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Abstract
Controlled experiments are widely applied in many areas such as clinical trials or user behavior studies in IT companies.

Recently, it is popular to study experimental design problems to facilitate personalized decision making. In this paper, we
investigate the problem of optimal design of multiple treatment allocation for personalized decision making in the presence
of observational covariates associated with experimental units (often, patients or users). We assume that the response of a
subject assigned to a treatment follows a linear model which includes the interaction between covariates and treatments to
facilitate precision decision making. We define the optimal objective as the maximum variance of estimated personalized
treatment effects over different treatments and different covariates values. The optimal design is obtained by minimizing
this objective. Under a semi-definite program reformulation of the original optimization problem, we use a YALMIP and
MOSEK based optimization solver to provide the optimal design. Numerical studies are provided to assess the quality of
the optimal design.
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1. INSTRUCTION
Optimal designs of experiments are developed to reduce

the variance of estimated model parameters [24] by opti-
mizing a function of the information matrix usually under
a (generalized) linear model assumption. Examples include
the determinant, the trace, and the minimum eigenvalue
of the information matrix, which result in D-, A-, and E-
optimal designs, respectively. In many areas, such as clinical
trials or user behavior studies in IT companies, the experi-
ments are conducted to investigate the treatment effects over
different users by designing controlled experiments, i.e., di-
vide the users into different groups and assigning each group
with a treatment or control. For example, optimal design of
experiments is applied to design clinical trials in the era of
precision medicine, where the patient response may depend
on some biomarkers (covariates). In fact, there is a signifi-
cant growing evidence that the response of the patients may
depend on their covariates in a wide range of applications.
For instance, [26] showed that the top ten highest-grossing
drugs in the US are only effective in 4% to 25% of the patient
population, a shocking result for the current clinical prac-
tice. [6] applied a modified D-optimal design to early stage
clinical trials when the covariates are uncontrollable. [19]
applied a weighted L-optimal design for late stage Phase III
clinical trials with observed covariates. As another emerg-
ing application, Tech Giants such as Google, Facebook, and
LinkedIn frequently use A/B testing for marketing, web de-
sign, and data-driven decision making [29]. In fact, applying
∗Corresponding author.

controlled experiments such as A/B testing experiments in
business has improved the performance of companies [18].
Also, there are some methodological contributions for op-
timal design of experiments applied for A/B testing. For
example, [5] studied an offline and online standard A/B test-
ing with the goal of maximizing the precision of least square
estimations.

The literature of optimal design of experiments for lin-
ear models, which we also use in this study, is vast. From
the optimal design perspective, [2] investigated the problem
with two treatments, and developed the D-optimal design
for both covariates and treatment allocation under the as-
sumption of a linear model with interactions between co-
variates and treatments. [30] generalized the work of [2] to
experiments with multiple treatments. Following the same
model setting, [25] developed the A- and E-optimal designs
for treatments and covariates.

In practice, the user covariates may not be controllable,
due to the restriction in the user recruiting process. Thus, an
alternative problem is to allocate the treatments to a given
set of users with observed covariates. From the optimal de-
sign perspective, the aim is to obtain an exact design by op-
timizing a design objective with the treatment allocation as
the design variable given fixed covariates, which often results
in an optimization problem with binary decision variables.
For two treatment allocation, under the linear model as-
sumption without interaction between covariates and treat-
ments, [16] proposed computationally tractable algorithms
to search D- and A- optimal designs. Also, with a particular
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interest of minimizing the variance of the estimated treat-
ment effect (i.e., a Ds optimal design criterion), [5] demon-
strated that the problem can be solved efficiently based on a
generalization of the MAX-CUT semi-definite programming
(SDP) relaxation of [14]. Given the linear model with in-
teraction between treatments and covariates, [31] proposed
an optimal design objective for personalized decision mak-
ing with two treatments and a corresponding approxima-
tion solution approach to obtain near optimal allocations
efficiently.

In this paper, we generalize the work in [31] to multiple
treatment allocation for personalized decision making with
observational covariates. Specifically, we consider the situa-
tion that there are a finite number of treatment options and
subjects with given covariates. We assume that the response
of a subject assigned to a treatment follows a linear model
which includes the interaction between covariates and treat-
ments. Accordingly, we can define the best treatment option
for each subject groups, which can be estimated with data.
This setup facilitates precision decision making. However, by
including more than two treatments, the resulting design ob-
jective can not be simplified by the approximation approach
developed for the two treatment cases in [31]. Since the de-
sign objective matches the E-optimal design criterion, we
reformulate the optimization problem as a SDP with binary
decision variables. We use a YALMIP and MOSEK based
optimization solver for SDP in a branch-and-bound scheme
to provide the optimal design. In our numerical study, we
assess the quality of the optimal designs provided by the
solver.

