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Abstract
As a prominent dimension reduction method for multivariate linear regression, the envelope model has received increased

attention over the past decade due to its modeling flexibility and success in enhancing estimation and prediction efficiencies.
Several enveloping approaches have been proposed in the literature; among these, the partial response envelope model
[57] that focuses on only enveloping the coefficients for predictors of interest, and the simultaneous envelope model [14]
that combines the predictor and the response envelope models within a unified modeling framework, are noteworthy. In
this article we incorporate these two approaches within a Bayesian framework, and propose a novel Bayesian simultaneous
partial envelope model that generalizes and addresses some limitations of the two approaches. Our method offers the
flexibility of incorporating prior information if available, and aids coherent quantification of all modeling uncertainty
through the posterior distribution of model parameters. A block Metropolis-within-Gibbs algorithm for Markov chain
Monte Carlo (MCMC) sampling from the posterior is developed. The utility of our model is corroborated by theoretical
results, comprehensive simulations, and a real imaging genetics data application for the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study.

keywords and phrases: Bayesian envelope model, Multivariate regression, Reducing subspace, Simultaneous envelope,
Partial envelope, Imaging genetics.

1. INTRODUCTION
Consider the standard multivariate linear regression

Y = μY + βTX + εY |X , (1.1)

where the responses Y ∈ R
r and the centered predictors

X ∈ R
p are both multivariate, the means of responses

μY ∈ R
r, the regression coefficients β ∈ R

p×r, and the ran-
dom error vector εY |X ∼ Nr(0,ΣY |X). It has applications
in broad fields of scientific research, including economics [6],
chemistry [35], agriculture [51], engineering [44], bioinfor-
matics [34], etc. Specifically, we consider the application to
the imaging genetics problem (IGP).

Thanks to the rapid technological development in medi-
cal imaging and genome sequencing, the diagnosis, preven-
tion and treatment of mental illness have been greatly im-
proved. Compared with traditional medical imaging analysis
and genome-wide association studies (GWAS) that make use
of only imaging or only genome data and were studied to a
large extent [67, 63], another more promising yet more chal-
lenging study is to directly relate the imaging phenotypes
(IPs) as responses to genotypes (GPs) as predictors of inter-
est, while also considering the effects of some demographic
covariates or other risk factors. This is called IGP and is
less explored in the statistical community [42]. Because of
∗Corresponding author.

the Central Dogma that is often stated as DNA makes RNA
and RNA makes protein, genetic markers should be promis-
ing in revealing the abnormal protein expression in cortical
or sub-cortical structures of brain, whose volumes should
be more informative quantitative traits than simple disease
status.

Some early practices in studying IGP focus on univariate
[54] or voxel-wise type of methods [25], which explores the
relationship between every (voxel, SNP) pair (SNP: Single-
nucleotide polymorphism), or between each individual voxel
and all genetic markers together, respectively. These types of
methods enjoy simplicity and can handle high dimensional
imaging or genomic datasets, but cannot leverage spatial
dependence among voxels. To this end, several multivariate
regression models have been proposed to jointly relate tens
of brain summary measures, like the volumes of Regions of
Interest (ROIs), to hundreds of SNPs [65, 68, 23, 64, 46].
Among them, [46] is the only work that employs the enve-
lope model to IGP, to the best of our knowledge.

As a dimension reduction method developed in the past
decade, the first envelope model [15] aims at providing an
efficient estimator of the regression coefficients β in the mul-
tivariate linear regression (1.1), by assuming that there are
linear combinations of the responses Y that are not related
to the regression, and removing its variation as immaterial
information (see Section 2.2 for more details). With a great
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success in achieving efficient estimation and modeling flexi-
bility, the original envelope model has been adapted or ex-
tended to predictor envelope [12], groupwise envelope [46],
partial response envelope [57], simultaneous envelope [14],
sparsity learning [56], matrix-valued [18] or tensor-valued
[39] responses or predictors, quantile regression [19], gener-
alized linear models [11], etc. The envelope methods were
recently reviewed by [37] and more details were introduced
in [13]. The aforementioned envelope methods are all devel-
oped from the frequentist perspective. However, the litera-
ture addressing Bayesian envelope methods is rare, but still
interesting for its capabilities of incorporating prior informa-
tion into inference, and implementing posterior uncertainty
quantification, compared with the unnatural prior informa-
tion incorporation and the bootstrap or asymptotic variance
in the frequentist setting.

[33] introduced the first framework for the Bayesian enve-
lope model. However, it is hard to apply this framework to
other envelope contexts, since it requires the specific formu-
lation of the response envelope to construct the conjugacy.
Furthermore, sampling from the generalized matrix Bing-
ham distributions and the truncated inverse gamma dis-
tributions is required in this framework, which makes the
MCMC algorithm computationally expensive. Later, [5] pro-
posed a new flexible and handy Bayesian framework for the
envelope model, which bypasses the manifold restriction on
the basis matrix of the envelope space by an unconstrained
matrix re-parameterization. Since all parameters under this
new framework are either vectors, or unconstrained, or pos-
itive definite matrices, the computation is much more effi-
cient without sampling from the generalized matrix Bing-
ham distributions and the truncated inverse gamma distri-
butions.

The rapid development in the envelope family requires a
model to unify various perspectives, and a more clear choice
to practitioners on which envelope model to apply, espe-
cially when we have a particular interest for a subset of
predictors that could be either continuous or discrete or a
mix of them. The existing simultaneous envelope model [14]
integrates both the response and predictor envelopes within
a unified modeling framework. It simultaneously enjoys the
benefits from two envelope components, i.e., more efficient
estimation of the regression coefficients offered by the re-
sponse envelope, and improved prediction efficiency of the
responses obtained by the predictor envelope, but it cannot
focus on the predictors of main interest, and therefore can-
not leverage the idea from the partial response envelope [57]
to obtain further estimation efficiency. More importantly,
without additional assumptions imposed, it is guaranteed to
outperform the predictor or the response envelope only for
the Normal predictors ([14], Propositions 2 and 5). However,
the discrete predictors will not follow the Normal distribu-
tion and including them in the simultaneous envelope by
implicitly regarding them as Normal will lead to biased es-
timates and invalid inference. The partial response envelope

[57] focuses on enveloping only the coefficients of the predic-
tors of main interest X1 (where in (1.1), X is partitioned
into (XT

1 ,X
T
2 )

T , and X1 denotes the predictor of main in-
terest to us and X2 are nuisance covariates), for example the
genetic markers in IGP. Compared with full response enve-
lope [15] that indistinguishably envelopes the coefficients of
all predictors X, enhanced estimation efficiency is possible
by this model since the envelope space could be shrunk if
only concentrating on the coefficients of X1, but it could not
leverage the benefits of the predictor envelope [12], which is
known to have the potential to increase prediction efficiency.
The envelope model that is proposed in this paper could ad-
dress these limitations while still providing a valid inference
procedure.

To address the aforementioned limitations, and improve
the efficiencies for the estimation of the regression coeffi-
cients of main interest (the coefficients of X1, which we de-
note as β1 in (3.2)) and the prediction of the responses (Y
in (3.2)), this paper proposes a new envelope model, called
the simultaneous partial envelope model (3.7)–(3.10), in Sec-
tion 3. The proposed envelope model combines the partial
response envelope model [57] and the simultaneous envelope
model [14] within a more general modeling framework, by
further partitioning the predictors of main interest X1 into
X1C and X1D, the continuous part and the discrete part.
Our proposed envelope model simultaneously imposes the
partial response envelope structure on the coefficients of X1,
and the partial predictor envelope only on the coefficients of
X1C , instead of the coefficients of whole X1. By this con-
struction, our proposed model could address the aforemen-
tioned limitations for the simultaneous and the partial re-
sponse envelopes. Firstly, two envelope components that are
simultaneously imposed on our model are partial envelopes,
which both focus on the predictors of interest only. Secondly,
it avoids the Normal requirement mentioned above for the
discrete predictors in the simultaneous envelope model while
still providing a valid inference, by only imposing the par-
tial response envelope (i.e. no partial predictor envelope) on
the coefficients of X1D. It is also worthy to note that X1C is
Normal with means depending on X1D in our model. Lastly,
to further improve the estimation and prediction efficiencies
upon the partial response envelope, the simultaneous enve-
lope structure is considered in our model for the coefficients
of X1C , which turns out to enhance not only the estimation
of the coefficients of X1C , but also that of the coefficients of
X1D in our simulation (see the comparisons on the estima-
tion of the coefficents of X1D between our method and the
Bayesian partial response envelope in Table 3 and Figure 2),
as a possible synergetic effect.

Our proposed model includes a number of important
models in the envelope family as special cases, including
the (partial) response envelope, the (partial) predictor en-
velope and the simultaneous envelope (see Table 1 for their
relationship). In Section 4, we develop an efficient Bayesian
inference procedure based on [5], which allows convenient
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prior information incorporation and variability quantifica-
tion, compared with the frequentist envelope methods.

The contribution of this paper is fivefold.

1. We propose a new simultaneous partial envelope model
(3.7)–(3.10) that unifies several existing envelope mod-
els as special cases. Our proposed model allows both
predictors of interest X1 and nuisance covariates X2

to be either continuous or discrete or a mix of them.
Compared with any envelopes that our model degener-
ates to, our method provides a more efficient while still
valid estimator for the regression coefficients of X1 and
improved prediction for Y in (3.2). These advantages
address the limitations that are mentioned above for
the simultaneous envelope model [14] and the partial
response envelope model [57]. The corresponding block
Metropolis-within-Gibbs algorithm is developed for the
posterior inference.

2. We establish the theoretical properties including the
posterior propriety for our model and the Harris ergod-
icity for our algorithm.

3. We are the first to investigate the performance of
several popular dimension selection methods together,
among the Bayesian envelope literature, to the best of
our knowledge.

4. We apply our method to an imaging genetics analysis
for the ADNI study. We show the improved prediction
accuracy of our method compared with all other com-
petitors, and obtain some scientifically meaningful find-
ings from posterior selection. By incorporating the weak
imaging genetics relationship as prior information, the
prediction accuracy is further improved and the associ-
ated shrinkage effect is also investigated.

5. We build the R package SIMP that implements our
algorithm, which is available at https://github.com/
yanbowisc/SIMP.git.

Some notations frequently used in this paper are summa-
rized here. For any a = 1, 2, . . ., let PS be a projection matrix
onto a subspace S ⊆ R

a and PS⊥ = Ia−PS be the projection
matrix onto S⊥, where S⊥ denotes the orthogonal comple-
ment of S and Ia denotes the a-dimensional identity matrix.
Let S

a×a
+ denote the class of all a × a real valued positive

definite matrices. Let 1n denote a vector of all ones with
length n. For a matrix A ∈ R

a×a and a subspace E ⊆ R
a,

AE is defined as AE = {Aε : ε ∈ E}. Notations |A|, ‖A‖,
vec(A) and span(A) denote the determinant, the spectral
norm, the vectorization by columns and the column space
of the matrix A respectively. For a1, a2, . . . , an ∈ R and
a square matrix S ∈ R

a×a, we describe a diagonal matrix
by either specifying its diagonal elements by the notation
diag(a1, . . . , an), or using the notation diag{S} to indicate
that the diagonal elements of the square matrix S will be
taken out to constitute this diagonal matrix. Moreover, Sii

denotes the i-th diagonal element of the square matrix S. For
a random vector Y , the distribution of Y | X is interpreted

as the distribution of Y given the fixed value of X for a non-
stochastic vector X, or the distribution of Y conditional on
X for a random vector X. For a, b, c = 1, 2, . . ., and random
vectors X ∈ R

a, Y ∈ R
b, we use Cov((X,Y ) | Z) to de-

note the a × b dimensional covariance matrix of X and Y
conditional on a random (or given a non-stochastic) vector
Z ∈ R

c. If multiple random (or non-stochastic) vectors are
conditional on (or given), they are bracketed together after
the vertical line, like Y | (·) and Cov((X,Y ) | (·)). Also, :=
and X

D
= Y indicate equating by definition and random vec-

tors X and Y are equally distributed respectively. Lastly,
for any x, y ∈ R, x � y indicates that x is much less than
y, while x � y means that x is much greater than y.

The rest of this paper is organized as follows. Section 2 re-
views two existing envelope models, which are prototypes of
two envelope components of our proposed model. Section 3
introduces the definition and the formulation of our pro-
posed simultaneous partial envelope model. Section 4 devel-
ops a Bayesian inference procedure for our proposed model,
with detailed procedure of MCMC algorithm left to Ap-
pendix A. Section 5 establishes the theoretical properties of
our model and algorithm. Section 6 investigates the issue of
model selection for our Bayesian envelope model. Sections 7
and 8 conduct comprehensive simulation studies and investi-
gate a real data application respectively. Section 9 concludes
our paper by further discussions.

2. REVIEW OF THE RESPONSE AND THE
PREDICTOR ENVELOPE MODELS

2.1 Preliminaries
In this section, we introduce two definitions and one

proposition, which are necessary for the formal introduction
of the response envelope model [15] and the predictor enve-
lope model [12]. For convenience, the definition of reducing
subspace [10] is firstly introduced.

Definition 1 ([10], Chapter II, Definition 3.5). A subspace
E ⊆ R

a is called a reducing subspace of Σ ∈ R
a×a for some

integer a = 1, 2, . . ., if ΣE ⊆ E and ΣE⊥ ⊆ E⊥.

If E is a reducing subspace of Σ, there is a crucial decom-
position of Σ as illustrated in the following proposition.

Proposition 1 ([15], Proposition 2.1). E is a reducing
subspace of Σ if and only if Σ could be decomposed as
Σ = PEΣPE +PE⊥ΣPE⊥ , where PE and PE⊥ are the projec-
tion matrices onto subspaces E and E⊥.

Next, for a positive definite matrix M, we introduce the
general definition of the M-envelope of a subspace S. It will
be used in defining the response and the predictor enve-
lope models in Section 2.2 and Section 2.3 and our proposed
model in Section 3.

Definition 2 ([15], Definition 2.1). Let a matrix M ∈ S
a×a
+

and a subspace S ⊂ span(M). The M-envelope of S is the
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intersection of all reducing subspaces of M that contain S,
and is denoted by EM(S).

For convenience, we will frequently use the notation
EM(S) to define envelope structures in the rest of this pa-
per. Below we briefly review the response envelope model
[15] in Section 2.2, and mention how this idea was adapted
to define the predictor envelope model [12] in Section 2.3.

2.2 The Response Envelope Model
In this section, we review the definitions and the coordi-

nate form of the response envelope model [15], which aims
to improve the estimation efficiency of β in (1.1) by assum-
ing some linear combinations of Y do not depend on X.
Here, we assume X in (1.1) to be non-stochastic. The effi-
ciency gains come from removing those redundant variation
in Y by estimating the associated linear combination coeffi-
cients. Formally, the response envelope model is defined by
the smallest subspace EY |X that satisfies Condition 1.

Condition 1 ([15], p. 928). Assume in (1.1), the subspace
SY |X ⊂ R

r satisfies

(a) PS⊥
Y |X

Y | X D
= PS⊥

Y |X
Y ,

(b) Cov((PSY |XY ,PS⊥
Y |X

Y ) | X) = 0.

Condition 1(a) assumes the distribution of PS⊥
Y |X

Y does
not depend on the value of X. Meanwhile, Condition 1(b)
excludes the indirect effect of X on PS⊥

Y |X
Y via PSY |XY ,

by assuming PSY |XY and PS⊥
Y |X

Y are uncorrelated given
X. Therefore, PS⊥

Y |X
Y only contains immaterial informa-

tion, and PSY |XY carries all the material information and
possibly some extra immaterial information for the regres-
sion. Instead of using any satisfied SY |X , the definition of
the response envelope model ensures the uniqueness of EY |X
by taking it to be the smallest one, i.e. the intersection of all
satisfied subspaces. At the same time, by using EY |X rather
than any SY |X , immaterial information is guaranteed to be
not contained in PEY |XY anymore, and could be removed to
the largest degree. So we call PEY |XY the material part and
PE⊥

Y |X
Y the immaterial part of Y respectively. Although

intuitive, it is not easy to formulate the response envelope
model under Condition 1. [15] derived the following Con-
dition 2, which is equivalent to Condition 1. The response
envelope model could be equivalently defined by Condition 2
with subspace EY |X , for (1.1).

Condition 2 ([15], Definition 2.1). Assume in (1.1), the
subspace SY |X ⊂ R

r satisfies

(a′) span(βT ) ⊆ SY |X ,
(b′) ΣY |X = PSY |XΣY |XPSY |X + PS⊥

Y |X
ΣY |XPS⊥

Y |X
, i.e.

SY |X is a reducing subspace of ΣY |X .

Condition 2 assumes that SY |X is a reducing subspace
of ΣY |X that contains span(βT ). Recalling Definition 2,

EY |X is exactly EΣY |X (span(βT )), i.e. the ΣY |X -envelope
of span(βT ). Therefore, the response envelope model could
be defined directly by EΣY |X (span(βT )) for (1.1).

Suppose that the orthonormal basis matrices of EY |X and
E⊥
Y |X are Γ and Γ0 respectively. Then according to Con-

dition 2 with subspace EY |X , the coordinate form of the
response envelope model is

Y = μY + ΓηX + εY |X , (2.1)
ΣY |X = ΓΔΓT + Γ0Δ0Γ

T
0 , (2.2)

where η, Δ = ΓTΣY |XΓ and Δ0 = ΓT
0 ΣY |XΓ0 carry the

coordinates of βT relative to Γ, ΣY |X relative to Γ and
Γ0 respectively. The response envelope model could provide
significant efficiency gains when ‖Δ‖ � ‖Δ0‖, since there
will be a large amount of immaterial information for removal
under this scenario.

