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Abstract
Clinical trials usually involve sequential patient entry. When designing a clinical trial, it is often desirable to include

a provision for interim analyses of accumulating data with the potential for stopping the trial early. We review Bayesian
sequential clinical trial designs based on posterior probabilities, posterior predictive probabilities, and decision-theoretic
frameworks. A pertinent question is whether Bayesian sequential designs need to be adjusted for the planning of in-
terim analyses. We answer this question from three perspectives: a frequentist-oriented perspective, a calibrated Bayesian
perspective, and a subjective Bayesian perspective. We also provide new insights into the likelihood principle, which is
commonly tied to statistical inference and decision making in sequential clinical trials. Some theoretical results are derived,
and numerical studies are conducted to illustrate and assess these designs.

keywords and phrases: Adaptive design, Interim analysis, Likelihood principle, Multiplicity, Optional stopping, Se-
quential hypothesis testing.

1. INTRODUCTION
1.1 Background

In most clinical trials, patient enrollment is staggered,
and patients’ data are collected sequentially. When design-
ing a clinical trial, it is often desirable to include a provision
for interim analyses of accumulating data with the potential
for modifying the conduct of the study [58, 2]. For exam-
ple, in a randomized-controlled trial, if an interim analysis
demonstrates that the investigational drug is deemed supe-
rior than the standard of care, the trial could be stopped
early on grounds of ethics and trial efficiency [33]. The
BNT162b2 COVID-19 vaccine trial is a recent case in which
four interim analyses were planned with the possibility for
declaring vaccine efficacy before the planned end of the trial
[59].

It is well known that frequentist sequential designs need
to be adjusted for the planning of interim analyses to main-
tain desirable frequentist properties [42]. For Bayesian se-
quential designs, however, there has been some controversy
regarding whether similar adjustments are required [69].
Some advocated the necessity of these adjustments (e.g.,
[25, 26]), while others claimed the opposite (e.g., [9, 10, 37]).

In this article, we review different perspectives on
Bayesian sequential designs and answer the question of
whether Bayesian sequential designs need to be adjusted for
interim analyses. Our review is not meant to be comprehen-
sive with regard to methodological details including the type
of trial (e.g., single-arm or randomized-controlled), type of
outcome (e.g., binary, continuous, or time-to-event), or dis-
tributional assumption. Instead, we focus on the fundamen-
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tals of Bayesian sequential designs. A single-arm trial exam-
ple (to be introduced in Section 1.2) will be used throughout
to demonstrate these designs, but we present an extension
for randomized-controlled trials in Section 2.7. We consider
early stopping rules for efficacy, as futility stopping does not
increase the type I error rate of a design (it actually reduces
the type I error rate). Discussion on futility stopping is de-
ferred to Section 6.

There is a rich literature on sequential designs (e.g.,
[42, 83, 43]), but the majority is centered around frequen-
tist approaches. There are also comprehensive reviews on
Bayesian trial designs in general (e.g., [76, 11, 14]), but most
do not extensively address sequential trials. Lastly, there are
many insightful discussions on Bayesian sequential designs,
such as [18, 9, 10, 28, 42, 29, 22, 37, 69, 78]. However, a
systematic review on the fundamentals of Bayesian sequen-
tial designs has been lacking, and we attempt to fill this
important gap. Furthermore, as mentioned earlier, in exist-
ing works, different authors seem to have vastly different
opinions on how Bayesian sequential designs should be for-
mulated. It turns out that different authors mean quite dif-
ferent things by “Bayesian sequential designs need/do not
need to be adjusted for interim analyses”. We aim to disen-
tangle the practical and philosophical implications behind
these different perspectives.

Our contributions include the following. (i) In Bayesian
sequential designs, a pertinent question is whether adjust-
ments for the planning of interim analyses are necessary.
We attempt to answer this question from multiple perspec-
tives. From a frequentist-oriented perspective, such adjust-
ments are necessary for achieving desirable frequentist prop-
erties such as controlling the type I error rates; from a
calibrated Bayesian perspective, such adjustments may be
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needed to achieve desirable operating characteristics under
plausible scenarios (we will discuss the differences between
achieving desirable operating characteristics versus achiev-
ing desirable frequentist properties); lastly, from a subjec-
tive Bayesian perspective, such adjustments are unneces-
sary, and the design only needs to reflect subjective beliefs.
We comment on the three perspectives and make our rec-
ommendation. (ii) We put forward a proposal for a cali-
brated Bayesian approach to sequential designs. Specifically,
we propose false discovery rate (FDR) and false positive
rate (FPR) as potential metrics to evaluate sequential de-
signs. We derive theoretical results regarding the FDR and
FPR of a Bayesian sequential design and present simula-
tion studies to demonstrate the practical usage of the cali-
brated Bayesian approach. (iii) We summarize Bayesian se-
quential designs based on posterior probabilities, posterior
predictive probabilities, and decision-theoretic frameworks.
We discuss the connections between designs using posterior
credible intervals and those using formal Bayesian hypoth-
esis testing. (iv) It is often believed that according to the
likelihood principle (LP), decision making in a sequential
trial should not depend on unrealized events. However, our
investigation shows that the LP gives little guidance in as-
sessing the overall performance of a decision procedure. In
particular, the LP does not preclude one from utilizing addi-
tional information (including unrealized events) for decision
making. Therefore, our view is that the LP should not be
used as an argument for or against Bayesian or frequentist
sequential designs. To illustrate our findings, we present an
example of a Bayesian decision-theoretic design in which
different decisions will be made based on the same observed
data but different interim analysis plans.

1.2 An Illustrative Example
To illustrate the discussion, consider a single-arm trial

that aims to establish the therapeutic effect of an investiga-
tional drug. Suppose that a total of K analyses, including
(K − 1) interim analyses and a final analysis, are planned
during the course of the trial. At the jth analysis, data of
nj patients are accumulated, denoted by y1, y2, . . . , ynj and
assumed independently and normally distributed with mean
θ and variance σ2. Here, θ is parameterized such that a pos-
itive value of θ is indicative of a therapeutic effect, and σ2 is
assumed known for simplicity. The planned maximum sam-
ple size is denoted by nK and can be determined based on
a power requirement or the amount of available resources.
As a simple example, assume patients are enrolled in groups
of equal size g, thus nj = jg. If g = 1, it leads to the fully
sequential case, known as continuous monitoring; if g > 1,
it is called the group sequential case, which is more feasible
in practice. The primary research question of the trial can
be formulated as the following hypothesis test,

H0 : θ ≤ 0 vs. H1 : θ > 0. (1.1)

At each analysis, the hypothesis test is performed. If certain
stopping rule is triggered, say the z-statistic zj > cj for
some stopping boundary cj , H0 is rejected, and the trial is
terminated for efficacy. Here,

zj = ȳj ·
√
nj

σ
, and ȳj =

1

nj

nj∑
i=1

yi.

This is referred to as data-dependent or optional stopping.
When σ is unknown, one would replace the z-statistics with
the corresponding t-statistics; little would change in the
overall setup. A question central to sequential designs is the
specification of those stopping boundaries.

1.3 Overview of Frequentist and Bayesian
Sequential Designs

Frequentist sequential designs are concerned with con-
trolling the overall type I error rate of the sequential testing
procedure. The type I error rate refers to the probability of
falsely rejecting H0 at any analysis (in hypothetical repeti-
tions of the trial), given that H0 is true. In the single-arm
trial example, the maximum type I error rate is attained
when θ = 0 and is given by

α = Pr(z1 > c1 or z2 > c2 or · · · or zK > cK | θ = 0).
(1.2)

If each test is performed at a constant nominal level, α
will inflate as K grows and will eventually converge to 1
as K → ∞ [3]. Therefore, adjustments to the stopping
boundaries are necessary to ensure that the type I error
rate is maintained at a desirable level. Examples of such
adjustments include the Pocock or O’Brien-Fleming proce-
dure [58, 55], the error spending approach [74, 48], and the
stochastic curtailment approach [49]. We provide a brief re-
view of some frequentist sequential designs in Section S.1 of
the Supplementary Material.