2. PROBLEM DESCRIPTION
A decision-making problem in practice can often be sim-

plified to choose a treatment from a finite candidate set
{1, . . . ,K} that has the best performance measure μk, i.e.,

k∗ ∈ argmaxk∈{1,...,K}μk. (2.1)

The values of μk’s are unknown, which can be estimated
based on collected user responses to their treatment alloca-
tions. Particularly, given n users, the experimenter allocates
one of the K treatments to each of the users. The response
of the i-th user is denoted by yi. Assume that yi is a con-
tinuous scalar that follows a model given by

yi =

K∑
k=1

xikμk + εi, for i = 1, . . . , n, (2.2)

where εi is an additive error term, and xik ∈ {0, 1} with
xik = 1 indicating that the k-th treatment is allocated to
the i-th user. We require that

∑K
k=1 xik = 1 to guarantee

that each user is only exposed to a single treatment. Under
the model assumption in (2.2), the performance measure
μk represents the average treatment performance over the
target user population, which can be estimated by μ̂k given

responses yi’s and treatment allocation xik’s. Then a data-
driven solution to (2.1) is given by

k̂∗ ∈ argmaxk∈{1,...,K}μ̂k. (2.3)

The accuracy of this decision is associated with the accu-
racy of the estimates μ̂k’s. To reduce the uncertainty of the
decision, we can reduce the variances of the estimates μ̂k’s.

Under the context of personalized decision making, a user
is associated with observed covariates z = (z1, . . . , zp)

� ∈
Z ⊂ R

p, where Z is the covariates space of the target popu-
lation. Examples of the covariates include the demographic
information, social behavior and network connections. The
treatment performance can often be related to the covari-
ates values. Let μk(z) be a function of the users’ covariates z
representing the personalized treatment performance mea-
sure. In this paper, we further assume that μk(z) is a linear
function over z. Therefore, the linear model in (2.2) is rep-
resented by

yi =

K∑
k=1

xikμk(zi) + εi (2.4)

=
K∑

k=1

xikz
�
i βk + εi, for i = 1, . . . , n,

where βk = (β1k, . . . , βpk)
� is a vector of linear coefficients.

The first feature in each zi is fixed to be one as the linear
intercept. Similar to [30], this model incorporates the inter-
action between treatment and covariates, which enables the
estimation of heterogeneity of treatment performance over
covariates z.

Under this model, the problem of personalized decision
making becomes

k∗(z) = argmaxk∈{1,...,K}μk(z)

= argmaxk∈{1,...,K}
{
z�βk

}
for any z ∈ Z.

(2.5)

With estimated parameters, a data-driven solution to (2.5)
can be obtained for any z ∈ Z, i.e.,

k̂∗(z) = argmaxk=1,2,...,K

{
z�β̂k

}
(2.6)

Similar to (2.3), to improve the accuracy of personalized
decisions, it is desired to reduce the variance of estimated
μk(z) = z�βk for each k ∈ {1, . . . ,K} and each z ∈ Z. Fol-
lowing the optimal design perspective in [31], we can reduce
the variances by searching an optimal allocation of the treat-
ments xik’s in the presence of fixed covariates of recruited
users as illustrated in Figure 1. Next, we investigate the de-
sign criterion that characterizes the variance of estimated
μk(z) = z�βk for each k ∈ {1, . . . ,K} and any z ∈ Z.
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Figure 1: An illustration of the motivation of the proposed approach for two treatment allocations (i.e., + and − in the
figure): We aim to obtain an optimal design of the treatment allocations to reduce the variances of estimated personalized
treatment effects for users with any covariates z. By reducing these variances, it is clearer how to make the decision
accurately.