2.3 The Predictor Envelope Model
In this section, we review the predictor envelope model

[12] by showing how the idea of the response envelope could
be adapted to reduce the predictor space. The predictor en-
velope model has the potential to improve the prediction of
Y in (1.1).

To define the predictor envelope, we assume X to
be stochastic following N (0,ΣX). Then (1.1) is called
the predictor envelope model if the envelope structure
EΣX

(span(β)) is imposed. Unlike the response envelope,
EΣX

(span(β)) is the intersection of all reducing subspaces of
ΣX that contain span(β). Similarly, the material and imma-
terial parts of X could be defined. The immaterial part of X
is assumed not to carry the information for the regression.
Suppose the orthonormal basis matrices of EΣX

(span(β))
and its orthogonal complement subspace are Υ and Υ0,
then the coordinate form of the predictor envelope model
is

Y = μY +ψTΥTX + εY |X , (2.3)
ΣX = ΥΞΥT +Υ0Ξ0Υ

T
0 , (2.4)

where ψ, Ξ = ΥTΣXΥ and Ξ0 = ΥT
0 ΣXΥ0 carry the

coordinates of β relative to Υ, ΣX relative to Υ and Υ0

respectively. The large efficiency gains could be obtained
when ‖Ξ‖ � ‖Ξ0‖.

3. PROPOSED SIMULTANEOUS PARTIAL
ENVELOPE MODEL

As mentioned in Section 1, suppose that our predictors
X ∈ R

p could be partitioned into three parts

X =

(
X1

X2

)
=

⎛⎝X1C

X1D

X2

⎞⎠ ,
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where X1 = (XT
1C ,X

T
1D)T ∈ R

p1 is the predictors of main
interest to us in the multivariate linear regression, with
its continuous and discrete parts being X1C ∈ R

pC and
X1D ∈ R

pD respectively (p1 = pC + pD), while X2 ∈ R
p2

denotes the set of predictors that is not of main interest
(p = p1+p2). By separating X1D with X1C , we could avoid
the Normality restrictions for X1D and hence whole X1,
while still providing a valid simultaneous envelope estimator
for the coefficients of X1C . Assuming predictors are not cen-
tered, the standard multivariate linear model can be written
as

Y = μY + βT
1C(X1C − μ1C) + βT

1D(X1D − μ1D)+

βT
2 (X2 − μ2) + εY |X , (3.1)

where μY ∈ R
r, μ1C ∈ R

pC , μ1D ∈ R
pD and μ2 ∈ R

p2 de-
note the unknown means of Y , X1C , X1D and X2 respec-
tively, β1C ∈ R

pC×r, β1D ∈ R
pD×r and β2 ∈ R

p2×r denote
the unknown regression coefficients of X1C , X1D and X2,
and εY |X is the random error vector. Specifically, combining
β1C and β1D, β1 = (βT

1C ,β
T
1D)T denotes the coefficients of

main interest to us. Assume X1C to be stochastic, and X1D

and X2 to be non-stochastic, with sample means X1D and
X2. Replacing μ1D and μ2 with X1D and X2 respectively,
(3.1) is equal to (3.2)

Y = μY + βT
1C(X1C − μ1C) + βT

1D(X1D −X1D)+

βT
2 (X2 −X2) + εY |X . (3.2)

Remark. For the purpose of expositional simplicity, we im-
plicitly assume the discrete predictors in X1D and X2 to be
quantitative variables in (3.1), (3.2) and later in (3.7). How-
ever, it is worthy to note that categorical predictors, either
nominal or ordinal, are still applicable to our model by in-
cluding their dummy variables into X1D and X2 instead.
In either case, the centering for these two predictors serves
to ensure that μY could be interpreted as the expectation
(conditional on model parameters) of the sample means of
Y .

We firstly impose some distributional assumptions on
(3.2). Assume εY |X ∼ Nr(0,ΣY |X). Given X1D, assume

that X1C = μ1C +γT (X1D −X1D)+ εC|D for an unknown
γ ∈ R

pD×pC , where εC|D ∼ NpC
(0,ΣC|D) and is indepen-

dent of εY |X . Rigorously speaking, μ1C in (3.2) should only
be interpreted as the expectation of X1C (rather than the
expectation of X1C) conditional on model parameters un-
der this assumption, due to the non-stochasticity of X1D.
However, we will keep using μ1C to avoid abusing notations.

To provide the efficiency gains on estimating β1 and pre-
dicting Y , we combine the advantages of the response en-
velope on the estimation and the predictor envelope on the
prediction, by further imposing the following two partial en-
velope structures on (3.2) (by Definition 2) simultaneously:

(i) Partial predictor envelope: EΣC|D(L), i.e. the ΣC|D-
envelope of L and is shortened to EC|D, with dimension
dX (d ≤ dX ≤ pC),

(ii) Partial response envelope: EΣY |X (R), i.e. the ΣY |X -
envelope of R and is shortened to EY |1, with dimension
dY (d1 ≤ dY ≤ r),

where L and R denote span(β1C) and span(βT
1 ), and d

and d1 denote rank(β1C) and rank(β1) respectively. (3.2) is
called the Simultaneous Partial Envelope Model (SIMP), if
these distributional assumptions and envelope structures are
imposed. Note that SIMP avoids the Normality requirement
for the whole X1 (i.e., no other assumptions on X1D be-
sides the non-stochasticity, and X1C is Normal with means
depending on X1D, which relaxes the identical Normal dis-
tribution assumption of each observation of predictors in
[14]) by imposing EY |1 on the row space of whole β1 while
EC|D on the column space of only β1C .

It is worthy to note that SIMP is a broad class of en-
velopes that degenerates to several popular envelope mod-
els under certain conditions as listed in Table 1. Below, we
introduce Conditions 3 and 4 in Section 3.1, which could
equivalently define SIMP and will offer more intuitions on
where the efficiency gains come from by assuming these two
envelope components. For the convenience of developing the
Bayesian inference procedure in Section 4, we give the co-
ordinate form of SIMP in (3.7)–(3.10) in Section 3.3. For
the preparation of Section 3.3, Section 3.2 will introduce a
re-parameterization trick, to avoid the direct Bayesian in-
ference on matrix parameters living in the Stiefel manifold.

Table 1. Relationship between SIMP (3.7)–(3.10) and several other envelope models. The meanings of r, pC , pD, p1 and p2
are introduced in (3.1), and dX and dY are dimensions of EC|D and EY |1 respectively. The effective number of parameters for
each model is also listed. Note for the response and the partial response envelopes, X1D is required to be non-stochastic only

and not necessary to be discrete.
Conditions for (3.7)–(3.10) Effective number of parameters

SIMP N.A. dY (dX + pD) + r(r + 2p2 + 3)/2 + pC(pC + 3)/2
response envelope [15] pC = p2 = 0 dY p+ r(r + 3)/2
predictor envelope [12] pD = p2 = 0 and dY = r r(r + 2dX + 3)/2 + p(p+ 3)/2
simultaneous envelope [14] pD = p2 = 0 dY dX + r(r + 3)/2 + p(p+ 3)/2
partial response envelope [57] pC = 0 dY p1 + r(r + 2p2 + 3)/2
partial predictor envelope [45] p2 = 0 and dY = r r(r + 2dX + 2pD + 3)/2 + pC(pC + 3)/2
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3.1 Equivalent Conditions for SIMP

In this section, we introduce Conditions 3 and 4, which
can equivalently define SIMP for (3.2). These two condi-
tions will not be used in the formulation of SIMP in Sec-
tion 3.3, but will offer some intuitions on the source of ef-
ficiency gains. The equivalence between the conditions in
this section and the envelope structures that we have given
for SIMP (by Definition 2) shares the same reason with the
equivalence between Conditions 1 and 2 for the response
envelope model in Section 2.2.

Condition 3. Assume in (3.2), the subspace SC|D ⊂ R
pC

satisfies,

(i) Cov((Y ,PS⊥
C|D

X1C) | (PSC|DX1C ,X1D,X2)) = 0,
(ii) Cov((PSC|DX1C ,PS⊥

C|D
X1C) | X1D) = 0.

Condition 4. Assume in (3.2), the subspace SY |1 ⊂ R
r

satisfies,

(I) PS⊥
Y |1

Y | (X1,X2)
D
= PS⊥

Y |1
Y | X2,

(II) Cov((PSY |1Y ,PS⊥
Y |1

Y ) | (X1,X2)) = 0.

Condition 3 excludes the direct and indirect partial ef-
fects (via PSC|DX1C) of PS⊥

C|D
X1C on Y . The intersection

of all subspaces that satisfy Condition 3 gives the same par-
tial predictor envelope space EC|D as defined previously by
EΣC|D (L). We call PEC|DX1C and PE⊥

C|D
X1C the material

part and immaterial part of X1C . Given X1D and X2, the
immaterial part of X1C is assumed not to affect Y by Con-
dition 3. Similarly, the partial response envelope space EY |1
previously defined by EΣY |X (R) is also the intersection of
all subspaces that satisfy Condition 4. We call PEY |1Y and
PE⊥

Y |1
Y the material part and immaterial part of Y . Given

X2, the immaterial part of Y is assumed not to be affected
by X1.

3.2 Re-Parameterization of the Basis Matrices
We only consider the case of 0 < dX < pC and 0 < dY <

r in this section. When dX ∈ {0, pC} or dY ∈ {0, r}, we
can simply take the orthonormal bases of envelope space
EC|D or EY |1 and the orthogonal complement subspace to
be either null or the identity matrix. When 0 < dX < pC
and 0 < dY < r, let L ∈ R

pC×dX , L0 ∈ R
pC×(pC−dX),

R ∈ R
r×dY and R0 ∈ R

r×(r−dY) denote the orthonormal
bases of EC|D, E⊥

C|D, EY |1 and E⊥
Y |1, respectively.

To avoid the difficulty of direct Bayesian inference on L,
L0, R and R0, which all live in the Stiefel manifold, re-
parameterization of L, L0, R and R0 is considered in the
coordinate form of SIMP in Section 3.3. We illustrate the
re-parameterization of L and L0 here, and this idea can be
similarly exploited to re-parameterize R and R0. Let L1 be
the matrix formed by the upper dX rows of L, and L2 be
the matrix that contains the remaining rows. Without loss
of generality, we assume that L1 is nonsingular. Otherwise,

we could reorder the rows of L to make L1 nonsingular.
Then,

L =

(
L1

L2

)
=

(
IdX

A

)
L1 := CdX(A)L1, (3.3)

where A = L2L
−1
1 and CdX(A) =

(
IdX

A

)
. [56] shows that

A depends on L only through span(L) and there is a one-to-
one correspondence between EC|D and A. [8] further shows
that if CdX(A) is a basis of EC|D, then

DpC−dX(A) =

(
−AT

IpC−dX

)
(3.4)

is a basis of E⊥
C|D. Therefore, after normalization,

L(A) = CdX(A)
(
CdX(A)TCdX(A)

)−1/2

and

L0(A) = DpC−dX(A)
(
DpC−dX(A)TDpC−dX(A)

)−1/2

are a pair of orthonormal bases of EC|D and E⊥
C|D respec-

tively. The re-parameterization

R(B) = CdY (B)
(
CdY (B)TCdY (B)

)−1/2

and

R0(B) = Dr−dY (B)
(
Dr−dY (B)TDr−dY (B)

)−1/2

by an unconstrained matrix B ∈ R
(r−dY )×dY can be simi-

larly constructed.

3.3 Coordinate Form of SIMP
Like (2.1)–(2.2) for the response envelope model and

(2.3)–(2.4) for the predictor envelope model, we intend
to give the coordinate form of SIMP explicitly as in
(3.7)–(3.10), i.e., formulate two envelope structures EC|D
and EY |1 by analytical expressions for β1C , β1D, ΣC|D and
ΣY |X , and correspondingly rewrite (3.2), for the prepara-
tion of the Bayesian inference in Section 4.

Let β1C = UDVT be the singular value decomposition,
where U ∈ R

pC×d and V ∈ R
r×d are semi-orthogonal ma-

trices, and D = diag(λ1, . . . , λd), with λi ≥ 0, i = 1, . . . , d,
being d singular values of β1C where d = rank(β1C).
Since L = span(β1C) = span(U) and R = span(βT

1 ) =
span(βT

1C ,β
T
1D) = span(V,βT

1D), according to the defini-
tions of EC|D and EY |1 by Definition 2 at the start of Sec-
tion 3, U = LO and V = RP for some O ∈ R

dX×d and
P ∈ R

dY ×d. Hence the coordinate form of β1C is

β1C = (LO)D(RP)T := LηT
CR

T , (3.5)
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where ηC = PDOT ∈ R
dY ×dX is the coordinate of βT

1C

relative to R and LT . Also,

βT
1D = RηD, (3.6)

for some ηD ∈ R
dY ×pD , which carries the coordinate of βT

1D

relative to R. Then the coordinate form of SIMP is given
by

Y = μY +R(B)ηCL(A)T (X1C − μ1C) +R(B)ηD

(X1D −X1D) + βT
2 (X2 −X2) + εY |X , (3.7)

X1C = μ1C + γT (X1D −X1D) + εC|D, (3.8)
ΣC|D = L(A)ΩL(A)T + L0(A)Ω0L0(A)T , (3.9)
ΣY |X = R(B)ΦR(B)T +R0(B)Φ0R0(B)T , (3.10)

where β1C = L(A)ηT
CR(B)T and β1D = ηT

DR(B)T , as
illustrated in (3.5) and (3.6). This implies that the rows
and columns of β1C depend on the partial predictor and
partial response envelopes only, and the columns of β1D

depend on the partial response envelope only. Note that
Ω = L(A)TΣC|DL(A), Ω0 = L0(A)TΣC|DL0(A), Φ =
R(B)TΣY |XR(B) and Φ0 = R0(B)TΣY |XR0(B) carry
the coordinates of ΣC|D relative to L(A) and L0(A), and
ΣY |X relative to R(B) and R0(B) respectively. Multiply
R(B)T or R0(B)T on both sides of (3.7),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R(B)TY = R(B)TμY + ηC(L(A)T (X1C − μ1C))+

ηD(X1D −X1D) +R(B)TβT
2 (X2 −X2)+

R(B)T εY |X ,

R0(B)TY = R0(B)TμY +R0(B)TβT
2 (X2 −X2)+

R0(B)T εY |X .

This pair of equations shows that X2 affects both material
and immaterial parts of Y , X1D affects only the material
part of Y , and only the material part of X1C affects the
material part of Y only. The estimation of β1C is benefitted
from removing the redundant variations of both R0(B)TY
and L0(A)TX1C , whereas the efficiency gains for estimating
β1D only come from removing the redundant variation of
R0(B)TY .

Inherited from the (partial) predictor and the (partial) re-
sponse envelope models, the partial predictor envelope com-
ponent of SIMP offers large efficiency gains when ‖Ω‖ �
‖Ω0‖, and significant advantages of the partial response en-
velope component require ‖Φ‖ � ‖Φ0‖.

4. BAYESIAN INFERENCE
In this section, we develop a Bayesian procedure for the

statistical inference of SIMP, hence our method is called the
Bayesian simultaneous partial envelope model. It is imple-
mented through sampling from the posterior distribution of
parameters. The determination of the posterior distribution
requires both the likelihood function and prior distributions.

Suppose that we have n independent observations
D = {Yi,X1C,i,X1D,i,X2,i}ni=1 from SIMP. Let Y =
(Y1, . . . ,Yn)

T ∈ R
n×r, X1C = (X1C,1, . . . ,X1C,n)

T ∈
R

n×pC , X1D = (X1D,1, . . ., X1D,n)
T ∈ R

n×pD and X2 =
(X2,1, . . . ,X2,n)

T ∈ R
n×p2 be data matrices. For nota-

tional simplicity, we consider standardized data matrices
Ỹ = Y−1nμ

T
Y , X̃1C = X1C −1nμ

T
1C , X̃1D = X1D −1nX

T

1D

and X̃2 = X2 − 1nX
T

2 for Y, X1C , X1D and X2, respec-
tively. Then, for fixed envelope dimensions dX and dY , the
log-likelihood function for SIMP (3.7)–(3.10) is given by

l(Θ) = const − n

2
log(|Ω|)− n

2
log(|Ω0|)−

1

2
tr
{
(X̃1C−

X̃1Dγ)
(
L(A)ΩL(A)T + L0(A)Ω0L0(A)T

)−1

(X̃1C − X̃1Dγ)T
}
− n

2
log(|Φ|)− n

2
log(|Φ0|)−

1

2
tr
{(

Ỹ− X̃1CL(A)ηT
CR(B)T − X̃1DηT

DR(B)T−

X̃2β2

)(
R(B)ΦR(B)T +R0(B)Φ0R0(B)T

)−1(
Ỹ− X̃1CL(A)ηT

CR(B)T − X̃1DηT
DR(B)T−

X̃2β2

)T}
, (4.1)

where const denotes a constant which does not depend on
parameters of the model, Θ = {μ1C , μY , β2, γ, ηC , ηD,
A, B, Ω, Ω0, Φ, Φ0}.