Without accounting for the sequential nature of the hy-
pothesis test, Bayesian designs can suffer the same problem
of type I error inflation, which can be unsettling for statis-
ticians who care about controlling the type I error rates.
Therefore, in many Bayesian sequential trial designs, the
stopping boundaries are also determined to control the type
I error rate at a desirable level [85, 71]. As an example,
the recent BNT162b2 COVID-19 vaccine trial was designed
using a Bayesian approach with four planned interim anal-
yses [59]. The stopping boundaries were chosen such that
the overall type I error rate was controlled at 2.5%. Indeed,
regulatory agencies generally recommend demonstration of
adequate control of the type I error rate for any trial de-
sign to be acceptable [25, 26]. On the other hand, the type I
error rate is a frequentist concept, the calculation of which
involves an average over unrealized events such as hypo-
thetical repetitions of the trial. Bayesian inference can be
performed based solely on the observed data from the ac-
tual (and lone) trial and does not have to be concerned with
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type I error rate control, since the same trial is not assumed
to repeat, hypothetically or in practice. Some think that
the type I error rate is not the quantity that one should
pay most attention to [38]. Also, according to the likelihood
principle (LP), unrealized events should be irrelevant to the
statistical evidence about a parameter [7]. Therefore, some
Bayesian statisticians have written that the choice of the
stopping rules does not need to depend on the planning of
interim analyses [9, 10]. For example, one may stop the trial
at any analysis provided that Pr(θ > 0 | data) exceeds some
threshold, or if stopping minimizes the posterior expected
loss. We will elaborate on these issues in the upcoming sec-
tions.

The remainder of the paper is structured as follows. In
Section 2, motivated by a sequential design based on poste-
rior probabilities, we summarize the philosophy of Bayesian
sequential designs into three categories. In Section 3, we re-
view selected Bayesian sequential designs based on posterior
predictive probabilities and decision-theoretic frameworks.
In Section 4, we comment on the LP, which is commonly
tied to statistical inference and decision making in sequen-
tial clinical trials. In Section 5, we present some numeri-
cal studies. Finally, in Section 6, we conclude and discuss
some other considerations including futility stopping rules
and two-sided tests. A brief review of frequentist designs,
proof of the theoretical results, and the code for reproduc-
ing the simulation studies are provided in the Supplemen-
tary Material.

2. THREE PERSPECTIVES ON BAYESIAN
SEQUENTIAL DESIGNS

Consider the single-arm trial in Section 1.2. In Bayesian
sequential designs, the early stopping rules are typically
based on the posterior probability (PP) of θ being greater
than some threshold (e.g., [80, 39]). Assume the time and
frequency of interim analyses are given in advance. Let π(θ)
denote the prior distribution of θ. At analysis j, the poste-
rior distribution of θ is given by Bayes’ rule,

p(θ | yj) =
f(yj | θ)π(θ)∫
f(yj | θ)π(θ)dθ

,

where yj = (y1, . . . , ynj ) is the vector of accumulating data
up to analysis j, and f(yj | θ) denotes the sampling distri-
bution of yj . When the prior for θ is a conjugate normal
distribution, θ ∼ N(μ, ν2), the above posterior is available
in closed form,

θ | yj ∼ N
(
μν−2 + ȳjnjσ

−2

ν−2 + njσ−2
,

1

ν−2 + njσ−2

)
.

If

PPj = Pr(θ > 0 | yj) > γj (2.1)

for some threshold γj , H0 is rejected, the trial is stopped,
and efficacy of the drug is declared. This is equivalent to

zj > cj , where cj = q1−γj

√
1 +

ν−2

njσ−2
− μν−2√

njσ−2
,

(2.2)

and q1−γj is the upper (1−γj) quantile of the standard nor-
mal distribution. It remains to specify the prior π(θ) and
threshold values {γ1, . . . , γK}. We present three perspectives
next and our comments and recommendation later in Sec-
tion 2.4.

2.1 The Frequentist-oriented Perspective
Without accounting for multiple looks at the data, the

stopping rule in Equation (2.2) can lead to type I error
rate inflation. As an example, consider a N(0, 12) prior on θ
and constant threshold values γ1 = · · · = γK = 0.95. Sup-
pose the outcome variance σ2 = 1, the maximum sample
size nK = 1000, and patients are enrolled in equal group
sizes. Using Equation (1.2), the type I error rates are α =
0.05, 0.08, 0.13, 0.17, 0.30, and 0.39 for K = 1, 2, 5, 10, 100,
and 1000, respectively. Therefore, due to regulatory guid-
ance [25, 26], one should adjust π(θ) and {γ1, . . . , γK} ac-
cording to the planning of interim analyses to achieve desir-
able type I error rate control (and possibly other frequentist
properties). We refer to this as a frequentist-oriented ap-
proach.

With an intended type I error rate, the parameters in a
Bayesian sequential design can be chosen in multiple ways.
For prespecified threshold values, type I error rate control
can be achieved by using a conservative prior. [28] and [29]
demonstrated that by tuning the prior distribution of θ, one
could achieve stopping boundaries similar to or more con-
servative than Pocock’s or O’Brien-Fleming’s boundaries. In
our case, we can simply set μ = 0 and adjust ν2 according to
the planning of interim analyses. From Equation (2.2), when
μ = 0, the stopping boundaries monotonically increase as ν2
decreases. For example, consider the single-arm trial with an
outcome variance of σ2 = 1, a maximum sample size of 1000,
K = 5 analyses, and equal group sizes. Then, with threshold
values γj ≡ 0.95, a N(0, 0.0542) prior for θ controls the type
I error rate at 0.05. The corresponding stopping boundaries
for zj ’s are shown in Table 3.

Alternatively, for a given prior π(θ), type I error rate
control can be attained by adjusting the threshold val-
ues {γ1, . . . , γK}. For the single-arm trial example, one
may equate the stopping boundaries in Equation (2.2) to
the corresponding boundaries in any frequentist sequen-
tial design. For example, suppose {c1, . . . , cK} are O’Brien-
Fleming boundaries, then γj may be set at

γj = Φ

(
cj + μν−2/

√
njσ−2√

1 + ν−2/ (njσ−2)

)
.
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For more complicated trials (e.g., randomized-controlled,
binary outcome), tuning π(θ) and {γ1, . . . , γK} to achieve
desirable type I error rate control is more challenging and
may require numerical methods. See, for example, [85, 71,
78].

2.2 The Subjective Bayesian Perspective
From a subjective Bayesian point of view (see, e.g.,

[36, 62]), the prior π(θ) should be specified to reflect a sub-
jective belief on θ before the trial, and the threshold values
{γ1, . . . , γK} should be chosen to represent personal toler-
ance of risk. For example, a positive (or negative) prior mean
for θ represents that the investigator’s prior belief on the
treatment effect is optimistic (or pessimistic). Similarly, the
prior variance for θ reflects the investigator’s uncertainty
about the prior opinion. In practice, π(θ) could be elicited
from preclinical data and historical clinical trials with a sim-
ilar setting. On the other hand, the choice of the threshold
values can be justified from a decision-theoretic perspective.
See, e.g., [60] (Chapter 5.2). At analysis j, the possible deci-
sion is denoted by ϕj , where ϕj = 1 (or 0) indicates rejecting
H0 and stopping the trial (or failing to reject H0 and con-
tinuing enrollment if j < K). Assume the loss associated
with decision ϕj is

	j(ϕj , θ) =

{
ξ1j · 1(θ ≤ 0), if ϕj = 1;
ξ0j · 1(θ > 0), if ϕj = 0.

(2.3)

Then, the posterior expected loss of ϕj is Lj(ϕj ,yj) =∫
	j(ϕj , θ)p(θ | yj)dθ, and the decision that minimizes

Lj(ϕj ,yj) is

ϕ̃j(yj) =

{
1, if Pr(θ > 0 | yj) >

ξ1j
ξ0j+ξ1j

;
0, otherwise.

By setting γj at ξ1j/(ξ0j+ξ1j), the stopping rule in Equation
(2.2) minimizes the posterior expected loss. In practice, one
could specify the loss function 	j(ϕj , θ) based on personal
tolerance of risk and then derive the γj ’s subsequently. For
example, if one wants to be conservative about rejections
early in the trial, one could consider increasing the loss of
false rejections at early interim analyses [64]. Of course, the
particular loss function in Equation (2.3) is a naive choice
and ignores the cost of patient enrollment. A more stringent
way of formulating the loss function should take into account
the sequential nature of the trial. For example, a decision to
continue the trial should be made based on balancing the
cost of enrolling more patients and the gain of acquiring
more information. More discussion on this point is deferred
to Section 3.2.

We see that by taking this particular subjective Bayesian
approach, one does not need to take frequentist properties
into account. For example, suppose that ξ1j = 19 · ξ0j for all
j, then one can reject H0 and stop the trial at any analysis as
long as Pr(θ > 0 | yj) > 0.95. As [21] stated, “it is entirely

appropriate to collect data until a point has been proven
or disproven, or until the data collector runs out of time,
money, or patience.” This point has also been made by [37].

