
The New England Journal of Statistics in Data Science Volume 1, 334–341 (2023)
DOI: https://doi.org/10.51387/23-NEJSDS26

Evaluating Designs for Hyperparameter Tuning in Deep Neural
Networks

Chenlu SHI
∗
, Ashley Kathleen CHIU, and Hongquan XU

Abstract
The performance of a learning technique relies heavily on hyperparameter settings. It calls for hyperparameter tuning

for a deep learning technique, which may be too computationally expensive for sophisticated learning techniques. As such,
expeditiously exploring the relationship between hyperparameters and the performance of a learning technique controlled
by these hyperparameters is desired, and thus it entails the consideration of design strategies to collect informative data
efficiently to do so. Various designs can be considered for this purpose. The question as to which design to use then
naturally arises. In this paper, we examine the use of different types of designs in efficiently collecting informative data
to study the surface of test accuracy, a measure of the performance of a learning technique, over hyperparameters. Under
the settings we considered, we find that the strong orthogonal array outperforms all other comparable designs.

keywords and phrases: Big data analysis, Factorial design, Kriging model, Machine learning, MNIST dataset, Space-
filling design.

1. INTRODUCTION
In the modern computer age, deep learning has been a

powerful tool for big data analysis, which utilizes various so-
phisticated computer models to learn hidden patterns or in-
tricate relationships among a large number of variables from
monumental amounts of complex and challenging data. The
performance of a deep learning technique, however, depends
heavily on hyperparameters – parameters that control the
learning process whose values are predetermined by the user
in advance of the process of training the learning model. An
inappropriate hyperparameter setting can result in poor per-
formance of the learning process [13]. Not only do possible
hyperparameters vary algorithm to algorithm, architecture
to architecture, and dataset to dataset, but also those most
important hyperparameters can be unique across different
domains [3, 43]. These call for investigations on hyperpa-
rameter optimization.

Generally, work in the literature on hyperparameter op-
timization has been discussed under both model-free and
model-based frameworks. Model-based hyperparameter op-
timization targets tuning hyperparameters by finding the
best possible approximation to the true learning algorithm,
while model-free methods consider this optimization prob-
lem without making any parametric assumptions. Relevant
work along the line of model-based approaches can be found
in [4, 9, 19, 26, 30, 34, 39, 46, 51]. There has been extensive
work under the model-free framework – see, for example,
manual search, grid search, random search [3] and orthogo-
nal array tuning method [50].
∗Corresponding author.

For more sophisticated learning algorithms, however,
the above hyperparameter optimization approaches, either
model-free or model-based methods, may be too computa-
tionally expensive to afford. This draws our attention to ex-
peditiously explore the relationship between hyperparam-
eters and the response containing measures of the perfor-
mances of models learned by an algorithm with different
hyperparameter combinations using a set of data collected
through testing a minimal number of hyperparameter com-
binations. It alludes to a primary goal of design and analy-
sis of experiments – executing efficient experiments to col-
lect informative data for studying the relationship between
multiple input variables and an output variable. As such,
it is natural to consider design strategies to efficiently col-
lect data for exploring the surface of the performances of a
hyperparameter-controlled learning algorithm, which gives
rise to the question of which design to use for this purpose,
as diverse designs are available in the literature on experi-
mental design.

In this paper, we investigate the above question by com-
paring different types of designs in terms of their ability to
efficiently collect informative data to study how hyperpa-
rameters influence the performances of a learning algorithm
controlled by them. In order to break the bottleneck of com-
putational limitations, we use a deep neural network model
with three hidden layers and apply this comparison to a
popular dataset, the MNIST dataset. Five hyperparameters
and various factorial and space-filling designs for selecting
hyperparameter combinations are considered. We choose the
Kriging model to describe the complex relationship between
the hyperparameters of a learning algorithm and the test

334

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS26

Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks 335

accuracy that measures the performance of such a learning
algorithm in the study. The results show that the perfor-
mance of the 32-run strong orthogonal array surpasses the
performances of all other comparable designs.

This paper is organized as follows. In Section 2, we pro-
vide preparation for the comparison, reviewing (deep) neural
networks, hyperparameters, experimental designs and the
Kriging model. Section 3 compares various designs by ap-
plying them to the MNIST dataset. We end this paper with
some discussion in Section 4.

2. PRELIMINARIES
Suppose that A is a machine learning algorithm with k

hyperparameters. Let Λi be the domain of the i-th hyper-
parameter and Λ = Λ1 × · · · × Λk. We write values of a
combination of k hyperparameters into a vector x. For any
x ∈ Λ, a learning algorithm based on the hyperparameter
setting x is denoted by Ax. Given a set of data D, we denote
a measure of the performance of a model learned by algo-
rithm Ax on data D by y. One commonly used measure of
the performance of a learning algorithm model is test accu-
racy which assesses how accurate the prediction of test data
from the model based on the training dataset is compared to
the observed value. The higher the test accuracy, the better
the performance of the algorithm.

