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Abstract
There are many cases in which one has continuous flows over networks, and there is interest in predicting and monitoring

such flows. This paper provides Bayesian models for two types of networks—those in which flow can be bidirectional, and
those in which flow is unidirectional. The former is illustrated by an application to electrical transmission over the power
grid, and the latter is examined with data on volumetric water flow in a river system. Both applications yield good
predictive accuracy over short time horizons. Predictive accuracy is important in these applications—it improves the
efficiency of the energy market and enables flood warnings and water management.
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1. INTRODUCTION
Problems concerning the statistical modeling and mon-

itoring of dynamic network flows arise naturally in areas
such as energy, hydrology, and transportation. Our goal is
to extend previous methodology for Bayesian dynamic flow
models of discrete data [3] to the modeling of continuous
flows. Rather than modeling Poisson counts, we use Normal
and Gamma models for real-valued and positive flows, re-
spectively. Our example applications concern the electrical
power grid and hydrology, but the methodology applies to
many more situations.

The first focus is the United States energy network, where
key problems arise in managing electricity distribution. An
excess of supply leads to lost revenue while an excess of
demand leads to outages. Balancing authorities (BAs) help
coordinate the demand and supply through interchange and
power generation.

Most BAs produce electricity within their balancing au-
thority area and can directly serve consumers. In addition,
BA systems manage the flow of electricity in or out of their
system to other BAs with which they are networked. This
flow is called interchange. Electricity flow is directed, and
power transfer occurs between two BA systems when one
agrees to sell electricity to the other. The exact commercial
value is determined by bids and offers within the market,
and payments must be made by the end of the next busi-
ness day. BAs which can accurately forecast demand over
short horizons will be financially advantaged in these trans-
actions.

We seek to model the dynamic flows between BAs as well
as the self-flow within a BA. Each vertex in the network
represents a balancing authority. We use data from the U.S.
Energy Information Administration (EIA), which features
hourly interchange, generation, and demand for 64 balanc-
ing authorities in the U.S. See Fig. 1 for a visualization of

Figure 1: The BA network. Vertices are balancing authori-
ties and edges are interchange values. The size of the node
corresponds to BA size. Source: U.S. Energy Information
Administration (May 2020).

the BA network. Our data cover the time period from May
1 to May 31, 2020.

Our second contribution is an application to hydrology.
Hydrologic problems arise in environmental studies and
flood modeling. Flooding occurs when the volume of wa-
ter exceeds the capacity of a channel. To monitor river sta-
tus, stream gauges at various points on a river measure the
water flow and other properties such as precipitation and
river height. Streamflow, or discharge, is the volume of wa-
ter passing through rivers and other channels. Runoff from
rainfall and evaporation are two of many mechanisms that
can increase or decrease streamflow.

Hydrologic modeling has a long history [16]. Most previ-
ous statistical modeling of hydrologic activity focuses upon
estimating the probability of extreme events, such as floods
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Figure 2: Map of the Eel River in California. The seven
black dots represent the approximate locations of the stream
gauge stations. Adapted from Kmusser, CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wiki-
media Commons.

[8], but there have also been efforts to model flows using
stochastic processes [4]. We use Bayesian modeling to make
near-term horizon forecasts of changing flows, which is im-
portant for reservoir management and flood control (e.g.,
decisions on dam retention and spillway operation).

In the hydrology model, vertices represent stream gauges
and the edges represent directed, downstream flow from one
part of the river to the next. We used the dataRetrieval
package from R to obtain instantaneous discharge data in
15 minute intervals from the U.S. Geological Survey for the
time period from January 1 to May 31, 2020 for the Eel
River tributary system in northern California. See Fig. 2 for
a map of the waterway with stream gauge locations. Dis-
charge is calculated as the water velocity multiplied by the
area in a cross section of the river. We obtain temperature
and precipitation data from the National Oceanic and At-
mospheric Administration.

The BA model easily extends to other applications with
bidirectional continuous flows, such as banking networks or
internet traffic. The hydrology model extends to networks
with unidirectional continuous flows, such as gas pipelines
or sewer systems. (Arguably, some of these flows might be
discrete pennies or packets, but these are approximately con-
tinuous and neither satisfies the Poisson assumption used in
Chen et al. [3].) Nonetheless, any new application will prob-
ably require some handfitted modification of the methods
we describe.

In both case studies, we are interested in modeling sea-
sonality and day-of-week effects. Electricity demand is gen-
erally regular; the demand on the previous Monday is likely
similar to the demand of the current Monday. Similarly,
precipitation and evaporation follow annual patterns that
affect water levels. We take advantage of discounting and
conjugacy to provide a general structure for sequential and
seasonal analysis. Our work is able to characterize the node
dynamics that are inherent in the networks. In addition, the
model presents opportunities for Bayesian monitoring and
intervention.

Sections 2 and 3 describe the statistical analyses for the
electricity model and the hydrology model, respectively. Sec-
tion 4 concludes.

2. THE ELECTRICAL GRID
Power demand forecasting has been done almost since

the beginning of electrification. Previous research addresses
different time horizons: annual usage drives the creation of
new power plants [11], seasonal demand generally reflects
weather trends [18], and hourly fluctuations are central to
the energy market maintained by the BAs [17]. Our work
focuses on the short horizon case.