3. DESIGN CRITERION OF CONTROLLED
EXPERIMENTS FOR PERSONALIZED

DECISION MAKING

Let y = (y1, . . . , yn)
� be the responses of n users. Cor-

respondingly, let Z be an n× p matrix, whose rows are the
users’ covariates z�

1 , . . . , z�
n (the first entry is loaded by one

as the intercept). The treatment allocation is recorded in
an n×K matrix X, where the i-th row of X is denoted by
x�
i = (xi1, . . . , xiK)� representing the treatment allocation

of the i-th user. We assume that the responses are gener-
ated under the model in (2.4). The model covariates matrix
is then given by ⎡

⎢⎣
x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦

which we assume has a full column rank. The notation ⊗
denotes the Kronecker product. By stacking βk’s in a vector
b = (β�

1 , . . . ,β
�
K)� of size Kp, we can express the least

squares estimator of b by

b̂ =
[
β̂�
1 · · · β̂K

]�

=

⎛
⎜⎜⎝
⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
� ⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
⎞
⎟⎟⎠

−1

·

⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
�

y. (3.1)

We assume that the additive error term εi’s in (2.4) are
independent and identically distributed random variables
with mean zero and variance σ2. The variance-covariance
matrix of the estimated b in (3.1) can be expressed by

var(b̂) = σ2

⎛
⎜⎜⎝
⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
� ⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
⎞
⎟⎟⎠

−1

.

Notice that⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦
� ⎡
⎢⎣

x�
1 ⊗ z�

1
...

x�
n ⊗ z�

n

⎤
⎥⎦

=

n∑
i=1

(xi ⊗ zi)(x
�
i ⊗ z�

i ) =

n∑
i=1

(xix
�
i )⊗ (ziz

�
i )

=

⎡
⎢⎣
∑n

i=1 ziz
�
i xi1 0 0

. . .
0 0

∑n
i=1 ziz

�
i xiK

⎤
⎥⎦ ,

which is the result of that xix
�
i is a K × K diagonal ma-

trix with diagonal entries xi1, . . . , xiK . Then the variance-
covariance matrix of b̂ can be simplified to a block diagonal
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matrix:

var(b̂)=σ2diag

⎧⎨
⎩
(

n∑
i=1

ziz
�
i xi1

)−1

. . .

(
n∑

i=1

ziz
�
i xiK

)−1
⎫⎬
⎭ .

(3.2)
For any k ∈ {1, . . . ,K} and z ∈ Z, we have that

var
(
z�β̂k

)
= z�var

(
β̂k

)
z = σ2z�

(
n∑

i=1

ziz
�
i xik

)−1

z.

As noted earlier, we assume that the experiments are con-
ducted with n existing users. Thus, the personalized infor-
mation matrix Z is observed, and the experimental design
problem is to determine the treatment allocation matrix
X. A necessary condition for positive definiteness of the
variance-covariance matrix requires that

∑n
i=1 xik ≥ p for

any k ∈ {1, . . . ,K} and n ≥ Kp.
Our goal is to minimize the variance of z�β̂k for any k

and z to improve the accuracy of the data-driven decision in
(2.6). Instead of minimizing all the variances simultaneously,
we formulate the optimization problem by minimizing the
worst case, i.e., the maximum variance of any k ∈ {1, . . . ,K}
and z ∈ Z. Therefore, the design criterion is given by

maxz∈Z max
k=1,2,...,K

var
(
z�β̂k

)

= maxz∈Z max
k=1,2,...,K

σ2z�

(
n∑

i=1

ziz
�
i xik

)−1

z.

(3.3)

The optimal design is then given by solving the problem

min
X

max
z∈Z

max
k=1,2,...,K

z�

(
n∑

i=1

ziz
�
i xik

)−1

z (3.4a)

s.t.
n∑

i=1

xik ≥ p, k = 1, . . . ,K, (3.4b)

K∑
k=1

xik = 1, i = 1, 2, . . . , n, (3.4c)

X ∈ {0, 1}n×K , (3.4d)

where
∑n

i=1 xik ≥ p is required for the positive definiteness
of the matrix

∑n
i=1 ziz

�
i xik, and the constraint

∑K
k=1 xik =

1 ensures that each user is exactly assigned to one treatment.
Although the optimal design criterion has a closed-form

expression, the corresponding optimization problem is still
a challenge to solve directly as a mixed-integer minimax
problem. We assume that the covariates space Z is given by
a unit ball, i.e., Z = {z ∈ R

p | ‖z‖ ≤ 1}. For any X that
gives a positive definite variance-covariance matrix, we have
that