To perform Bayesian inference on Θ related to SIMP, we
put the following prior distributions on Θ:

π(μ1C ,μY ) ∝ 1,

β2 | Φ,Φ0,B ∼ MN p2,r

(
M−1Z,M−1,ΣY |X

)
,

γ | Ω,Ω0,A ∼ MN pD,pC

(
Λ−1F,Λ−1,ΣC|D

)
,

Ω ∼ IWdX
(ΨX , wX),

Ω0 ∼ IWpC−dX
(ΨX0 , wX0),

Φ ∼ IWdY
(ΨY , wY ),

Φ0 ∼ IWr−dY
(ΨY0 , wY0),

A ∼ MN pC−dX ,dX
(A0,KA,ΣA),

B ∼ MN r−dY ,dY
(B0,KB,ΣB),

ηC | Φ ∼ MN dY ,dX

(
WE−1,Φ,E−1

)
,

ηD | Φ ∼ MN dY ,pD

(
TQ−1,Φ,Q−1

)
,

where MN and IW denote Matrix normal and Inverse-
Wishart distributions. See Appendix E for the detailed
introduction of these two distributions. Here we implic-
itly assume A0 ∈ R

(pC−dX)×dX , B0 ∈ R
(r−dY )×dY , Z ∈

R
p2×r, F ∈ R

pD×pC , W ∈ R
dY ×dX , T ∈ R

dY ×pD ,
wX > dX − 1, wX0 > pC − dX − 1, wY > dY − 1,
wY0 > r − dY − 1 and M ∈ S

p2×p2

+ , Λ,Q ∈ S
pD×pD

+ ,
ΨX ,ΣA,E ∈ S

dX×dX
+ , ΨY ,ΣB ∈ S

dY ×dY
+ , ΨX0 ,KA ∈

S
(pC−dX)×(pC−dX)
+ , ΨY0 ,KB ∈ S

(r−dY )×(r−dY )
+ . The prior

information for the parameters could be easily incorporated
through these hyperparameters. For example, if we know
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a priori that the partial predictor envelope EC|D is likely
to be Êprior

C|D , then we could compute Âprior from the ba-
sis of Êprior

C|D by (3.3), and set A0 as Âprior. Our confidence
about the prior of A is encoded in KA and ΣA. Specifi-
cally, the prior covariance matrices for the i-th row and the
j-th column of A are KA,iiΣA and ΣA,jjKA respectively,
where KA,ii and ΣA,jj are the i-th and j-th diagonal el-
ements of KA and ΣA, and the small KA,ii’s or ΣA,jj ’s
can reflect our strong prior belief of the specific row(s) or
column(s) of Âprior. The Bayesian inference is made via
the Metropolis-within-Gibbs algorithm to generate the sam-
ple from the posterior distribution of the parameters Θ.
A number of posterior samples at early iterations are dis-
carded as burn-in. Suppose the retained posterior samples
are D∗ = {Θ(s)}Ss=1 := {μ(s)

1C , μ
(s)
Y , β

(s)
2 , γ(s), η

(s)
C , η

(s)
D ,

A(s), B(s), Ω(s), Ω(s)
0 , Φ(s), Φ(s)

0 }Ss=1 with sample size S.
The algorithm is provided in Appendix A, and the warm
start initial estimator that we propose for the MCMC algo-
rithm is detailed in Appendix B.

5. THEORETICAL PROPERTIES
In this section, we establish two theoretical properties of

our method. We first establish the propriety of the joint
posterior density of all parameters in Theorem 1, although
the priors of μ1C and μY are improper. Proofs are left to
Appendix D.

Theorem 1. The posterior density of (μ1C ,μY ,β2,γ,ηC ,
ηD, A, B, Ω, Ω0, Φ, Φ0) with respect to the Lebesgue mea-
sure on R

PC ×R
r ×R

p2×r ×R
pD×pC ×R

dY ×dX ×R
dY ×pD ×

R
(pC−dX)×dX×R

(r−dY )×dY ×S
dX×dX
+ ×S

(pC−dX)×(pC−dX)
+ ×

S
dY ×dY
+ × S

(r−dY )×(r−dY )
+ is proper.

Theorem 2 establishes the Harris ergodicity of the
Metropolis-within-Gibbs algorithm developed for the
Bayesian inference of SIMP. This property ensures the
asymptotic convergence of the Markov chain generated by
our algorithm to the joint posterior distribution, irrespective
of the starting points. This convergence may fail on a set of
measure zero without the guarantee of this property. De-
spite measure zero, some choices for starting points in this
pathological null set can arise naturally, as illustrated in [48]
for example. Technical details including definitions for prob-
abilistic terminologies and proofs are left to Appendix D.

Theorem 2. Whenever 0 ≤ dX ≤ pC and 0 ≤ dY ≤ r, the
Markov chain generated by the Metropolis-within-Gibbs al-
gorithm for the posterior sampling of Θ in SIMP, as detailed
in Appendix A, is Harris ergodic, i.e. (a) φ-irreducible with
respect to some measure φ, (b) Aperiodic, and (c) Harris
recurrent.

6. SELECTION OF ENVELOPE
DIMENSIONS

To effectively search the envelope dimensions, we first se-
lect the minimum possible dimension of two envelope com-
ponents, which is the rank of β1C , and narrow down the
range of dimensions to be searched to save the computa-
tional cost.

6.1 Selecting d = rank(β1C)

To determine d, we adapt the Bura-Cook estimator [4]
to our model setting. This estimator includes a sequence
of Chi-squared tests. For k = 0, 1, . . . ,min(pC , r) − 1, the
test statistic is Tk = n

∑min(pC ,r)
j=k+1 ϕj , where ϕ1 ≥ · · · ≥

ϕmin(pC ,r) are eigenvalues of

β̂1C,std =
{
(n− pC − 1)/n

}1/2
S
1/2
1C β̂RY |1D,2|1CS

−1/2
RY |1D,2|1C ,

where S1C is the sample covariance matrix of X1C . The
residuals of the regression from Y on X1D and X2 are re-
gressed on X1C again, and the estimated regression coeffi-
cients and residual sample covariance matrix are β̂RY |1D,2|1C
and SRY |1D,2|1C respectively. Hereinafter, if we don’t men-
tion specifically for the method of a regression, it always
refers to the frequentist ordinary least squares. [4] shows
Tk follows the χ2

(pC−k)(r−k) distribution under the null
hypothesis that rank(β1C) is equal to k. For each k =
0, 1, . . . ,min(pC , r) − 1, we compare Tk with the upper α
quantile of the χ2

(pC−k)(r−k) distribution, where α is the
pre-specified significance level, and default to be 0.05 in our
numerical studies. We choose d as the first non-significant
value of k or d = min(pC , r) otherwise. The Bura-Cook esti-
mator exhibits excellent ability in selecting d, as illustrated
in the third column of Table 2. Details of the simulation
set-up and numerical performance are introduced in Section
7.1.

6.2 Selecting Envelope Dimensions
Dimensions dX and dY should be specified before fit-

ting SIMP. In Section 7.1, we investigate the performance
of Bayesian cross-validation (CV) and four information cri-
teria, Akaike information criterion (AIC-MCMC), Bayesian
information criterion (BIC-MCMC), Deviance information
criterion (DIC) and Watanabe-Akaike information crite-
rion (WAIC) in selecting these two envelope dimensions for
SIMP. They are selected for their popularity in the Bayesian
literature. Dimension selection is critical in envelope model-
ing. To the best of our knowledge, we are the first to investi-
gate the performance of these interesting methods together
for the dimension selection of the Bayesian envelope model,
while previous Bayesian envelope literature simply chooses
one of them directly [5, 38]. For each fixed dX and dY ,

AIC−MCMC = −2l
(
Θ̂max

dX ,dY

)
+ 2K(dX , dY ), (6.1)

BIC−MCMC = −2l
(
Θ̂max

dX ,dY

)
+ log(n)K(dX , dY ), (6.2)
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where l(Θ̂max
dX ,dY

) is the largest log-likelihood value attained
by MCMC samples after burn-in, with envelope dimen-
sions fixed at dX and dY for associated parameters, and
K(dX , dY ) = dY (dX+pD)+r(r+2p2+3)/2+pC(pC+3)/2 is
the effective number of free parameters in SIMP. Note that
the definitions of AIC-MCMC and BIC-MCMC here are
slightly different from the ones that readers might be used
to in the frequentist setting, where we replace the maximum
likelihood estimates of the parameters by the empirical max-
imizers in the retained MCMC samples. Definitions of DIC,
WAIC and Bayesian CV involve more notations, and hence
are left to Appendix F. We choose dX and dY as the mini-
mizers of either the minus of the average out-of-sample esti-
mate of the log predictive density for the Bayesian CV (see
details in Appendix F), or one of these four information cri-
teria, among each pair of dX = d̂, . . . , pC and dY = d̂, . . . , r
by the grid search, where d̂ is the estimate of d from the
Bura-Cook estimator introduced in Section 6.1.

7. SIMULATION STUDY
7.1 Performance of the Envelope Dimensions

Selection
In this section, we investigate the numerical performance

of the dimension selection methods for SIMP, which are in-
troduced in Section 6.2. We fix r = pC = 8, pD = p2 = 2,
and we consider four cases where true dimensions (dX , dY )
are (2, 2), (6, 2), (2, 6) or (6, 6), with their corresponding ef-
fective numbers of parameters being 112, 120, 128 and 152.
Three sample sizes, 150, 300 and 500, are considered, given
the magnitude of the effective numbers of parameters. We
generate Ω, Ω0, Φ and Φ0 all as diagonal matrices, with
their associated L1,1 norms being 100, 0.5, 1 and 10, and
the assignment proportions to each diagonal element are
generated from Dirichlet distributions with shape vectors of

all 5, 5, 1 and 1 respectively. Entries of β2, γ, ηC , ηD are
generated independently from Unif(−2, 2), and those of A
and B are from Unif(−1, 1) independently. All elements
of μ1C and μY are independently from Unif(0, 10). Co-
variates of X1D are generated independently from discrete
Unif{0, 1, 2}, and samples for X2 are independently from
Np2(μ2,Σ2) with μ2 = (2, 5)T , and Σ2 as a realization from
IWp2(Ip2 , p2).

For our method, we specify the hyperparameters Z, F,
W, T, A0 and B0 to be zero matrices, M, Λ, E and Q to
be 10−6 times the identity matrices, KA, KB, ΣA and ΣB

to be 106 times the identity matrices, wX , wX0 , wY and
wY0 to be the row numbers of Ω, Ω0, Φ and Φ0 respec-
tively, and ΨX , ΨX0 , ΨY and ΨY0 to be identity matrices
multiplied by 10−6 and their respective degrees of freedom
(correspondingly, wX , wX0 , wY and wY0). The MCMC al-
gorithm for our method is run for 20,000 iterations with the
first 50% iterations as burn-in. For each case, their perfor-
mance is averaged over 500 repetitions. Percentages that the
Bura-Cook estimator correctly identifies d and each of five
methods that correctly identifies true dX or dY individually
or true (dX , dY ) jointly are listed in Table 2.

Results in Table 2 reveal the advantage of BIC-MCMC
in selecting dX and dY for SIMP, among various settings
of true dX and dY and sample sizes, except when dX = 6,
dY = 2 and the sample size is small. It suggests that the ex-
cellent performance of BIC-MCMC may need at least mod-
erate sample sizes. AIC-MCMC and WAIC also perform rel-
atively well in the large dX and large dY setting. These ob-
servations for BIC-MCMC that needs large sample size to
respond, and the better performance of AIC-MCMC under
large envelope dimensions are consistent with the previous
findings for envelope models ([58]). Compared with under-
estimation, a little over-estimating of these two envelope
dimensions is acceptable, since only some estimation effi-
ciency, rather than the material information, is lost [5]. The

Table 2. Percentages that the Bura-Cook estimator correctly identifies d (Column 3), and each of five methods correctly
identifies dX or dY individually or the (dX , dY ) pair (Columns 4-8) out of 500 repetitions. Among five methods, the best one

for selecting (dX , dY ) pair under each scenario is highlighted in bold face.

(dX , dY ) n B-C AIC-MCMC BIC-MCMC DIC WAIC 5-fold CV

(2, 2)
150 0.99 0.37/0.65/0.29 0.85/0.98/0.84 0.00/0.20/0.00 0.00/0.24/0.00 0.58/0.56/0.26
300 1.00 0.35/0.63/0.25 0.92/0.99/0.91 0.00/0.19/0.00 0.00/0.20/0.00 0.54/0.61/0.27
500 1.00 0.44/0.68/0.35 0.96/0.99/0.95 0.00/0.15/0.00 0.00/0.24/0.00 0.53/0.63/0.30

(6, 2)
150 0.98 0.51/0.79/0.41 0.42/0.98/0.40 0.07/0.15/0.01 0.54/0.30/0.18 0.08/0.09/0.01
300 0.99 0.59/0.84/0.49 0.66/0.99/0.66 0.03/0.16/0.00 0.55/0.28/0.15 0.08/0.06/0.01
500 0.99 0.61/0.87/0.53 0.75/0.99/0.75 0.02/0.13/0.00 0.53/0.27/0.15 0.15/0.05/0.01

(2, 6)
150 0.99 0.50/0.79/0.39 0.99/0.99/0.98 0.00/0.36/0.00 0.04/0.71/0.03 0.41/0.01/0.01
300 1.00 0.55/0.81/0.45 0.99/1.00/0.99 0.00/0.31/0.00 0.02/0.72/0.01 0.40/0.08/0.04
500 1.00 0.63/0.81/0.51 1.00/1.00/0.99 0.00/0.31/0.00 0.01/0.69/0.01 0.44/0.16/0.08

(6, 6)
150 0.99 0.90/0.92/0.83 0.99/0.99/0.99 0.12/0.44/0.05 0.89/0.91/0.82 0.64/0.82/0.52
300 1.00 0.91/0.94/0.86 1.00/1.00/1.00 0.08/0.51/0.05 0.90/0.90/0.81 0.61/0.76/0.44
500 0.99 0.89/0.95/0.85 0.99/0.99/0.99 0.05/0.46/0.01 0.87/0.88/0.78 0.57/0.71/0.41
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Figure 1: Left: Selection frequencies of dX and dY (Rows 1 and 2) of five criteria, for different settings of true (dX , dY )

(Columns 1–4). Colors represent the selection frequency; Right: MSE and estimated variances (Var) of β̂1 from SIMP
across all possible choices of dY (Row 1) or dX (Row 2) with dX or dY fixed at 2 (the true value) respectively. The
horizontal blue dotted line in the figure that is at the bottom of the right panel shows the MSE of β̂1 from the frequentist
partial response envelope with the envelope dimension as 2. Here the results of two panels are based on the sample size
as n = 300 over 500 repetitions. Results with n = 150 and n = 500 are similar.

right panel of Figure 1 illustrates this phenomenon, since
it is observed that the estimation biases (i.e., the square
root of the vertical gaps between the green and the red
lines, due to the Bias-variance decomposition) are large for
underestimated envelope dimensions, whereas with correct
or overestimated envelope dimensions, the biases are nearly
zero and the estimated variances only increase linearly. Al-
though all of AIC-MCMC, DIC and WAIC show some ten-
dency in over-estimating dX and dY in Table 2, the most
significant one is DIC (see the left panel of Figure 1). Hence,
AIC-MCMC and WAIC may also be considered in practice,
especially for small sample sizes or the large dX and large
dY setting. The Bayesian CV chooses envelope dimensions
based on the prediction performance. Although its perfor-
mance in selecting the true envelope dimensions is far from
the best in our simulation, it is still recommended in prac-
tice if the prediction performance is our utmost concern and
the computational burden is manageable.

7.2 Estimation Performance
7.2.1 Setting

In this section, we compare the estimation performance
of SIMP with the Bayesian partial predictor envelope (PX-
env), the Bayesian partial response envelope (PY-env) and
several other classical envelope methods or multivariate
regression approaches, including the frequentist predictor

envelope (FX-env) [12], the frequentist response envelope
(FY-env) [15], the frequentist simultaneous envelope (FS-
env) [14], the frequentist partial response envelope (FPY-
env) [57], the frequentist ordinary least squares (FOLS),
the principal component regression (PCR) [32], the partial
least squares regression (PLSR) [16], the canonical correla-
tion analysis (CCA) [26] and the reduced rank regression
(RRR) [29]. Note in Sections 7.2 and 8, PX-env and PY-
env simply refer to SIMP with dY and dX fixed at r and
pC respectively, rather than the Bayesian versions of the
partial predictor and partial response envelopes as exactly
indicated in Table 1, however their differences are small
(see the simulation results between FPY-env and PY-env
in Sections 7.2.2–7.2.5) but will facilitate the comparison.
We choose the posterior mean as the point estimator here
and later in Section 8 for all the Bayesian (envelope) ap-
proaches. It is a decision-theoretic estimator and could be
obtained easily once the posterior samples are available. In
comparison, the posterior median and the maximum a pos-
teriori (MAP) estimators are not considered in our paper,
since they are expected to perform similarly (see Table C.4
in Appendix C for a numerical evidence of the posterior me-
dian estimator) due to the bell-shaped posterior distribution
that is observed in both simulation studies (see Appendix G)
and the real data application (see Appendix H.2), and the
MAP estimator requires additional computation for the op-
timization.
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In this section, we keep almost all set-ups from Section 7.1
except the following. We test on nine cases, for each com-
bination of r = 3, 8 or 15 with n = 300, 500 or 1000. The
covariates of X1D are generated independently from discrete
Unif{0, 1}. Dimensions dX and dY are both fixed at 2.
The specification of the hyperparameters (if still existed),
the number of iterations and the burn-in proportion of the
MCMC algorithm for PX-env, PY-env and SIMP in this
section are the same as those for SIMP in Section 7.1.

