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Abstract
Anomaly detection plays an important role in traffic operations and control. Missingness in spatial-temporal datasets

prohibits anomaly detection algorithms from learning characteristic rules and patterns due to the lack of large amounts of
data. This paper proposes an anomaly detection scheme for the 2021 Algorithms for Threat Detection (ATD) challenge
based on Gaussian process models that generate features used in a logistic regression model which leads to high prediction
accuracy for sparse traffic flow data with a large proportion of missingness. The dataset is provided by the National
Science Foundation (NSF) in conjunction with the National Geospatial-Intelligence Agency (NGA), and it consists of
thousands of labeled traffic flow records for 400 sensors from 2011 to 2020. Each sensor is purposely downsampled by NSF
and NGA in order to simulate missing completely at random, and the missing rates are 99%, 98%, 95%, and 90%. Hence,
it is challenging to detect anomalies from the sparse traffic flow data. The proposed scheme makes use of traffic patterns
at different times of day and on different days of week to recover the complete data. The proposed anomaly detection
scheme is computationally efficient by allowing parallel computation on different sensors. The proposed method is one of
the two top performing algorithms in the 2021 ATD challenge.

keywords and phrases: Anomaly detection, Gaussian process, Spatiotemporal, High dimensional, Missing completely
at random.

1. INTRODUCTION
Spatial-temporal datasets collected over time in differ-

ent locations are often encountered in practice, and one
emerging application of interest in spatiotemporal datasets
is anomaly detection. For traffic flow data, anomaly detec-
tion is an important component in traffic operations and
control since abnormal traffic events can greatly reduce traf-
fic efficiency [30]. There is an increasing demand for auto-
mated, efficient, and universal anomaly detection methods
as more traffic cameras are deployed to record road data
[2]. Recent literature has developed machine learning and
deep learning-based methods for detecting spatial-temporal
anomalies. For example, in supervised deep anomaly de-
tection, both normal and anomalous data are used to
train a binary or multi-class classifier [2]. Kut and Birant
[13] proposed a point anomaly detection algorithm using
a clustering-based and density-based approach to discover
clusters according to non-spatial, spatial, and temporal val-
ues of the objects. Although anomaly detection has been well
studied in a variety of research and application domains, few
are focused on sparse data with missingness which is a prac-
tical challenge encountered in a spatial-temporal setting and
concerns external factors interfering with the data collection
process [29, 25, 16]. The sparsity manifests itself in a number
∗Corresponding author.
1Advised by the corresponding author.

of ways including the introduction of additional measure-
ment errors in the collected data observations or preventing
the collection of the entire data observations. Missingness
may not present many challenges if most of the data are
observable, but when the majority of the data are missing,
these algorithms may not be feasible.

Missing data are a common occurrence in many areas
of research. Missingness in a dataset can be categorized as
missing completely at random, missing at random, or miss-
ing not at random [14]. Data are missing completely at ran-
dom if the failure to observe a value does not depend on
any values of the response, either observed or missing, or
any other observed values. As the observed data are just
a random sample of the complete data and the outcomes
do not affect the model for the missing data, the missing
and observed data are not systematically different [5]. For
missing at random, there might be systematic differences
between the missing and observed data, but these can be
entirely explained by other observed variables. Missing not
at random occurs if missingness depends not only on the
observed data but also on the unobserved (missing) values.

The focus of this paper is to propose a spatial-temporal
anomaly detection framework to identify an anomalous traf-
fic flow (i.e., the number of vehicles at a specific sensor
location at a given time and weekday) when most of the
data observations are missing due to external factors. Since
the provided data are extremely sparse, with missing rates
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ranging from 90% to 99%, using the data directly does not
yield satisfying results. It is challenging to detect anoma-
lous events because they rarely happen for most sensors,
and even fewer are observed. The extreme scarcity of the
incomplete dataset makes it more difficult to detect the oc-
currence of anomalous events directly. Our work contains
the following contributions:

• A three-layer data engineering architecture is proposed
for data transformation and augmentation based on
spatial-temporal patterns.

• Gaussian process regression (GPR) is used to recon-
struct the complete data and estimate features such as
mean, standard deviation and percentiles.

• A logistic regression model is built to predict anomaly
status where the cutoff is optimized through cross-
validation.

The remainder of this paper is arranged as follows. In Sec-
tion 2, we provide a summary of the challenges. In Sec-
tion 3, we give a general introduction to GPR models. The
proposed anomaly detection framework is introduced in 4.
Evaluation of the proposed method and some key patterns
identified from the study are shown in Section 5. The fi-
nal section 6 provides a discussion and offers directions for
future research.

2. OVERVIEW
2.1 Traffic Flow Dataset

This work is motivated by a challenging traffic data prob-
lem provided by the 2021 Algorithms for Threat Detection
(ATD) program sponsored by the National Science Founda-
tion (NSF) and the National Geospatial-Intelligence Agency
(NGA) [1]. The complete dataset (i.e., without missing val-
ues) consists of hourly traffic flow (i.e., the number of vehi-
cles) for 400 sensors (locations) in California from 2011 to
2020. A sample of the complete data is provided in Table 1.

The goal of the 2021 ATD challenge is to detect traffic
flow anomalies at a sensor s at hour h on weekday w for
an incomplete dataset where the majority of the data is
not observed. A sample of the incomplete data is provided
in Table 2. In fact, the ATD organizers downsampled each
sensor by a particular sampling rate (i.e., one minus the
missing rate): 1%, 2%, 5%, or 10%. The incomplete dataset
has the same form as the complete dataset except that a
large number of rows are missing as depicted in Table 2.

The definition of an anomaly is determined by the ATD
program organizers. All analyses are at the granular level of
sensor s, hour h, and weekday w, which is called a slice (see
definition 2.1). The traffic flow data are detrended for each
slice as the anomaly definition assumes stationarity. Specifi-
cally, a linear trend model is fit on the complete hourly data
over time, and its predicted linear trend is then subtracted
from the original data. The average traffic flow is added back
to the resulting data. We refer to the dataset that results

Table 1. A sample of the complete dataset of hourly traffic
flow. This dataset is detrended within each slice (see

Definition 2.1) and used to define the true labels, but only a
random subsample of this dataset is provided for analysis.