max
‖z‖≤1

max
k=1,2,...,K

⎡
⎣z�

(
n∑

i=1

ziz
�
i xik

)−1

z

⎤
⎦

= max
k=1,2,...,K

max
‖z‖≤1

⎡
⎣z�

(
n∑

i=1

ziz
�
i xik

)−1

z

⎤
⎦

= max
k=1,2,...,K

max
‖z‖=1

⎡
⎣z�

(
n∑

i=1

ziz
�
i xik

)−1

z

⎤
⎦

= max
k=1,2,...,K

λmax

⎡
⎣( n∑

i=1

ziz
�
i xik

)−1
⎤
⎦

= max
k=1,2,...,K

{
1/λmin

[(
n∑

i=1

ziz
�
i xik

)]}

= max
k=1,2,...,K

{
1/ min

‖z‖=1

[
z�

(
n∑

i=1

ziz
�
i xik

)
z

]}
,

where λmax and λmin produce the maximum and minimum
eigenvalues of a matrix, respectively. Accordingly, the opti-
mization problem in (3.4) is equivalent to

max
X

min
k=1,2,...,K

λmin

(
n∑

i=1

ziz
�
i xik

)
(3.5a)

s.t.
n∑

i=1

xik ≥ p, k = 1, . . . ,K, (3.5b)

K∑
k=1

xik = 1, i = 1, 2, . . . , n, (3.5c)

X ∈ {0, 1}n×K . (3.5d)

This design objective is known as the E-optimal design in
the literature (e.g., [24] and [9]), i.e.,

min
k=1,2,...,K

λmin

(
n∑

i=1

ziz
�
i xik

)

= λmin

⎛
⎜⎝
⎡
⎢⎣
∑n

i=1 ziz
�
i xi1 0 0

. . .
0 0

∑n
i=1 ziz

�
i xiK

⎤
⎥⎦
⎞
⎟⎠ .

Next, we provide a SDP-based solution approach to solve
(3.5) with observed covariates Z and a binary decision X.

4. A SDP-BASED SOLUTION APPROACH
Following the reformulation technique for E-optimal de-

sign in [8], we cast problem (3.5) as a SDP with binary
decision variables. The reformulation is based on the follow-
ing observation. Let A be a real p × p symmetric matrix.
It is well known in matrix analysis that for any δ ∈ R,
λmin(A − δI) = λmin(A) − δ, where I is the p × p identity
matrix. Therefore, λmin(A) can be expressed as the largest
value of δ such that λmin(A− δI) ≥ 0, i.e.,

λmin(A) = max{δ | A− δI � 0},
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where A − δI � 0 means that A − δI is a positive semi-
definite matrix.

We apply the above observation to problem (3.5). For
k = 1, . . . ,K,

λmin

(
n∑

i=1

ziz
�
i xik

)
=max

{
δk

∣∣∣∣∣
n∑

i=1

ziz
�
i xik − δkI � 0

}
.

As a result,

min
k=1,...,K

λmin

(
n∑

i=1

ziz
�
i xik

)

= min
k=1,...,K

max

{
δk

∣∣∣∣∣
n∑

i=1

ziz
�
i xik − δkI � 0

}

=max

{
λ

∣∣∣∣∣ λ≤δk,

n∑
i=1

ziz
�
i xik−δkI � 0, k = 1, . . . ,K

}

= max

{
λ

∣∣∣∣∣
n∑

i=1

ziz
�
i xik − λI � 0, k = 1, . . . ,K

}
.

Consequently, problem (3.5) can be equivalently written as

max
X,λ

λ (4.1a)

s.t.
n∑

i=1

ziz
�
i xik − λI � 0, k = 1, 2, . . . ,K, (4.1b)

n∑
i=1

xik ≥ p, k = 1, . . . ,K, (4.1c)

K∑
k=1

xik = 1, i = 1, 2, . . . , n, (4.1d)

X ∈ {0, 1}n×K . (4.1e)

Note that, the reformulation technique is the same as
used in the SDP reformulation proposed for the approximate
E-optimal design in Section 7.5 of [8]. However, the discrete
feature in problem (3.5) cannot be averted by simply consid-
ering a continuous relaxation as in [8], even when n is large.
Thus, the implementation of a SDP problem with continu-
ous decisions cannot solve our problem. As a mixed binary
SDP, the reformulation (4.1) can be solved by a branch-and-
bound (BnB) algorithm, where each relaxation problem in a
BnB node is solved by an SDP solver [13]. A built-in solver
in YALMIP [20] provides such a BnB implementation for
MATLAB [21], and MOSEK [1] can be used as the embed-
ded SDP solver.

