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S.1. FREQUENTIST SEQUENTIAL DESIGNS

We provide a brief review of frequentist sequential de-
signs. Consider the single-arm trial example in Section 1.2.
The maximum type I error rate of this sequential testing
procedure is given by Equation (1.2). Frequentist group se-
quential designs are concerned with the specification of the
stopping boundaries {c1, . . . , cK} such that Equation (1.2)
holds for prespecified α, K, and {n1, . . . , nK}. The solution
to Equation (1.2) is not unique, thus restrictions on the
stopping boundaries have been considered. We give some
examples next.

S.1.1 The Pocock and O’Brien-Fleming
Procedures

In the case of equal group sizes (that is, nj = jg for some
g), [10] proposed to use equal stopping boundaries by set-
ting c1 = · · · = cK = cP(K,α), while [9] suggested decreas-
ing boundaries with cj = cOBF(K,α)

√
K/j. In either case,

the stopping boundaries can be solved through a numerical
search. Note that z = (z1, . . . , zK)> follows a multivariate
normal distribution with E(zj) = θ

√
nj/σ, Var(zj) = 1, and

Cov(zj , zj′) =
√
nj/nj′ for j < j′. Therefore,

α = 1− ΦK(c; 0,Σ),

where ΦK(·; ·, ·) is the cumulative distribution func-
tion of a multivariate Gaussian random variable, c =
(c1, c2, . . . , cK)>, and Σ is the covariance matrix of z.

S.1.2 The Error Spending Approach

[16] first considered the idea of specifying the error
rate spent at each analysis, defined as κj = Pr(z1 ≤
c1, . . . , zj−1 ≤ cj−1, zj > cj | θ = 0). This represents the
probability of rejecting H0 at stage j but not at any previous
stages, given that θ = 0. We have α =

∑K
j=1 κj . Once the

κj ’s are specified, one can successively calculate the stopping
boundaries. [6] further extended this idea and suggested to
use a function to characterize the rate at which the error
rate is spent. This function, denoted by h(u) (0 ≤ u ≤ 1),
satisfies h(0) = 0 and h(1) = α. The κj ’s can be chosen such
that κj = h(nj/nK)−h(nj−1/nK) (with the understanding
that n0 = 0). Common choices of h(u) include

h1(u) = α log (1 + (e− 1)u) ,

h2(u) = 2− 2Φ
(
qα/2/

√
u
)
,

h3(u) = αub for b > 0.

Here, Φ(·) is the cumulative distribution function of the
standard normal distribution, and qα/2 = Φ−1(1 − α/2) is
the upper (α/2) quantile of the standard normal distribu-
tion, Φ(qα/2) = 1 − α/2. It has been shown that in the
case of equal group sizes, h1(u) and h2(u) produce stopping
boundaries similar to those given by Pocock’s and O’Brien-
Fleming’s procedures, respectively. Function h3 is known as
the power spending function and has been studied by [5].
The error spending approach introduces greater flexibility
to sequential designs, as the frequency and timing of the
interim analyses do not need to be specified in advance.

S.1.3 Stochastic Curtailment Based on
Conditional Power

[7] proposed the idea of stochastic curtailment that at
any point in a sequential clinical trial, if the result at the
end of the trial is inevitable, the study can be terminated
early. Consider the single-arm trial example. Suppose that
at the final analysis, H0 will be rejected if the final z-statistic
zK > qη, where qη is the upper η quantile of the standard
normal distribution. Then, at analysis j ∈ {1, . . . ,K − 1},
the probability that H0 will be rejected upon completion of
the study, given θ, is given by

CPj(θ) = Pr(zK > qη | θ,yj),

where yj = (y1, . . . , ynj ) is the vector of accumulating data
up to analysis j. This is known as the conditional power. A
simple calculation shows that

CPj(θ) = 1− Φ

 qησ
√
nK−nj ȳj

nK−nj − θ

σ
√

(nK − nj)−1

 .
If based on current data, H0 will likely be rejected at the
final analysis even if the investigational drug has no treat-
ment effect (θ = 0), then the trial may be stopped early.
Mathematically, one may stop the trial early if CPj(0) > γ
for some threshold γ. This is equivalent to

zj > qη

√
nK/nj + q1−γ

√
(nK − nj)/nj .
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If desirable, one may use different thresholds γj ’s at different
interim analyses. An important consideration is the type I
error rate of this procedure, but [7] showed that the error
rate is upper bounded by η/γ, regardless of the number
of interim analyses. Therefore, if η and γ are chosen such
that η/γ ≤ α, the type I error rate is maintained at or
below α, even if interim analyses are conducted at arbitrary
times. The stopping boundaries based on this argument are
typically conservative. However, if the timing of the interim
analyses is specified in advance, tighter stopping boundaries
can be constructed by calculating the exact type I error rate
numerically.