Sensor Date Weekday Hour Traffic
1 2011/1/1 Saturday 0 2240
1 2011/1/1 Saturday 1 1835
1 2011/1/1 Saturday 2 1580
...

...
...

...
...

400 2020/12/31 Thursday 22 320
400 2020/12/31 Thursday 23 266

Table 2. A sample of the incomplete dataset that is provided
to build an algorithm for anomaly detection with a sampling

rate (the last column in the table) at 1%, 2%, 5%, or 10% for
each sensor.

Sensor Date Weekday Hour Traffic Rate
1 2011/1/1 Saturday 16 6278 1%
1 2011/1/19 Wednesday 17 6302 1%
...

...
...

...
...

...
400 2020/12/30 Wednesday 21 388 5%
400 2020/12/30 Thursday 19 466 5%

from the aforementioned steps as the complete detrended
dataset D.

Let the detrended traffic flow be denoted by f . We re-
fer to the complete detrended data (i.e., no missing values)
concerning sensor s at hour h on weekday w as the “slice”
which has the following definition.

Definition 2.1 (slice). Let i be the ith row in the com-
plete detrended dataset D. The slice refers to the complete
detrended traffic flow data (i.e., no missing values) with re-
spect to sensor s at hour h on weekday w:

Ds,h,w :=
{
Di

f : Di
s = s ∩Di

h = h ∩Di
w = w ∩Di

o = 1
}

:=
{
Di′

s,h,w

}i′=ns,h,w

i′=1

where Di
s is the sensor index number in ith row, Di

h is the
hour value in the ith row, Di

w is the weekday value in the
ith row, Di

o = 1 if the observation is sampled and Di
o = 0

otherwise., and ns,h,w = |Ds,h,w|.

Consequently, the true mean traffic flow for the slice is:

μs,h,w =
1

ns,h,w

∑
i

Di
s,h,w (2.1)

where Di
s,h,w is the ith traffic flow for sensor s at hour h

on weekday w (i.e. multiple values collected from 2011 to
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2020). Similarly, the true standard deviation for the slice is

σs,h,w =

√√√√∑
i

(Di
s,h,w − μs,h,w)2

ns,h,w
(2.2)

The true anomaly label is determined by the ATD program
organizers and is defined as the following:

Iis,h,w =

{
1 (anomaly), |Di

s,h,w − μs,h,w| ≥ 3σs,h,w

0 (normal), |Di
s,h,w − μs,h,w| < 3σs,h,w

.

In this project, the complete dataset D is not available.
The sampling rate is provided for each sensor. As the defini-
tion of anomaly infers, the anomaly status is defined based
on the complete dataset, but only the incomplete data are
available to predict the anomaly. The purpose of this study
is to use the incomplete data to accurately predict anomalies
whose status is determined using the complete data.

3. METHODOLOGY

3.1 Gaussian Process Regression
Gaussian Process Regression (GPR) models are non-

parametric kernel-based models based on the assumption
that each observed response value yi is sampled from a mul-
tivariate normal distribution. Different from linear regres-
sions, GP regression models are built on random processes
with a Gaussian prior instead of a parametric formulation
for the latent function. It also provides uncertainty measures
over predictions In GPR models, the relationship between
a latent function f(xi) and the target (response) yi can be
written as follows:

yi = f(xi) + εi, εi ∼ N(0, σ2),

where the random noise εi is normally distributed with mean
0 and variance σ2. The covariance function of the response
in a GPR is cov(y) = K+σ2I where the entry at the i-th row
and j-th column of K, Ki,j = k(xi, xj). The covariance ma-
trix characterizes correlations between different responses in
the process. If xi and xj have similar kernel function values,
then their GPR outputs, f(xi) and f(xj), shall also be sim-
ilar. For some new points X∗, the prediction f(X∗) can be
obtained from the joint distribution of f on the input X and
f∗ on the new points X∗, a simplified notation of f(X∗) as
follows: [

f
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K K∗
KT

∗ K∗∗

])
,

where K = K(X,X), K∗ = K(X,X∗), K∗∗ = K(X∗, X∗)
is a covariance matrix, whose entries are given by the co-
variance function (kernel), Ki,j = k(xi, xj), and m(X) =

m(X∗) = 0 for convenience. The posterior predictive dis-
tribution is obtained by marginalizing out the training set
latent variables [21]:

p(f∗|y) =
∫

p(f, f∗|y)df =
1

p(y)

∫
p(y|f)p(f, f∗)df,

and it can be written as

p(f∗|y) = N(Kf∗,f (Kf,f + σ2I)
−1

y,Kf∗,f∗

−Kf∗,f (Kf,f + σ2I)−1Kf,f∗).

Notice that the covariance does not depend on the observed
output y but only on the inputs X and X∗.

Recently, GPs have become a popular method for non-
parametric modeling, and there are several reasons for using
GPs. First, the locations of the observations used to train
the model do not necessarily correspond to the locations of
the points for which we wish to investigate the function at
[22]. Inference for the GP at a set of locations X∗ that differ
from those corresponding to X can be achieved by eval-
uating the posterior distribution of f(X∗). Second, there
are various kernel functions that can be proposed to meet
the modeling expectations. For example, if we believe the
informativeness of past observations in explaining current
data is a function of their time difference, the squared ex-
ponential function can be used in the covariance function,
i.e., f(xi, xj) = h2 exp[−(

xi−xj

λ )2], where hyperparameters
h and λ control the output scale of the function and the
input, or time, scale. Kernels can also be combined together
(e.g., addition and multiplication) to develop flexible non-
linear correlations.

Other non-parametric models, such as splines are also
commonly used for spatiotemporal data analysis as they rely
on fewer assumptions about the underlying data generating
mechanisms. Although spline models can implement com-
plex nonlinear functions, they are less efficient in modeling
the effects of covariate interactions when compared to GPs.

Approximate Bayesian computation (ABC) has been
used widely for parameter inference in ecology and biology
as it does not require the specification of a likelihood func-
tion [8, 4]. The ABC approach estimates the posterior distri-
butions of parameters by simulation data with parameters
sampled from the prior distribution. A value for the toler-
ance (ε) is pre-specified to determine if the distance between
a simulation dataset and the observed dataset is less than
or equal to ε, it is retained. Otherwise, it is discarded.