To make comparison fair, for competitors that cannot ac-
count for the partial structures (i.e., all methods excluding
SIMP, PX-env, PY-env and FPY-env), Y is regressed on
X2 first, and the fitted residuals are the actual responses
Y̌ for the regression on our interested predictors X1. This
is a common way to adjust the effects of prognostic factors
that are not of main interest for IGP [68]. Tuning param-
eters or envelope dimensions for all methods are assumed
to be unknown. The envelope dimensions for all Bayesian
envelope methods (SIMP, PX-env, PY-env) are chosen by
BIC-MCMC, and those for the frequentist envelope methods
(FPY-env, FX-env, FY-env and FS-env) are chosen by the
traditional BIC. The numbers of components for PCR and
PLSR are selected based on minimizing the Mean squared
prediction error (MSPE) from 5-fold CV. For k = 1, 2, . . . , 5,
let Ck represent the k-th index set among five partition sets
of n samples. For � = 1, 2, . . . , p1, we determine the number
of components as the � that minimizes

MSPE(�) =
1

n

K∑
k=1

∑
i∈Ck

r∑
j=1

(
y̌ij − ̂̌y−k

ij (�)
)2
. (7.1)

For the sample i in Ck, y̌ij represents the j-th response ad-
justed by X2, while ̂̌y−k

ij (�) is the prediction of y̌ij by X1C,i

and X1D,i, for either PCR or PLSR trained on all samples
except those in Ck, and with number of components as �.
The rank for RRR is determined by the original Bura-Cook
estimator [4]. As the estimation performance of μ1C , μY

and β2 is very close among the competitors that we choose,
and not of main interest to us, their results are not reported
for compactness. For the true data generating mechanisms,
we consider three models (M1-M3) from SIMP, and one
model (M4) from RRR which is to investigate the model
mis-specification.

(M1) {Ω,Ω0,Φ,Φ0} = {10IdX
, IpC−dX

, IdY
, 5Ir−dY

},
(M2) {Ω,Ω0,Φ,Φ0} = {IdX

, 10IpC−dX
, IdY

, 5Ir−dY
},

(M3) {Ω,Ω0,Φ,Φ0} = {10IdX
, IpC−dX

, 5IdY
, Ir−dY

},
(M4) β1C = GCH, β1D = GDH, where GC ∈ R

pC×d1 ,
GD ∈ R

pD×d1 , H ∈ R
d1×r, with d1 = 1 and

their elements are all generated independently from
Unif(−1, 1). Samples of X1C are generated from
NpC

(μ1C ,ΣC), and ΣY |X and ΣC are one realiza-
tions of IW(Ir, r) and IW(IpC

, pC) respectively.

Note that we allow the true data generating models to be
SIMP with ‖Ω‖ � ‖Ω0‖ and ‖Φ‖ � ‖Φ0‖ under (M1) or

‖Ω‖ � ‖Ω0‖ and ‖Φ‖ � ‖Φ0‖ under (M2) or ‖Ω‖ � ‖Ω0‖
and ‖Φ‖ � ‖Φ0‖ under (M3). (M4) assumes the true model
to be RRR and is designed to test the robustness of SIMP
under model mis-specification. Results under all scenarios
are displayed from Section 7.2.2 to Section 7.2.5.

7.2.2 Results on (M1): ‖Ω‖ � ‖Ω0‖ and ‖Φ‖ � ‖Φ0‖
Under (M1), the mean squared errors (MSE) for β1C and

β1D, two parameters that we are most interested in, are re-
ported in Table 3. For almost every combination of r and n,
SIMP always performs the best for the estimation of both
β1C and β1D. PX-env or PY-env, two special cases of SIMP
by setting dY = r or dX = pC , can achieve competitive
performance for either only β1C , or whole β1 but is still
less efficient than SIMP. Comparing these two models, we
find the former obtains a slightly better performance for
β1C while the latter achieves a much better performance for
β1D. This observation is consistent with our assumptions for
SIMP in (3.7), where we have assumed both the partial pre-
dictor and partial response envelope structures for β1C with
a slightly stronger signal from the former component here
(‖Ω‖/‖Ω0‖ > ‖Φ0‖/‖Φ‖), and only the partial response en-
velope structure is imposed on β1D. Although PY-env and
SIMP shares the same partial response envelope structure
for β1D, it is surprising that the latter outperforms the for-
mer for the estimation of β1D when r = 3 and 8, which is
possibly due to the reason that the more efficient estimator
of β1C improves the estimation of R(B), and hence the es-
timation of β1D in SIMP. Meanwhile, it is noteworthy that
PY-env and FPY-env show similar estimation performance
for both β1C and β1D under all cases, but the former one
allows more convenient posterior variability quantification
and utilization of the prior information. FX-env, FY-env,
FS-env and other five non-envelope methods cannot out-
perform their partial envelope counterparts and any partial
envelope methods respectively.

To further illustrate the advantage of SIMP from the per-
spective of posterior variability, the average of the posterior
standard deviations (PSD) of each coordinate of vec(β1C)
and vec(β1D) is calculated, as the average of empirical
standard deviations of posterior samples of vec(β1C) and
vec(β1D) across 500 repetitions. The performance on aver-
age PSD is compared between SIMP, Bayesian linear re-
gression (BLR) by implementing SIMP with dX = pC and
dY = r, PX-env and PY-env under (M1). The envelope di-
mensions are assumed to be unknown and selected by BIC-
MCMC for all three envelope methods. The results are re-
ported in Figure 2. In terms of both β1C and β1D, three
envelope methods can always significantly outperform BLR
under all cases. SIMP and PX-env obtain the lowest aver-
age PSD for β1C , and are better than PY-env especially
when r = 3. This is as expected since we have imposed both
partial predictor and partial response envelope structures
on β1C but the signal of the former is stronger. As r be-
comes 8 or 15, the performance of PY-env is close to other
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Table 3. MSE comparison between SIMP and other 11 competitors for estimating β1C and β1D over 500 repetitions under
the data generating mechanism (M1). The lowest MSE under each combination of r and n is in bold face.

r n FOLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

3

300 β1C 0.16 0.07 0.16 0.17 3.95 0.10 0.05 0.05 0.05 0.02 0.05 0.02
β1D 0.55 0.27 0.63 0.69 13.52 0.98 0.18 0.33 0.16 0.23 0.17 0.08

500 β1C 0.09 0.04 0.09 0.09 3.81 0.05 0.03 0.02 0.03 0.01 0.03 0.01
β1D 0.34 0.16 0.34 0.36 12.87 0.38 0.10 0.14 0.09 0.14 0.10 0.05

1000 β1C 0.04 0.02 0.04 0.04 3.80 0.02 0.01 0.01 0.01 0.00 0.01 0.00
β1D 0.16 0.07 0.16 0.17 13.68 0.17 0.05 0.06 0.05 0.07 0.05 0.02

8

300 β1C 0.69 0.10 0.30 0.27 23.17 0.23 0.06 0.07 0.05 0.03 0.05 0.02
β1D 2.58 0.39 3.23 3.14 86.62 2.77 0.19 0.52 0.18 0.93 0.18 0.11

500 β1C 0.40 0.05 0.28 0.27 22.80 0.15 0.03 0.03 0.03 0.02 0.03 0.01
β1D 1.53 0.21 3.14 2.96 85.83 1.57 0.12 0.21 0.11 0.57 0.11 0.06

1000 β1C 0.20 0.02 0.21 0.22 22.82 0.08 0.02 0.01 0.01 0.01 0.02 0.01
β1D 0.74 0.09 1.5 1.57 84.69 0.89 0.05 0.07 0.05 0.27 0.05 0.03

15

300 β1C 1.45 0.16 0.16 0.11 30.38 0.10 0.09 0.13 0.08 0.06 0.08 0.05
β1D 4.74 0.38 1.39 1.37 103.70 1.31 0.19 0.80 0.15 1.87 0.15 0.17

500 β1C 0.86 0.09 0.16 0.10 30.18 0.08 0.05 0.06 0.04 0.04 0.04 0.03
β1D 2.86 0.21 1.34 1.32 103.07 1.31 0.10 0.42 0.09 1.13 0.09 0.09

1000 β1C 0.42 0.04 0.14 0.11 30.20 0.07 0.02 0.03 0.02 0.02 0.02 0.01
β1D 1.39 0.09 1.29 1.24 102.97 1.30 0.05 0.15 0.04 0.54 0.04 0.04

Figure 2: Average PSD across each coordinate of vec(β1C) (1-8r), followed by vec(β1D) ((8r+1)-10r), over 500 repetitions.
Rows and columns indicate different sample sizes and dimensions of responses.

two envelope methods. In terms of β1D, SIMP achieves the
lowest PSD under all scenarios. When r = 8 or 15, the per-
formance of PY-env is close to SIMP, and is significantly
better than PX-env. This is as expected as well, since the
partial response envelope structure is imposed on β1D for
both SIMP and PY-env, and the slight advantage of SIMP
for the estimation of β1D is possibly due to the more effi-
cient estimation of β1C , which is one synergetic effect of im-
posing two envelope components simultaneously. Although
no envelope assumption is imposed on β1D for PX-env, the
posterior variability for the estimator of β1D from PX-env
is still smaller than that of BLR.

7.2.3 Results on (M2): ‖Ω‖ � ‖Ω0‖ and ‖Φ‖ � ‖Φ0‖

Table 4 shows the performance under (M2). Since ‖Ω‖ �
‖Ω0‖, the partial predictor envelope component cannot pro-
vide too many efficiency gains. Therefore, as expected, the
best estimation performance comes from envelope models
that contain the (partial) response envelope structure, in-
cluding FY-env, FS-env, FPY-env, PY-env and SIMP. Al-
though the best performance is mostly achieved by FY-env
and FPY-env, the difference between these five methods is
small. Since the partial response envelope structure is im-
posed on both β1C and β1D in (3.7), large efficiency gains
could be observed in estimating both of these two parame-
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Table 4. MSE comparison between SIMP and other 11 competitors for estimating β1C and β1D over 500 repetitions under
the data generating mechanism (M2). The lowest MSE under each combination of r and n is in bold face.

r n FOLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

3

300 β1C 0.06 0.05 0.06 0.06 1.31 0.05 0.04 0.02 0.04 0.06 0.04 0.03
β1D 0.32 0.46 0.34 0.35 7.11 0.33 0.47 0.12 0.45 0.31 0.48 0.12

500 β1C 0.04 0.03 0.04 0.04 1.29 0.03 0.01 0.01 0.01 0.04 0.01 0.02
β1D 0.20 0.22 0.20 0.20 7.04 0.21 0.07 0.07 0.07 0.19 0.08 0.06

1000 β1C 0.02 0.01 0.02 0.02 1.26 0.02 0.01 0.01 0.01 0.01 0.01 0.01
β1D 0.10 0.08 0.10 0.10 6.87 0.10 0.03 0.04 0.03 0.09 0.03 0.03

8

300 β1C 0.30 0.17 0.31 0.31 5.74 0.25 0.04 0.05 0.04 0.23 0.04 0.04
β1D 1.42 0.52 1.63 1.59 39.61 1.51 0.11 0.17 0.11 1.25 0.12 0.13

500 β1C 0.17 0.09 0.18 0.18 5.63 0.14 0.02 0.03 0.02 0.13 0.02 0.02
β1D 0.86 0.29 1.00 1.00 39.68 0.91 0.07 0.10 0.07 0.76 0.08 0.08

1000 β1C 0.08 0.04 0.08 0.08 5.42 0.07 0.01 0.01 0.01 0.06 0.01 0.01
β1D 0.41 0.13 0.41 0.43 38.19 0.41 0.03 0.04 0.03 0.37 0.04 0.04

15

300 β1C 0.60 0.42 0.59 0.55 5.19 0.43 0.10 0.16 0.10 0.46 0.12 0.13
β1D 2.32 0.29 1.83 1.19 49.09 1.36 0.09 0.40 0.09 2.04 0.11 0.17

500 β1C 0.36 0.25 0.37 0.34 5.00 0.27 0.06 0.09 0.06 0.28 0.06 0.07
β1D 1.42 0.16 1.56 1.13 49.09 0.97 0.05 0.20 0.06 1.24 0.06 0.09

1000 β1C 0.18 0.12 0.18 0.17 4.80 0.13 0.03 0.03 0.03 0.14 0.03 0.03
β1D 0.68 0.07 0.69 0.96 48.92 0.50 0.03 0.05 0.03 0.60 0.03 0.04

Table 5. MSE comparison between SIMP and other 11 competitors for estimating β1C and β1D over 500 repetitions under
the data generating mechanism (M3). The lowest MSE under each combination of r and n is in bold face.

r n FOLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

3

300 β1C 0.25 0.23 0.28 0.27 1.84 0.22 0.19 0.20 0.18 0.03 0.23 0.04
β1D 0.89 0.84 1.90 1.65 9.37 3.56 1.57 2.63 1.56 0.34 0.88 0.38

500 β1C 0.14 0.13 0.15 0.15 1.44 0.14 0.13 0.11 0.13 0.01 0.13 0.02
β1D 0.52 0.48 0.68 0.69 8.69 2.34 0.71 1.52 0.69 0.21 0.46 0.20

1000 β1C 0.07 0.07 0.07 0.07 1.21 0.05 0.06 0.04 0.06 0.01 0.06 0.01
β1D 0.25 0.23 0.26 0.27 8.18 0.78 0.23 0.39 0.23 0.10 0.23 0.10

8

300 β1C 0.35 0.23 0.29 0.29 5.25 0.06 0.22 0.18 0.22 0.02 0.22 0.04
β1D 1.28 0.84 2.86 2.71 19.95 3.55 0.81 2.21 0.80 0.47 0.80 0.34

500 β1C 0.21 0.14 0.22 0.22 4.96 0.08 0.13 0.11 0.13 0.01 0.13 0.02
β1D 0.78 0.51 1.79 1.66 19.02 3.47 0.50 1.37 0.49 0.29 0.49 0.21

1000 β1C 0.10 0.06 0.10 0.10 4.82 0.15 0.06 0.05 0.06 0.01 0.06 0.01
β1D 0.37 0.24 0.44 0.47 18.25 2.69 0.23 0.61 0.23 0.14 0.23 0.09

15

300 β1C 0.51 0.25 0.16 0.14 7.08 0.05 0.24 0.12 0.23 0.03 0.23 0.05
β1D 1.64 0.77 1.32 1.27 22.01 1.39 0.73 1.37 0.70 0.66 0.70 0.36

500 β1C 0.30 0.14 0.14 0.13 6.67 0.04 0.14 0.08 0.13 0.02 0.13 0.03
β1D 0.98 0.45 1.29 1.23 21.46 1.38 0.43 1.16 0.41 0.40 0.41 0.21

1000 β1C 0.15 0.07 0.12 0.11 6.39 0.03 0.07 0.05 0.07 0.01 0.07 0.01
β1D 0.48 0.22 1.09 1.09 21.05 1.38 0.21 0.66 0.21 0.20 0.21 0.10

ters for these five methods, as expected. Among these five
methods, the slightly worse performance of SIMP under
some cases is largely due to the model selection. See the
performance with the true envelope dimensions known in
Table C.3 in Appendix C.

7.2.4 Results on (M3): ‖Ω‖ � ‖Ω0‖ and ‖Φ‖ � ‖Φ0‖

The estimation performance under (M3) is shown in Ta-
ble 5. Without surprise, the best performance is obtained by

envelope models containing the partial predictor envelope
structure, i.e. PX-env and SIMP. Similarly, their estima-
tion performances for β1C are close, and the tiny difference
between them mainly comes from the model selection. It
is worthy to notice that when r = 8 or 15, some additional
gains on estimating β1D could be offered by SIMP compared
with PX-env, since the partial response envelope structure
is assumed in SIMP for β1D, although the signal may not
be strong (‖Φ‖ � ‖Φ0‖), however, the synergetic effect of
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Table 6. MSE comparison between SIMP and other 11 competitors for estimating β1C and β1D over 500 repetitions under
the data generating mechanism (M4). The lowest MSE under each combination of r and n among all methods and within

envelope methods are in bold face and blue respectively.
r n FOLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

β1C 0.92 0.46 0.98 0.77 27.61 0.57 0.90 0.59 0.91 0.51 0.90 0.53300
β1D 0.12 0.06 0.12 0.11 3.58 0.06 0.12 0.07 0.12 0.12 0.12 0.12
β1C 0.53 0.26 0.60 0.45 27.60 0.43 0.53 0.43 0.53 0.38 0.53 0.39500
β1D 0.07 0.04 0.08 0.07 3.72 0.05 0.07 0.05 0.07 0.07 0.07 0.07
β1C 0.27 0.13 0.34 0.25 28.57 0.28 0.27 0.28 0.27 0.26 0.27 0.26

3

1000
β1D 0.03 0.01 0.03 0.03 3.37 0.02 0.03 0.02 0.03 0.03 0.03 0.03

β1C 0.75 0.34 0.92 0.86 20.53 1.31 0.48 0.88 0.44 1.44 0.43 0.38300
β1D 0.09 0.04 0.09 0.08 2.49 0.06 0.06 0.05 0.05 0.08 0.05 0.05
β1C 0.43 0.19 0.48 0.44 20.32 1.07 0.27 0.42 0.25 0.72 0.24 0.23500
β1D 0.06 0.03 0.06 0.05 2.62 0.04 0.04 0.03 0.03 0.05 0.03 0.04
β1C 0.20 0.08 0.22 0.17 20.14 0.40 0.15 0.17 0.15 0.16 0.15 0.14

8

1000
β1D 0.03 0.01 0.03 0.02 2.55 0.02 0.02 0.02 0.02 0.03 0.02 0.02

β1C 37.13 13.11 16.66 18.15 20.23 17.16 6.93 10.85 12.94 15.56 11.25 12.99300
β1D 4.74 1.55 2.50 2.01 2.10 0.09 0.70 0.11 1.67 4.74 1.31 2.73
β1C 22.73 5.75 13.16 11.24 20.95 10.32 7.59 12.67 17.04 9.21 15.42 14.60500
β1D 2.85 0.73 1.69 1.29 2.05 0.03 0.78 0.11 2.03 2.82 1.85 2.49
β1C 11.54 2.39 11.04 7.24 21.22 7.80 10.10 9.05 11.45 6.87 11.35 8.96

15

1000
β1D 1.46 0.29 0.91 0.63 2.08 0.01 1.24 0.10 1.44 1.46 1.43 1.43

SIMP that is mentioned above could possibly enhance this
advantage.