Such a procedure is vulnerable to type I error rate infla-
tion, which would bother many practitioners. However, it
has been argued that the type I error rate is not the quan-
tity that one should pay most attention to [38], because
its calculation is conditioned on an assumption rather than
something knowable. Subjective Bayesians argue that what
matters is the probability of “regulator’s regret”, Pr(θ ≤
0 | data), conditioned on the available data. Also, the cal-
culation of the type I error rate involves an average over
unrealized event that may arise for hypothetical values of θ.
However, based on the LP, unobserved events are irrelevant
to the evidence about θ [9, 10]. We provide more discussion
in Section 4.

A similar critique on the subjective Bayesian approach is
the issue of “sampling to a foregone conclusion” [17]. How-
ever, [9, 10] argued that this is not a threat, because the
sequence of posterior probabilities, {Pr(θ > 0 | y1, . . . , yn) :
n = 1, 2, . . .}, is a martingale. If the posterior probability
of {θ > 0} is less than 0.95 given n observations, say 0.94,
then after the next observation, it may increase or decrease
with an expected value of 0.94. In other words, one cannot
guarantee reaching Pr(θ > 0 | data) > 0.95 with more data.
Specifically, when the sampling distribution of yi’s is normal,
the expected number of additional observations required to
raise Pr(θ > 0 | data) any prescribed amount is infinite.
This is analogous to the expected hitting time of a Brown-
ian motion, which is infinite (see, e.g., Chapter 8.2 in [66]).

2.3 The Calibrated Bayesian Perspective
Although Bayesian probabilities represent degrees of be-

lief in some formal sense, for practitioners and regulatory
agencies, it can be pertinent to examine the operating char-
acteristics of Bayesian designs in repeated practices. One
could calibrate the prior and threshold values in a Bayesian
sequential design to achieve desirable operating character-
istics under a range of plausible scenarios, and we refer to
this as a calibrated Bayesian approach [68, 52]. We provide
more background on the calibrated Bayesian perspective in
Section S.2.1 of the Supplementary Material.

We distinguish between operating characteristics and fre-
quentist properties: we use the former to refer to the long-
run average behaviors of a statistical procedure in a series
of (possibly different) trials, and use the latter to refer to
those in (imaginary) repetitions of the same trial. In other
words, operating characteristics represent averages over a
joint data-parameter distribution, while frequentist proper-
ties represent averages over a data distribution given a fixed
parameter. See, e.g., [68, 4]. Frequentist properties are a
special class of operating characteristics.

What kinds of operating characteristics could be exam-
ined? Consider the single-arm trial example. Imagine an
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infinite series of such trials with true but unknown treat-
ment effects {θ(1), θ(2), . . .}, which constitute some popu-
lation distribution π0(θ). For each trial, patient outcomes
yK ∼ f0(yK | θ) and are observed sequentially, where
yK = (y1, . . . , ynK

). Suppose a Bayesian design with stop-
ping rules given by Equation (2.1) is applied to every trial
with a prior model π(θ), a sampling model f(yK | θ), and
threshold values {γ1, . . . , γK}. Similar to the rationale of
type I error rate control, we propose to control the FDR
and FPR of the design in the infinite series of trials for a
range of plausible f0(yK | θ)π0(θ). This is because false
rejections of the null may result in continuation of a drug
development program that will ultimately fail, increasing
the cost associated with the failure. The FDR is the relative
frequency of false rejections among all trials in which H0 is
rejected, and the FPR is the relative frequency of false re-
jections among all trials with nonpositive treatment effects
θ’s. Mathematically, let

Γ =
{
yK : ∃j ∈ {1, . . . ,K} s.t.

Pr(θ > 0 | yj) > γj at analysis j
}

(2.4)

denote the rejection region of the design. That is, H0 is
rejected if yK ∈ Γ. Then,

FDR(π0, f0,Γ) =

∫
yK∈Γ

∫
θ≤0

f0(yK | θ)π0(θ)dθdyK∫
yK∈Γ

f0(yK)dyK
, and

FPR(π0, f0,Γ) =

∫
yK∈Γ

∫
θ≤0

f0(yK | θ)π0(θ)dθdyK∫
θ≤0

π0(θ)dθ
.

Our definitions of the FDR and FPR are slightly different
from, but closely related to, their typical definitions in a
frequentist sense (see, e.g., [79]).

The calibration of the design parameters is typically
done through computer simulations. For each plausible
f0(yK | θ)π0(θ), one could generate S hypothetical tri-
als with treatment effects {θ(1), θ(2), . . . , θ(S)} and outcomes
{y(1)

K ,y
(2)
K , . . . ,y

(S)
K } (for some large S). Then, the FDR and

FPR are respectively approximated by

̂FDR =

∑S
s=1 1

(
y
(s)
K ∈ Γ, θ(s) ≤ 0

)
∑S

s=1 1
(
y
(s)
K ∈ Γ

) , and

̂FPR =

∑S
s=1 1

(
y
(s)
K ∈ Γ, θ(s) ≤ 0

)
∑S

s=1 1
(
θ(s) ≤ 0

) .

(2.5)

The prior and threshold values in the Bayesian design can
be chosen such that ̂FDR and ̂FPR do not exceed some pre-
specified levels for every plausible f0(yK | θ)π0(θ). Note that
the simulations here are different from those for frequentist-
oriented approaches. For the latter, hypothetical repetitions
of the same trial are simulated with an assumed true treat-
ment effect.

In certain contexts, there are theoretical guarantees on
the operating characteristics of Bayesian sequential designs.
Specifically, the following proposition provides such an ex-
ample.

Proposition 2.1. Let Γ in Equation (2.4) represent the re-
jection region of a Bayesian design. Assume the joint model
for (yK , θ) in the Bayesian design is the same as the ac-
tual joint distribution of (yK , θ) in a series of trials, i.e.,
f(yK | θ)π(θ) = f0(yK | θ)π0(θ). Then, the FDR and FPR
of the Bayesian design are upper bounded regardless of the
time (nj’s) and frequency (K) of interim analyses,

FDR(π0, f0,Γ) ≤ 1− γmin, and

FPR(π0, f0,Γ) ≤
(1− γmin) ·

∫
θ>0

π(θ)dθ
γmin ·

∫
θ≤0

π(θ)dθ
,

where γmin = min{γ1, . . . , γK}.
The proof is given in Sections S.2.2 and S.2.3 of the Sup-

plementary Material. Therefore, from a calibrated Bayesian
perspective, the prior on θ could be elicited to resemble the
actual distribution of θ in repeated practices, and the thresh-
old values reflect acceptable FDR and FPR levels.

In general, requiring a design to have good operating
characteristics (under plausible scenarios) is more lenient
than requiring it to have good frequentist properties (for
all possible parameter values). For example, the type I error
rate is essentially the FPR when π0(θ) is a point mass. Strin-
gent type I error rate requires that the FPR is controlled
for all possible π0(θ), even when π0(θ) is a point mass at
0, while the calibrated Bayesian approach only requires the
FPR to be controlled for plausible π0(θ). In this sense, the
calibrated Bayesian approach can be thought of as a middle
ground between the frequentist-oriented approach and the
subjective Bayesian approach.

2.4 Our Comments on the Three Perspectives
We have reviewed three perspectives on Bayesian sequen-

tial designs, which are summarized in Table 1. Although the
three perspectives seem contradictory, they are not mutu-
ally exclusive. For example, if the investigator is conservative
about a new drug and is cautious about false rejections, then
he/she may take a subjective Bayesian approach with a large
loss for a false positive decision. This can lead to low FDR
and FPR, or even a low type I error rate. In other words,
subjective Bayesians may produce desirable operating char-
acteristics for calibrated Bayesians, or desirable frequentist
properties for frequentist-oriented Bayesians.