In order to find an appropriate hyperparameter combi-
nation, it is desirable to explore the relationship between
hyperparameter combination x and test accuracy y. The
complexity of the algorithm Ax results in obtaining the ac-
curacy y being computationally expensive. Therefore, a de-
sign strategy is needed to efficiently collect informative data
for building a statistical model to specify the relationship be-
tween hyperparameter combination x and test accuracy y.
Our goal here is to compare different types of experimental
designs for doing this job.

Neural Networks and Deep Neural Networks
Neural networks [31], also known as artificial neural net-

works, are one of the most well-known algorithms used to
recognize patterns and solve common problems in statis-
tics, data science and machine learning. A neural network is
comprised of an input layer, one or more hidden layers and
an output layer, with several units called neurons in each
layer. Neurons in the input layer bring the initial data into
the network for further processing, while the result from
this network is produced by neurons in the output layer.
Each neuron in hidden layers connects to another via receiv-
ing input produced by neurons in the preceding layer and
producing the output to neurons in the next layer. Neural
network models, in general, are very flexible, which, on the
other hand, brings challenges in terms of constructing the
best network structures. See [29] for more details on neural
networks.

In this day and age, problems, such as image classifica-
tion, object detection, or natural language processing task,

become increasingly complex. This calls for deep neural net-
works. A deep neural network refers to an artificial neural
network with more than one hidden layer [2, 37]. As an ex-
ample, consider a deep neural network with three hidden
layers, which is shown in Figure 1. The number of neurons
in the hidden layers is one of the common hyperparameters
of interest. The number of neurons in the input layer is equal
to the number of features in the data, while the number of
neurons in the output layer depends on the type of prob-
lems we solve. For example, very often, there is one neuron
in the output layer for a regression problem. If a multi-class
classification problem is considered, one common choice is
to use one neuron per a class.

Figure 1: The neural network model with three hidden lay-
ers.

Hyperparameters
Hyperparameters for neural networks are those variables

whose values determine the network structure and/or the
way a network is learned. The number of neurons in the
hidden layers of Figure 1 is an example of a hyperparam-
eter. Typically, a neural network requires us to determine
values for a set of different hyperparameters including, but
not limited to, learning rate, batch size, number of layers,
dropout rate, number of epochs, number of training iter-
ations, normalization, pooling, momentum and weight ini-
tialization. Those hyperparameter settings drastically affect
the success and accuracy of the network. As a consequence,
finding an appropriate hyperparameter combination is in-
creasingly important.

Design of Experiments
Design of experiments is a systematic and efficient

method that allows scientists and engineers to explore the
relationship between multiple input variables and output
variables. Traditional physical experiments favor various fac-
torial designs for studying systems or processes [45]. But
they are no longer proper when the systems or processes
become complex, which calls for computer experiments and
space-filling designs, a family of designs appropriate for com-
puter experiments [10, 36].

Factorial Designs At the early stage of an investigation,
due to the lack of enough prior knowledge, the experimenter

336 C. Shi, A. K. Chiu, and H. Xu

conducts a screening experiment involving as many variables
as possible and the primary goal is to identify some impor-
tant factors from them using a first-order model. Two-level
factorial designs [7, 33], thanks to their simple structure and
nice statistical properties, are commonly used for this pur-
pose. The experimenter often proceeds to the next stage by
capturing the curvature in the response surface, which re-
quires the consideration of three-level factorial designs or
composite designs such as orthogonal array composite de-
signs (OACDs) [48].

Space-Filling Designs A space-filling design refers to a
design that scatters its design points uniformly over the
whole design region. It is tremendously complicated to find
a space-filling design that provides good coverage of the en-
tire input space, especially in the high-dimensional input
space. Instead, it is natural and reasonable to consider a de-
sign that enjoys the space-filling property in low-dimensional
projections. This idea dates back to Latin hypercube designs
(LHDs) proposed by [32]. Such designs are orthogonal arrays
of strength one and enjoy the maximum space-filling prop-
erty in all univariate projections – there is exactly one ob-
servation in any interval formed through dividing the range
of an input variable into the same number of equally spaced
intervals as the run size. The space-filling property of an
LHD may be further evaluated by other optimality criteria
such as orthogonality [5], a distance criterion [20] and a dis-
crepancy criterion [11]. There has been extensive work along
this line – see, for example, [12, 21, 27].