GPs have been used as a replacement for supervised neu-
ral networks in nonlinear regression and extended for classi-
fication [26, 20]. Previous research has shown that these two
approaches were equivalent for a neural network model with
a single-layer fully-connected neural network in the limit of
infinite width [17, 27, 28]. For such a neural network with
independent and identically distributed (i.i.d.) random pa-
rameters, as a result of an affine transformation of the fi-
nal hidden layer, each scalar output contains a sum of i.i.d.
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Figure 1: The proposed anomaly detection framework.

terms. According to the Central Limit Theorem, the neural
network’s computed function is drawn from a generalized
projection (GP) when the width is infinite [27]. Multilayer
Perceptron (MLP) neural networks are popular in captur-
ing nonlinear relationships. It has been shown that a MLP
neural network and GP have similar behavior when the num-
ber of hidden neurons tends to infinity and weight decay is
employed. Based on such correspondence, it is possible to
provide exact Bayesian inference for neural networks with
infinite width by evaluating the corresponding generalized
partials. There are kernel functions designed to mimic multi-
layer random neural networks, but they are only available
outside of a Bayesian network and have not yet been iden-
tified as covariance functions for GP in previous work [27].

4. ANOMALY DETECTION FRAMEWORK
The proposed anomaly detection framework consists of

the following steps which are discussed in detail in the sub-
sections below. First, we pre-process the observed data by
detrending and normalizing the data of each slice, and then
we augment the incomplete data by transforming the ob-
served traffic flow from temporal neighbors (e.g., prior and
post hours as described in Section 4.1). Then, GPR models
are built to recover the complete data based on the aug-
mented data as described in Section 4.2 and 4.3. The GPR
model is fit at the level of the slice (sensor, hour, and week-
day) by exploiting the temporal correlations. With the re-
constructed complete traffic flow, the means and standard
deviations of the fitted traffic flow are computed for all slices.
Finally, the anomaly and non-anomaly classification algo-
rithm is built using logistic regression models, as described
in Section 4.4. These steps are illustrated in Figure 1, where
the data engineering step is included in the dashed rectan-
gle. As the downsampled data have four different sampling
rates (i.e., 1%, 2%, 5%, and 10%), we apply the proposed
model to each sampling rate. A detailed algorithm for the
proposed anomaly detection framework is in Algorithm 1.

4.1 Data Engineering
In this subsection, we describe how to pre-process the

incomplete data which includes detrending the data in the
same way as the ATD organizer, normalizing the data, and

Algorithm 1: The Proposed Anomaly Detection
Algorithm.

1 Model Training
Input: Downsampled traffic flow data d

2 for (s, h, w) ∈ S where S is the set of slices (s, h, w) in d
do

3 Detrend ds,h,w as described in Section 2.1
4 for (s, h, wc) ∈ S∗ where wc is the weekend indicator and

S∗ is the set of slices (s, h, wc) in d do
5 Normalized the detrended data for ds,h,wc

6 for i = 1, . . . , n where n is the size of d do
7 Let s, h, and w be its corresponding sensor ID, hour,

and weekday
8 for j = −k,−k + 1, . . . , k − 1, k + 1 and j �= 0 do
9 Compute d̄′s,h+j,w and sd′

s,h+j,w
for slice

(s, h+ j, w)
10 Transform the total flow from using Equation

(4.2)
11 for w′ s.t. wc(w

′) = wc(w) do
12 Compute d̄′s,h,w′ and sd′

s,h,w′ for slice (s, h, w′)

13 Transform the total flow using Equation (4.3)

14 for r = 1%, 2%, 5%, 10% do
15 for (s, h, w) s.t. sampling rate of sensor s = r do
16 Predict the missing total flow on the augmented

data y′
s,h,w with GPR model

17 Compute the mean μ̂s,h,w, σ̂s,h,w, p5, p25, p50,
p75, and p95 of the reconstructed complete data

18 Predict the anomaly probability leveraging d′, p′5,
p′25, p′50, p′75, and p′95 as described in Section 4.4

19 Tune the cutoff c using grid search to optimize the F1
Score

20 Model Testing
Input: Downsampled traffic flow data d∗

21 for each sampling rate in the test dataset do
22 Follow the same data engineering and GRP steps as

the training dataset
23 Use the fitted logistic regression model from training

to estimate the probability of being anomalous
24 Use tuned c to determine the anomalous status
25 Compute the test F1 score using Equation (5.1)

augmenting the data from similar groups: a) nearby hours of
the same day and b) same hour of other weekdays. We first
detrend the traffic flow following the same strategy described
in Section 2.1. The resulting detrended data is denoted by
d, and ds,h,w is the detrended total flow for slice (s, h, w).

In the normalization step, instead of normalizing the data
based on the slice of s, h, and w which has high sparsity,
the day of week is aggregated into weekdays or weekends
to increase the sample size for normalization. A weekend
indicator wc is created to recode the day of week variable
to a dichotomous variable with value 1 indicating weekends
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and 0 indicating weekdays,

wc =

{
1 Di

w ∈ {Sat., Sun.} ∩Di
o = 1,

0 Di
w ∈ {Mon., Tue., Wed., Thu., Fri.} ∩Di

o = 1.

Then we normalize the data for each slice of s (sensor), h
(hour), and wc (weekdays or weekends). That is, data at the
same locations and hours of weekdays are pooled together,
and data at the same locations and hours of weekends are
pooled together for normalization as follows,

d′ is,h,wc
=

dis,h,wc
− d̄s,h,wc

sds,h,wc

where d̄s,h,wc and sds,h,wc
are the mean and standard de-

viation of slice (s, h, wc). This approach is advantageous as
compared to normalizing the data based on the slice of s,
h, and w since there are only a few points available for each
slice. It also works better than normalizing based on the
slice of s and h because the traffic flows of weekdays and
weekends are significantly different and thus not suitable
for pooling.