In some contexts, a specific approach can be more appli-
cable and acceptable compared to the others. For example,
for large-scale confirmatory trials (e.g., COVID-19 vaccine
trials), type I error rate control is enforced by regulators, and
thus only the frequentist-oriented perspective is accepted.
Indeed, there are some challenges with the subjective and
calibrated Bayesian approaches in those settings. See, e.g.,
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Table 1. Summary of the three perspectives on Bayesian sequential designs.
Perspective Description Suitable contexts
Frequentist-oriented Specifying design parameters to achieve desirable

frequentist properties (e.g., type I error rate)
Large-scale confirmatory trials

Subjective Bayesian Specifying design parameters to reflect subjective
beliefs and personal tolerance of risk

Trials for rare diseases; pediatric trials for small
populations

Calibrated Bayesian Specifying design parameters to achieve desirable
operating characteristics (e.g., FDR and FPR)
under plausible scenarios

Animal studies for drug screening; early-phase trials
(e.g., dose finding)

[14, 76]. With a large number of enrolled patients, a large
population that could potentially benefit from the treat-
ment, and multiple decision makers with distinctive prior
opinions and tolerances for risk, the process of eliciting costs
and benefits can be difficult for subjective Bayesians. As [76]
noted, “when the decision is whether or not to discontinue
the trial, coupled with whether or not to recommend one
treatment in preference to the other, the consequences of
any particular course of action are so uncertain that they
make the meaningful specification of utilities rather specu-
lative.” From a calibrated Bayesian perspective, one could
elicit the prior for θ based on historical trials of similar drugs
and/or conditions. However, there may be concerns that
high or low rates of historical success (e.g., pembrolizumab
for solid tumors with a high success rate) may bias the in-
ference for a new trial and trigger incentives for investiga-
tors to concentrate clinical research toward attractive areas
and selected conditions. On the other hand, the prior for θ
could also be based on all historical trials regardless of drugs
and conditions. However, the distribution of treatment ef-
fects can be highly variable over time, and different types
of trials have vastly different endpoints, which are difficult
to summarize into a common distribution. As a result, uti-
lization of Bayesian designs for phase III trials requires a
case-by-case discussion that involves extensive examination
of prior elicitation, inference procedures, and simulation re-
sults, which has been highlighted by several guidances from
the U.S. Food and Drug Administration [25, 26, 27].

The subjective Bayesian perspective can be useful in tri-
als for rare diseases and pediatric trials for small popu-
lations. In those situations, simple loss functions may be
elicited, and prior distributions can be derived by eliciting
expert opinion [46]. The elicitation process usually involves
interviewing multiple subject experts such as physicians and
their team members, and summaries of the interviews can
be reported in the form of statistics like medians, modes,
and percentiles. Lastly, a prior distribution can be estimated
by fitting a parametric distribution to match the summary
statistics.

Lastly, the calibrated Bayesian perspective is suitable in
exploratory settings, such as animal studies for drug screen-
ing and early-phase trials (e.g., dose finding). For those tri-
als, stringent type I error rate control is optional and often
at the discretion of the sponsors. Eliciting the prior for θ

from previous studies and focusing on FDR/FPR control
allow an efficient selection of promising drugs for further
development.

Influenced by [68, 52, 62], our recommendation is to re-
gard the subjective Bayesian paradigm as ideal in principle
but often rely on frequentist-type metrics to better commu-
nicate Bayesian designs and understand the practical im-
plications of different priors, loss functions, and threshold
values. The LP is sometimes viewed as an argument against
the consideration of frequentist-type metrics in hypothetical
trials. However, we will demonstrate in Section 4 that the LP
does not preclude one from utilizing frequentist-type met-
rics to assess a decision procedure. Still, we advocate the
use of operating characteristics under plausible scenarios,
in addition to standard frequentist properties, for evaluat-
ing trial designs in either exploratory or confirmatory set-
tings. Metrics like the FDR and FPR have not been used
for drug approval, but arguably, they reflect the reality bet-
ter than frequentist properties. In real life, different clinical
trials would have different treatment effects.

2.5 Bayesian Hypothesis Testing
Before moving on to other topics, we discuss some addi-

tional considerations in Bayesian sequential designs. First,
we present a special class of Bayesian designs based on the
posterior probability of the alternative hypothesis through
formal Bayesian hypothesis testing. See, e.g., [44]. For the
single-arm trial example, to test Equation (1.1), we need to
specify the priors for θ under both the null and alternative
hypotheses,

θ | H0 ∼ π(0)(θ), θ | H1 ∼ π(1)(θ).

Importantly, π(0)(θ) and π(1)(θ) have supports on (−∞, 0]
and (0,∞), respectively. Then, the prior probability for each
hypothesis is also specified, Pr(H0) = 1−ω and Pr(H1) = ω.
At analysis j, the posterior probability of H1 is

Pr(H1 | yj) =
Pr(H1)f(yj | H1)

Pr(H1)f(yj | H1) + Pr(H0)f(yj | H0)
=

ω
∫
θ>0

f(yj | θ)π(1)(θ)dθ
ω
∫
θ>0

f(yj | θ)π(1)(θ)dθ + (1− ω)
∫
θ≤0

f(yj | θ)π(0)(θ)dθ
,

(2.6)
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which can be used to decide whether to stop the trial early.
For example, if Pr(H1 | yj) > γj , H0 is rejected, and the
trial is stopped. This approach is equivalent to specifying a
mixture prior distribution for θ,

θ ∼ π(θ) = (1− ω) · π(0)(θ) + ω · π(1)(θ),

and then stop the trial at analysis j if Pr(θ > 0 | yj) > γj .
Note that under the mixture prior,

Pr(θ > 0 | yj) =

∫
θ>0

p(θ | yj)dθ

=

∫
θ>0

f(yj | θ)π(θ)dθ∫
θ
f(yj | θ)π(θ)dθ

= (2.6)

This relationship has been noted by [84]. Although these two
approaches are equivalent, when the primary goal is hypoth-
esis testing, the prior for θ is usually specified as a mixture
of two truncated distributions; when the primary goal is pa-
rameter estimation, the prior for θ is usually specified as a
single continuous distribution.

A special case is when H0 is a point hypothesis, say when
we test H0 : θ = 0 vs. H1 : θ 
= 0. From a hypothesis test-
ing perspective, the prior for θ should be a mixture of a
point mass at θ = 0 (denoted by δ0(θ)) and a continuous
distribution, π(θ) = (1 − ω)δ0(θ) + ωπ(1)(θ). Such a prior
distribution is rarely used when the primary goal is param-
eter estimation. Lastly, [44] and [45] recommended the use
of non-local prior densities, which incorporate a minimally
significant separation between the null and alternative hy-
potheses, for Bayesian hypothesis testing and applications
in trial monitoring.

2.6 Analysis at the Conclusion of a Sequential
Trial

From a Bayesian perspective, after a clinical trial has
been completed, all the information about θ is contained
in its posterior distribution. Let t denote the stopping time
of a sequential trial. For example, based on the stopping rule
in Equation (2.2),

t =

{
min{j : zj > cj}, if ∃j ∈ {1, . . . ,K} s.t. zj > cj ;
K, if zj ≤ cj for all j.

Then, yt = (y1, . . . , ynt) is the vector of accumulating data
up to the time of stopping. At the time of stopping, the
posterior distribution of θ is given by

p(θ | yt) =
f(yt | θ)π(θ)∫

θ
f(yt | θ)π(θ)dθ

.

One may be worried that the stopping time t is not included
in the conditional of p(θ | yt). However, assuming that θ and
t are independent conditional on yt, we have

p(θ | t,yt) =
f(t,yt | θ)π(θ)∫

θ
f(t,yt | θ)π(θ)dθ

= ����f(t | yt)f(yt | θ)π(θ)∫
θ ����f(t | yt)f(yt | θ)π(θ)dθ

= p(θ | yt),

because f(t,yt | θ) = f(t | yt, θ)f(yt | θ) = f(t |
yt)f(yt | θ). Most often (and in all the designs that we
have reviewed), θ affects t only through the observations yt,
in which case the conditional independence assumption is
satisfied, the equation holds, and the stopping rule plays no
role in the posterior distribution of θ. See, e.g., [40]. How-
ever, we note that in some situations, θ could affect t other
than just via yt. For example, if an interim analysis happens
because an external trial found a positive treatment effect,
which is more likely if θ is positive and large, this would
affect t via external data other than via the current data.

The posterior mean, E(θ | yt), is a commonly used point
estimator for θ. On the other hand, a 100(1 − α)% credi-
ble interval for θ can be constructed as (θL, θU), where θL

and θU are the lower and upper (α/2) quantiles of p(θ | yt),
respectively. This credible interval has its asserted coverage
in repeated practices if the model specification is correct
(see Section S.2.1 of the Supplementary Material), but the
coverage may deteriorate in the presence of model misspec-
ification. Lastly, the posterior probability of the alternative
hypothesis, Pr(θ > 0 | yt), is also reported.