Strong orthogonal arrays (SOAs) introduced and studied
by [17] are the other class of space-filling designs in the
literature with a focus on low-dimensional projections. An
SOA of strength t achieves the space-filling properties in all
g ≤ t dimensions. Such an array does well as a comparable
orthogonal array of strength t in all t dimensions but is more
space-filling in all 1 ≤ g ≤ t− 1 dimensions than the latter.
It can also be made to be an LHD through level expansion
to achieve the maximum space-filling property in all one-
dimensional projections. As a result, this SOA-based LHD
enjoys the benefits of better space-filling properties than the
comparable ordinary LHD in all 2 ≤ g ≤ t dimensions.
More developments on SOAs can be found in [15, 18, 28,
38, 42].

Kriging Model
The Kriging model originated in the areas of geosciences

[23] and is now popular in computer experiments for build-
ing a surrogate model for complicated computer models. In
a Kriging model, the response is referred to as a realization
of a Gaussian process, and the predicted response at a tar-
get point can be represented by a weighted average of the
responses at observed points. For more details on Kriging
models, we refer to [8, 14, 22, 35, 44].

As most learning algorithms are stochastic, instead of
using the Universal Kriging model for the deterministic case

in computer experiments, we consider the Universal Kriging
model with a noise term

y(x) =
m∑
i=1

βifi(x) + Z(x) + ε, (2.1)

where
∑m

i=1 βifi(x) is the mean function with fi being the
ith basis function and βi being the ith coefficient, Z(x) is a
second-order stationary random process with constant mean
0 and the covariance matrix given by Cov[Z(u), Z(v)] =

σ2
∏k

i=1 R (|ui − vi|), where u = (u1, . . . , uk) and v =
(v1, . . . , vk) are two points (runs), R(·) is a spatial corre-
lation function and σ2 is the variance of the random pro-
cess, and ε ∼ N(0, τ2) is independent of Z(x). In this study,
we adopt the Ordinary Kriging model with a noise term,
where the mean function in equation (2.1) is a constant.
We choose the Matern correlation function with parameter
ν = 5/2 in the study based on the conclusion drawn by [47]
that the Matern correlation function provides a good bal-
ance between differentiability and smoothness. The explicit
form is given by

R(hi; θi) =

(
1 +

√
5hi

θi
+

5h2
i

3θ2i

)
exp

(
−
√
5hi

θi

)
,

where hi = |ui − vi| and θi is the unknown hyperparame-
ter which can be estimated using the maximum likelihood
estimation method.

3. COMPARISON STUDY BASED ON
MNIST DATASET

Due to computational limitations, to compare the per-
formance of various designs, we explore the test accuracy
surface on hyperparameters by considering a deep neural
network model with three hidden layers, as shown in Fig-
ure 1, for a manageable dataset, MNIST.

3.1 Setups
MNIST Dataset The MNIST dataset (Modified Na-
tional Institute of Standards and Technology database) is
a subset of a larger dataset available at NIST, the National
Institute of Standards and Technology, and has served as a
canonical training dataset for many learning techniques and
pattern recognition methods. It is a dataset of handwrit-
ten digits, first developed and released by [25], containing
70000 grayscale images of the 10 digits that are 28×28 pix-
els in width and height. Some examples are demonstrated
in Figure 2. These images come with labels and thus are
used for supervised learning tasks. MNIST is user-friendly,
as images in this set have been split into a training set of
60,000 images, and a test set of 10,000 images. In this paper,
we further consider a subset of the training set as a valida-
tion set. Each time, we randomly take out 15% of the full
training set to serve as a validation set.

Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks 337

Figure 2: Examples from MNIST Handwritten Digit
Database.

Hyperparameters We consider five common hyperpa-
rameters: learning rate, number of epochs, batch size,
dropout rate and number of neurons in a hidden layer.
These five hyperparameters are numerical factors: learning
rate and dropout rate are continuous factors and number
of epochs, batch size and number of neurons are discrete
factors. The domain of each hyperparameter is given in Ta-
ble 1.

Designs Various factorial designs and space-filling designs
of 5 columns corresponding to five hyperparameters are ex-
amined. More specifically, we use three factorials: the 25

and 35 full factorials and an OACD of 34 runs combining
the 25−1

V factorial with a three-level 18-run orthogonal ar-
ray. Two full factorials are generated using the R package
DoE.base [16]. The 34-run OACD can be constructed using
Table 2 in [48] and is given in the supplementary material.
In addition to three factorials, this study includes a 243-run
random LHD generated using the R package lhs [6] and sev-
eral 32-run space-filling designs – an SOA of strength three,
its corresponding LHD and four other types of LHDs: a ran-
dom LHD, a maximin LHD, a maximum projection LHD
and a uniform LHD, which are generated using R packages
lhs, SLHD [1], MaxPro [21], and UniDOE [49], respectively.
There are 32 levels in each column of these LHDs while the
SOA of strength three has 8 levels and is listed in the sup-
plementary material. An LHD based on this SOA can be
obtained by expanding 8 levels to 32 levels following [17].
The two largest designs, 35 factorial and 243-run random
LHD, serve as the benchmarks in comparison with designs
of small run sizes.

