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Comments on Xiao-Li Meng’s Double Your Variance, Dirtify Your
Bayes, Devour Your Pufferfish, and Draw Your Kidstogram✩

Dennis K.J. LIN

Professor Xiao-Li Meng is to be congratulated for this
thoughtful and potentially highly impactful article towards
improving the reproducibility and reliability of scientific
studies. This paper is very well written and interesting to
read. This article proposes four “radical” changes in the
practice of statistics with the overall goal of increasing pub-
lic trust in statistics and, by extension, scientific research
overall. There is a great emphasis on the idea that statisti-
cal analyses should come with a “quality guarantee,” e.g., if
a study produces a 95% confidence interval, then we want
to be sure the error is at most 5% (ideally less than 5%) and
this result should be trusted, reproducible for future stud-
ies, and more easily understood by the public. In short, it
emphasizes “Don’t sell whatever you refuse to buy.”

To this end, the author discusses the following four ideas:

1. We should double the variance when performing infer-
ence. The author argues that this will provide more ro-
bustness against incorrect assumptions and model mis-
specification. (Section 2)

2. We should “cut corners” (use approximations and sim-
plifying assumptions) in a way that addresses practical
constraints while also putting clear bounds on the ap-
proximation. (Section 3)

3. We should not sell statistical methods that we would
not use for our own analysis. This requires some form
of “quality introspection” before finishing an analysis.
(Section 4)

4. We should teach children about distributions and the
concept of variation at an early age, so that they are
better equipped for a world of uncertainty. (Section 5)

These ideas are very well communicated.
My main concerns:

1. “Validity of Inference” vs. “Quality of Inference”: the
quality of inference should be characterized by both
validity and efficiency. Inference of high quality should
be made in principled ways, at least in discussions in
the academic world.

2. Some ideas are still at the stage of “proposal” and hard
to be implemented in practice. For example, doubling

✩Main article: https://doi.org/10.51387/23-NEJSDS6.

variance leads to a larger p-value, but the enlarged p-
value is difficult to interpret under the existing proba-
bilistic framework.

3. The sample size (more precisely, the effective sample
size) matters for the reliability of the p-value, as the
populations underlying our studies, especially for so-
cial and medical studies, are often heterogeneous. Stud-
ies with a small effective sample size can likely lead
to a biased inference for a heterogeneous population.
We have many examples for population heterogeneity.
The most famous one is perhaps cancer, where hetero-
geneity is not limited to differences between different
patients but also within a single patient (Allison and
Sledge, 2014) [1]. The observation of the heterogeneity
of many complex genetic diseases has largely motivated
the development of precision medicine during the past
decade. As mentioned in the paper, “a recent large-
scale benchmark study, on the reliability of many com-
mon methods for observational studies in health care,
found that only about 50% of the 95% intervals cover
the truth” (Schuemie et al., 2020) [9]. I suspect that
many of the failures might be attributed to an unrep-
resentative sample from a heterogeneous population.

4. There is nothing wrong with p-values, but we need to
understand how to interpret them and what can go
wrong. The definition of the p-value is clear: the proba-
bility of observing a test statistic as extreme as the ob-
served one if the null hypothesis is true. However, this is
not enough. There are some assumptions we must make
to compute p-values. For example, there must be an un-
derlying model, such as a linear model or normal model
or binomial model. There are many other things related
to that model, including randomness, correlation, no
missing data, and no response bias. I think that the
most critical component for statistical inference is the
statistical model. Most existing inference procedures
are based on a given statistical model. Where do we get
the model? What happens when the model is wrong?
Did we consider the model uncertainty? Nowadays, very
few programs teach how to do exploratory data analysis
to build a model from the observed data as John Tukey
suggested (Tukey, 1977) [11]. One of the most quoted
aphorisms in statistics is “All models are wrong, but
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some are useful” by George Box. As Judea Pearl com-
mented in his blog (http://causality.cs.ucla.edu/blog/),
this aphorism is painfully true but hardly useful, and it
does not give us any clue as to what makes one model
more useful than another. In fact, the current dilemma
of statistics as a field is that most powerful statistical
models for big data, such as boosting and deep learning,
are invented by researchers from other fields.

5. One purpose of this paper is to be radical and encourage
reactions and discussion on how we can ensure quality
in statistics. This paper definitely makes a reader pon-
der these questions, regardless of whether they agree
with the author’s views.