In the data augmentation step, it is assumed that the
traffic flow data is smooth so that observed data can be
duplicated to other slices. We augment data from similar
groups:

• nearby hours of the same day.
• same hour of other weekdays.

First let d′s,h,w be the detrended and normalized data for
slice (s, h, w) from the downsampled data d, d′is,h,w be the
its i-th observation. Denote the augmented data of slice
(s, h, w) by y′s,h,w and the initial values are the same as d′s,h,w
(i.e., set y′s,h,w = d′s,h,w before the augmentation starts). To
augment the data from nearby hours of the same day, let k
be the parameter that determines the size of nearby hours
to predict. Then, the traffic flow data are transformed as fol-
lows for the previous hours h− 1, . . . , h− k and post hours
h+ 1, . . . , h+ k:

y
′(n+1)
s,h+j,w = g1(d

′i
s,h,w) (4.1)

=
d′is,h,w − d̄′s,h,w

sd′
s,h,w

× sd′
s,h+j,w

+ d̄′s,h+j,w,

where j = ±1, . . . ,±k, n is the current sample size of
y′s,h+j,w and updated after each augmentation step, d̄′s,h,w
and sd′

s,h,w
are the sample mean and standard deviation of

the data for slice (s, h, w), and d̄′s,h+j,w and sd′
s,h+j,w

are
the sample mean and standard deviation of the data for
slice (s, h + j, w). Notice that in this step, we do not con-
sider the weekday/weekend variable. Besides, we use grid
search to find the optimum value of k (e.g., neighboring day
window size for augmentation) for each sampling rate. The
downsampled dataset with a lower sampling rate reasonably
needs a larger value of k to achieve better results.

Similarly, the observed data from the same hour on other
weekdays are also transformed for data augmentation. For
slice (s, h, w), its traffic flow data are also used for other days
of the week that have the same weekday category (weekday
vs. weekend), i.e., slice (s, h, w′) s.t. wc(w

′) = wc(w). The
transformation formula is described as follows:

y
′(n+1)
s,h,w′ = g2(d

′i
s,h,w) (4.2)

=
d′is,h,w − d̄′s,h,w

sd′
s,h,w

× sd′
s,h,w′ + d̄′s,h,w′ (4.3)

where n is the current sample size of y′s,h,w′ and updated
after each augmentation step, d̄′s,h,w and sd′

s,h,w
are the

sample mean and standard deviation of the data for slice
(s, h, w), d̄′s,h,w′ and sd′

s,h,w′ are the sample mean and stan-
dard deviation of the data for slice (s, h, w′).

When the augmentation process completes, y′s,h,w con-
tains the detrended data from the original incomplete
dataset, transformed data from the neighboring hours of the
same day, and transformed data from other similar days of
week at the same hour and same week.

y′s,h,w = d′s,h,w ∪ g1(d
′
s,h±j,w) ∪ g2(d

′
s,h,w′)

where j = ±1, . . . ,±k and wc(w
′) = wc(w). The augmen-

tation strategy can be extended to incorporate spatial pat-
terns by using data from the closest stations on the same
day and same hour. It is not used in our project as it does
not improve the model’s performance.

4.2 Gaussian Process Regression Models
Although the data augmentation step has increased the

sample size to a certain degree, it is based on observed data
and does not infer what the unobserved looks like. Tempo-
ral patterns could be further explored to get a full picture
of the data. The purpose of GPR models is to recover the
unobserved traffic flow from the augmented data d′s,h,w. To
reconstruct the complete traffic flow data, we apply the fit-
ted GPR models for each slice to predict the unobserved
traffic flow from the posterior predictive distribution. With
the augmented data y′s,h,w, we apply GPR to recover the
complete traffic flow data from 2011 to 2020 based on its
date information, denoted by ts,h,w. The dependent variable
in the GPR is the traffic flow, and the dependent variable
is the time index x, a new feature introduced to recover the
time series pattern of the data. To find x, we first list all
the possible dates that correspond to the hour and weekday
value in slice (h,w):

Th,w = {dates between 2011 and 2020 : Th = h ∪ Tw = w}.

Let Nh,w be the size of Th,w. Then the time index for i-th
observation in slice (s, w, h) xi

s,h,w for y′s,h,w can be identified
by matching its dates with T as follows,

xi
s,h,w = {j : T j

h,w = tis,h,w},



Detection of Anomalies in Traffic Flows with Large Amounts of Missing Data 89

where tis,h,w is the date of i-th observation in slice (s, h, w).
We have a collection Xs,h,w ⊂ {1, . . . , Nh,w} by definition.
Let ns,h,w be the size of Xs,h,w. For the set of observed data
G = {(xi

s,h,w, y
′ i
s,h,w), i = 1, . . . , ns,h,w}, we use the GPR to

model the relationship between the traffic flow and the time
index on the augmented data. Assume that

y′s,h,w = f(xs,h,w) + ε, ε ∼ N(0, σ2I).

A GP prior is placed over f(xs,h,w) and simplifying the no-
tation by removing the subscript (s, h, w) as follows:

p(f(x)|x) = N(0,K)

where K is the covariance matrix determined by the kernel
function. In this project, the rational quadratic kernel is
implemented,

kα,l(xi, xj) =

(
1 +

d(xi, xj)
2

2α�2

)−α

, (4.4)

where α is the scale mixture parameter which determines the
weighting of large or small-scale variations, l is the length
scale of the kernel, and d(·, ·) is the Euclidean distance. The
details of the kernel selection are discussed in the following
section.

There are several advantages of recovering the complete
sequence. First, the true mean and standard deviation could
be approximated from the recovered data and fed into the
classification process. Second, with the reconstructed com-
plete time series data, other features such as the 5-th, 25-th,
50-th, 75-th, and 95-th percentiles can be computed and
used when building the final prediction model. These sum-
mary statistics might not be represented well by the origi-
nal incomplete data which have less than five observations
(n < 5) on average for each slice.

4.3 Kernel Selection
The choice of kernel profoundly affects the performance

of a GP on a given task [23] as it controls properties of latent
functions including smoothness and periodicity. In practice,
sophisticated kernels are often achieved by composing a few
standard kernel functions, which may also lead to overfit-
ting. Commonly used kernels include the Gaussian radial
basis function (RBF) kernel, rational quadratic kernel, exp-
sine kernel, and Matérn kernel.