The design matrices of the above designs in terms of nat-
ural units are provided in the supplementary material for
reference, where the lowest and highest levels are given in
Table 1 for each factor. We linearly interpolate other levels

within the range. For discrete variables, we further round
the levels to the nearest integers.

Data Collection All neural network implementations are
built in TensorFlow: https://www.tensorflow.org. There is
a stochastic component to the achieved accuracy, as images
are shuffled for each model trained. The network based on
the training dataset is further assessed on the test dataset of
10,000 images using test accuracy. The test accuracy is ap-
pended in the tables of design matrices with natural units
in the supplementary material. We also record the cross-
entropy loss of each hyperparameter combination in the col-
umn right before the test accuracy column in these tables
for those interested parties.

3.2 Analysis and Results
We evaluate designs by considering their ability to col-

lect informative data for building a statistical model that
specifies the relationship between hyperparameters and test
accuracy. In our comparison, the Kriging model is an ap-
propriate consideration, as it can compensate for the effects
of data clustering and give a better estimation of prediction
error. More specifically, we use the Ordinary Kriging model
with a noise term. As test accuracy has values with (0, 1),
we consider the Arcsine Transformation for test accuracy
when building the model.

Essentially, the model is built using a set of data includ-
ing hyperparameter combinations selected by a design we
consider and their corresponding accuracy, which is then
expected to be evaluated on the data comprising as many
diverse hyperparameter combinations as possible over the
whole hyperparameter region and their accuracy. This, how-
ever, is infeasible especially for the continuous hyperparam-
eters. In this paper, we consider two extreme cases – gen-
erating test data from the 35 factorial and 243-run random
LHD. The random LHD enjoys the maximum space-filling
property in all one dimensions, while the 35 factorial covers
the entire 5-dimensional input space in a uniform fashion.
The root mean square error (RMSE) values for predicting
the mean test accuracy on these two designs are listed in
Table 2. Table 2 also includes results on the hybrid design
combining the 35 factorial with 243-run random LHD.

When tested on the 35 factorial, from Table 2, it can be
seen that a three-level design, 34-run OACD, outperforms
all other small designs. This design performs as well as we
expected because this 34-run OACD is a design comprising
34 runs taken from the 35 factorial. In other words, a subset
of the test data is used to train the Kriging model in this
case. Surprisingly, although the SOA is tested on a different
type of design, the 35 factorial, it dramatically outclasses

Table 1. Domains of hyperparameters.
Learning Rate Number of Epochs Batch Size Dropout Rate Number of units
[0.0001, 0.01] [1, 32] [16, 128] [0.5, 0.8] [32, 256]

https://www.tensorflow.org

338 C. Shi, A. K. Chiu, and H. Xu

Table 2. Test RMSE values on 35 factorial, 243-run random LHD and their hybrid, respectively, where Maxpro LHD represents
Maximum Projection LHD.

Training Designs Testing Designs
35 Factorial 243-run Random LHD 35 Factorial + 243-run Random LHD

25 factorial 0.131 0.223 0.183
34-run OACD 0.092 0.112 0.102

35 Factorial 0.035 0.090 0.068
32-run SOA 0.118 0.068 0.097

32-run SOA LHD 0.164 0.083 0.130
32-run Maximin LHD 0.175 0.067 0.133
32-run Maxpro LHD 0.148 0.072 0.116
32-run Uniform LHD 0.200 0.076 0.151
32-run Random LHD 0.160 0.097 0.132

243-run Random LHD 0.144 0.027 0.104

all other small designs except the OACD. Notably, both the
OACD and SOA have smaller RMSE than the 243-run LHD
when tested on the 35 factorial. Moreover, the model on the
35 factorial produces the smallest test RMSE, because the
test RMSE is indeed the training RMSE.

Considering the test data generated from the 243-run ran-
dom LHD, the results in Table 2 clearly show that all fac-
torials are worse than those space-filling designs, and that,
when the Kriging model is built on the 243-run random
LHD, the test RMSE is the training RMSE and thus is the
smallest. Though the maximin LHD produces as the small-
est test RMSEs as the SOA in this case, its performance
when tested on the 35 factorial is not as well as that of the
SOA – the SOA performs exceedingly well compared to the
other small space-filling designs.