S.1.4 Analysis at the Conclusion of a
Sequential Trial

Once a sequential trial has been completed, it is often
of interest to construct a point estimate and a confidence
interval for the treatment effect θ. Consider again the single-
arm trial example. The results of the trial can be represented
by a bivariate random vector (t, zt), where t denotes the time
of stopping,

t =

{
min{j : zj > cj}, if ∃j ∈ {1, . . . ,K} s.t. zj > cj ;

K, if zj ≤ cj for all j,

and zt is the corresponding test statistic. Following [1] or [3]
(Chapter 8), the density of (t, zt) is

f(t, zt | θ) =

{
f̃(t, zt | θ), if zt > ct or t = K;

0, if zt ≤ ct and t ∈ {1, . . . ,K − 1},

where

f̃(1, z1 | θ) = φ(z1 − θ
√
n1/σ),

and for t = 2, . . . ,K,

f̃(t, zt | θ) =

∫ ct−1

−∞
f̃(t− 1, u | θ) ·

√
nt√

nt − nt−1
·

φ

(
zt
√
nt − u

√
nt−1 − (nt − nt−1)θ/σ
√
nt − nt−1

)
du,

with φ(·) denoting the standard normal density.

The sample mean estimator, θ̂ = ȳt, is a straightforward
point estimator for θ. It can be shown that θ̂ is also the
maximum likelihood estimator (MLE). However, it is known
that the MLE following a sequential trial is biased, and one
may correct it by subtracting an estimate of its bias. See,
e.g., [18] for more details.

To construct a confidence interval for θ, one needs to de-
fine an ordering of the sample space [17, 4, 12]. For example,
based on the stage-wise ordering, (t′, z′t′) is above (t, zt) if ei-
ther (i) t′ = t and z′t′ > zt, or (ii) t′ < t. In this case, (t′, z′t′)

is indicative of a larger value of θ compared to (t, zt). It can
be shown that

Pr[Observing an outcome above (t, zt) | θ]

is a continuous and monotonically increasing function of θ
for every possible trial outcome (t, zt) [4]. Thus, one can find
unique values θL and θU which satisfy

Pr[Observing an outcome above (t, zt) | θL] = α/2,

Pr[Observing an outcome above (t, zt) | θU] = 1− α/2.

The two equations can be solved numerically. Then, (θL, θU)
is a 100(1− α)% confidence interval for θ.

S.2. THE CALIBRATED BAYESIAN
PERSPECTIVE

We present more details about the calibrated Bayesian
perspective described in Section 2.3. We consider the setup
of an infinite series of single-arm trials (described in Section
1.2) with true but unknown treatment effects θ(1), θ(2), . . . ∼
π0(θ). For each trial, patient outcomes yK ∼ f0(yK | θ) and
are observed sequentially. The Bayesian design with stop-
ping rules given by Equation (2.1) is applied to every trial
with a prior model π(θ), a sampling model f(yK | θ), and
threshold values {γ1, . . . , γK}. We are interested in the oper-
ating characteristics of the Bayesian design over this infinite
series of trials, in particular its FDR and FPR.

S.2.1 Background

We first provide more background on the calibrated
Bayesian perspective. [14] called a statistical procedure
(conservatively) calibrated if the resulting probability state-
ments (at least) have their asserted coverage in repeated
practices. Clearly, calibrated procedures are desirable, and
Rubin recommended examining operating characteristics to
select calibrated Bayesian procedures. Rubin’s points were
echoed by [8].

The following discussion is adopted from [14]. A Bayesian
procedure is calibrated if the model specification is correct,
that is, if f(yK | θ)π(θ) = f0(yK | θ)π0(θ). For example,
suppose that I(yK) is a 95% credible interval for θ under
model f(yK | θ)π(θ), then∫

θ∈I(yK)
f(yK | θ)π(θ)dθ∫

θ
f(yK | θ)π(θ)dθ

=∫
θ∈I(yK)

f0(yK | θ)π0(θ)dθ∫
θ
f0(yK | θ)π0(θ)dθ

= 0.95.

The interpretation is that, among the possible θ values from
π0(θ) that might have generated the observed yK from
f0(yK | θ), 95% of them belong to I(yK). Therefore, when
the procedure of calculating I(yK) from f(yK | θ)π(θ) is re-
peatedly applied to data drawn from f0(yK | θ)π0(θ), 95%
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of the calculated credible intervals will cover the true param-
eter values. We see that posterior probabilities correspond
to frequencies of actual events. Similarly, when we claim
Pr(θ > 0 | yK) > 0.95, it means that among the possible
θ values that might have generated yK , more than 95% are
positive.