7.2.5 Results on (M4): Model Mis-Specification
To test the robustness of our method, an additional sim-

ulation under the model mis-specification scenario (M4) is
studied. From Table 6, RRR estimator almost always pro-
duces the lowest MSE when r = 3 or 8. Although under the
mis-specified model, envelope methods still perform quite
well. Within envelope methods, SIMP obtains a relatively
better performance for both β1C and β1D when r is 8, and
FX-env is better for β1D when r is 3 or 15. Note that when
r = 15, several envelope methods could even outperform
the RRR estimator. When we are more cautious for the re-
sults displayed here, we will find that the performance of
all envelope methods especially SIMP is largely contami-
nated by the “bad” envelope dimensions that are selected
under this model mis-specification scenario, since the like-
lihoods of them might significantly depart from the truth
and hence are misleading in model selection. See Table C.5
in Appendix C for the estimation results if we rule out this
factor by using the “optimal” tuning parameter or enve-
lope dimension for each method, if we pretend to know the
true values of β1C and β1D. Under such scenario, the enve-
lope methods almost always dominate other methods (even
RRR), and SIMP is almost always the best one among en-
velope methods except when r = 3. And when r = 3, the
performance of SIMP is very close to the best one. Therefore,
the robustness of our method and other envelope methods
to a general low rank model RRR is observed in our simu-
lation.

Besides, in Appendix C, we also display additional nu-
merical results for the estimation performance of FPY-env,
PX-env, PY-env and SIMP with the true envelope dimen-
sions known under (M1)–(M3) or RRR with the true rank
known under (M4), and the results for p2 = 4 or pD = 4
with other settings same as those in (M1).

8. REAL IMAGING GENETICS
APPLICATION ON ADNI1

8.1 Background
Data used in the preparation of this article were ob-

tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). Led by Principal
Investigator Michael W. Weiner, MD, ADNI was launched
in 2003 as a public-private partnership, and lasts for 4 stages
(ADNI1, ADNI-GO, ADNI2 and ADNI3) till now. The pri-
mary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomogra-
phy (PET), genetic or other biological markers, clinical and
neuropsychological assessments can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). This study has strict en-
rollment standards, follow-up and data checking protocols.
All raw or preprocessed data is available through the Image
and Data Archive (IDA) at https://ida.loni.usc.edu/, upon
approval of the application. In this real data application, we
want to study the genetic effects, including the effect of a
well-known AD gene Apolipoprotein E (APOE) ε4, on the
volumes of some cortical or sub-cortical structures in brain,

http://adni.loni.usc.edu
https://ida.loni.usc.edu/
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while also accounting for the effects of some other prog-
nostic factors by applying SIMP, and compare with several
other methods in terms of the prediction performance. Fol-
lowing previous practices on analyzing ADNI data [68, 46],
we focus on Caucasian participants in the ADNI1 phase, to
reduce the population stratification.

8.2 Data Pre-processing Procedure
Imaging responses, i.e. Y in (3.2), we adopted are the

volume measurements on 12 ROIs that are listed in [42]
(i.e., the Amygdala, the Cerebral cortex, the Cerebral white
matter, the Hippocampus, the Inferior lateral ventricle and
the Lateral ventricle on two hemispheres), which are ob-
tained from 1.5T MRI scan at the screening visit of ADNI1.
All imaging data is downloaded from IDA, and has been
pre-processed by FreeSurfer [21] already. Among 845 partic-
ipants who took MRI scans, we only retain 593 participants
who passed the quality control (QC). The log transforma-
tion is applied to reduce skewness.

620,901 SNPs on all autosomes and sex chromosomes
were genotyped for 757 participants in ADNI1, who are not
contained in but are overlapped with the 845 participants
who have MRI scans. Among 11,632 SNPs meta-analyzed by
International Genomics of Alzheimer’s Project (IGAP) [36],
852 autosome SNPs are selected as our candidate SNPs for
model fitting by checking two conditions: (1) Genotyped by
ADNI1; (2) P-values from IGAP are smaller than 0.01. De-
veloped by Shaun Purcell and Christopher Chang, PLINK
[7] is an open source software for performing QC and some
routine analyses in GWAS in an efficient manner, and is
available at https://www.cog-genomics.org/plink/1.9/. Fol-
lowing [68], we perform the following two lines of QC on the
selected SNP data by PLINK. The first line of QC includes
(1) call rate check per subject and per SNP marker, (2) gen-
der check, (3) sibling pair identification, (4) Hardy-Weinberg
equilibrium test, and (5) population stratification check.
The second line of QC removes SNPs with (1) more than
5% missing values, (2) minor allele frequency smaller than
10%, and (3) Hardy-Weinberg equilibrium p-value < 10−6.
This leaves us with 732 SNPs that passed QC. A free geno-
type imputation and haplotype phasing program IMPUTE2
([27], [28]) is used to impute SNPs with missingness. We
choose HapMap 3 as our reference panel for the imputation,
since it shares the same genome build b36 of National Cen-
ter for Biotechnology Information (NCBI) with ADNI1. We
delete 39 SNPs that are not shown in the reference panel,

which leads to 693 SNPs finally. To reduce dimensionality,
the principal component analysis (PCA) is applied on these
693 SNPs. By thresholding the eigenvalues of its sample co-
variance matrix by 1, the first 186 principal components
(PCs), which explains 87.19% of the total variation of these
693 SNP predictors, are selected as our X1C , the continuous
part of our predictors of main interest in (3.2).

APOE ε4, taking values in {0, 1, 2}, is included in X1D

as the only discrete (quantitative) genetic predictor in (3.2).
We have incorporated six other important prognostic factors
in X2 in (3.2), including gender, marital status, handness,
age, years of education and intracranial volume (ICV). The
intersection of participants from all types of abovementioned
datasets leads to 498 samples in our analysis finally. All
predictors and responses are standardized before the model
fitting.

8.3 Prediction Performance
We first compare the prediction performance of SIMP

with other two partial envelope methods (PX-env, FPY-
env), three envelope models that cannot account for the
partial structures (FX-env, FY-env, FS-env; we call them
non-partial envelope methods), and three popular multivari-
ate linear regression methods that are not based on the en-
velope models (FOLS, RRR and PLSR; we call them non
envelope methods). Similar with Section 7.2, for all methods
except the partial envelope methods (PX-env, FPY-env and
SIMP), Y is adjusted as the residuals from the regression on
X2 first, and the model fitting will be done by the genetic
markers X1 and the adjusted responses. For the best pre-
diction performance, all associated envelope dimensions for
envelope methods, or the number of components for PLSR,
or the rank for RRR are selected by minimizing MSPE from
5-fold CV. The MCMC algorithm for SIMP and PX-env is
run for 20,000 iterations with first 50% iterations as burn-
in, and their specifications for the hyperparameters are the
same as those in Section 7.

Table 7 reveals that the best prediction performance
is achieved by SIMP. All of the envelope methods in the
last two columns significantly outperform FOLS and RRR.
FS-env and SIMP achieve the best prediction performance
within the non-partial envelope methods and partial en-
velope methods we considered respectively. This illustrates
the advantages of combining the predictor and response en-
velopes in both non-partial and partial envelope contexts.
Comparing partial envelope methods with their non-partial

Table 7. MSPE from 5-fold CV for various envelope and non envelope methods. Envelope dimensions, number of components
(ncomp) or rank selected by 5-fold CV are mentioned inside parenthesis.

Non envelope methods Non-partial envelope methods Partial envelope methods
FOLS 14.02 FX-env (dX = 1) 8.34 PX-env (dX = 1) 7.94

RRR (rank = 1) 10.87 FY-env (dY = 1) 9.77 FPY-env (dY = 1) 9.82
PLSR (ncomp = 1) 8.20 FS-env (dX = 7, dY = 1) 8.06 SIMP(dX = 1, dY = 3) 7.88

https://www.cog-genomics.org/plink/1.9/
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Figure 3: Upper left: Indicator of significance of each (SNP, IP) pair or APOE ε4 with each IP. APOE ε4 corresponds to the
last vertical line in red; Upper right: Indicator of significance of each (prognostic factor, IP) pair. Red signifies significance
in the figures of the upper row. Bottom: Heatmap of the estimated regression coefficients matrix β̂T

SNP between 693 SNPs
and 12 IPs.

counterparts, PX-env and SIMP both obtain lower MSPEs
than FX-env and FS-env respectively. The finding that
FPY-env cannot outperform FY-env seems surprising, but
is consistent with the previous theoretical result that if the
envelope spaces of FPY-env and FY-env are equal, then the
asymptotic variance of the estimator of β1 from FPY-env
could not be smaller than that from FY-env (see the propo-
sition 2 of [57]), and we have verified the estimated envelope
spaces by FPY-env and FY-env are very close in this analy-
sis. It is also interesting to note that FX-env shares similar
MSPE with PLSR. Their connection has been discussed in
[12].

8.4 Posterior Estimation and Selection
Performance

Both AIC-MCMC and BIC-MCMC select dX = 87 and
dY = 1 for SIMP. Using dX = 87 and dY = 1, SIMP
is fitted with the number of iterations, burn-in proportion
and specification of the hyperparameters same as those in
Section 7 and Section 8.3. It costs 14.82 hours for a run
of 20, 000 iterations under these envelope dimensions, for a
Intel Xeon E5-2680 v3 processor (2.50 GHz CPU).

Aiming at interpreting our results with some scientifi-
cally meaningful findings and due to the large variation that
is explained by the PCs that we choose, we intend to ap-
proximate the posterior samples of βSNP ∈ R

693×12, the

regression coefficients between the standardized version of
the original 693 SNP predictors (i.e., the 693 SNP predic-
tors before PCA) and 12 IPs. For s = 1, 2, . . . , 10, 000, the
s-th retained posterior sample β

(s)
1C ∈ R

186×12 is mapped to
β
(s)
SNP , the s-th approximate posterior sample of βSNP by

β
(s)
SNP =

(
diag{SSNP }

)1/2 · LD ·
(
diag{S1C}

)−1/2 · β(s)
1C ,
(8.1)

where diag{SSNP } ∈ S
693×693
+ and diag{S1C} ∈ S

186×186
+

are diagonal matrices with diagonal elements being sample
variances of the original 693 SNPs and 186 PCs respectively,
and LD ∈ R

693×186 is the loading matrix from PCA.
The corresponding (1 − 5.95 × 10−6) × 100% two-sided

credible intervals for βSNP , β1D and β2 are calculated,
where the confidence level is determined by 0.95 with the
Bonferroni correction for all 8,400 regression coefficients.
Significance of any SNP, APOE ε4 or prognostic factor with
any one of 12 IPs is determined by the exclusion of zero for
the associated credible interval.

The upper-left panel of Figure 3 shows the significance of
a few SNP and APOE ε4 with all 12 IPs. Besides the well-
known AD gene APOE ε4, we identify another 37 significant
SNPs that are possibly related to AD (see Appendix H.3
for the full list) under the control of the Family-wise error
rate (FWER, the probability of reporting at least one false
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Table 8. Out of 37 significant SNPs from SIMP (besides APOE ε4), 17 SNPs are reported here for the previously reported
associations of them (or their RefSeq gene or their closest RefSeq gene with names indicated in Columns 2 and 5) with AD in
the literature. In the literature, one previous study on the reported association is selected for each of these SNPs and displayed

in Columns 3 and 6.
SNP Gene SNP Gene
rs11685593 BIN1 [2] rs10894473 NTM [66]
rs7561528 BIN1 [24] rs11064498 C1S [61]
rs11706690 CHL1 [50] rs757402 OAS2 [3]
rs10513391 P2RY14 [53] rs2274736 PTPN21 [62]
rs2439538 TBC1D7 [17] rs10498633 SLC24A4/RIN3 [60]
rs9381563 CD2AP [30] rs2554389 ADAMTSL3 [55]
rs2280231 NDUFS3 [49] rs4265771 ADAMTSL3 [55]
rs7120548 MTCH2 [31] rs17809911 CCDC102B [41]
rs10501927 CNTN5 [24]

positives) at 0.05. Among them, 17 SNPs are reported in
Table 8 for their appearance in the previous studies. Mean-
while, under the same control of FWER, the key role of the
age for AD and the impact of ICV on the volumes of brain
structures are confirmed at the same time, by the upper-
right panel of Figure 3. The significance of SNPs seems to
be consistent over all IPs but this is not observed for prog-
nostic factors. This is expected since the rows of β̂T

1C (and
also β̂T

SNP , the posterior mean estimator of βT
SNP ) depend

on the estimated partial response envelope only, which hap-
pens to contribute much weaker effects than the estimated
partial predictor envelope in this dataset. Such pattern is
not observed in β̂T

2 , since we have not imposed any enve-
lope structure on β2.

The heatmap of the estimated regression coefficients ma-
trix β̂T

SNP is shown in the bottom panel of Figure 3. The
elements of β̂1D are much larger in scale than those in β̂T

SNP ,
hence are not displayed in this figure (The elements of β̂1D

are listed here instead. Amygdala.L: −0.19, Amygdala.R:
−0.19, Cerebral cortex.L: −0.12, Cerebral cortex.R: −0.13,
Cerebral white matter.L: −0.11, Cerebral white matter.R:
−0.11, Hippocampus.L: −0.22, Hippocampus.R: −0.22, In-
ferior lateral ventricle.L: 0.18, Inferior lateral ventricle.R:
0.19, Lateral ventricle.L: 0.14, Lateral ventricle.R: 0.15). It
is interesting that for each genetic predictor, the estimated
coefficients related to each pair of brain measures on two
hemispheres are close. This is reasonable since the bilat-
eral correlations within all pairs of brain measures over two
hemispheres are strong (see Appendix H.4 for the numeri-
cal evidence and [52] for another discussion on this bilateral
correlation). The ROIs that have relatively large estimated
effects with some SNPs are the Inferior lateral ventricle, the
Hippocampus and the Amygdala (in both hemispheres). The
Hippocampus and the Amygdala are related to memory and
motor behavior respectively, and the importance of these
three brain structures for AD have already been verified in
the past studies [20, 47, 43].

8.5 Shrinkage Estimation by Incorporating the
Prior Information of Weak Imaging
Genetics Relationship

The past studies on AD have verified the weak effects
of the SNP predictors on predicting AD outcomes, either
the disease status [36] or the imaging phenotypes ([68, 46]
and etc). This pattern of weak effects has also been veri-
fied by us from the bottom panel of Figure 3 in Section 8.4.
Therefore, it is reasonable to incorporate the prior informa-
tion of “weak signals in β1C” (and hence “weak signals in
βSNP ”) into our analysis, and it should also improve the es-
timation performance from the standpoint of the shrinkage
effect offered for this high dimensional problem, and help to
illustrate the advantage of our Bayesian envelope method on
prior information incorporation, compared with the frequen-
tist envelope methods. The envelope dimensions are fixed at
dX = 87 and dY = 1. We adjust the (all equal) diagonal el-
ements of the hyperparameter E (we set to be a diagonal
matrix) in the prior of ηC from 10−6 to 106 while keeping
the specification for other hyperparameters same as previ-
ous sections. This adjustment strengthens our prior belief of
ηC (and hence β1C) to be a zero matrix gradually, since the
prior mean of ηC is fixed at the zero matrix by assigning
W to be the zero matrix, and the prior covariance matrices
of rows of ηC are proportional to E−1. From the frequentist
perspective, the Bayesian estimator (strictly speaking, the
MAP estimator, but here we use the posterior mean esti-
mator for simplicity) with increasingly stronger prior belief
in the weak signals of ηC corresponds to an estimator with
gradually stronger shrinkage to the zero matrix.

The left panel of Figure 4 shows improved prediction per-
formance as the diagonal elements of E increase from 10−6

to 103, and the MSPE deteriorates slightly as the prior be-
lief increases further beyond 103, possibly due to the bias
that is caused by the over-strong prior information of weak
signals, or the over-penalization from the frequentist per-
spective. The middle and right panels of Figure 4 display
the regularization paths for the row sums and the column
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Figure 4: MSPE from the 5-fold CV (left), the row sums of β̂SNP (middle; each line corresponds to one SNP) and the
column sums of β̂SNP (right; each line corresponds to one IP) with respect to the diagonal elements of E (in the log10
scale).

sums of β̂SNP respectively. The more significant shrinkage
effects could be observed for the stronger prior belief of the
weak signals in β1C (and hence in βSNP ).