Both the OACD and SOA perform excessively well when
tested on the same type of design, the 35 factorial and
243-run random LHD, respectively. But their performances
tested on the different types of designs considerably differ.
The SOA is still very competitive on the 35 factorial, as
it produces the smallest test RMSE among all comparable
designs except the OACD. On the 243-run random LHD,
however, the performance of OACD is the worst except for
the performance of the 25 factorial. The SOA is a clear win-
ner among all small designs we considered. The numerical
results in the last column of Table 2 further support the
above conclusion. In other words, for the setting we con-
sidered, this SOA allows us to efficiently collect the most
informative data for building a Kriging model that speci-
fies the relationship between hyperparameters and test ac-
curacy. The SOA of strength three we use is indeed optimal
in some sense – Theorem 4 of [40] implies that this SOA is
optimal under the uniform projection criterion. Moreover,
it enjoys better space-filling properties in all two dimen-
sions than an ordinary SOA of strength three. Notably, the
model built on the 25 design produces an extremely large
test RMSE value when tested on the hybrid design, which
implies that this two-level design is inadequate for building
a Kriging model to capture the true surface of test accuracy.

Figure 3 and Figure 4 also sustain that the performance
of this SOA is superb. Figure 3 displays the density plots of
the observed test accuracy values for all designs. Each den-
sity plot in the first two rows of Figure 3 corresponds to a
type of design that is used to generate the training data. The
density curve of observed test accuracy values for the hybrid
design combining the 35 factorial and 243-run random LHD
is present in the last plot of Figure 3. It is bimodal with a
higher peak within [0.8, 1] and a lower peak of no more than
0.4. Clearly, only the SOA correctly captures this feature
while all others fail to do so. We also provide the density
curves of observed test accuracy values for the 35 factorial
and 243-run random LHD, respectively, in the last row for
reference. Figure 4 gives the histograms of the test errors
which are the differences from predictions of test accuracy

Figure 3: Density plots of test accuracy values.

Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks 339

Figure 4: Histograms of test errors, differences between the
observed test accuracy and the predicted test accuracy.

Figure 5: Histograms of distances from design points to de-
sign centers.

on the hybrid design to the observed values. The histograms
of those LHDs are skewed to the left, which implies that the
models based on these designs tend to overpredict the test
accuracy on the 35 factorial, while models from the 25 fac-
torial and OACD tend to underpredict the test accuracy
on the 243-run LHD, as their histograms are skewed to the
right. Only the SOA is superior because its histogram de-
picts an approximately normal distribution that is symmet-
ric around 0.

The significant advantage in building a Kriging model of
the SOA brings us to take a closer look at these small de-
signs themselves. For all designs, each column is rescaled to
[−1, 1], and we then calculate the Euclidean distance from
each design point to the center of the design and make a
histogram with a density curve for the distances of each de-
sign. These plots are given in Figure 5. Histograms of the
distances for the 35 factorial, 243-run random LHD and their
hybrid design provided in the last row of Figure 5 serve as
benchmarks for comparison. Only the SOA captures the fea-
ture of the hybrid design that the density plot has a light

lower tail but a heavy upper tail, while all other designs
fail to do so. Remarkably, though a space-filling design is
expected to scatter its design points uniformly over the de-
sign region, these space-filling designs we considered seem
not as space-filling as expected because Figure 5 shows that
they do not provide points that are close to the centers or
at corners of the regions.

In addition to using the Kriging model to determine the
relationship between hyperparameters and test accuracy, we
also consider the second-order model. Although the findings
from this study are similar to the above, the second-order
model is incapable of adequately capturing the test accuracy
surface, as the test RMSE values are consistently larger than
those obtained using the Kriging model for all cases listed
in Table 2.

4. CONCLUSION AND DISCUSSION
This paper compared small designs in exploring the re-

lationship between hyperparameters and test accuracy. We
considered five numerical hyperparameters: learning rate,
number of epochs, batch size, dropout rate and number of
neurons in a hidden layer. Various factorials and space-filling
designs for selecting combinations of these hyperparameters
were examined. We evaluated the performance of a design
via building a Kriging model that describes the relationship
between hyperparameters and test accuracy. The compari-
son is made based on the MNIST dataset, and a deep neural
network model with three hidden layers was our learning al-
gorithm. Under the settings we considered, the comparison
demonstrates that the 32-run SOA is the best choice for
exploring the test accuracy surface based on the hyperpa-
rameters we used.

To further explore the usefulness of SOAs in hyperpa-
rameter optimization, more investigations are needed. For
example, we may set up simulations for evaluating the per-
formance of various designs, similar to the simulation in
[42], use other datasets for the implementation, like the
CIFAR-10 dataset [24], or consider broader comparison set-
tings such as more designs, e.g., uniform projection designs
[41], more hyperparameters, e.g., the number of training it-
erations, normalization and weight initialization, and so on.
The present paper centers on examining the effect of various
designs on the performance of hyperparameter tuning, while
the primary goal of optimizing hyperparameters is to find
an optimal hyperparameter combination that maximizes the
overall performance of a learning algorithm. One may wish
to consider a model-based method using a carefully selected
design in the initial step of the hyperparameter tuning pro-
cess in the follow-up work. Moreover, in this study, the SOA
that outperforms all other comparable designs has 8 levels,
while all other space-filling designs have 32 levels and fac-
torials have no more than 3 levels. It would be interesting
to consider a problem as to how many levels of a design are
appropriate for use in the investigation of the test accuracy
surface over hyperparameters. We leave all these to future
research.