2.7 Randomized-controlled Trial and Minimum
Clinically Important Difference

So far, we have been using a single-arm trial to il-
lustrate the designs. In practice, multi-arm trials such as
randomized-controlled trials are also very common. We
briefly outline an extension of the designs for a randomized-
controlled trial. For simplicity, assume the trial outcomes
are normally distributed. At analysis j, observed data are
yr1, yr2, . . . , yrnrj ∼ N(θr, σ

2
r) for arm r, where r = 1 and 0

represent the investigational drug and control arms, respec-
tively. The goal may be to test

H0 : θ1 − θ0 ≤ 0 vs. H1 : θ1 − θ0 > 0.

Assume σ2
1 and σ2

0 are known. One can specify a prior dis-
tribution for θ = θ1 − θ0, say θ ∼ N(μ, ν2). The posterior
distribution of θ at analysis j is given by

θ | y1j ,y0j ∼ N
[
μν−2 + (ȳ1j − ȳ0j)(σ

2
1/n1j + σ2

0/n0j)
−1

ν−2 + (σ2
1/n1j + σ2

0/n0j)−1
,

1

ν−2 + (σ2
1/n1j + σ2

0/n0j)−1

]
,

where ȳrj = 1
nrj

∑nrj

i=1 yri. Then, one can proceed similarly
as before. An alternative approach is to specify independent
priors separately for θ1 and θ0 and then use these to obtain a
posterior distribution of θ. This will lead to slightly different
designs. See [78]. When σ2

1 and σ2
0 are unknown, one needs
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to specify priors for these parameters as well and calculate
the marginal posterior distribution of θ.

In some trials, such as proof-of-concept trials, it may be
of interest to evaluate the evidence of the treatment effect
being greater than a minimum clinically important differ-
ence, denoted by Δ [16, 24]. In this case, one may replace
the stopping rule in Equation (2.1) by

Pr(θ > Δ | yj) > γΔ
j . (2.7)

Alternatively, the efficacy stopping rule can be based on
both Equations (2.1) and (2.7). Here, Equation (2.1) speaks
to “does the drug work at all”, while Equation (2.7) ad-
dresses “does the drug have a clinically relevant effect”. In
proof-of-concept trials, Equation (2.7) may be a necessary
criterion for a drug to be promoted into full development
[24].

2.8 Comparison with Frequentist Sequential
Designs

Compared to their frequentist counterparts, Bayesian de-
signs involve additional complexities such as prior elicita-
tion and computational challenges when the posterior dis-
tribution is not analytically tractable. Still, Bayesian designs
have certain advantages (see, e.g., [29]). First, with a chosen
probability model, the data affect posterior inference only
through the likelihood function. In this way, Bayesian infer-
ence obeys the LP ([34], p. 7). This can be philosophically
appealing. Frequentist inference, on the other hand, may
be affected by unrealized events. We will elaborate on this
point in Section 4. Second, the stopping rule of an experi-
ment is irrelevant to the construction and interpretation of
a Bayesian credible interval. In contrast, a frequentist inter-
val estimate of treatment effect following a group sequential
trial crucially depends on the stopping rule. As [29] pointed
out, such an interval may be quite unintuitive. Depending
on the choice of sample space ordering, the interval may not
always include the sample mean and can include zero differ-
ence even for data that lead to a recommendation to stop the
trial at the first interim analysis (see [65]). Third, stringent
frequentist inference can be challenging or unsatisfactory if
the prescribed stopping rule is not followed. For example,
a trial may be stopped due to unforeseeable circumstances
such as the outbreak of COVID-19; in some cases, it may
be desirable to extended a trial beyond the planned sam-
ple size. Some have criticized that the relevance of stopping
rules makes it almost impossible to conduct any frequentist
inference in a strict sense [5, 9, 7, 82]. Oftentimes, statisti-
cians are presented with a dataset without knowing how the
stopping of the study was decided and why the study was
not stopped earlier. Both factors can affect the frequentist
properties of a statistical procedure, while in practice it is
infeasible to keep track of them. Lastly, when reliable histor-
ical information is available, it can be formally incorporated
into the design and analysis of the current trial via Bayesian

methods. This may lead to improvements in trial efficiency
in terms of higher power and saving in sample size (see [71]).

3. OTHER TYPES OF BAYESIAN
SEQUENTIAL DESIGNS

3.1 Designs Based on Posterior Predictive
Probabilities

In the upcoming sections, we review some other types of
Bayesian sequential designs whose early stopping rules are
not directly based on Pr(θ > 0 | yj) > γj . Similar to the idea
of stochastic curtailment [49], posterior predictive probabil-
ities can be used to determine whether to stop a trial early.
See, e.g., [20, 50, 70]. Suppose that at the final analysis, ef-
ficacy of the drug will be declared if Pr(θ > 0 | yK) > 1−η.
At analysis j ∈ {1, . . . ,K − 1}, the posterior predictive dis-
tribution of future observations y∗

j,K = (y∗nj+1, . . . , y
∗
nK

) is

p(y∗
j,K | yj) =

∫
θ

f(y∗
j,K | θ)p(θ | yj)dθ,

and the posterior predictive probability of success (PPOS)
is

PPOSj =

∫
y∗
j,K

1
[
Pr

(
θ > 0 | yj ,y

∗
j,K

)
> 1− η

]
·

p(y∗
j,K | yj)dy∗

j,K .

One may stop the trial early if PPOSj > γj for some thresh-
old γj . To specify the prior for θ and the threshold values
{γ1, . . . , γK−1} and η, one may take one of the approaches
in Sections 2.1–2.3.

For the single-arm trial example, we have

ȳ∗j,K | yj ∼ N
(
μν−2 + ȳjnjσ

−2

ν−2 + njσ−2
,

1

ν−2 + njσ−2
+

1

(nK − nj)σ−2

)
,

where ȳ∗j,K =
(
y∗nj+1 + · · ·+ y∗nK

)
/(nK−nj). The criterion

Pr
(
θ > 0 | yj ,y

∗
j,K

)
> 1− η is equivalent to

ȳ∗K =
1

nK

[
nj ȳj + (nK − nj)ȳ

∗
j,K

]
> qη ·

√
ν−2 + nKσ−2

nKσ−2
− μν−2

nKσ−2
.

Finally, it can be derived that

PPOSj = 1− Φ

{[
1

ν−2 + njσ−2
+

1

(nK − nj)σ−2

]−1/2

·
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nK

nK − nj
·
(
qη ·

√
ν−2 + nKσ−2

nKσ−2
−

μν−2

nKσ−2
− ȳjnj

nK

)
− μν−2 + ȳjnjσ

−2

ν−2 + njσ−2

]}
.

The PPOS depends on η and nK . In general, the stopping
rules based on PPOS and PP are different, although for
given η and nK , one may select γ′

j such that {PPOSj > γ′
j}

and {PPj > γj} are equivalent. As a result, one may also
impose type I error rate control on PPOS stopping rules
based on the arguments in Section 2.1. As noted by [70],
if at the jth interim analysis, the amount of data remain
to be collected (nK − nj) is infinity, then PPOSj = PPj

regardless of η. Typically, the PPOS is close to the PP at
the beginning of a trial and moves toward either 0 or 1 as
the trial nears completion.

3.2 Decision-theoretic Designs
As described in Section 2.2, the decisions in a sequen-

tial clinical trial can be made by minimizing the expected
loss under a decision-theoretic framework. This approach
has been considered by [12, 51, 77, 81], among others. The
idea is that, at each interim analysis, the decision to stop the
trial early and reject H0 is associated with some loss if the
decision is wrong. On the other hand, continuing the trial
results in more cost in terms of patient recruitment. But
with more data, the chance of making a wrong decision may
be decreased. By considering both factors, decision-theoretic
designs combine the strengths of designs based on posterior
and posterior predictive probabilities.

We illustrate the idea of decision-theoretic designs
through the single-arm trial example. Let ϕj denote a pos-
sible decision at analysis j. For j = 1, . . . ,K − 1, ϕj = 1
(or 0) represents rejecting H0 and stopping the trial early
(or failing to reject and continuing enrollment). For j = K,
ϕK = 1 (or 0) represents rejecting (or failing to reject) H0

at the final analysis, and the trial is stopped in either case.
Let 	j(ϕj , θ,yj) denote the loss of making decision ϕj at
analysis j given parameter θ and data yj . The posterior ex-
pected loss is then Lj(ϕj ,yj) =

∫
θ
	j(ϕj , θ,yj)p(θ | yj)dθ.