9. DISCUSSION
In this paper, we propose a new unified Bayesian enve-

lope model by integrating the partial predictor envelope and
the partial response envelope under a convenient Bayesian
framework. The proposed model degenerates to several well
established envelope models in the literature under specific
conditions. It addresses the limitations mentioned for the
simultaneous and the partial response envelopes. Specifi-
cally, our method improves the efficiencies for estimating
β1 and predicting Y in (3.2), and has no restrictions on X1

to be continuous or Normal, by a subtle construction of sep-
arating the discrete part from the whole predictors of inter-
est. Compared with the frequentist envelope approaches, our
method is more flexible in incorporating prior information
and quantifying uncertainty through posterior distribution
of parameters. Overall, our method is inclusive and could
be regarded as a building block for the future theoretical re-
search of the envelope model, and an ideal solution for prac-
titioners who seek dimension reduction and want to apply
envelope methods to their application problems, including
almost any problems that could be formulated by the mul-
tivariate linear regression with predictors either continuous
or discrete or a mix of them and even containing nuisance
covariates, but are worried about which specific envelope
model to use. Meanwhile, we are the first to investigate the
performance of several popular dimension selection meth-
ods together, among the Bayesian envelope literature, to
the best of our knowledge.

To be less conservative and make more meaningful dis-
coveries, a well-designed multiple comparisons procedure to
control the False discovery rate, rather than FWER, could
be considered in our real data application. A natural exten-
sion of our work is to generalize SIMP to the generalized
linear model setting. However, for the multivariate probit
model as pointed in [9], the identification issue exists for
the error covariance matrix, which is suggested to be re-
stricted to the correlation matrix. Hence, the extension of
SIMP to the generalized linear model setting might require
some special strategies, for example the parameter expan-
sion for data augmentation technique ([40], [59]) under a
marginally uniform prior for the error correlation matrix
[1].

APPENDIX A
A.1 Metropolis-within-Gibbs MCMC

Algorithm for SIMP

In this section, we show how to generate a MCMC chain
of length S on Θ from SIMP, for a pre-specified pair of di-
mensions (dX , dY ) ∈ {1, . . . , pC − 1} × {1, . . . , r − 1}. We
could arbitrarily choose the initial value Θ(0), but a warm
start initial estimator provided in Appendix B is recom-
mended for faster convergence. For each s = 1, . . . , S, we
iterate the following steps to update Θ.

1. Update

Σ
(s−1)
C|D = L

(
A(s−1)

)
Ω(s−1)L

(
A(s−1)

)T
+ L0

(
A(s−1)

)
Ω

(s−1)
0 L0

(
A(s−1)

)T
,
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Σ
(s−1)
Y |X = R

(
B(s−1)

)
Φ(s−1)R

(
B(s−1)

)T
+R0

(
B(s−1)

)
Φ

(s−1)
0 R0

(
B(s−1)

)T
.

2. Generate β(s)
2 from MN p2,r(M̃

−1Z̃(s−1), M̃−1,Σ
(s−1)
Y |X ),

where

M̃ = X̃
T
2 X̃2 +M,

Z̃(s−1) = X̃
T
2

(
Ỹ

(s−1) − X̃
(s−1)
1C L

(
A(s−1)

)(
η
(s−1)
C

)T
R
(
B(s−1)

)T − X̃1D

(
η
(s−1)
D

)T
R
(
B(s−1)

)T )
+ Z.

3. Generate γ(s) from MN pD,pC
(Λ̃−1F̃(s−1),Λ̃−1,Σ

(s−1)
C|D ),

where Λ̃ = X̃
T
1DX̃1D +Λ, and F̃(s−1) = X̃

T
1DX̃

(s−1)
1C +F.

4. Generate (μ
(s)
1C ,μ

(s)
Y )T from NpC+r((

X1C

Y
),Δ(s−1)/n)

where Δ(s−1) =

(
Σ

(s−1)
C|D L(A(s−1))Ω(s−1)(η

(s−1)
C )TR(B(s−1))T

R(B(s−1))η
(s−1)
C Ω(s−1)L(A(s−1))T Σ

(s−1)
Y |X +R(B(s−1))η

(s−1)
C Ω(s−1)(η

(s−1)
C )TR(B(s−1))T

)
.

5. Generate η
(s)
C from MN dY ,dX

(W̃(s−1)(Ẽ(s−1))−1,

Φ(s−1), (Ẽ(s−1))−1), where

Ẽ(s−1) = L
(
A(s−1)

)T (
X̃

(s−1)
1C

)T
X̃

(s−1)
1C L

(
A(s−1)

)
+E,

W̃(s−1) =
((
Ỹ

(s−1) − X̃2β
(s−1)
2

)
R
(
B(s−1)

)
− X̃1D(

η
(s−1)
D

)T )T (
X̃

(s−1)
1C

)
L
(
A(s−1)

)
+W.

6. Generate η
(s)
D from MN dY ,pD

(T̃(s−1)(Q̃)−1,Φ(s−1),

(Q̃)−1), where Q̃ = (X̃1D)T X̃1D + Q and T̃(s−1) =

((Ỹ(s−1) − X̃2β
(s−1)
2 )R(B(s−1)) − X̃

(s−1)
1C L(A(s−1))

(η
(s−1)
C )T )T X̃1D +T.

7. Generate Ω(s) from IWdX
(Ψ̃

(s−1)
X , w̃X), where

Ψ̃
(s−1)
X = L

(
A(s−1)

)T (
X̃

(s−1)
1C − X̃1Dγ(s−1)

)T (
X̃

(s−1)
1C −

X̃1Dγ(s−1)
)
L
(
A(s−1)

)
+ L

(
A(s−1)

)T (
γ(s−1)−

Λ−1F
)T

Λ
(
γ(s−1) −Λ−1F

)
L
(
A(s−1)

)
+ΨX

and w̃X = n+ pD + wX .
8. Generate Ω

(s)
0 from IWpC−dX

(Ψ̃
(s−1)
X0

, w̃X0), where

Ψ̃
(s−1)
X0

= L0

(
A(s−1)

)T (
X̃

(s−1)
1C − X̃1Dγ(s−1)

)T (
X̃

(s−1)
1C −

X̃1Dγ(s−1)
)
L0

(
A(s−1)

)
+ L0

(
A(s−1)

)T(
γ(s−1) −Λ−1F

)T
Λ
(
γ(s−1) −Λ−1F

)
L0

(
A(s−1)

)
+ΨX0

and w̃X0 = n+ pD + wX0 .
9. Generate Φ(s) from IWdY

(Ψ̃
(s−1)
Y , w̃Y ), where

Ψ̃
(s−1)
Y =

((
Ỹ

(s−1) − X̃2β
(s−1)
2

)
R
(
B(s−1)

)
− X̃

(s−1)
1C

L
(
A(s−1)

)(
η
(s−1)
C

)T − X̃1D

(
η
(s−1)
D

)T )T((
Ỹ

(s−1) − X̃2β
(s−1)
2

)
R
(
B(s−1)

)
− X̃

(s−1)
1C

L
(
A(s−1)

)(
η
(s−1)
C

)T − X̃1D

(
η
(s−1)
D

)T )
+

R
(
B(s−1)

)T (
β
(s−1)
2 −M−1Z

)T
M(

β
(s−1)
2 −M−1Z

)
R
(
B(s−1)

)
+(

η
(s−1)
C −WE−1

)
E
(
η
(s−1)
C −WE−1

)T
+(

η
(s−1)
D −TQ−1

)
Q
(
η
(s−1)
D −TQ−1

)T
+ΨY

and w̃Y = n+ dX + pD + p2 + wY .
10. Generate Φ

(s)
0 from IWr−dY

(Ψ̃
(s−1)
Y0

, w̃Y 0), where

Ψ̃
(s−1)
Y0

= R0

(
B(s−1)

)T (
Ỹ

(s−1) − X̃2β
(s−1)
2

)T(
Ỹ

(s−1) − X̃2β
(s−1)
2

)
R0

(
B(s−1)

)
+

R0

(
B(s−1)

)T (
β
(s−1)
2 −M−1Z

)T
M

(
β
(s−1)
2 −M−1Z

)
R0

(
B(s−1)

)
+ΨY0

and w̃Y0 = n+ p2 + wY0 .
11. Let h(s)(A) be the log full conditional density of A at

the s-th iteration, i.e.,

h(s)(A)

= const − 1

2
tr
{(

X̃
(s−1)
1C − X̃1Dγ(s−1)

)(
L(A)

Ω(s−1)L(A)T + L0(A)Ω
(s−1)
0 L0(A)T

)−1(
X̃

(s−1)
1C − X̃1Dγ(s−1)

)T
+

(
Ỹ

(s−1) − X̃
(s−1)
1C

L(A)
(
η
(s−1)
C

)T
R
(
B(s−1)

)T − X̃1D

(
η
(s−1)
D

)T
R
(
B(s−1)

)T − X̃2β
(s−1)
2

)(
Σ

(s−1)
Y |X

)−1(
Ỹ

(s−1) − X̃
(s−1)
1C L(A)

(
η
(s−1)
C

)T
R
(
B(s−1)

)T
− X̃1D

(
η
(s−1)
D

)T
R
(
B(s−1)

)T − X̃2β
(s−1)
2

)T
+

(
L(A)Ω(s−1)L(A)T + L0(A)Ω

(s−1)
0

L0(A)T
)−1(

γ(s−1) −Λ−1F
)T

Λ
(
γ(s−1)−

Λ−1F
)
+Σ−1

A (A−A0)
TK−1

A (A−A0)
}
.

We want to generate a Markov chain realization
for A from the stationary density proportional to
exp(h(s)(A)). We update A(s−1) to A(s) columnwisely
via Metropolis steps as follows. Let A

(s−1)
j ∈ R

pC−dX

denote the jth column of A(s−1), j = 1, . . . , dX .
Let τA > 0 be a given tuning parameter and let
{i1, . . . , idX

} be a random permutation of {1, . . . , dX}.
For each k = ij , j = 1, . . . , dX ,

(a) Generate A∗
k from NpC−dX

(A
(s−1)
k , τ2AIpC−dX

).
(b) Calculate the ratio

r = exp
{
h
(
A∗)}/ exp{h(A(s−1)

)}
,
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where A∗ is the resulting matrix after A
(s−1)
k is

replaced with A∗
k in A(s−1).

(c) Generate a binary indicator with success proba-
bility r. If a success is achieved, update A

(s−1)
k to

A∗
k as the k-th column of A(s). Otherwise, retain

A
(s−1)
k as the k-th column of A(s).

Update A(s−1) to A(s) after all columns are investi-
gated.

12. Let h(s)(B) be the log full conditional density of B at
the s-th iteration, i.e.,

h(s)(B)

= const − 1

2
tr
{(

Ỹ
(s−1) − X̃

(s−1)
1C L

(
A(s−1)

)
(
η
(s−1)
C

)T
R(B)T − X̃1D

(
η
(s−1)
D

)T
R(B)T−

X̃2β
(s−1)
2

)(
R(B)Φ(s−1)R(B)T +R0(B)Φ

(s−1)
0

R0(B)T
)−1(

Ỹ
(s−1) − X̃

(s−1)
1C L

(
A(s−1)

)(
η
(s−1)
C

)T
R(B)T − X̃1D

(
η
(s−1)
D

)T
R(B)T − X̃2β

(s−1)
2

)T
+(

R(B)Φ(s−1)R(B)T +R0(B)Φ
(s−1)
0 R0(B)T

)−1(
β
(s−1)
2 −M−1Z

)T
M

(
β
(s−1)
2 −M−1Z

)
+Σ−1

B

(B−B0)
TK−1

B (B−B0)
}
.

The procedure to generate a Markov chain realiza-
tion for B from the stationary density proportional to
exp(h(s)(B)) is similar as that for A in Step 11.

Remark 1. Note that when dX = 0 (or, dX = pC), steps
5, 7 and 11 (or, steps 8 and 11) should be skipped, L(s) does
not exist, L(s)

0 = IpC
(or, L(s) = IpC

and L
(s)
0 does not exist)

always and any terms involving either L(s) or Ω(s) or η
(s)
C

(or, either L(s)
0 or Ω(s)

0 ) or A(s) are omitted. Similarly, when
dY = 0 (or, dY = r), steps 5, 6, 9 and 12 (or, steps 10 and
12) should be skipped, R(s) does not exist, R

(s)
0 = Ir (or,

R(s) = Ir and R
(s)
0 does not exist) always and any terms

involving either R(s) or Φ(s) or η
(s)
C or η

(s)
D (or, either R

(s)
0

or Φ
(s)
0 ) or B(s) are omitted.

Remark 2. In our actual implementation of this
Metropolis-within-Gibbs algorithm, once any parameter is
updated, it will be immediately used for the updating of other
parameters in the same iteration. Even when we are updat-
ing A and B, the previously updated columns will be used
immediately to update the rest of columns.

Remark 3. The updating of each column of A and B in
steps 11 and 12 is implemented in a random order as illus-
trated. Instead, it could be in a deterministic order as well.
Meanwhile, the order of updating different parameter blocks
in an iteration could also be random without affecting the
convergence.

APPENDIX B
B.1 Initial Estimator for MCMC Algorithm of

SIMP

In this section, we propose a warm start initial estimator
for all parameters in SIMP, including μ1C , μY , β2, γ, ηC ,
ηD, A, B, Ω, Ω0, Φ and Φ0 if all existed (i.e. 0 < dX < pC ,
0 < dY < r and r, pC , pD, p2 > 0). It will be used as
the initial value Θ(0) for our implementation of the MCMC
algorithm for SIMP, for faster convergence. Given the data
matrices X1C , X1D, X2 and Y, and any valid envelope dimen-
sions dX , dY as input, we implement the following steps.

1. Estimate μ
(0)
Y = Y

T1n/n and μ
(0)
1C = X

T
1C1n/n.

2. Center X1C , X1D, X2 and Y to be X̃1C = X1C −
1n(μ

(0)
1C)

T , X̃1D = X1D − 1nX
T

1D, X̃2 = X2 − 1nX
T

2

and Ỹ = Y− 1n(μ
(0)
Y )T .

3. Perform the frequentist ordinary least squares for X̃1C

on X̃1D, and get γ(0) and Σ
(0)
C|D as the estimate for the

regression coefficients matrix and the residual covari-
ance matrix, respectively.

4. Perform the frequentist partial response envelope model
with dimension dY (by the function penv() in the R
library Renvlp) on

regressing Ỹ on X̃1C , X̃1D and X̃2,

where we treat X̃1C and X̃1D together as our predic-
tors of interest in this partial response envelope model.
From this fitting, β(0)

1C , β(0)
1D, β(0)

2 , R(B(0)), R0(B
(0)),

Φ(0) and Φ
(0)
0 could be directly obtained. Compute

B(0) from R(B(0)) by the trick of re-parameterization,
as illustrated in Section 3.2. Estimate ηD by η

(0)
D =

(β
(0)
1DR(B(0)))T .

5. Perform the frequentist predictor envelope model with
dimension dX (by the function xenv() in the R library
Renvlp) on the regression from Ỹ

∗ on X̃
∗
1C , where Ỹ

∗

and X̃
∗
1C are the residual matrices from the following

two frequentist ordinary least squares regressions re-
spectively:

Regress Ỹ on X̃1D and X̃2,

Regress X̃1C on X̃1D and X̃2.

Estimates L(A(0)), L0(A
(0)) could be immediately ob-

tained from this regression. Then, Ω(0) and Ω
(0)
0 could

be calculated as Ω(0) = L(A(0))TΣ
(0)
C|DL(A(0)) and

Ω
(0)
0 = L0(A

(0))TΣ
(0)
C|DL0(A

(0)), and A(0) could be
computed from L(A(0)) by the idea in Section 3.2 sim-
ilarly. Estimate η

(0)
C = R(B(0))T (β

(0)
1C )

TL(A(0)).

Note when dX = 0 (or, dX = pC), Ω, A and ηC (or,
Ω0 and A) don’t exist. When dY = 0 (or, dY = r), Φ, B,
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ηC and ηD (or, Φ0 and B) don’t exist. Therefore, it is not
necessary to initialize them in the corresponding cases.