340 C. Shi, A. K. Chiu, and H. Xu

SUPPLEMENTARY MATERIAL
The supplementary material includes all design matrices

in terms of the natural units we used.

Accepted 14 February 2023

REFERENCES
[1] Ba, S., Myers, W. R. and Brenneman, W. A. (2015). Opti-

mal sliced Latin hypercube designs. Technometrics 57 479–487.
https://doi.org/10.1080/00401706.2014.957867. MR3425485

[2] Bengio, Y. (2009). Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning 2 1–127.

[3] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of Machine Learning Research
13 281–305. MR2913701

[4] Bergstra, J., Bardenet, R., Bengio, Y. and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. Advances in Neu-
ral Information Processing Systems 24 2546–2554.

[5] Bingham, D., Sitter, R. R. and Tang, B. (2009). Orthog-
onal and nearly orthogonal designs for computer experiments.
Biometrika 96 51–65. https://doi.org/10.1093/biomet/asn057.
MR2482134

[6] Carnell, R. (2022). lhs: Latin hypercube samples. R pack-
age version 1.1.5. https://cran.r-project.org/web/packages/lhs/
index.html.

[7] Cheng, C. S. (2014) Theory of factorial design: single- and multi-
stratum experiments. CRC Press.

[8] Cressie, N. (2015) Statistics for spatial data. John Wiley & Sons.
MR3559472

[9] Falkner, S., Klein, A. and Hutter, F. (2018). BOHB: robust
and efficient hyperparameter optimization at scale. In Interna-
tional Conference on Machine Learning 80 1437–1446. PMLR.

[10] Fang, K. T., Li, R. and Sudjianto, A. (2006) Design and mod-
eling for computer experiments. CRC Press. MR2510302

[11] Fang, K. T., Lin, D. K., Winker, P. and Zhang, Y. (2000). Uni-
form design: theory and application. Technometrics 42 237–248.
https://doi.org/10.2307/1271079. MR1801031

[12] Fang, K. T., Liu, M. Q., Qin, H. and Zhou, Y. (2018) The-
ory and application of uniform experimental designs. Springer.
https://doi.org/10.1007/978-981-13-2041-5. MR3837569

[13] Feurer, M. and Hutter, F. (2019). Hyperparameter optimiza-
tion. In Automated Machine Learning 3–33 Springer.

[14] Ginsbourger, D., Dupuy, D., Badea, A., Carraro, L. and
Roustant, O. (2009). A note on the choice and the estimation of
kriging models for the analysis of deterministic computer exper-
iments. Applied Stochastic Models in Business and Industry 25
115–131. https://doi.org/10.1002/asmb.741. MR2510851

[15] Groemping, U. and Carnell, R. (2022). SOAs: creation of
stratum orthogonal arrays. R package version 1.3. https://cran.
r-project.org/web/packages/SOAs/index.html.

[16] Groemping, U., Amarov, B. and Xu, H. (2022). DoE.base: full
factorials, orthogonal arrays and base utilities for DoE pack-
ages. R package version 1.2-1. https://cran.r-project.org/web/
packages/DoE.base/index.html.

[17] He, Y. and Tang, B. (2013). Strong orthogonal arrays and associ-
ated Latin hypercubes for computer experiments. Biometrika 100
254–260. https://doi.org/10.1093/biomet/ass065. MR3034340

[18] He, Y., Cheng, C. -S. and Tang, B. (2018). Strong orthogonal
arrays of strength two plus. The Annals of Statistics 46 457–468.
https://doi.org/10.1214/17-AOS1555. MR3782373

[19] Hutter, F., Hoos, H. H. and Leyton-Brown, K. (2011). Se-
quential model-based optimization for general algorithm configu-
ration. In International Conference on Learning and Intelligent
Optimization 507–523. Springer.

[20] Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990).
Minimax and maximin distance designs. Journal of Statistical

Planning and Inference 26 131–148. https://doi.org/10.1016/
0378-3758(90)90122-B. MR1079258

[21] Joseph, V. R., Gul, E. and Ba, S. (2015). Maximum projec-
tion designs for computer experiments. Biometrika 102 371–380.
https://doi.org/10.1093/biomet/asv002. MR3371010

[22] Kleijnen, J. P. (2009). Kriging metamodeling in simulation: a
review. European Journal of Operational Research 192 707–716.
https://doi.org/10.1016/j.ejor.2007.10.013. MR2457613

[23] Krige, D. G. (1951). A statistical approach to some basic mine
valuation problems on the Witwatersrand. Journal of the South-
ern African Institute of Mining and Metallurgy 52 119–139.