• The RBF kernel is also known as the squared-
exponential kernel and takes the form as follows:

kl(xi, xj) = exp

(
−d(xi, xj)

2

2l2

)

where l determines the length scale of the associated hy-
pothesis space of functions. A large value of γ shrinks
the covariance between nearby sets of observations,
which results in a more smooth output.

• The rational quadratic kernel is described in Equation
4.4.

• The expsine kernel is in the form

kl,p(xi, xj) = exp
(
−2 sin2(πd(xi, xj)/p)

l2

)

where l is the length scale of the kernel, p is the peri-
odicity of the kernel.

• The Matérn kernel is a generation of the Gaussian RBF
kernel and given by:

kν,l(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

Kν

(√
2ν

l
d(xi, xj)

)

where Kν(·) is a modified Bessel function and Γ(·) is
the gamma function.

In this project, we propose a few candidate kernels (i.e., the
RBF kernel, rational quadratic kernel, expsine squared ker-
nel, and Matérn kernel) and then use the cross-validation
method to compute the mean absolute error (MAE) of the
traffic flow for each candidate kernel. Specifically, we first
random sample 20 different sensors and used the 3-fold
cross-validation with five repetitions through the Python
Scikit-learn package [19] to obtain the training and test in-
dices for each slice (s, h, w). The GP regression is fit on the
training dataset, and predictions are performed for the test
dataset. The prediction errors from all the slices of the 20
sensors are collected to compute the MAE for each can-
didate kernel. The MAE comparison is shown in Table 3.
The RBF, rational quadratic, and Matérn have comparable
results, while ExpSine squared kernel gives a much higher
MAE. Among the four sampling rates, the rational quadratic
has the lowest MAE compared to RBF and Matérn, and is
therefore selected to be the kernel function in GPR.

We use the Python Scikit-learn package [18] to optimize
the hyperparameters in the kernel function, which are tuned
in order to maximize the log-marginal-likelihood. Specifi-
cally, we use 0.1 and 1 as initial values for α and l, respec-
tively. And the bounds are α, l ∈ (0.1, 10).

Table 3. The cross-validation MAE of four different kernels in
GPR.

Sam-
pling

RBF Rational
Quadratic

ExpSine
Squared

Matérn

1% 0.760 0.723 38.062 0.753
2% 0.697 0.620 36.849 0.678
5% 0.666 0.575 10.031 0.648
10% 0.598 0.490 1.257 0.567

overall 0.602 0.680 21.549 0.661
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Figure 2: Actual traffic flow vs. the estimated flow using GP.

In Figure 2, we show the reconstructed time series for
an arbitrary sensor (sensor 1) using GPR with a rational
quadratic kernel. Sensor 1 has a 2% sampling rate. The blue
curve represents the complete traffic flow and the orange
is the reconstructed total flow. We only show the first two
week’s estimation (2011-01-01 to 2011-01-14) for better res-
olution. Overall, the estimated total flow resembles the true
values, but it does not fully recover the true distribution due
to the sparsity of the observed data.

4.4 Predictions via Logistic Regression
The incomplete traffic flow data has been detrended and

normalized in the previous steps. There are additional fea-
tures from the complete reconstructed data using GPR (i.e.,
estimated mean, standard deviation and percentiles). In this
section, we will use d′ (i.e., the detrended and normalized
downsampled data), as well as features from GPR to build
a logistic regression model for each sampling rate. All vari-
ables are normalized using the estimated mean and standard
deviation of its corresponding slice. For example, data for
slice (s, h, w), d′ is,h,w is normalized as follows:

zis,h,w =

∣∣∣∣∣d
′ i
s,h,w − μ̂s,h,w

σ̂s,h,w

∣∣∣∣∣ (4.5)

where i = 1, . . . , |d′s,h,w|, and μ̂s,h,w and σ̂s,h,w are the mean
and standard deviation of the reconstructed complete traffic
flow for slice ({s, h, w) from GPR. Denote the normalized
data of d′ by z. Features from the reconstructed data are
also normalized in the same fashion. For example, the 5-th
percentile w.r.t. the reconstructed data for slice (s, h, w) is
normalized as follows:

p′s,h,w;5 =

∣∣∣∣ps,h,w;5 − μ̂s,h,w

σ̂s,h,w

∣∣∣∣
With the normalized data {z, p′5, p′50, p′75, p′95}, we train

the logistic regression for each sampling rate. Define Nj be
the size of sampling rate j where j ∈ {0.01, 0.02, 005, 0.1}.
Omitting the slice notation {s, h, w}, the logistic regression

model for sampling rate j can be written as

log

(
pi

1− pi

)
= βj

0 + βj
1z

i + βj
2p

′i
5 + βj

3p
′i
25 (4.6)

+ βj
4p

′i
50 + βj

5p
′i
75 + βj

6p
′i
95 (4.7)

where i = 1, 2, . . . , Nj .
The logistic regression model returns the probability that

a traffic flow is anomalous, and a cutoff threshold cj needs to
be specified to determine the anomaly status for each sam-
pling rate j where j ∈ {0.01, 0.02, 005, 0.1}. A grid search is
used to choose the optimal value of cj . Note that the three
standard deviation method to find anomalies is a special
case for logistic regression when β0 = β2 = β3 = β4 = β5 =

β6 = 0 and cutoff becomes e3β1

1+e3β1
as zi = 3. So, the logistic

regression model encompasses the three-standard deviation
criterion. But it is more flexible than the three-standard de-
viation criterion because it allows the tuning process for cj
to obtain better prediction results.

Once the optimal values are selected, an observation is
classified as an anomaly if its predicted probability of being
anomalous is greater than c. For example, the optimal value
of c was found to be 0.31 for a sampling rate of 0.1 so that
an observation with predicted anomaly probability ≥ 0.31
is classified as an anomaly. This is defined in the formula
below.

I(zis,h,w) =

{
1 (anomaly), p̂is,h,w ≥ cj

0 (not anomaly), p̂is,h,w < cj
(4.8)

where cj is the optimal value for sampling rate j that sensor
s corresponds to. Then we can compute the corresponding
F1 score using Equation (5.1).