APPENDIX C
C.1 Additional Simulation Results for Section

7.2
Tables C.1 and C.2 show the parameter estimation per-

formance for β1C and β1D under exactly the same set-

ting for (M1) in Section 7.2, except now p2 = 4 with
μ2 = (2,−1,−3, 5) or pD = 4 respectively. We call these
two data generating mechanisms as (M5) and (M6). As Ta-
ble C.1 reveals, MSE for both β1C and β1D from our method
and our competitors remain roughly the same or become
little inflated as p2 increases from 2 to 4, except few cases.
Table C.2 suggests the MSE for β1D grow linearly with re-
spect to pD, and the MSE for β1C remain almost the same
for our method and most of our competitors, except few
cases. Therefore, SIMP is observed to show more advanta-

Table C.1. MSE comparison for SIMP and other 11 estimators of β1C and β1D over 500 repetitions under the data
generating mechanism (M5). The lowest MSE under each combination of r and n is in bold face.

r n OLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

3

300 β1C 0.16 0.07 0.18 0.17 3.82 0.10 0.06 0.05 0.05 0.02 0.05 0.02
β1D 0.60 0.26 1.57 1.33 14.70 1.16 0.20 0.58 0.17 0.25 0.18 0.10

500 β1C 0.09 0.04 0.10 0.10 3.78 0.05 0.03 0.03 0.03 0.01 0.03 0.01
β1D 0.35 0.15 0.67 0.64 14.47 0.58 0.11 0.22 0.10 0.14 0.10 0.06

1000 β1C 0.05 0.02 0.05 0.05 3.85 0.02 0.01 0.01 0.01 0.01 0.01 0.01
β1D 0.17 0.07 0.17 0.21 14.98 0.19 0.05 0.07 0.05 0.06 0.05 0.03

8

300 β1C 0.69 0.11 0.59 0.52 22.98 0.27 0.07 0.08 0.06 0.04 0.06 0.03
β1D 2.46 0.34 4.29 4.08 84.50 3.31 0.24 0.54 0.18 0.90 0.18 0.12

500 β1C 0.41 0.06 0.42 0.41 22.82 0.19 0.04 0.04 0.03 0.02 0.03 0.02
β1D 1.46 0.19 1.88 1.90 83.58 1.75 0.13 0.21 0.10 0.55 0.10 0.07

1000 β1C 0.20 0.03 0.21 0.20 22.76 0.09 0.02 0.02 0.02 0.01 0.02 0.01
β1D 0.73 0.08 0.84 1.19 83.02 1.02 0.05 0.08 0.05 0.27 0.05 0.03

15

300 β1C 1.44 0.17 0.20 0.16 30.25 0.13 0.09 0.13 0.08 0.06 0.08 0.06
β1D 4.66 0.46 2.25 2.20 100.73 2.21 0.22 0.81 0.17 1.94 0.17 0.23

500 β1C 0.85 0.09 0.17 0.14 30.13 0.11 0.05 0.06 0.04 0.04 0.05 0.03
β1D 2.81 0.22 2.23 2.17 101.26 2.22 0.11 0.26 0.09 1.16 0.09 0.13

1000 β1C 0.42 0.04 0.17 0.13 30.18 0.10 0.02 0.03 0.02 0.02 0.02 0.01
β1D 1.38 0.10 2.18 2.10 101.38 2.11 0.05 0.10 0.05 0.57 0.05 0.04

Table C.2. MSE comparison for SIMP and other 11 estimators of β1C and β1D over 500 repetitions under the data
generating mechanism (M6). The lowest MSE under each combination of r and n is in bold face.

r n OLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP

3

300 β1C 0.15 0.06 0.17 0.17 3.13 0.10 0.05 0.07 0.04 0.02 0.05 0.01
β1D 1.18 0.50 1.50 1.43 24.57 1.59 0.36 0.97 0.35 0.44 0.35 0.15

500 β1C 0.09 0.04 0.10 0.10 3.16 0.07 0.03 0.04 0.03 0.01 0.03 0.01
β1D 0.71 0.29 0.84 0.82 24.43 1.06 0.21 0.51 0.20 0.25 0.20 0.09

1000 β1C 0.04 0.02 0.05 0.05 3.14 0.04 0.01 0.02 0.01 0.00 0.01 0.00
β1D 0.34 0.14 0.36 0.40 23.84 0.43 0.10 0.16 0.10 0.13 0.10 0.04

8

300 β1C 0.69 0.09 0.64 0.62 18.75 0.31 0.06 0.08 0.05 0.03 0.05 0.02
β1D 4.61 0.76 3.53 3.37 122.38 2.96 0.36 0.80 0.33 1.87 0.33 0.20

500 β1C 0.41 0.05 0.40 0.36 18.62 0.20 0.03 0.04 0.03 0.02 0.03 0.01
β1D 2.75 0.40 2.47 1.70 122.52 1.85 0.20 0.43 0.20 1.12 0.20 0.11

1000 β1C 0.20 0.03 0.21 0.18 18.43 0.11 0.02 0.02 0.01 0.01 0.01 0.00
β1D 1.36 0.21 1.47 0.87 121.33 1.22 0.10 0.18 0.10 0.55 0.10 0.06

15

300 β1C 1.45 0.16 0.38 0.34 30.92 0.31 0.07 0.12 0.06 0.06 0.06 0.04
β1D 9.46 1.17 7.10 6.68 200.78 6.85 0.42 0.88 0.36 3.88 0.37 0.32

500 β1C 0.86 0.08 0.48 0.37 30.68 0.32 0.04 0.06 0.04 0.03 0.04 0.02
β1D 5.52 0.57 6.74 6.39 198.22 4.80 0.23 0.43 0.21 2.30 0.21 0.17

1000 β1C 0.42 0.03 0.45 0.38 30.49 0.21 0.02 0.03 0.02 0.02 0.02 0.01
β1D 2.79 0.26 3.26 2.20 198.11 2.35 0.11 0.20 0.10 1.14 0.10 0.07
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Table C.3. MSE comparison between FPY-env, PX-env, PY-env and SIMP for estimating β1C and β1D over 500 repetitions,
with the true envelope dimensions known under data generating mechanisms (M1)–(M3), (M5) and (M6), and the MSE of
the RRR estimator with the true rank known under data generating mechanism (M4). “*” in the names of methods means

that the true envelope dimension/rank is used. The lowest MSE for each combination of r and n under each true data
generating mechanism is highlighted in bold face.

r 3 8 15
n 300 500 1000 300 500 1000 300 500 1000

β1C β1D β1C β1D β1C β1D β1C β1D β1C β1D β1C β1D β1C β1D β1C β1D β1C β1D

M1

FPY-env* 0.05 0.16 0.03 0.09 0.01 0.05 0.05 0.18 0.03 0.11 0.01 0.05 0.08 0.15 0.04 0.09 0.02 0.04
PX-env* 0.01 0.22 0.01 0.14 0.00 0.07 0.03 0.92 0.02 0.57 0.01 0.27 0.06 1.87 0.04 1.12 0.02 0.55
PY-env* 0.05 0.16 0.03 0.09 0.01 0.05 0.05 0.18 0.03 0.11 0.01 0.05 0.08 0.15 0.04 0.09 0.02 0.04
SIMP* 0.01 0.07 0.01 0.04 0.00 0.02 0.02 0.09 0.01 0.05 0.00 0.03 0.04 0.09 0.03 0.05 0.01 0.03

M2

FPY-env* 0.02 0.10 0.01 0.06 0.01 0.03 0.04 0.11 0.02 0.07 0.01 0.03 0.10 0.09 0.06 0.05 0.03 0.03
PX-env* 0.05 0.30 0.03 0.19 0.01 0.09 0.23 1.25 0.13 0.76 0.06 0.37 0.46 2.04 0.28 1.24 0.14 0.59
PY-env* 0.02 0.10 0.01 0.06 0.01 0.03 0.04 0.11 0.02 0.07 0.01 0.03 0.11 0.09 0.06 0.05 0.03 0.03
SIMP* 0.02 0.09 0.01 0.06 0.01 0.03 0.04 0.11 0.02 0.06 0.01 0.03 0.11 0.09 0.06 0.05 0.03 0.03

M3

FPY-env* 0.23 0.81 0.13 0.46 0.06 0.23 0.22 0.80 0.13 0.49 0.06 0.23 0.23 0.70 0.13 0.41 0.07 0.21
PX-env* 0.02 0.33 0.01 0.20 0.00 0.10 0.02 0.47 0.01 0.28 0.01 0.14 0.03 0.66 0.02 0.40 0.01 0.20
PY-env* 0.23 0.81 0.13 0.46 0.06 0.23 0.22 0.80 0.13 0.49 0.06 0.23 0.23 0.69 0.13 0.41 0.07 0.21
SIMP* 0.01 0.30 0.01 0.19 0.00 0.09 0.02 0.30 0.01 0.18 0.01 0.09 0.03 0.30 0.02 0.19 0.01 0.09

M4 RRR* 0.39 0.05 0.23 0.03 0.11 0.01 0.32 0.04 0.17 0.02 0.08 0.01 9.04 1.00 3.75 0.40 1.56 0.16

M5

FPY-env* 0.05 0.17 0.03 0.10 0.01 0.05 0.06 0.18 0.03 0.10 0.02 0.05 0.07 0.16 0.04 0.09 0.02 0.05
PX-env* 0.01 0.22 0.01 0.13 0.00 0.06 0.03 0.90 0.02 0.55 0.01 0.27 0.06 1.94 0.03 1.16 0.02 0.57
PY-env* 0.05 0.17 0.03 0.10 0.01 0.05 0.06 0.17 0.03 0.10 0.02 0.05 0.07 0.16 0.04 0.09 0.02 0.05
SIMP* 0.01 0.08 0.01 0.05 0.00 0.02 0.02 0.09 0.01 0.05 0.01 0.03 0.04 0.09 0.02 0.06 0.01 0.03

M6

FPY-env* 0.04 0.35 0.03 0.20 0.01 0.10 0.05 0.33 0.03 0.20 0.01 0.10 0.06 0.36 0.04 0.21 0.02 0.10
PX-env* 0.01 0.40 0.00 0.24 0.00 0.12 0.03 1.86 0.02 1.13 0.01 0.55 0.06 3.87 0.03 2.31 0.02 1.14
PY-env* 0.04 0.35 0.03 0.20 0.01 0.10 0.05 0.33 0.03 0.19 0.01 0.10 0.06 0.37 0.04 0.21 0.02 0.10
SIMP* 0.00 0.13 0.00 0.08 0.00 0.04 0.01 0.18 0.01 0.11 0.00 0.05 0.03 0.23 0.02 0.13 0.01 0.06

geous numerical performance with increased pD in our lim-
ited simulation studies.

Table C.3 summarizes the performance of FPY-env, PX-
env, PY-env and SIMP with the true envelope dimensions
known under (M1)–(M3), (M5) and (M6), or the perfor-
mance of RRR with the true rank known under (M4). With
the true envelope dimensions known, SIMP almost always
obtains the best estimation performance under all scenarios
except the model mis-specification case (M4).

Table C.4 shows the performance of all three Bayesian
envelope estimators (PX-env, PY-env and SIMP) of β1C

and β1D under the data generating mechanism (M1), except
now the posterior median rather than the posterior mean
is chosen as the point estimator. Comparing the results in
this table and Table 3, we empirically find no observable
difference in performance between the posterior mean and
the posterior median as the point estimator under (M1).

APPENDIX D

D.1 Theoretical Proofs
Proof of Theorem 1. The integrability of the posterior den-
sity could be immediately obtained following the proof of
Theorem 2.

Proof of Theorem 2. To prove the Harris ergodicity of the
Markov chain generated by our Metropolis-within-Gibbs al-
gorithm, we need to prove 3 properties, namely, (a) φ-
irreducibility with respect to some measure φ, (b) Ape-
riodicity, and (c) Harris recurrence. Firstly, we prove φ-
irreducibility which requires that the Markov chain could
reach any set with positive measure from any state in the
state space. The rigorous definition is given in Definition 3.

Definition 3 (φ-irreducibility). For a Markov chain
(Xn)

∞
n=1, suppose that the state space is X with σ-algebra

F , and the n-step transition kernel is κn : X × F → [0, 1].
Given a nonzero measure φ, the Markov chain is called
φ-irreducible, if for every state x ∈ X and every subset
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Table C.4. MSE comparison for three Bayesian envelope
estimators (PX-env, PY-env and SIMP) on estimating β1C

and β1D over 500 repetitions under the data generating
mechanism (M1), except the posterior median rather than the
posterior mean is chosen as the point estimator. The lowest
MSE under each combination of r and n is in bold face. The
tiny differences between the results in this table and those in

Table 3 are colored in red.
r n PX-env PY-env SIMP

β1C 0.02 0.05 0.02300
β1D 0.23 0.17 0.09
β1C 0.01 0.03 0.01500
β1D 0.14 0.10 0.05
β1C 0.00 0.01 0.00

3

1000
β1D 0.07 0.05 0.02

β1C 0.03 0.05 0.02300
β1D 0.93 0.18 0.10
β1C 0.02 0.03 0.01500
β1D 0.57 0.11 0.06
β1C 0.01 0.02 0.01

8

1000
β1D 0.27 0.05 0.03

β1C 0.06 0.08 0.06300
β1D 1.87 0.15 0.17
β1C 0.04 0.04 0.03500
β1D 1.13 0.09 0.10
β1C 0.02 0.02 0.02

15

1000
β1D 0.54 0.04 0.03

A ∈ F with φ(A) > 0, there exists an integer n such that
κn(x, A) > 0.

To prove the φ-irreducibility of the Markov chain gen-
erated by the Metropolis-within-Gibbs algorithm that we
developed, we just need to check that the proposal densities
and the acceptance probabilities for updating all parameter
blocks are positive, then the φ-irreducibility is proved under
1-step transition (take n = 1). For 1-dimensional MCMC, it
is obvious that,

κ1(x,A) =

∫
A

q(x, y)a(x, y)φ(dy) > 0

for ∀ x ∈ X , A ∈ B(X )

as long as the proposal density q(x, y) > 0 and
the acceptance probability a(x, y) > 0 always. To ex-
tend this conclusion to the multi-dimensional case, the
technique of induction could be applied. See details
in Section 4.1.8 of [22]. Among 12 parameter blocks
{μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD}, if all existed,
the updating of A and B requires the Metropolis steps,
and that for the rest of parameter blocks only needs normal
Gibbs steps by the conjugacy. Since the exponential function
and the vector Normal density function are always positive,
we can conclude that the acceptance probabilities and the

proposal densities of the Metropolis steps, if present, are
always positive. For the Gibbs steps, the proposal distribu-
tions are Matrix normal and Inverse-Wishart distributions,
both with densities always positive. The acceptance proba-
bilities are always 1, which is positive as well. This completes
the proof for the φ-irreducibility.

Next, we intend to show the Aperiodicity, whose defini-
tion for a φ-irreducible Markov chain is given in Definition 4.

Definition 4 (Aperiodicity). For a φ-irreducible Markov
chain (Xn)

∞
n=1, suppose that the state space is X with σ-

algebra F , the (1-step) transition probability is κ1 : X×F →
[0, 1], and the stationary probability distribution is π(·). The
period of (Xn)

∞
n=1 is defined as the largest positive integer

T for which there exist disjoint subsets A1, A2, . . . , AT ∈ F
with π(Ai) > 0, such that κ1(x, Ai+1) = 1 for all x ∈ Ai

(1 ≤ i ≤ T − 1), and κ1(x, A1) = 1 for all x ∈ AT . The
Markov chain is called Aperiodic if T = 1.

Aperiodicity could be immediately obtained, since every
set with nonzero probability (under the stationary probabil-
ity distribution π) in the σ-algebra of the state space could
be reached from any point in the state space through one
step transition in the Markov chain.

Lastly, we intend to prove the Harris recurrence. The def-
inition of the Harris recurrence for a φ-irreducible Markov
chain is given in Definition 5.

Definition 5 (Harris recurrence). For a φ-irreducible
Markov chain (Xn)

∞
n=1, suppose that the state space is

X with σ-algebra F , and the stationary probability distri-
bution is π(·). The Markov chain is called Harris recur-
rent, if for all A ⊆ X with π(A) > 0 and any starting
point x ∈ X , we have the conditional probability P (Xn ∈
A infinitely often in n | X1 = x) = 1.

When dX ∈ {0, pC} and dY ∈ {0, r}, A and B don’t ex-
ist, then the Metropolis-within-Gibbs algorithm is actually
a normal Gibbs sampler. Then Harris recurrence is directly
implied by φ-irreducibility ([48], Corollary 13). When ei-
ther 0 < dX < pC or 0 < dY < r, there exists Metropolis
step for either A or B. The Harris recurrence could be ob-
tained by proving the Lebesgue integrability of the posterior
density over every combination of parameter blocks ([48],
Corollary 19). For simplicity, we assume 0 < dX < pC and
0 < dY < r. Hence we only need to prove the posterior
density f(μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D)
is Lebesgue integrable over every k (1 ≤ k ≤ 12) el-
ements from {μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD}.
Theorem 2 under the other two cases (1) dX ∈ {0, pC} and
0 < dY < r; (2) 0 < dX < pC and dY ∈ {0, r} could be
similarly proved with simple modifications of the following
proof. Theorem 1 should be immediately proved by letting k
to be the maximal value 12, i.e., the Lebesgue integrability



260 Y. Shen et al.

Table C.5. MSE comparison between SIMP and other 11 competitors for estimating β1C and β1D over 500 repetitions under
the data generating mechanism (M4). Different from Table 6, this table displays the estimation performance of 12 methods, if

we pretend that the true values of the parameters β1C and β1D are known, and the “optimal” tuning parameters or the
envelope dimensions are selected by minimizing the �2 distances between the estimates and the true values of β1C and β1D

separately, instead of applying the model selection methods that are introduced in Section 7.2.1. The lowest MSE under each
combination of r and n among all methods and within envelope methods are in bold face and blue respectively.

r n FOLS RRR PCR PLSR CCA FX-env FY-env FS-env FPY-env PX-env PY-env SIMP
β1C 0.92 0.39 0.51 0.39 27.61 0.37 0.65 0.35 0.64 0.37 0.64 0.37300
β1D 0.12 0.05 0.06 0.04 3.58 0.02 0.05 0.02 0.05 0.10 0.09 0.04
β1C 0.53 0.23 0.36 0.26 27.60 0.27 0.47 0.26 0.47 0.27 0.47 0.27500
β1D 0.07 0.03 0.04 0.03 3.72 0.01 0.04 0.01 0.04 0.07 0.07 0.04
β1C 0.27 0.11 0.23 0.15 28.57 0.19 0.26 0.18 0.26 0.18 0.26 0.18

3

1000
β1D 0.03 0.01 0.02 0.01 3.37 0.00 0.03 0.00 0.03 0.03 0.03 0.02

β1C 0.75 0.32 0.65 0.49 20.53 0.58 0.32 0.26 0.28 0.48 0.28 0.24300
β1D 0.09 0.04 0.08 0.05 2.49 0.05 0.04 0.02 0.03 0.08 0.03 0.02
β1C 0.43 0.17 0.39 0.28 20.32 0.35 0.18 0.15 0.15 0.28 0.15 0.13500
β1D 0.06 0.02 0.05 0.03 2.62 0.03 0.02 0.01 0.02 0.05 0.02 0.02
β1C 0.20 0.08 0.20 0.13 20.14 0.16 0.08 0.07 0.07 0.14 0.07 0.07

8

1000
β1D 0.03 0.01 0.02 0.01 2.55 0.01 0.01 0.00 0.01 0.02 0.01 0.01

β1C 37.13 9.04 9.76 8.61 20.23 1.33 2.84 1.06 2.82 0.82 2.82 0.71300
β1D 4.74 1.00 0.01 0.01 2.10 0.01 0.01 0.00 0.00 4.32 0.12 0.00
β1C 22.73 3.75 8.37 6.43 20.95 0.62 2.39 0.57 2.37 0.41 2.37 0.40500
β1D 2.85 0.40 0.01 0.01 2.05 0.00 0.00 0.00 0.00 2.62 0.08 0.00
β1C 11.54 1.56 6.38 4.47 21.22 0.31 2.06 0.30 2.05 0.23 2.05 0.24

15

1000
β1D 1.46 0.16 0.01 0.01 2.08 0.00 0.00 0.00 0.00 1.39 0.07 0.00

over all parameter blocks is considered. Below we show the
proof. The unnormalized posterior density is

f(μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D)

∝ f0(μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D)

= exp

{
−1

2
tr
{
(X̃1C − X̃1Dγ)

(
L(A)ΩL(A)T+

L0(A)Ω0L0(A)T
)−1

(X̃1C − X̃1Dγ)T
}}

exp

{
−1

2
tr
{(

Ỹ− X̃1CL(A)ηT
CR(B)T − X̃1DηT

D

R(B)T − X̃2β2

)(
R(B)ΦR(B)T +R0(B)Φ0

R0(B)T
)−1(

Ỹ− X̃1CL(A)ηT
CR(B)T − X̃1DηT

D

R(B)T − X̃2β2

)T}}|Ω|−(n+pD+wX+dX+1)/2
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.