[24] Krizhevsky, A. (2009). Learning multiple layers of features from
tiny images. Technical Report, University of Toronto. http://
www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.

[25] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86 2278–2324.

[26] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Tal-

walkar, A. (2017). Hyperband: a novel bandit-based approach to
hyperparameter optimization. The Journal of Machine Learning
Research 18 6765–6816. MR3827073

[27] Lin, C. D., Mukerjee, R. and Tang, B. (2009). Construc-
tion of orthogonal and nearly orthogonal Latin hypercubes.
Biometrika 96 243–247. https://doi.org/10.1093/biomet/asn064.
MR2482150

[28] Liu, H. and Liu, M. Q. (2015). Column-orthogonal strong orthog-
onal arrays and sliced strong orthogonal arrays. Statistica Sinica
1713–1734. MR3409089

[29] Livingstone, D. J. (2008) Artificial neural networks: methods
and applications. Springer.

[30] Lujan-Moreno, G. A., Howard, P. R., Rojas, O. G. and Mont-

gomery, D. C. (2018). Design of experiments and response sur-
face methodology to tune machine learning hyperparameters, with
a random forest case-study. Expert Systems with Applications 109
195–205.

[31] McCulloch, W. S. and Pitts, W. (1943). A logical calcu-
lus of the ideas immanent in nervous activity. The Bulletin
of Mathematical Biophysics 5 115–133. https://doi.org/10.1007/
bf02478259. MR0010388

[32] McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A
comparison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics
21 239–245. https://doi.org/10.2307/1268522. MR0533252

[33] Mee, R. (2009) A comprehensive guide to factorial two-level ex-
perimentation. Springer Science & Business Media.

[34] Mockus, J., Tiesis, V. and Zilinskas, A. (1978). The application
of Bayesian methods for seeking the extremum. Towards Global
Optimization 2 117–129. MR0471305

[35] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P.

(1989). Design and analysis of computer experiments. Statistical
Science 4 409–423. MR1041765

[36] Santner, T. J., Williams, B. J. and Notz, W. I. (2003) The
design and analysis of computer experiments. Springer. https://
doi.org/10.1007/978-1-4757-3799-8. MR2160708

[37] Schmidhuber, J. (2015). Deep learning in neural networks: an
overview. Neural Networks 61 85–117.

[38] Shi, C. and Tang, B. (2020). Construction results for strong or-
thogonal arrays of strength three. Bernoulli 26 418–431. https://
doi.org/10.3150/19-BEJ1130. MR4036039

[39] Snoek, J., Larochelle, H. and Adams, R. P. (2012). Practical
bayesian optimization of machine learning algorithms. Advances
in Neural Information Processing Systems 25.

[40] Sun, C. and Tang, B. (2021). Uniform projection designs and
strong orthogonal arrays. Journal of the American Statisti-
cal Association 0 1–15. https://doi.org/10.1080/01621459.2021.
1935268.

[41] Sun, F., Wang, Y. and Xu, H. (2019). Uniform projection de-
signs. The Annals of Statistics 47 641–661. https://doi.org/10.
1214/18-AOS1705. MR3909945

https://doi.org/10.1080/00401706.2014.957867
https://mathscinet.ams.org/mathscinet-getitem?mr=3425485
https://mathscinet.ams.org/mathscinet-getitem?mr=2913701
https://doi.org/10.1093/biomet/asn057
https://mathscinet.ams.org/mathscinet-getitem?mr=2482134
https://cran.r-project.org/web/packages/lhs/index.html
https://cran.r-project.org/web/packages/lhs/index.html
https://mathscinet.ams.org/mathscinet-getitem?mr=3559472
https://mathscinet.ams.org/mathscinet-getitem?mr=2510302
https://doi.org/10.2307/1271079
https://mathscinet.ams.org/mathscinet-getitem?mr=1801031
https://doi.org/10.1007/978-981-13-2041-5
https://mathscinet.ams.org/mathscinet-getitem?mr=3837569
https://doi.org/10.1002/asmb.741
https://mathscinet.ams.org/mathscinet-getitem?mr=2510851
https://cran.r-project.org/web/packages/SOAs/index.html
https://cran.r-project.org/web/packages/SOAs/index.html
https://cran.r-project.org/web/packages/DoE.base/index.html
https://cran.r-project.org/web/packages/DoE.base/index.html
https://doi.org/10.1093/biomet/ass065
https://mathscinet.ams.org/mathscinet-getitem?mr=3034340
https://doi.org/10.1214/17-AOS1555
https://mathscinet.ams.org/mathscinet-getitem?mr=3782373
https://doi.org/10.1016/0378-3758(90)90122-B
https://doi.org/10.1016/0378-3758(90)90122-B
https://mathscinet.ams.org/mathscinet-getitem?mr=1079258
https://doi.org/10.1093/biomet/asv002
https://mathscinet.ams.org/mathscinet-getitem?mr=3371010
https://doi.org/10.1016/j.ejor.2007.10.013
https://mathscinet.ams.org/mathscinet-getitem?mr=2457613
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=3827073
https://doi.org/10.1093/biomet/asn064
https://mathscinet.ams.org/mathscinet-getitem?mr=2482150
https://mathscinet.ams.org/mathscinet-getitem?mr=3409089
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://mathscinet.ams.org/mathscinet-getitem?mr=0010388
https://doi.org/10.2307/1268522
https://mathscinet.ams.org/mathscinet-getitem?mr=0533252
https://mathscinet.ams.org/mathscinet-getitem?mr=0471305
https://mathscinet.ams.org/mathscinet-getitem?mr=1041765
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1007/978-1-4757-3799-8
https://mathscinet.ams.org/mathscinet-getitem?mr=2160708
https://doi.org/10.3150/19-BEJ1130
https://doi.org/10.3150/19-BEJ1130
https://mathscinet.ams.org/mathscinet-getitem?mr=4036039
https://doi.org/10.1080/01621459.2021.1935268
https://doi.org/10.1080/01621459.2021.1935268
https://doi.org/10.1214/18-AOS1705
https://doi.org/10.1214/18-AOS1705
https://mathscinet.ams.org/mathscinet-getitem?mr=3909945