5. RESULTS AND DISCUSSION
5.1 Assessment of Predictive Performance

The classification results were evaluated with F1 score
which is the metric adopted by the challenge organizer. It is
defined as follows:

F1 =
true positive

true positive + 0.5(false positive + false negative) .

(5.1)

F1 score is widely used in many applications such as image
classification and documentation classification. Unlike clas-
sification accuracy which is the proportion of the number of
correct predictions from all predictions made, F1 score con-
veys the balance between precision and recall. For example,
in the imbalanced setting when negative cases dominate, the
classification accuracy would be high by simply labeling all
observations negative. However, the F1 score would be 0 as
the predictions for the negative observations are incorrect.

To test the performance of the proposed method, we ran-
domly sample 200 for training and the remaining 200 sensors
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Table 4. F1 scores on the test dataset by sampling rates.
XGBoost-1 is the comparison model that replaces GP with

XGBoost for the proposed model to reconstruct the complete
total flow, while XGBoost-2 is the comparison model that
replaces logistic regression with XGBoost to predict the

anomaly status. The Baseline model used the three-standard
deviation rule based on the downsampled data. For the ABC

approach, we estimate the parameters from the posterior
distribution and then use a three standard deviation rule to

find anomalies. The proposed model consistently outperforms
the comparison models.

Test Set F1 Score
Rate Pro-

posed
XGBoost-
1

XGBoost-
2

ABC Base-
line

1% 0.5505 0.4074 0.3838 0.2651 0.0000
2% 0.6588 0.6779 0.6153 0.4758 0.2010
5% 0.7382 0.4000 0.7018 0.4844 0.6078
10% 0.8170 0.8249 0.7913 0.5785 0.7570

for testing. The proposed algorithm is run in parallel at the
sampling rate level. Within each sampling rate run, it can
be further paralleled at the slice level for GPR hyperparam-
eter tuning, which is comparably the most computationally
expensive part among all components. Overall, the proposed
algorithm is efficient and takes about 1 hour for training and
7 minutes for testing. The test F1 score for each sampling
rate is given in Table 4. We also compute the F1 score on the
test dataset using the baseline algorithm provided by NSF,
which labels an observation as an anomaly if the detrended
traffic flow is above or below three standard deviations from
the observed mean.

Although this paper focuses on the use of the Gaussian
Process in the anomaly detection framework (see Figure 1),
other methods may be used to reconstruct the complete to-
tal flow. One method applied is stochastic gradient boosting
[11, 12]. Specifically, we use the XGboost library [7] to im-
plement the XGBoost method. The GPR has an average
F1 score of 0.6911 whereas the XGBoost has an average
F1 score of 0.5776. The GPR has a descent F1 score for
the sampling rate of 1% (0.5505) as compared to XGBoost
(0.4074).

We also test the proposed framework by replacing logistic
regression with XGBoost (column XGBoost-2 in Table 4).
We observe that the XGBoost tends to overfit the training
dataset and logistic regression gives better results for all four
sampling rates in the test dataset.

We also applied the ABC algorithm to estimate the mean
and standard deviation of each slice through the Python
abcpy package [10]. Specifically, the parameter samples are
generated from a uniform distribution (μ ∼ (−0.5, 0.5),
σ ∼ (0.5, 1.5)) and a Gaussian likelihood is assumed for the
distribution of the total flow. The posterior mean and stan-
dard deviation are then used to determine if a traffic flow is
anomalous based on the three-standard deviation rule. We

examine the hyperparameter ε (the distance tolerance) at
two different values, 8 and 10, after comparing the simula-
tion datasets and the observed data. We find the results for
ε = 8 and ε = 10 are very close; therefore only the first one is
shown in Table 4. It is shown that the proposed algorithm
has higher F1 scores than the ABC algorithm for all four
sampling rates.

Furthermore, the F1 score on the test dataset using the
baseline algorithm is also computed for comparison pur-
poses. The baseline algorithm labels an observation as an
anomaly if the detrended traffic flow is above or below three
standard deviations from the observed mean. The proposed
method has a higher F1 score for all four sampling rates
than the baseline approach.

5.2 Spatial Pattern of Traffic Anomalies
In this section, we show the anomaly probability on a map

using the standardized latitude and longitude information
to reveal the spatial pattern of anomalies (i.e., the original
latitude and longitude values are not provided). Due to the
nature of the data, we aggregate the anomalies by year and
compute both the observed and predicted anomaly proba-
bility for each sensor. The left and right plots in Figure 3
are the true and predicted anomaly probability in 2016, re-
spectively. In general, the predicted anomaly probability is
close to the observed anomaly probability. In both plots, it
is shown that sensors with large anomaly probabilities are
mainly located in the northwestern area which is likely close
to downtown Los Angeles. We are not able to show it on the
exact map since the latitude and longitude provided by NSF
are normalized. Few sensors located in the southeastern area
also have relatively high anomaly probabilities. The scatter
plot also showed that sensors that are close to each other
had similar anomaly probability.

Figure 3: The left and right plots show the observed and
predicted anomaly probability represented by the bubble
size for each sensor in year 2016. The sensors that are close
to each other have similar anomaly probabilities.
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Figure 4: Hourly anomaly probability for holidays and non-
holiday. The left vertical axis number is the probability of
anomalies in holidays and the right vertical axis number is
the estimated probability of anomalies in non-holidays.

5.3 Holiday and Weekday Pattern of Traffic
Anomalies

In this section we examine the hourly traffic patterns of
holidays and non-holidays and their daily profiles.

Holidays vs. non-holidays. We analyze the hourly
anomaly probability to investigate holiday and weekday pat-
terns (see Figure 4). In general, holidays have a higher prob-
ability of experiencing unusual traffic than non-holidays.
Moreover, holidays generally had anomalous traffic in the
morning (4 AM to 10 AM), whereas non-holidays had higher
anomaly probabilities from 10 AM to 8 PM. For holidays,
people tend to leave home early, so this may explain the
peak of the anomaly probability in the early morning [6].
For non-holidays, the anomaly probability patterns coincide
with daily work commute patterns. Figure 4 indicated that
the daily profile had two peaks for non-holidays, correspond-
ing to two rush hour periods: one in the morning (11 AM
to 12 PM) corresponding to lunch breaks and another one
in the afternoon (7 PM to 8 PM) which corresponds to the
end of a working day.