Specifically, in the following term, what inside trace function
is a product of two positive semi-definite matrices, so

exp
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2
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Y− X̃1CL(A)ηT

CR(B)T − X̃1DηT
DR(B)T−

X̃2β2

)(
R(B)ΦR(B)T +R0(B)Φ0R0(B)T

)−1(
Y− X̃1CL(A)

ηT
CR(B)T − X̃1DηT

DR(B)T − X̃2β2

)T(
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n
Jn

)}}
≤ 1,

where Jn = 1n1
T
n . Therefore,∫

exp

{
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2
tr
{(

Y− 1nμ
T
Y − X̃1CL(A)ηT

CR(B)T−
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X̃1DηT
DR(B)T − X̃2β2

)(
R(B)ΦR(B)T +R0(B)Φ0

R0(B)T
)−1(

Y− 1nμ
T
Y − X̃1CL(A)ηT

CR(B)T − X̃1D

ηT
DR(B)T − X̃2β2

)T}}
dμY

=

(
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n

)r/2
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)(
R(B)Φ

R(B)T +R0(B)Φ0R0(B)T
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(
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Meanwhile,
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)(
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DR(B)T − X̃2β2

)T}} ≤ 1.

We can conclude

f0(μ1C ,μY ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D)

≤ c1f
(0)
1 (μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D),

and∫
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≤ c1f
(1)
1 (μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D),

where c1 = 1 + ( 2πn )r/2 and for Ξ = 0, 1,

f
(Ξ)
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(
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.

Next, we just need to show f
(Ξ)
1 (μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,

A, B, ηC , ηD | D) is integrable with respect to any 1 ≤ k ≤
11 elements in {μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD}, for
any value of Ξ. Similarly, note that∫

exp

{
−1

2
tr
{(

X1C − 1nμ
T
1C − X̃1Dγ

)(
L(A)Ω

L(A)T + L0(A)Ω0L0(A)T
)−1(

X1C − 1nμ
T
1C−

X̃1Dγ
)T}}

dμ1C

=

(
2π

n

)pC/2

|Ω|1/2|Ω0|1/2 exp
{
−1

2
tr

{
(X1C − X̃1Dγ)(

L(A)ΩL(A)T + L0(A)Ω0L0(A)T
)−1

(X1C − X̃1Dγ)T(
In − 1

n
Jn

)}}
≤

(
2π

n

)pC/2

|Ω|1/2|Ω0|1/2,

since
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2
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(
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≤ 1.

Together with the fact that

exp
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2
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{
(X̃1C − X̃1Dγ)

(
L(A)ΩL(A)T + L0(A)Ω0

L0(A)T
)−1

(X̃1C − X̃1Dγ)T
}}

≤ 1,

we get for any Ξ = 0, 1,

f
(Ξ)
1 (μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D)

≤ c2f
(Ξ,0)
2 (β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D),
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and∫
f
(Ξ)
1 (μ1C ,β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D) dμ1C

≤c2f
(Ξ,1)
2 (β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD | D),

where c2 = 1 + ( 2πn )pC/2 and for Ξ = 0, 1, ζ = 0, 1,
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.

Then it is enough to show f
(Ξ,ζ)
2 (β2,γ,Ω,Ω0,Φ,Φ0,A,B,

ηC , ηD | D) is integrable over every 1 ≤ k ≤ 10 members in
{β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηC ,ηD}, for any value of Ξ and
ζ. Observe∫

exp
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2
tr
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E
(
ηC −WE−1

)T
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(
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)}}
dηC

= (2π)dXdY /2|E|−dY /2|Φ|dX/2

and
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Hence for any Ξ = 0, 1, ζ = 0, 1,

f
(Ξ,ζ)
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≤ c3f
(Ξ,ζ,0)
3 (β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηD | D),

and ∫
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with c3 = 1 + (2π)dXdY /2|E|−dY /2. For Ξ, ζ, λ = 0, 1,
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.

Therefore, the task right now is to prove f
(Ξ,ζ,λ)
3 (β2,γ, Ω,

Ω0, Φ, Φ0, A, B, ηD | D) is integrable over any 1 ≤ k ≤ 9
elements in {β2,γ,Ω,Ω0,Φ,Φ0,A,B,ηD}, for any value of
Ξ, ζ and λ. Since∫
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we get for any Ξ, ζ, λ = 0, 1,
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.

Then we intend to show f
(Ξ,ζ,λ,τ)
4 (β2,γ,Ω,Ω0,Φ,Φ0, A,

B | D) is integrable over any 1 ≤ k ≤ 8 elements in
{β2,γ,Ω,Ω0,Φ,Φ0,A,B}, for any value of Ξ, ζ, λ and τ .
Since∫
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we get for any Ξ, ζ, λ, τ = 0, 1,
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and ∫
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where c5 = 1+(2π)p2r/2|M|−r/2 and for Ξ, ζ, λ, τ , χ = 0, 1,
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.

Now it is suffice to show f
(Ξ,ζ,λ,τ,χ)
5 (γ,Ω,Ω0,Φ,Φ0,A,B |

D) is integrable with respect to any 1 ≤ k ≤ 7 members in
{γ,Ω,Ω0,Φ,Φ0,A,B}, for any value of Ξ, ζ, λ, τ and χ.
Applying the similar trick as before, since∫
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we conclude for any Ξ, ζ, λ, τ , χ = 0, 1,
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and ∫
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≤ c6f
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6 (Ω,Ω0,Φ,Φ0,A,B | D),

with c6 = 1 + (2π)pDpC/2|Λ|−pC/2 and for Ξ, ζ, λ, τ , χ,
ν = 0, 1,

f
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|Φ|−(n+wY +dY +(1−χ)p2+(1−τ)pD+(1−λ)dX+1−Ξ)/2
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.

Notice this is a constant multiple of the product of densities
for IWdX

(ΨX , n+wX+pD(1−ν)−ζ), IWpC−dX
(ΨX0 , n+
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wX0 + pD(1 − ν) − ζ), IWdY
(ΨY , n + wY + p2(1 −

χ) + pD(1 − τ) + dX(1 − λ) − Ξ), IWr−dY
(ΨY0 , n +

wY0 + p2(1 − χ) − Ξ), MN pC−dX .dX
(A0,KA,ΣA) and

MN r−dY .dY
(B0,KB,ΣB). These Inverse-Wishart distribu-

tions are well-defined by checking

n+ wX + pD(1− ν)− ζ > dX − 1,

n+ wX0 + pD(1− ν)− ζ > pC − dX − 1,

n+ wY0 + p2(1− χ)− Ξ > r − dY − 1,

and

n+wY + p2(1− χ) + pD(1− τ) + dX(1− λ)− Ξ > dY − 1,

for any value of Ξ, ζ, λ, τ , χ, ν = 0, 1, since wX > dX − 1,
wX0 > pC − dX − 1, wY > dY − 1, wY0 > r − dY − 1, pD,
p2, dX ≥ 0 and n ≥ 1. This completes the proof.

APPENDIX E
E.1 Review of the Matrix Normal and the

Inverse-Wishart Distributions
We introduce the Matrix normal and the Inverse-Wishart

distributions here, for the description of the prior and the
posterior distributions:

Let X ∼ MN a,b(M,U,V) denote the Matrix normal
distribution with location parameter M ∈ R

a×b and scale
parameters U ∈ R

a×a and V ∈ R
b×b such that U and V

are positive definite, and it has the density function

exp{−tr(V−1(X−M)TU−1(X−M))/2}
(2π)ab/2|V|a/2|U|b/2 .

Let X ∼ IWa(X0, ν) denote the Inverse-Wishart distri-
bution with scale matrix parameter X0 ∈ S

a×a
+ and degrees

of freedom parameter ν > a − 1. The density function is
given by

|X0|ν/2
2νa/2Γa(ν/2)

|X|−(ν+a+1)/2 exp
{
−tr

(
X0X

−1
)
/2

}
.

Here Γa(·) denotes the Multivariate gamma function, which
is defined by

Γa(u) = πa(a−1)/4
a∏

j=1

Γ
{
u+ (1− j)/2

}
, for u > 0,

where a is a positive integer, and Γ{·} is the usual Gamma
function.

APPENDIX F
F.1 Review of DIC, WAIC and Bayesian CV

We introduce the definitions of two information crite-
ria, DIC and WAIC, and Bayesian CV here. Let Θ̂mean

dX ,dY

denote the estimated posterior mean of all parameters Θ
among retained posterior samples, when fixing the enve-
lope dimensions at dX and dY . Recall that in (4.1), we
denote l(Θ) as the log-likelihood function of Θ conditional
on all observations D. For convenience, for i = 1, 2, . . . , n,
we further denote f(Di | Θ) = exp{li(Θ)} as the density
function value of the observation i when using parameter
Θ, and its log-transformation is denoted as li(Θ), where
Di = {Yi,X1C,i,X1D,i,X2,i}. Then DIC and WAIC are de-
fined as

DIC =− 2l
(
Θ̂mean

dX ,dY

)
+ 2

{
l
(
Θ̂mean

dX ,dY

)
− 1

S

S∑
s=1

l
(
Θ

(s)
dX ,dY

)}
,

WAIC =− 2

n∑
i=1

log

{
1

S

S∑
s=1

f
(
Di | Θ(s)

dX ,dY

)}

+ 2

n∑
i=1

{
1

S − 1

S∑
s=1

(
li
(
Θ

(s)
dX ,dY

)
− 1

S

S∑
s=1

li
(
Θ

(s)
dX ,dY

))2}
,

where {Θ(s)
dX ,dY

}Ss=1 are the retained posterior samples, and
we use the subscript for Θ to highlight that the enve-
lope dimensions are fixed at dX and dY . Compared with
AIC−MCMC as defined in (6.1), DIC replaces Θ̂max

dX ,dY
and

K(dX , dY ) with Θ̂mean
dX ,dY

and a bias correction term based on
data respectively, while WAIC replaces the maximized log-
likelihood function by a term called the computed log point-
wise posterior predictive density, and estimates K(dX , dY )
by another bias correction term.

To introduce Bayesian CV, suppose n samples are par-
titioned into K subsets, with corresponding index sets as
{Ck}Kk=1. For fixed dX and dY , and each k = 1, 2, . . . ,K,
we run the MCMC algorithm on all observations D except
those in Ck, and denote the retained posterior samples as
{Θ−k,(s)

dX ,dY
}Ss=1. Instead of computing the MSPE that is usu-

ally used in the frequentist setting, Bayesian CV aims at
finding dX and dY that minimize the minus of the average
out-of-sample estimate of the log predictive density, with
expression

− 1

K

K∑
k=1

log

{
1

S

S∑
s=1

∏
i∈Ck

f
(
Di | Θ−k,(s)

dX ,dY

)}
.
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APPENDIX G

G.1 MCMC Diagnostic and Posterior Density
Plots for Section 7.2

Figure G.1 shows the convergence of the proposed MCMC
algorithm by showing the traceplots, the autocorrelation
plots and the evolution of the Gelman-Rubin’s shrink factor
for a randomly selected and representative element of each
of β̂1C , β̂1D, β̂2, Σ̂C|D and Σ̂Y |X from SIMP, under the
data generating mechanism (M1) of Section 7.2, with r = 15
and n = 300 (the most challenging case). All of those plots
indicate the convergence and weak autocorrelation between
MCMC samples.

Figure G.2 displays the empirical posterior density plots
of the randomly selected and representative element of each
of β̂1C and β̂1D under the same setting. These (estimated)
posterior distributions are bell-shaped and the shape is very
common among the (estimated) posterior distributions of all
elements in β̂1C and β̂1D.

Figure G.1: The trace plots (left), the autocorrelation plots
(middle; based only on Chain 1) and the evolution of the
(median and 97.5% upper confidence limit of) Gelman-
Rubin’s shrink factor as the number of iterations increases
(right; PSRF represents the point estimate, i.e. the potential
scale reduction factor) for a randomly selected and repre-
sentative element of each of β̂1C , β̂1D, β̂2, Σ̂C|D and Σ̂Y |X
from SIMP (correspondingly from row 1 to row 5), under
the data generating mechanism (M1) of Section 7.2, with
r = 15 and n = 300 (the most challenging case).

Figure G.2: The (marginal) empirical posterior density plots
for a randomly selected and representative element of each of
β̂1C and β̂1D from SIMP, under the data generating mech-
anism (M1) of Section 7.2, with r = 15 and n = 300. These
density plots under other simulated settings are similar.

APPENDIX H

H.1 Plots of Exploring the Population
Stratification for Section 8

Figure H.1: Plots of all selected participants with their i-th
SNP PC and (i+1)-th SNP PC as X and Y coordinates re-
spectively, (i = 1, 3, 5, 7, 9, 11 for the upper left, upper mid-
dle, upper right, lower left, lower middle and lower right pan-
els. The percentage of the total variation that is explained
by that PC is included in the parenthesis) for the real data
application. No population stratification is observed in all
six plots.
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H.2 MCMC Diagnostic and Posterior Density
Plots for Section 8.4

Figure H.2: The trace plots (left), the autocorrelation plots
(middle; based only on Chain 1) and the evolution of the
(median and 97.5% upper confidence limit of) Gelman-
Rubin’s shrink factor as the number of iterations increases
(right; PSRF represents the point estimate, i.e. the potential
scale reduction factor) for a randomly selected and repre-
sentative element of each of β̂1C , β̂1D, β̂2, Σ̂C|D and Σ̂Y |X
from SIMP (correspondingly from row 1 to row 5) for the
real data application.

Figure H.3: The (marginal) empirical posterior density plots
for a randomly selected and representative element of each
of β̂1C and β̂1D for the real data application.

Figures H.2 and H.3 are the MCMC diagnostic plots and
the (marginal) empirical posterior density plots for the real
data application. The observations are similar to those in
Appendix G.

H.3 37 Significant SNPs Besides APOE ε4 in
Section 8.4

Table H.1. Besides APOE ε4, the following 37 SNPs are
found to be significant with all 12 IPs from SIMP. The

RefSeq gene is the associated (or the nearest if known) gene
for the SNP in the NCBI Reference Sequence Database,

where “-” means that no such associated gene is found by us.
SNP RefSeq gene SNP RefSeq gene

rs10493854 - rs7120548 MTCH2
rs12059556 - rs10501927 CNTN5
rs1229119 - rs489243 -
rs6428182 - rs10894473 NTM
rs10921394 - rs11064498 C1S
rs12138394 - rs10877700 -
rs12756397 - rs757402 OAS2
rs11685593 LOC105373605/BIN1 rs845757 SPATA7
rs7561528 LOC105373605/BIN1 rs2274736 PTPN21
rs11706690 CHL1 rs10498633 SLC24A4/RIN3
rs10513391 P2RY14 rs2554389 ADAMTSL3
rs1623177 - rs437649 LOC105371501
rs10515893 - rs470268 -
rs2439538 TBC1D7 rs17809911 CCDC102B
rs9381563 CD2AP rs9959820 -
rs1516895 - rs4809760 SLC9A8
rs11038268 LOC105376650 rs2281223 SLC9A8
rs2280231 NDUFS3

H.4 Boxplot of Bilateral Correlations for
Section 8.4

Figure H.4: Boxplot of the Pearson correlation coefficients
within all 6 pairs of brain measures over two hemispheres.
Strong bilateral correlations are observed in this figure.
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