DETAILED DESCRIPTIONS
(1) Sample Size. To further illustrate the importance of a
large enough effective sample size for a heterogeneous pop-
ulation, let us consider a simulated example, where the un-
derlying population is a Gaussian mixture: 0.99N(0, 1) +
0.01N(5, 1). Let μ denote the mean of the mixture distribu-
tion, and suppose that one is interested in testing the hy-
pothesis H0 : μ = 0 versus H1 : μ �= 0 at a significance level
of 0.05. Since the proportion of the second component of the
mixture distribution is small, it is likely missed if the sam-
ple size n is small. When there are only samples drawn from
the first component, it is known that the one-sample t-test
is uniformly most powerful for the hypotheses. Figure 1(a)
shows the power of the t-test for n = 10, 20, ..., 100, where
the power at each point was estimated by the proportion of
the p-values that were less than 0.05. Figure 1(a) shows a
counterintuitive phenomenon: The existence of the second
component of the mixture distribution tends to strengthen
our confidence for accepting the null hypothesis H0 : μ = 0
when n ≤ 30. When the sample size is small, occasional sam-
ples from the second component modify the left and right
tails of the test statistic’s distribution in an asymmetric way,
leading to this counterintuitive phenomenon.

Figure 1(b) shows that although the t-test is sub-optimal
(or theoretically wrong) for the hypothesis, it can still reach
a limiting power of 1 as the sample size n → ∞. However,
this limit is reached at an extremely large sample size of
n ≈ 10000. It is obvious that when the sample size is rea-
sonably large, the two components of the distribution can be
well estimated using, for example, the EM algorithm (Demp-
ster et al., 1977) [2] or the data augmentation algorithm
(Tanner and Wong, 1987) [10]. This estimate can help us
to understand more about the generating mechanism of the
data and lead to more interpretations about the data. To
conclude this discussion, I have three suggestions based on
the Gaussian mixture example:

• The sample size should be reported along with the p-
value. A small sample size might be able to remind peo-
ple about possible unrepresentativeness of the sample
for the underlying population.

Figure 1: Power of the one sample t-test for the mean of
a Gaussian mixture distribution, where the power at each
point was estimated based on 105 independent tests. Figure
(a) at the left is a zoomed-in version of Figure (b) at the
right.

• Data integration (with an appropriate meta-analysis
approach) can be an effective way to “increase” the ef-
fective sample size and thus the reliability of scientific
studies.

• With big data, more statistical research can be done for
interpreting the underlying population, which is closely
related to popular research topics of graphical model-
ing and causal inference. In return, this will help re-
searchers improve the reliability of their studies.

(2) Doubling variance. The author suggests doubling
variance as a way to guard against possible local misspec-
ification of missing data mechanisms. I have a lot of con-
cerns about this method, which seems ad hoc and arbitrary.
First, the paper does not provide any systematic guidance
to when a user should use this proposal. Second, can we
always ensure the desirable coverage when adopting this
strategy? I would like to suggest using proven mathematical
bounds to derive confidence intervals or perform hypothe-
sis testing under some complex settings. In fact, both ideas
are similar in some sense. I will use a classical statistical
problem, the Behrens-Fisher Problem (Scheffé, 1970) [7],
to illustrate this main idea. Suppose independent samples
X1, . . . , Xn1 ∼ N(μ1, σ

2
1) and Y1, . . . , Yn2 ∼ N(μ2, σ

2
2) are

available. The parameter of interest is Δ = μ1 − μ2. When
σ1 and σ2 are known or proportional to each other, this is
a standard problem. For the general case, there is no sim-
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ple solution. Hsu (1938) [3] and Scheffé (1970) [7] provided
beautiful answers for this question using probability bounds.
Specifically, define f(σ1, σ2) =

√
σ2
1/n1 + σ2

2/n2. We have
X̄−Ȳ−Δ
f(σ1,σ2)

= Z1(ξ), where Z1(ξ) = U1

{ξU2
21+(1−ξ)U2

22}1/2 . Here,
U1 ∼ N(0, 1) and (nk − 1)U2

2k ∼ χ2
nk−1, k = 1, 2, are in-

dependent, and ξ = (1 +
n1σ

2
1

n2σ2
2
)−1. Note that ξ takes values

in (0, 1). Hsu (1938) [3] showed that Z1∗ ∼ tmin(n1,n2)−1 is
stochastically fatter than Z1(ξ) for all ξ. Hence, a confidence
interval based on Z1∗ is always a valid interval with correct
coverage. This is a remarkable analysis with mathematical
rigor. For more details on the analysis of the Behrens-Fisher
Problem, see Martin and Liu (2015) [4, 5, 6].