Daily profiles in holidays and non-holidays. Strat-
ifying the traffic flow data by holidays and non-holidays,
the hourly anomaly probabilities are further analyzed at the
weekday level. Figure 5 showed the daily profiles by days of
the week for holidays and non-holidays. We observe that
there are large traffic flows on holidays that occurred on
Mondays through Saturdays from 7 AM to 8 PM whereas
Sunday has large traffic flows at 1 AM and a lower anomaly
probability overall. We also found that Tuesday, Wednes-
day and Thursday have higher a probability of experiencing
anomalous traffic than other days in the holiday group. Also,
we found that 1 AM has the second highest probability of

Figure 5: Hourly anomaly probability by weekday for hol-
idays (right panel) and non-holidays (left panel). For holi-
days, all days have a high peak at 7 AM and 8 AM except for
Sunday which have a high peak at 1 AM. For non-holidays,
Monday, Tuesday, Wednesday, and Thursday have similar
patterns, while Friday, Saturday and Sunday are similar.

experiencing anomalies for most holidays which is consistent
with a previous study [15].

For non-holidays, we find that Monday, Tuesday, Wednes-
day, and Thursday have similar patterns: a) two peaks at 11
AM to 12 PM and 7 PM to 8 PM and b) fewer anomalies at
8 AM. Friday’s pattern differes in that its anomaly proba-
bility gradually increases after 1 AM instead of dropping in
the morning which is similar to Saturday and Sunday. It is
interesting to point out that morning traffic volumes from
Monday to Friday may be high but has a relatively smaller
chance of reporting anomalies as compared to other time
frames.

6. CONCLUSIONS
In the proposed algorithm, we introduce a data engi-

neering process which consists of detrending, normalization
based on weekdays and weekends, and data augmentation
using temporal or spatial patterns. The data engineering
step plays an important role in the algorithm and can be
generalized to settings with missing data. The GPR works
on data with low and high signal-to-noise ratios and can be
scaled to very large traffic flow datasets using a straight-
forward, practical, and generally applicable model specifica-
tion. It retains the temporal correlation and helps estimate
the true mean and standard deviation for each slice of data
together with linear regression models. The logistic regres-
sion model predicts anomaly probabilities for each slice of
data, which can be used for improving traffic and road safety
by roadway designers and traffic management departments.

There are several potential areas for future work. Al-
though the Python scikit-learn package [18] optimizes the
hyperparameters in GPR, other optimization strategies such
as Bayesian optimization may be implemented to recover
the complete data and approximate the mean and standard
deviation [24]. Future work might also consider spatial cor-
relation in GPR. For example, it can be extended to ac-
commodate high-dimensional geostatistic data by using re-
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duced rank and hierarchical nearest-neighbor Gaussian pro-
cess models [3, 9]. The model could also be extended to a
deep learning model by using GP as a hidden layer [28].

FUNDING
This research was supported in part by the National Sci-

ence Foundation grant, DMS-1924792.

CONFLICTS OF INTEREST
The authors declare no conflict of interest. All authors

reviewed the results and approved the final version of the
manuscript.

Accepted 4 January 2023

REFERENCES
[1] Algorithms for threat detection (atd). URL. https://www.nsf.

gov/pubs/2020/nsf20531/nsf20531.htm.
[2] Bai, S., He, Z., Lei, Y., Wu, W., Zhu, C., Sun, M. and

Yan, J. Traffic anomaly detection via perspective map based
on spatial-temporal information matrix. In CVPR Workshops
117–124 (2019).

[3] Banerjee, A., Dunson, D. B. and Tokdar, S. T. Effi-
cient gaussian process regression for large datasets. Biometrika
100(1) 75–89 (2013). https://doi.org/10.1093/biomet/ass068.
MR3034325

[4] Beaumont, M. A. Approximate bayesian computation in
evolution and ecology. Annual review of ecology, evolu-
tion, and systematics 379–406 (2010). https://doi.org/10.1146/
annurev-statistics-030718-105212. MR3939526

[5] Bhaskaran, K. and Smeeth, L. What is the difference between
missing completely at random and missing at random? Interna-
tional Journal of Epidemiology 43(4) 1336–1339 (2014).

[6] Calafate, C. T., Soler, D., Cano, J.-C. and Manzoni, P. Traf-
fic management as a service: The traffic flow pattern classification
problem. Mathematical Problems in Engineering (2015).

[7] Chen, T. and Guestrin, C. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ‘16,
New York, NY, USA 785–794 (2016). ACM. http://doi.acm.org/
10.1145/2939672.2939785. ISBN .

[8] Csilléry, K., Blum, M. G., Gaggiotti, O. E. and François,

O. Approximate bayesian computation (abc) in practice. Trends
in Ecology & Evolution 25(7) 410–418 (2010).

[9] Datta, A., Banerjee, S., Finley, A. O. and Gelfand, A. E. Hi-
erarchical nearest-neighbor gaussian process models for large geo-
statistical datasets. Journal of the American Statistical Associa-
tion 111(514) 800–812 (2016). https://doi.org/10.1080/01621459.
2015.1044091. MR3538706

[10] Dutta, R., Schoengens, M., Onnela, J.-P. and Abcpy, A. M.

A user-friendly, extensible, and parallel library for approximate
Bayesian computation. In Proceedings of the platform for ad-
vanced scientific computing conference 1–9 (2017).

[11] Friedman, J., Hastie, T. and Tibshirani, R. Additive logistic
regression: a statistical view of boosting (with discussion and a
rejoinder by the authors). The Annals of Statistics 28(2) 337–407
(2000). https://doi.org/10.1214/aos/1016218223. MR1790002

[12] Friedman, J. H. Greedy function approximation: a gradient

boosting machine. Annals of Statistics 1189–1232 (2001). https://
doi.org/10.1214/aos/1013203451. MR1873328

[13] Kut, A. and Birant, D. Spatio-temporal outlier detection in
large databases. Journal of Computing and Information Tech-
nology 14(4) 291–297 (2006).