The optimal decision is ϕ̃j(yj) = argminϕj Lj(ϕj ,yj) and
the associated expected loss is L̃j(yj) = minϕj Lj(ϕj ,yj),
i.e., the Bayes risk.

Suppose that the loss of making decision ϕj = 1 at anal-
ysis j (j = 1, . . . ,K − 1) is

	j(ϕj = 1, θ,yj) = ξ1j · 1(θ ≤ 0), (3.1)

where ξ1j is the loss of mistakenly rejecting H0 and stopping
the trial if θ ≤ 0. On the other hand, if ϕj = 0, the trial
continues, (nj+1 − nj) patients will be enrolled until the
next analysis, and we assume a unit loss for recruiting each
patient. We have

	j(ϕj = 0, θ,yj) = (nj+1 − nj)+∫
y∗
j,j+1

L̃j+1(yj ,y
∗
j,j+1)p(y

∗
j,j+1 | yj)dy∗

j,j+1. (3.2)

Here,
∫
y∗
j,j+1

L̃j+1(yj ,y
∗
j,j+1)p(y

∗
j,j+1 | yj)dy∗

j,j+1 is the
Bayes risk at analysis (j + 1) marginalized over the pos-
terior predictive distribution on y∗

j,j+1 = (y∗nj+1, . . . , y
∗
nj+1

),
that is, the observations between analyses j and j + 1.

We also assume the loss of making decision ϕK at the
final analysis is

	K(ϕK , θ,yK) =

{
ξ1K · 1(θ ≤ 0), if ϕK = 1;
ξ0 · 1(θ > 0), if ϕK = 0.

Here, ξ1K is the loss of mistakenly rejecting H0 at the final
analysis if θ ≤ 0 (a type I error), and ξ0 is the loss of failing
to reject H0 if θ > 0 (a type II error).

At analysis j, the optimal decision ϕ̃j(yj) can be solved
by backward induction ([19], Chapter 12). First, we cal-
culate L̃K(yK) for all possible data yK that can arise at
the final analysis. Next, using Equations (3.1) and (3.2), we
can calculate L̃K−1(yK−1) for all possible data yK−1 that
can arise at analysis (K − 1). Proceeding backward in this
way gives L̃K−2(yK−2), . . . , L̃j(yj). This procedure requires
many minimizations and integrations which may not be an-
alytically tractable. Simulation-based approaches have been
proposed to mitigate these computational challenges [54].

[51] demonstrated that by tuning the loss functions,
decision-theoretic designs can achieve desirable type I er-
ror rate control. [81] considered constrained optimal designs
with explicit frequentist requisites. Alternatively, the loss
functions and prior can be chosen by taking the subjective
or calibrated Bayesian approach.

We summarize in Table 2 the various methods and mea-
sures that give rise to different types of sequential designs,
including frequentist designs reviewed in Section S.1 of the
Supplementary Material.

4. THE LIKELIHOOD PRINCIPLE
Statistical inference and decision making in sequential

clinical trials are typically tied to the LP. We provide some
discussions in this section.

Let Y denote a random variable with density fθ(y). The
likelihood function for θ, given the observed outcome y of
the random variable Y , is Ly(θ) = fθ(y). That is, the den-
sity evaluated at y and considered as a function of θ. The
(strong) LP, as in [15] and [7], can be summarized as follows:

The Likelihood Principle. All the statistical evidence
about θ arising from an experiment is contained in the like-
lihood function for θ given y. Two likelihood functions for θ
(from the same or different experiments) contain the same
statistical evidence about θ if they are proportional to one
another.
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Table 2. Summary of methods and measures that give rise to different types of sequential designs.
Method/measure Stopping criteria for efficacy Design parameters
Bayesian designs:
Posterior probability Posterior probability (PP) of drug being

efficacious exceeds a prespecified threshold
Prior for treatment effect; PP thresholds
at interim and final analyses

Posterior predictive probability Posterior predictive probability of trial success
(PPOS) exceeds a prespecified threshold

Prior for treatment effect; PP threshold
at final analysis; PPOS thresholds at
interim analyses

Decision-theoretic Efficacy stopping minimizes posterior
expected loss for a prespecified loss function

Prior for treatment effect; loss functions
associated with possible decisions

Frequentist designs:
Frequentist group sequential Test statistic exceeds a prespecified stopping

boundary
Stopping boundaries for test statistics
that define a critical region

Stochastic curtailment Conditional power (CP) of trial success, given
a hypothetical treatment effect, exceeds a
prespecified threshold

Critical value for test statistic at final
analysis; CP thresholds at interim
analyses

[15] showed that the LP can be deduced from two widely
accepted principles: the sufficiency principle and the condi-
tionality principle. There have been debates regarding Birn-
baum’s proof and the validity of the LP in general. A de-
tailed treatment of the LP is outside the scope of this paper.
We refer interested readers to [7, 61, 23, 53, 30, 57].

What would be the consequences if we accept the LP?
Since the LP deals only with the observed y, data that did
not obtain and experiments not carried out have no impact
on the evidence about θ [10, 7]. Also, as in [7], the LP im-
plies that the reason for stopping an experiment (the stop-
ping rule) should be irrelevant to the evidence about θ. In
a clinical trial, the implication is that early stopping would
not affect the evidential meaning of the trial outcome.

As an illustration, consider the example given by [10].
Imagine that a single-arm trial as described in Section 1.2
has been conducted, and 200 outcomes have been recorded
that result in a z-statistic of z1 = 1.75. These results are
being reported by two investigators A and B, who used the
same probability model (including the prior model for θ, if
they were to take a Bayesian approach) but had different
plans about the next step. Investigator A planned a sec-
ond stage for the trial to enroll 200 more patients should it
happen that z1 ≤ 1.88 (the Pocock stopping boundary, see
[58]), while investigator B did not plan to enroll any more
patients. According to the LP, the evidence about θ provided
by the 200 observations is not affected by the investigators’
plans.

Although the LP seems compelling, it has been a source of
controversy. Under the Bayesian paradigm, for any specified
prior distribution for θ, if the likelihood functions are pro-
portional as functions of θ, the resulting posterior densities
for θ are identical. In this sense, Bayesian inference conforms
to the LP ([8], p. 249; [34], p. 7). On the other hand, the
LP seems to be incompatible with many frequentist proce-
dures. In the previous example, investigator A cannot claim

statistical significance using the Pocock design after 200 ob-
servations (and may fail again after all 400 observations),
while investigator B can using a fixed design with 200 pa-
tients (z1 > q0.05 = 1.645). In other words, these investi-
gators can reach completely different conclusions about the
effectiveness of the drug with the exact same data.

The conflict here does not mean we have to either reject
the LP or reject frequentist procedures. Explained previ-
ously (e.g., [7, 32, 31]), the LP is not a decision procedure
and gives little guidance in assessing the overall performance
of a decision procedure. The LP implies that only the ob-
served data are relevant to the evidence about θ, but the
consequences for making a specific decision may depend on
other aspects of an experiment. First, while the evidence
about θ is trial-specific, a decision procedure is applied to
many trials. For example, from a regulatory agency’s per-
spective, the action to approve a drug reflects not only the
consequences of administering this drug to patients, but also
the downstream consequences of that decision rule for other
drugs in the future [31]. Therefore, frequentist measures such
as the type I error rate can be factored into the decision pro-
cedure. Second, even for a single trial, it is not unreasonable
to associate the consequences of a decision with unrealized
data patterns. For example, in a Bayesian sequential design
based on posterior predictive probabilities (Section 3.1), the
calculation of the PPOS involves an average over the pos-
terior predictive distribution of future data. Such averaging
is also required in a Bayesian decision-theoretic design (Sec-
tion 3.2) when calculating the posterior expected loss of a
decision based on backward induction. Imagine an ongoing
clinical trial with a maximum sample size of 400 patients
and an outcome variance of σ2 = 1. Suppose the Bayesian
decision-theoretic design in Section 3.2 is used. After 200
outcomes have been recorded, an interim analysis is being
performed by two investigators C and D, who used the same
probability model with a N(0, 12) prior on θ but had differ-
ent plans. Investigator C planned another interim analysis



146 T. Zhou and Y. Ji

after 300 observations, while investigator D did not plan
to conduct any additional interim analysis. Suppose the z-
statistic at the interim analysis is z1 = 1.75. Then, using
the design and loss functions described in Section 3.2 with
ξ0 = 400 and ξ1j ≡ 19ξ0 for all j, the optimal decisions for
investigators C and D are continuing enrollment and stop-
ping the trial, respectively. Specifically, Figure 1 shows the
posterior expected losses for possible decisions that can be
made by the two investigators. We can see that the existence
of a planned future interim analysis has an impact on the
posterior expected loss associated with continuing the trial.
In summary, if a dichotomous decision must be made, the
LP does not preclude one from utilizing other information in
addition to the observed data. Therefore, our view is that
the LP should not be used as an argument for or against
Bayesian or frequentist sequential designs.

