precise, let D be a small region
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in the (θ, r) space and suppose the L leapfrog steps maps D
to a region D̃. Then D and D̃ both have the same volume.
We write the transition probability from D to D̃ as

T (D → D̃) = (δV )min

(
1,

exp(−H(D̃))

exp(−H(D))

)

= (δV )min
(
1, exp

(
−H(D̃) +H(D)

))
,

(A.21)

where δV represents the volume of D and D̃, and∫
D
p(θ, r)dθdr = exp (−H(D)). If (θ(t−1), r∗) is drawn from

the joint density in (A.19), then P ((θ(t−1), r∗) ∈ D) =∫
D
p(θ, r)dθdr = exp (−H(D)). Therefore,

P ((θ(t−1), r∗) ∈ D, (θ(t), r(t)) ∈ D̃)

= P ((θ(t−1), r∗) ∈ D)T (D → D̃)

= exp (−H(D)) (δV )min
(
1, exp

(
−H(D̃) +H(D)

))
= (δV )min

(
exp (−H(D)) , exp

(
−H(D̃)

))
= P ((θ(t−1), r∗) ∈ D̃, (θ(t), r(t)) ∈ D) , (A.22)

where the last equality follows from the symmetry in the
expression above it.

This procedure, while maintaining the stationary dis-
tribution through time-reversibility, introduces a host of
complexities. Perhaps most importantly, tuning the many
parameters needed in this process is inherently difficult.
This motivated the development of an automatic procedure
known as the No-U-Turn-Sampler (NUTS) [13]. This algo-
rithm achieves significant efficiency over the simple HMC
algorithm described above by either explicitly avoiding a
U-turn to previously explored region or terminating after
a pre-defined number of exploration steps. In this way, the
algorithm is guaranteed to only explore new areas of the
space. This efficient exploration results in typically faster
convergence and higher effective sample sizes per iteration
as compared to classical MCMC.
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