[14] Little, R. J. and Rubin, D. B. Statistical analysis with missing
data 793. John Wiley & Sons, (2019). https://doi.org/10.1002/
9781119013563. MR1925014

[15] Mihaita, A.-S., Li, H. and Rizoiu, M.-A. Traffic congestion
anomaly detection and prediction using deep learning (2020).
arXiv preprint. arXiv:2006.13215.

[16] Münz, G., Li, S. and Carle, G. Traffic anomaly detection using
k-means clustering. In GI/ITG Workshop MMBnet 13–14 (2007).

[17] Neal, R. M. Priors for infinite networks. In Bayesian Learning
for Neural Networks 29–53. Springer, (1996).

[18] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-

peau, D., Brucher, M., Perrot, M. and Scikit-learn, E. D.

Machine learning in Python. Journal of Machine Learning Re-
search 12. 2825–2830 (2011). MR2854348

[19] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. Scikit-learn: Machine learning in
python. the Journal of machine Learning research 12. 2825–2830
(2011). MR2854348

[20] Quinonero-Candela, J., Rasmussen, C. E. and Williams,

C. K. Approximation methods for gaussian process regression.
In Large-scale kernel machines 203–223. MIT Press, (2007).

[21] Rasmussen, C. E. Gaussian processes in machine learning. In
Summer school on machine learning 63–71. Springer, (2003).

[22] Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N.

and Aigrain, S. Gaussian processes for time-series modelling.
Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 371, 20110550 (1984).
2013. https://doi.org/10.1098/rsta.2011.0550. MR3005668.

[23] Schulz, E., Speekenbrink, M. and Krause, A. A tutorial on
gaussian process regression: Modelling, exploring, and exploiting
functions. Journal of Mathematical Psychology 85. 1–16 (2018).
https://doi.org/10.1016/j.jmp.2018.03.001. MR3852577.

[24] Snoek, J., Larochelle, H. and Adams, R. P. Practical Bayesian
optimization of machine learning algorithms. Advances in Neural
Information Processing Systems 25 (2012).

[25] Sofuoglu, S. E. and Gloss, S. A. Tensor-based anomaly detec-
tion in spatiotemporal urban traffic data. In Signal Processing
108370 (2021).

[26] Williams, C. K. Computing with infinite networks. Advances in
neural information processing Systems 295–301 (1997).

[27] Wilson, A. G., Hu, Z., Salakhutdinov, R. and Xing, E. P.

Deep kernel learning. In Artificial intelligence and statistics
370–378. PMLR, (2016).

[28] Wilson, A. G., Hu, Z., Salakhutdinov, R. R. and Xing, E. P.

Stochastic variational deep kernel learning. Advances in Neural
Information Processing Systems 29. 2586–2594 (2016).

[29] Zhang, M., Li, T., Shi, H., Li, Y. and Hui, P. A decomposi-
tion approach for urban anomaly detection across spatiotemporal
data. In IJCAI International Joint Conference on Artificial Intel-
ligence. International Joint Conferences on Artificial Intelligence
(2019).

[30] Zhang, Z., He, Q., Tong, H., Gou, J. and Li, X. Spatial-
temporal traffic flow pattern identification and anomaly detection
with dictionary-based compression theory in a large-scale urban
network. Transportation Research Part C: Emerging Technologies
71. 284–302 (2016).

https://www.nsf.gov/pubs/2020/nsf20531/nsf20531.htm
https://www.nsf.gov/pubs/2020/nsf20531/nsf20531.htm
https://doi.org/10.1093/biomet/ass068
https://mathscinet.ams.org/mathscinet-getitem?mr=3034325
https://doi.org/10.1146/annurev-statistics-030718-105212
https://doi.org/10.1146/annurev-statistics-030718-105212
https://mathscinet.ams.org/mathscinet-getitem?mr=3939526
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/01621459.2015.1044091
https://mathscinet.ams.org/mathscinet-getitem?mr=3538706
https://doi.org/10.1214/aos/1016218223
https://mathscinet.ams.org/mathscinet-getitem?mr=1790002
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://mathscinet.ams.org/mathscinet-getitem?mr=1873328
https://doi.org/10.1002/9781119013563
https://doi.org/10.1002/9781119013563
https://mathscinet.ams.org/mathscinet-getitem?mr=1925014
https://arxiv.org/abs/arXiv:2006.13215
https://mathscinet.ams.org/mathscinet-getitem?mr=2854348
https://mathscinet.ams.org/mathscinet-getitem?mr=2854348
https://doi.org/10.1098/rsta.2011.0550
https://mathscinet.ams.org/mathscinet-getitem?mr=3005668
https://doi.org/10.1016/j.jmp.2018.03.001
https://mathscinet.ams.org/mathscinet-getitem?mr=3852577


94 Q.H. He, C.H. Harrison, and H.-H. Huang

Qing He. Department of Statistics and Data Science, University
of Central Florida, Orlando, Florida, USA.
E-mail address: carsonqing@knights.ucf.edu

Charles W. Harrison. Department of Statistics and Data Sci-
ence, University of Central Florida, Orlando, Florida, USA.
E-mail address: charleswharrison@knights.ucf.edu

Hsin-Hsiung Huang. Department of Statistics and Data Sci-
ence, University of Central Florida, Orlando, Florida, USA.
E-mail address: hsin.huang@ucf.edu

mailto:carsonqing@knights.ucf.edu
mailto:charleswharrison@knights.ucf.edu
mailto:hsin.huang@ucf.edu

	Introduction
	Overview
	Traffic Flow Dataset

	Methodology
	Gaussian Process Regression

	Anomaly Detection Framework
	Data Engineering
	Gaussian Process Regression Models
	Kernel Selection
	Predictions via Logistic Regression

	Results and Discussion
	Assessment of Predictive Performance
	Spatial Pattern of Traffic Anomalies
	Holiday and Weekday Pattern of Traffic Anomalies

	Conclusions
	Funding
	Conflicts of Interest
	References
	Authors' addresses