Figure 1: Posterior expected losses, as functions of the z-
statistic, for possible decisions that can be made by inves-
tigators C and D at an interim analysis after 200 observa-
tions. The trial has a maximum sample size of 400 patients.
Investigator C planned another interim analysis after 300
observations, while investigator D did not plan to conduct
any additional interim analysis. The solid vertical line repre-
sents an observed z-statistic of 1.75 at the interim analysis.
The optimal decisions for investigators C and D are contin-
uing enrollment and stopping the trial, respectively.

Still, the conflict does suggest that if we accept the LP,
then frequentist measures such as type I/II error rates and
p-values may not be used as measures of statistical evidence
for or against a hypothesis in a clinical trial [7]. This point
has been raised by many others as well. For example, [67]
stated that “Neyman-Pearson statistical theory is aimed at
finding good rules for choosing from a specified set of possi-
ble actions. It does not address the problem of representing
and interpreting statistical evidence, and the decision rules
derived from Neyman-Pearson theory are not appropriate
tools for interpreting data as evidence.” In summary, in an
ideal world, one may use frequentist measures to design a
trial. However, when reporting statistical analyses results
as evidence after trial completion, Bayesian measures that
conform the LP should be preferred.

It should also be noted that not all Bayesian procedures
are in compliance with the LP. For example, eliciting the
prior for θ based on the sampling plan, such as using the
Jeffreys prior [41], results in violation of the LP ([7], p. 21).
We have mentioned in Section 2.1 that one may control the
type I error rate of a Bayesian sequential design by calibrat-
ing the prior or threshold values. To avoid violation of the
LP, however, we recommend taking the latter approach and
not selecting the prior based on trial planning. Intuitively,
changing the threshold values only affects decision making,
while changing the prior affects both the evidence about θ
(e.g., point and interval estimations) and decision making.

5. NUMERICAL STUDIES
5.1 Illustration of the Frequentist-oriented

Approach
As an illustration of the frequentist-oriented approach, we

calculate the stopping boundaries for the z-statistics given
by some of the aforementioned Bayesian sequential designs
with the type I error rate controlled at α = 0.05. That is,
we compute the {c1, . . . , cK} values for which we would stop
the trial at analysis j if zj > cj . We consider the single-
arm trial example described in Section 1.2. Suppose that
a total of K = 5 (interim and final) analyses are planned,
the maximum sample size is nK = 1000, and patients are
enrolled in groups of size 200 (nj = 200j). The variance
for the outcomes is set at σ2 = 1 and is assumed known.
Specifically:

(i) For stopping boundaries based on posterior probabili-
ties (Equation 2.2), we consider the following two ver-
sions. In the first version, we use γj ≡ 0.95 and find
that a N(0, 0.0542) prior for θ leads to α = 0.05. In the
second version, we place a N(0, 12) prior on θ and find
that setting γj ≡ 0.983 leads to α = 0.05.

(ii) For stopping boundaries based on posterior predictive
probabilities (Section 3.1), we set γj ≡ 0.8, η = 0.05,
and find that a N(0, 0.0632) prior for θ leads to α =
0.05.

(iii) For the Bayesian decision-theoretic design (Section 3.2),
we place a N(0, 12) prior on θ, use ξ0 = 1000, and find
that setting ξ1j ≡ 34890 leads to α = 0.05.

The stopping boundaries are summarized in Table 3.
For comparison, we also include the stopping boundaries
produced by the Pocock and O’Brien-Fleming procedures
[58, 55] and the linear error spending function [47]. See
Sections S.1.1 and S.1.2 of the Supplementary Material
for more details. With γj ≡ 0.95 and a conservative
prior N(0, 0.0542), the Bayesian design based on posterior
probabilities leads to stopping boundaries that lie between
Pocock’s and O’Brien-Fleming’s boundaries; with a N(0, 12)
prior and γj ≡ 0.983, it gives stopping boundaries that
are similar to Pocock’s boundaries. The Bayesian design
based on predictive probabilities with a conservative prior
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Table 3. Stopping boundaries for the z-statistics given by
several Bayesian and frequentist sequential designs. The
single-arm trial in Section 1.2 is considered with K = 5

analyses, a maximum sample size of nK = 1000, and equal
group sizes (nj = 200j). The design parameters are

calibrated such that the type I error rate at θ = 0 is α = 0.05
for every design.

Analysis 1 2 3 4 5
No. of patients 200 400 600 800 1000
Bayesian designs:
Post. prob. (ver. 1) 2.71 2.24 2.06 1.97 1.91
Post. prob. (ver. 2) 2.13 2.12 2.12 2.12 2.12
Post. pred. prob. 2.50 2.26 2.18 2.11 1.84
Decision-theoretic 2.33 2.22 2.15 2.09 1.91

Frequentist designs:
Pocock 2.12 2.12 2.12 2.12 2.12
O’Brien-Fleming 3.92 2.77 2.26 1.96 1.75
Linear error spending 2.33 2.22 2.12 2.03 1.96

N(0, 0.0632) gives boundaries that lie between Pocock’s and
O’Brien-Fleming’s boundaries. Lastly, by tuning the loss
functions, the Bayesian decision-theoretic design leads to
stopping boundaries similar to those given by the linear er-
ror spending function.

Figure 2 shows a visualization of the stopping boundaries
and a comparison of the frequentist properties of the sequen-
tial designs. Here, we consider the power and expected sam-
ple size over a range of hypothetical θ values. There appears
to be a trade-off between power and expected sample size.
For example, the O’Brien-Fleming procedure has the highest
power for all θ values but also requires the largest expected
sample size. This is due to its large stopping boundaries at
early analyses and progressively smaller stopping boundaries
at later analyses. On the contrary, the Pocock boundaries
and the boundaries based on posterior probabilities (version
2) lead to the lowest expected sample size but also have the
lowest power. For more discussion on the frequentist evalu-
ation of sequential designs, refer to [43].

5.2 Illustration of the Calibrated Bayesian
Approach

To demonstrate the calibrated Bayesian approach, we
conduct simulation studies to explore the operating char-
acteristics of a Bayesian design under a variety of plausi-
ble scenarios. Consider the single-arm trial example in Sec-
tion 1.2 with a maximum sample size of nK = 1000 and
the Bayesian design with stopping rules given by Equation
(2.1). Suppose the actual effect size of the trial, θ, is a ran-
dom draw from N(μ0, ν

2
0). As the trial progresses, patient

outcomes become available sequentially and follow a nor-
mal distribution, y1, y2, . . . ∼ N(θ, σ2). The trial statistician,
on the other hand, uses a N(μ, ν2) prior to draw inference
about θ, which may or may not be identical to the actual

Figure 2: Visualization of the stopping boundaries given by
different sequential designs, and comparison of the frequen-
tist properties (power and expected sample size) of the de-
signs for hypothetical values of θ, the treatment effect.

population distribution of θ. For simplicity, assume the sam-
pling model used by the statistician, f(yK | θ), is correctly
specified. At prespecified time and frequency, the statisti-
cian conducts interim analyses of accumulating data. If the
stopping rule is triggered, H0 is rejected, the trial is stopped,
and efficacy of the drug is declared.

We consider 72 simulation scenarios, one for each com-
bination of ν0 ∈ {0.1, 0.5, 1}, ν ∈ {0.1, 0.5, 1, 10}, and
K ∈ {1, 2, 5, 10, 100, 1000}. For simplicity, we fix the other
parameters: μ0 = μ = 0, and σ = 1. Here, a larger (or
smaller) value of ν0 indicates that the actual effect size is
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Table 4. Operating characteristics of the Bayesian design with stopping rules given by Equation (2.1), a maximum sample size
of nK = 1000, K planned analyses, and equal group sizes. Values are averages over 10,000 simulated trials. Each cell shows

the corresponding metric (F̂DR, F̂PR, or Coverage) for a specific combination of ν0, ν, and K.