Evaluating Designs for Hyperparameter Tuning in Deep Neural Networks 341

[42] Tian, Y. and Xu, H. (2022). A minimum aberration-type crite-
rion for selecting space-filling designs. Biometrika 109 489–501.
https://doi.org/10.1093/biomet/asab021. MR4430970

[43] Van Rijn, J. N. and Hutter, F. (2018). Hyperparameter impor-
tance across datasets. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Min-
ing 2367–2376.

[44] Wackernagel, H. (2003) Multivariate geostatistics: an introduc-
tion with applications. Springer Science & Business Media.

[45] Wu, C. F. J. and Hamada, M. S. (2009) Experiments: planning,
analysis, and optimization. John Wiley & Sons. MR2583259

[46] Wu, J., Chen, S. and Liu, X. (2020). Efficient hyperparameter
optimization through model-based reinforcement learning. Neu-
rocomputing 409 381–393.

[47] Xiao, Q., Wang, L. and Xu, H. (2019). Application of Kriging
models for a drug combination experiment on lung cancer. Statis-
tics in Medicine 38 236–246. https://doi.org/10.1002/sim.7971.
MR3892817

[48] Xu, H., Jaynes, J. and Ding, X. (2014). Combining two-level and
three-level orthogonal arrays for factor screening and response
surface exploration. Statistica Sinica 24 269–289. MR3183684

[49] Zhang, A., Li, H., Quan, S. and Yang, Z. (2018). UniDOE:

uniform design of experiments. R package version 1.0.2. http://
rmirror.lau.edu.lb/web/packages/UniDOE/index.html.

[50] Zhang, X., Chen, X., Yao, L., Ge, C. and Dong, M. (2019).
Deep neural network hyperparameter optimization with orthog-
onal array tuning. In International Conference on Neural Infor-
mation Processing 287–295. Springer.

[51] Zoph, B. and Le, Q. V. (2016). Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

Chenlu Shi. Department of Statistics, Colorado State Univer-
sity, USA.
E-mail address: chenlu.shi@colostate.edu

Ashley Kathleen Chiu. Department of Statistics, University of
California, Los Angeles, USA.
E-mail address: ashleychiu@ucla.edu

Hongquan Xu. Department of Statistics, University of Califor-
nia, Los Angeles, USA.
E-mail address: hqxu@stat.ucla.edu

https://doi.org/10.1093/biomet/asab021
https://mathscinet.ams.org/mathscinet-getitem?mr=4430970
https://mathscinet.ams.org/mathscinet-getitem?mr=2583259
https://doi.org/10.1002/sim.7971
https://mathscinet.ams.org/mathscinet-getitem?mr=3892817
https://mathscinet.ams.org/mathscinet-getitem?mr=3183684
http://rmirror.lau.edu.lb/web/packages/UniDOE/index.html
http://rmirror.lau.edu.lb/web/packages/UniDOE/index.html
https://arxiv.org/abs/1611.01578
mailto:chenlu.shi@colostate.edu
mailto:ashleychiu@ucla.edu
mailto:hqxu@stat.ucla.edu

	Introduction
	Preliminaries
	Comparison Study Based on MNIST Dataset
	Setups
	Analysis and Results

	Conclusion and Discussion
	Supplementary Material
	References
	Authors' addresses