[14] and [11] also demonstrated that when the model
specification is correct, the coverage and interpretation of
Bayesian statements are still valid under data-dependent
stopping rules. For example, if we conclude Pr(θ > 0 | yj) >
0.95 at any interim analysis j, it means that more than 95%
of the possible θ values that might have generated yj are
positive, even if the trial is optionally stopped at analysis j
based on the observed data.

Of course, in the presence of model misspecification, the
coverage of Bayesian statements is not warranted. In partic-
ular, [14] and [11] noted that data-dependent stopping rules
increase the sensitivity of Bayesian inference to model spec-
ification. Therefore, especially for sequential trial designs,
one might want to examine their operating characteristics
for a range of plausible f0(y | θ)π0(θ) (which may deviate
from f(y | θ)π(θ)) to select appropriate design parameters.

S.2.2 The False Discovery Rate

We show that the FDR is upper bounded if f(yK |
θ)π(θ) = f0(yK | θ)π0(θ). Note that if yK ∈ Γ, then Pr(θ >
0 | yK) > γmin. This is because for every j ∈ {1, . . . ,K},

Pr(θ > 0 | yj) =

∫
yj,K

Pr(θ > 0 | yj ,yj,K)f(yj,K | yj)dyj,K ,

where yj,K = (ynj+1, . . . , ynK ). If Pr(θ > 0 | yK) = Pr(θ >
0 | yj ,yj,K) ≤ γmin, then Pr(θ > 0 | yj) ≤ γmin for every j,
which contradicts with yK ∈ Γ. Therefore,

FDR =

∫
yK∈Γ

∫
θ≤0

f0(yK | θ)π0(θ)dθdyK∫
yK∈Γ

f0(yK)dyK

=

∫
yK∈Γ

∫
θ≤0

f(yK | θ)π(θ)dθdyK∫
yK∈Γ

f(yK)dyK

=

∫
yK∈Γ

Pr(θ ≤ 0 | yK) · f(yK)dyK∫
yK∈Γ

f(yK)dyK

≤ 1− γmin.

S.2.3 The False Positive Rate

To derive the upper bound of the FPR when f(yK |
θ)π(θ) = f0(yK | θ)π0(θ), we first introduce an inequality
under the Bayesian hypothesis testing framework (Section
2.5). Assume

θ | H0 ∼ π(0)(θ), θ | H1 ∼ π(1)(θ),

and write f(yj | Hm) =
∫
θ
f(yj | θ)π(m)(θ)dθ for j =

1, . . . ,K and m = 0, 1. Then, the following inequality holds

for any 0 < ε < 1 [2]:

Pr

[
∃j ∈ {1, . . . ,K} :

f(yj | H1)

f(yj | H0)
>

1

ε

∣∣∣∣H0

]
≤ ε,

where Pr(· | H0) =
∫
θ

Pr(· | θ)π(0)(θ)dθ. This is referred to
as a universal bound on the probability of observing mis-
leading evidence [13, 15].

In our application, instead of specifying the priors for θ
separately under H0 and H1, a single prior for θ is specified
over the entire parameter space, θ ∼ π(θ). Still, the universal
bound is applicable, because θ ∼ π(θ) is equivalent to

Pr(H0) =

∫
θ≤0

π(θ)dθ, Pr(H1) =

∫
θ>0

π(θ)dθ,

θ | H0 ∼ π(θ | θ ≤ 0) =
π(θ) · 1(θ ≤ 0)∫

θ≤0
π(θ)dθ

,

θ | H1 ∼ π(θ | θ > 0) =
π(θ) · 1(θ > 0)∫

θ>0
π(θ)dθ

.

Also, Pr(θ > 0 | yj) = Pr(H1 | yj) > γj is equivalent to

f(yj | H1)

f(yj | H0)
>

γj ·
∫
θ≤0

π(θ)dθ

(1− γj) ·
∫
θ>0

π(θ)dθ
.

Applying the universal bound and notice that f(yK |
θ)π(θ) = f0(yK | θ)π0(θ), we have

FPR =

∫
yK∈Γ

∫
θ≤0

f0(yK | θ)π0(θ)dθdyK∫
θ≤0

π0(θ)dθ

=

∫
θ

f(yK ∈ Γ | θ)π(θ | θ ≤ 0)dθ

= Pr

[
∃j ∈ {1, . . . ,K} :

f(yj | H1)

f(yj | H0)
>

γj ·
∫
θ≤0

π(θ)dθ

(1− γj) ·
∫
θ>0

π(θ)dθ

∣∣∣∣∣H0

]

≤ Pr

[
∃j ∈ {1, . . . ,K} :

f(yj | H1)

f(yj | H0)
>

γmin ·
∫
θ≤0

π(θ)dθ

(1− γmin) ·
∫
θ>0

π(θ)dθ

∣∣∣∣∣H0

]

≤
(1− γmin) ·

∫
θ>0

π(θ)dθ

γmin ·
∫
θ≤0

π(θ)dθ
.
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