K ̂FDR (%) ̂FPR (%) Coverage (%)
ν0 = 0.1, different ν below

0.1 0.5 1 10 0.1 0.5 1 10 0.1 0.5 1 10
1 0.8 0.6 0.8 0.9 0.5 0.4 0.5 0.6 95.0 95.2 95.3 94.7
2 1.1 1.5 1.5 1.4 0.7 1.0 1.0 0.9 94.9 95.4 94.8 94.9
5 1.8 2.8 3.6 3.1 1.2 2.0 2.4 2.1 94.9 94.7 94.1 94.5
10 2.7 4.8 4.8 5.2 1.9 3.6 3.5 3.9 95.0 94.1 93.9 93.9
100 4.2 11.3 11.7 12.1 2.9 9.7 10.3 10.7 95.1 93.1 91.8 91.5
1000 5.2 15.1 19.9 22.5 3.9 13.5 19.6 23.5 95.3 93.7 91.2 88.1

ν0 = 0.5, different ν below
0.1 0.5 1 10 0.1 0.5 1 10 0.1 0.5 1 10

1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 73.0 95.2 94.7 94.8
2 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 67.4 94.9 94.5 95.3
5 0.3 0.7 0.4 0.3 0.3 0.7 0.3 0.3 60.5 94.7 95.2 95.3
10 0.6 0.8 0.8 0.8 0.5 0.7 0.7 0.7 58.3 95.2 95.0 95.2
100 0.9 2.3 2.7 3.2 0.8 2.2 2.6 3.2 56.8 95.2 94.8 94.0
1000 0.8 3.2 5.8 8.6 0.8 3.2 6.0 8.7 57.1 95.2 94.4 92.2

ν0 = 1, different ν below
0.1 0.5 1 10 0.1 0.5 1 10 0.1 0.5 1 10

1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 46.8 94.8 95.1 94.9
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 40.8 94.7 94.8 95.3
5 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 36.6 94.4 95.1 95.0
10 0.1 0.5 0.4 0.4 0.1 0.5 0.4 0.4 34.9 94.5 94.8 94.8
100 0.3 1.5 1.3 1.2 0.3 1.4 1.3 1.2 34.2 90.7 95.1 94.8
1000 0.3 2.2 3.5 5.1 0.3 2.2 3.5 5.3 33.8 87.6 94.7 93.4

more likely to be larger (or smaller). We do not consider
ν0 > 1 as in practice, a standardized effect size that is much
larger than what could be drawn from a N(0, 12) distribution
is not common. A larger (or smaller) value of ν represents
that the assumed prior for θ is more diffuse (or more con-
centrated around zero). When ν0 = ν, the population distri-
bution of θ over different trials is the same as the prior for θ
used for analysis. Lastly, K is the total number of (interim
and final) analyses. We assume that patients are enrolled in
groups of equal size nK/K.

For each scenario, we simulate S = 10,000 hypothet-
ical trials by first generating θ(1), . . . , θ(S) ∼ N(μ0, ν

2
0).

Next, for each θ(s), trial outcomes are sequentially gener-
ated from N(θ(s), σ2). Interim analyses are performed after
every nK/K outcomes have been observed, and the trial is
stopped if the stopping rule as in Equation (2.2) is satisfied
with γj ≡ γ = 0.95. We record the ̂FDR and ̂FPR as defined
in Equation (2.5). In addition, we record the percentage of
95% credible intervals for θ, calculated as in Section 2.6,
that cover the true values.

Table 4 summarizes the simulation results. Although the
FDR and FPR increase with the number of analyses, ac-
cording to Proposition 2.1, the FDR and FPR are upper
bounded when the statistician’s model is correctly speci-
fied. These theoretical results are corroborated by the sim-

ulations: when ν0 = ν, the ̂FDR is roughly bounded by
1− γ = 5% (due to Monte Carlo errors and a finite number
of simulations, the ̂FDR may sometimes exceed 5%), and
the ̂FPR is always below (1 − γ)/γ = 5.3%. In addition,
when ν0 = ν, the coverage of the 95% credible intervals for
θ is around 95% regardless of K.

In the presence of model misspecification, however,
Bayesian statements may not attain their asserted cover-
age, and the discrepancy becomes larger with more frequent
applications of data-dependent stopping rules. These results
are consistent with the findings in [68] and [63]. When the
assumed prior is more diffuse than the actual distribution
of θ, the FDR and FPR are inflated, and the degree of FDR
and FPR inflation becomes greater when K is larger. For ex-
ample, when ν0 = 0.1, ν = 10, and K = 1000, the ̂FDR and
̂FPR are around 20%. For this reason, we caution against the
use of diffuse priors for decision making if data-dependent
stopping rules are in frequent use and the actual effect sizes
are believed to be small. In addition, when ν0 
= ν, the cov-
erage of the 95% credible intervals for θ is below 95% and
decreases as K increases. Interestingly, an overly conserva-
tive prior (that is more concentrated around zero) results in
low coverage of the credible intervals, while a diffuse prior
has less impact on the coverage.
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From a calibrated Bayesian point of view, simulation
studies of this type can be used to guide the choice of π(θ)
and {γ1, . . . , γK}. Suppose the trial statistician decides to
use a constant threshold value γj ≡ γ = 0.95 and wants
to select ν such that the FDR and FPR of the design are
controlled at below 5% for plausible ν0 and K scenarios (as-
sume μ0 = μ = 0). To achieve this goal for all possible ν0
and K considered here, ν should be set at ≤ 0.1. However,
if one plans to conduct no more than K = 10 analyses, then
setting ν ≤ 1 is sufficient.

We do not present additional numerical studies for the
subjective Bayesian approach, in which case the prior and
threshold values may be chosen based on a subjective belief
rather than simulations.

6. DISCUSSION
We have summarized three perspectives on Bayesian se-

quential designs, namely the frequentist-oriented perspec-
tive, the subjective Bayesian perspective, and the calibrated
Bayesian perspective, and have discussed their implications.
We have reviewed Bayesian sequential designs based on pos-
terior probabilities, posterior predictive probabilities, and
decision-theoretic frameworks. We have also commented on
the role of the LP in sequential trial designs. While the LP
implies that unrealized events are irrelevant to the statistical
evidence about the treatment effect, it gives little guidance
in assessing a decision procedure thus does not preclude the
use of additional information in decision-making.

So far, we have only considered early stopping for effi-
cacy. In practice, it may be desirable to allow for early stop-
ping when interim results suggest the investigational drug
is unlikely to have a clinically meaningful treatment effect
[75]. This is known as early stopping for futility. A sequen-
tial trial design can include a provision for either early effi-
cacy stopping, early futility stopping, or both. Consider the
single-arm trial example. One could stop the trial at anal-
ysis j in favor of the null hypothesis if Pr(θ > 0 | yj) < τj
for some threshold τj . Futility stopping rules do not inflate
the type I error rate; actually, they decrease the type I er-
ror rate. However, futility stopping rules also decrease the
power and increase the false negative rate (FNR) and false
omission rate (FOR) of a design. The futility boundaries
could be specified to either satisfy certain power and type
I error rate requirements (similar to [56]), reflect subjective
beliefs, or achieve desirable FNR, FOR, FDR, and FPR un-
der plausible scenarios.

Two-sided tests and point null hypotheses are very com-
mon in clinical trials. For example, for the single-arm trial
in Section 1.2, one may test

H0 : θ = 0 vs. H1 : θ 
= 0. (6.1)

There have been several criticisms of testing a point null
hypothesis [6], such as the plausibility of θ being equal to
0 exactly. As a result, we have focused on a one-sided test

with a composite null hypothesis (Equation 1.1). Most of our
discussions are still applicable to tests like Equation (6.1),
although from a Bayesian hypothesis testing perspective,
the prior for θ should include a discrete mass at the location
indicated by the point hypothesis.

From a frequentist perspective, the issue of type I er-
ror rate inflation (or multiplicity) can arise from repeatedly
testing a single hypothesis over time, or testing multiple
hypotheses simultaneously [72]. From a subjective Bayesian
perspective, however, repeated hypothesis testing is not nec-
essarily a problem (see Section 2.2), and multiplicity adjust-
ments are needed only when there are multiple tests. It is
worth noting that frequentist and Bayesian philosophies on
multiple testing are also quite different [13, 73].

Several R packages have been developed to facilitate the
use of frequentist and Bayesian sequential designs in clinical
trials. These include gsDesign [1] and gsbDesign [35]. We
also provide, as Supplementary Material, the R program for
implementing the designs reviewed in the paper.

SUPPLEMENTARY MATERIAL
Supplementary Material to “On Bayesian Sequential

Clinical Trial Designs”.
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