In practice, the experimenter often requires a (roughly)
balanced allocation across the K treatments. If K can be
divided by n, we can include balanced constraints

n∑
i=1

xik = n/K, k = 1, . . . ,K, (4.2)

which also potentially accelerates the computation time of
solving this problem by reducing the number of feasible solu-
tions. If K can not be divided by n, a set of roughly balanced
constraints can be added similarly. For convenience, we set
n as a multiple of K and include the balanced constraints
in our numerical study. We lastly remark that the original
problem in (3.4) is equivalent to this reformulation under
the constraint that Z = {z ∈ R

p | ‖z‖ ≤ 1}. However, for
a given set of covariates, we can rescale the covariates with
the largest possible norm of the covariates in Z to make sure
that this constraint is satisfied.

5. NUMERICAL STUDY
In this section, we illustrate the numerical performance of

the proposed solution approach based on synthetic datasets.
Our aim is to demonstrate the quality of the resulting op-
timal design in terms of the optimality objectives and the
prediction performance.

Implementation of the Proposed Solution
Approach

We solve the optimization problem (4.1) with the
YALMIP-MOSEK implementation in MATLAB. In our im-
plementation, we include the balanced constraint in (4.2).
For simplicity, we set the number of users n as a multiple
of the number of treatments K. To make the computation
tractable, we set the maximum time to solve the optimiza-
tion problem to 300 seconds. Therefore, the resulting de-
sign is not the exact optimal design. The MATLAB code of
this optimization model is provided in https://github.com/
yezhuoli/opd-vs-rd.git.

Quality of the Solution Approach
We assess the quality of the optimal design given by the

proposed solution approach. We propose two quality mea-
sures to compare the optimal design with random designs.
We generate 1000 random realizations of X that satisfy the
constraints in the optimization model (4.1) as well as the
balanced constraints in (4.2). We compute the objective val-
ues as in (3.5) for the 1000 random realizations of X. Given
the objective values λ1, . . . , λ1000 of random designs, we pro-
vide two quality measures: the percentile among objectives
of random designs and the relative improvement with re-
spect to the median objective of random designs. Let λopt

be the objective value of the optimal design and λmed be the
median of λ1, . . . , λ1000. The “Percentile” within random de-
signs is defined by

P =
1

1000

1000∑
i=1

I{λopt ≥ λi} · 100%, (5.1)

where I{·} denotes the indicator function, and the “Relative
Improvement (RI)” is defined by

RI =
λopt − λmed

λmed
· 100%. (5.2)

https://github.com/yezhuoli/opd-vs-rd.git
https://github.com/yezhuoli/opd-vs-rd.git
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Figure 2: The quality measure Percentile (given by (5.1)) of
different cases in Example I, i.e., Percentile of the optimal
objective λopt in the population of objectives given by 1000
random designs.

Figure 3: The quality measure RI (given by (5.2)) of different
cases in Example I, i.e., Relative Improvement of the optimal
objective λopt with respect to the median of objectives given
by 1000 random designs.

The two quality measures compare the objective given by
the proposed solution approach with the population and
the median of the objectives given by random designs. The
higher values of “Percentile” and “RI” indicate better qual-
ity of the optimal design, i.e., the value of adopting the
proposed optimization approach. Next, we investigate the
performance of the optimal design under two common ex-
amples of fixed covariates Z.

Example I
In this example, we generate the entries of the covari-

ates Z independently from the standard normal distribu-
tion. We consider a batch of cases with all the combinations
of n ∈ {120, 240, 360}, p ∈ {3, 5} and K ∈ {2, 3, 4}. For each
combination of n, p and K, we generate a set of covariates

Figure 4: The quality measures Percentile (given by (5.1))
and RI (given by (5.2)) with balanced (r = 0.5) and imbal-
anced (r = 0.1) covariates in Example II.

z1, . . . , zn, compute the quality measures Percentile and RI,
and replicate this process for 100 times. The resulting 100
copies of Percentile and RI are depicted as boxplots in Fig-
ures 2 and 3, respectively. The results give the following
observations:

1. The values of Percentile and RI increase with K. For
K = 2, the proposed solution approach does not always
give better design than the random designs.