SOME MORE COMMENTS
Overall. This paper covers a lot of ground, so when read-
ing it the first time, it feels scattered. For example, when
finishing Section 2, there is a jump from doubling variance
in multiple imputation problems to a CarTalk radio show.
This could possibly be fixed by either giving Section 3 a
brief introduction, or by giving Section 2 a brief summary
at the end (with a transition into Section 3). Theorem 1 is a
new and interesting take on Bayes’ Theorem that provides
a quick way for people who are not well-versed in statistics
to estimate the positive predictive value.

Section 2. The article anticipates common criticisms (es-
pecially regarding Section 2 with doubling the variance) and
responds to them. In this sense, the author is aware of the re-
action to some of his ideas, and he incorporates these points
of view into the paper, providing a more well-rounded arti-
cle. I am surprised that Section 2 (and the rest of the paper,
for that matter) does not mention the value of a carefully
designed experiment. For observational studies, I can see the
value in doubling the variance to make the results robust to
flaws in the dataset or the assumptions made in analysis.
The reference Schuemie et. al (2020) [8] on Page 4 is a great
example of how observational studies can produce flawed re-
sults, but Schuemie et. al. (2020) [8] appears to only consider
observational studies. If an experiment is carefully designed
(e.g., D-optimal, uniform, 2k−p fractional factorial, . . . etc)
then we should have higher quality results. Moreover, this
underscores the larger problem, which is that bad data can
lead to bad (or at least, easily misinterpreted) results. The
author is focused on fixing the analysis after the data have
already been collected by using an ad hoc procedure (dou-
bling the variance). Another path to providing results that
the public can trust is to collect data in a more intelligent
way, addressing the problem before analysis even begins.

Section 3. I agree with the idea behind Section 3. The Dirt-
ified Bayes’ Theorem provides a quick shortcut that most
people could use to get a close approximation to the poste-
rior probability (i.e., the positive predictive value). It is help-
ful to have shortcuts, as long as we are aware of their error

bounds and limitations. Perhaps PC2 (Principled Corner-
Cutting) should be mentioned earlier in the section (maybe
in an introduction to the section; see my earlier point), and
then the article can move into CarTalk and Dirtified Bayes.

Section 4. The majority of the discussion is about an exam-
ple that even the author thinks is impractical (i.e., deduct-
ing salary in academia based on the percentage of “wrong”
results). This section would be better served by providing
more suggestions about how we can incentivize self-quality
controls in institutions, such as the discussion in paragraph
3 on page 20. I do not think that Section 4 is particularly
radical. This is not a bad thing, and the author acknowl-
edges it throughout the article. To me, it just seems like
common ethical practice to self-scrutinze your own work.
However, I find it odd that the value of peer review is not
mentioned. In academia, most scientific journals are peer-
reviewed. Is this implying that the peer review process is
not enough? I understand that the author of an article is
the one who is most familiar with their methodology, but
surely there is some value to peer review? I think the more
“radical” idea is to provide incentives for this self-scrutiny
(Section 4.2). For any organization, measuring the amount
of “wrong” results that a person produces would take an
inordinate amount of time (or, as the author puts it, it is
an NP-hard task). Moreover, it is not always a trivial task
to determine if one’s work is “wrong” or “disproved” in the
future. If my 95% CI for μ is (3.1, 3.2) and another study
reports that μ ≈ 3.3 ± 0.05, am I wrong, or is the other
study wrong? (Or, even worse, are we both wrong?) Did
both studies use identical methodologies? I understand that
the author does not want to implement such a radical idea,
but he should emphasize the difficulty of going back and
determining if one’s work was correct.

Section 5. I agree with the ideas presented in Section 5.
We should start teaching children about the concept of vari-
ation (and distributions) earlier. People should understand
how to think in terms of distributions (e.g., the five-number
summary at least) instead of assuming that the world is de-
terministic. I feel that in statistical consulting, the largest
barriers occur when clients are unfamiliar with the concept
of a distribution. Additionally, if more people were com-
fortable with the concepts of probability and variation, we
would not have to be as concerned with the misinterpreta-
tion of scientific results. Of all the suggestions in the paper,
I feel this is the one that should be of the highest priority.
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