2. The values of Percentile increase with n, whereas the
values of RI decrease with n. For n = 120, the objective
values given by the proposed approach may not out-
perform the random designs that give median or higher
quantiles of objectives.

3. The values of Percentile and RI increase slightly as we
increase p from 3 to 5.

These observations indicate that the cases with K = 3 or 4
or n = 240 or 360 provide solutions of higher quality than
the case with K = 2 and n = 120, which is possibly due
to that the difficulty in solving the problem caused by the
binary constraints is more significant when K and n are
small.

Example II
In this example, we generate the entries of the covariates

Z independently from a 0–1 Bernoulli distribution with the
proportion of ones equal to r. The aim of this example is
to demonstrate the impact of imbalance in covariates to the
quality of optimal design. Therefore, we fix n = 200, K = 4
and p = 3, and consider r ∈ {0.1, 0.5}, where r = 0.5 gives
balanced covariates and 0.1 gives imbalanced covariates. The
values of Percentile and RI are depicted as boxplots in Fig-
ure 4. The results show that, for balanced covariates, the
optimal design given by the proposed solution approach can
often reach to the optimal value, but the values of RI are
often around 20%. However, for imbalanced covariates, the
relative improvement can often reach 50%–200%, but the
Percentile may stand as low as 75% for some instances. This
example demonstrates that the optimization problem under
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Figure 5: The p-values of the alternative H1: the location of
the differences is above zero over 100 replications.

balanced covariates provides higher-quality solutions than
that under imbalanced covariates, whereas, the benefit of
optimal design under balanced covariates may not be as sig-
nificant as that under imbalanced covariates.

After 300 seconds, the solver outputs the optimality gap
(0%–100%), with a smaller optimality gap indicating that
the output solution is closer to the true optimal solution.
For both examples, the average optimality gaps of solving
for optimal design is reduced to 10% or lower after 300 sec-
onds. This shows that, for the sizes of the above examples,
the proposed approach is appropriate to solve and returns
a solution that is close to the exact optimal design. We also
point out that for cases with K over 10 and/or n over 400,
the proposed solution approach did not return a feasible so-
lution within 300 seconds. For those cases, a heuristic and/or
randomized solution approach can be a reasonable choice.

Quality of the Optimal Design for Prediction
Our aim (as noted in (3.3)) is to reduce the predictive

variance of each individual, i.e., reduce the value of

g(z, X;Z) = max
k=1,2,...,K

z�

(
n∑

i=1

ziz
�
i xik

)−1

z (5.3)

for a new individual with covariates z given a design X and
covariates Z = (z�

1 , . . . , z�
n )�. Following the settings in Ex-

ample I, we obtain the optimal design Xopt based on the
covariates Z = (z�

1 , . . . , z�
n )�. Then we generate 1000 new

copies of covariates z each with entries independently drawn
from the standard normal distribution. Given a random de-
sign Xrand under the same set of constraints, we compute
the difference

g(z, Xrand;Z)− g(z, Xopt;Z)

for the 1000 new copies of z. If the optimal design has better
prediction accuracy, the location of this difference for 1000

Figure 6: The percentage of rejecting H0 under significance
level α = 0.0001.

new copies of z should be significantly above zero. We per-
form the Wilcox signed-rank test to validate this hypothesis,
i.e., H0: the location of the differences is zero verse H1: the
location of the differences is above zero. For each replication
and each setting in Figure 2, we report the p-values of the
hypothesis tests in Figure 5 and percentage of rejecting H0

under significance level α = 0.0001 in Figure 6. The results
shows that the optimal design gives significantly better pre-
diction accuracy by reducing the predictive variance of each
possible individuals especially for cases with K > 2.

6. CONCLUSION
To improve the accuracy of personalized decision, this

paper investigates the optimal design to minimize the max-
imum variance of estimated personalized treatment effects
over different treatments and different covariates values. The
resulting design objective matches the E-optimal design cri-
terion. To provide the optimal design of multiple treatment
allocation in the presence of observed covariates, a SDP solu-
tion approach is applied to solve the optimization problem.
The proposed solution approach is able to provide optimal
designs efficiently for n from 100–300 as shown in our nu-
merical results. We point out potential future directions.
First, it is desired to develop more efficient reformulations
or optimization algorithms to handle the proposed design
objective with larger sizes. Second, in practice, it is useful
to investigate online optimal allocation assuming that the
users are recruited in an online dynamic fashion under the
proposed design objective.
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