Ghalehkhondabi et al. [5] reviews methodology for de-
mand forecasting that was introduced between 2005 and
2015, especially for short term prediction. The methods
listed include time series analysis, fuzzy logic, artificial neu-
ral networks, genetic algorithms, and hybrid methods. The
review does not mention Bayesian methods, but these exist.
Wang et al. [19] presents a Bayesian hierarchical regression
model for predicting residential demand, and Bassamzadeh
and Ghanem [2] presents a Bayesian network formulation.
Our paper proposes a different Bayesian approach, one that
ensures computational speed through decoupling and con-
jugacy, and which respects the connectivity of the electrical
grid.

Suppose we have a connected network with v vertices and
n edges. Let y∗ijt denote the electrical flow in megawatt hours
(MWh) between vertices i and j at time t; a positive flow
runs from i to j; a negative flow runs from j to i. A flow y∗iit
denotes electricity created or used within the ith balancing
authority (BA). Physics requires that

∑n
j=1 y

∗
ijt = 0. This

constraint will be enforced during the recoupling.
Exploratory data analysis confirmed the need to trans-

form the data. We compared the standard logarithmic trans-
formation to Fisher’s arctanh transformation. The latter
showed markedly better performance at stabilizing the vari-
ance. This transformation requires us to rescale the observa-
tions to lie in [−1, 1], and to avoid infinite values, we rescaled
to (−1, 1). Specifically, let mij1 be the minimum flow be-
tween BAs i and j, mij2 be the second smallest value, Mij1

be the maximum flow, and Mij2 be the second largest value.
We then applied the transformation

yijt = arctanh

(
y∗ijt − 2m1 +m2

2M1 −M2 − 2m1 +m2

)
.
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This avoids infinities by replacing the sample maximum and
minimum with pseudovalues: 2M1 − M2 is slightly larger
than the maximum, 2m1 − m2 is slightly smaller than the
minimum, and these pseudovalues preserve the observed tail
behavior.

We shall compare three models for these data. One is
autoregressive with lag 168 (one week earlier) and covari-
ate xjt, which is the centered temperature at the jth BA
at time t. Experts believe that there are weekly patterns
in electricity usage and temperature is also a major driver
of power demand [10]. The second model is autoregressive
with lags 1 and 168. Temperature is implicitly present in
the electrical demand during the previous hour. The third
model is autoregressive with lag 1. As in Wilke [20], we shall
compare these models in terms of predictive mean squared
error for the next time step. Also, we use the first week of
data to initialize the model for the autoregression using lag
T = 168 and one hour of data to initialize for the simple lag
1 model.

The centering is done so that xjt has mean zero, to pre-
vent nonidentifiability due to confounding with the mean
of the level process φijt described below. Specifically, if
the temperature at the jth BA at time t is Kjt, then
xjt = Kjt − K̄j .

The yijt is a time series with yijt|φijt ∼ N(φijt, σ
2
ijt) that

is conditionally independent over t = 1, 2, . . ., where φijt is
a latent level process and σ2

ijt is the variance of yijt at time
t. The φijt process evolves via a Markov model. To account
for the influence of temperature on the electricity demand
at destination node j as well as the day of the week effect,
we have

φijt = φi,j,t−T + βijxjt + εijt

where T = 168 and εijt is an innovation term. The first
innovation is εij0 ∼ N(0, σ2

ij0). The posterior updates of εijt
are N(0, γt) where

γt =

(
kt−1δt−1

Var(εi,j,t−1)
+

1

σ2
ijt

)−1

with kt−1 the prior weight at time t such that kt = kt−1 ∗
δt−1 + 1 and δt ∈ (0, 1) is the discount factor that controls
dependence upon the past. The innovation term εt is in-
dependent of εs and φs for s < t. The discount factor is
determined as δt = di + (1 − di) exp(−lkt−1), where di is
the constant baseline discount factor for node i and l > 0
is a specified constant that determines how close δt is to di
when information is high.

The second autoregressive model is like the first, except

φijt = αij + βij1φijt−1 + βijTφijt−T + εijt

where εijt is the innovation term defined previously. The βij

are not dynamic; we can determine a value for the βij by

maximizing the model marginal likelihood with a normal
prior on β such that β ∼ N(β0, σ

2
β),

p(β|y0:t, x1:t) ∝
∏

s=T+1:t

p(ys|yT+1:s, x1:s, β)

×
∏

l=0:T

p(yl|β, x1:l)p(β).

Using the specification below, we have

p(β|y0:t, x1:t) ∝
∏

s=T+1:t

t2rt(ys|ms,
cs(ks + 1)

ksrs
)

×
∏

l=0:T

N(yl|φl + βxl, σ
2
l )N(β|β0, σ

2
β).

Let φ and σ2 have the usual normal-inverse gamma pri-
ors, which provides conjugacy and enables rapid computa-
tion. The hyperparameters for the mean and variance in-
corporate time series information on historical weekly and
seasonal trends in electrical demand among the BAs. Specif-
ically, at time t = 0, specify the priors as φ0 | σ2

0 ∼
Normal(m0, σ

2
0/k0) and σ2

0 ∼ InverseGamma(r0, c0), where
m0 ∈ R, k0 > 0, r0 > 0, c0 > 0 are known.

The time t → t+ 1 update/evolve steps are:

1. Time t prior:

φt | x0:t−1, σ
2
t ∼ Normal(mt−1, σ

2
t /(kt−1δt−1))

σ2
t | x0:t−1 ∼ InverseGamma(rt−1, ct−1).

2. Updates to the posterior:

φt | x0:t, σ
2
t ∼ Normal(mt, σ

2
t /kt)

σ2
t | x0:t ∼ InverseGamma(rt, ct)

where

mt =
kt−1δt−1mt−1 + xt−1

kt−1δt−1 + 1

kt = kt−1δt−1 + 1

rt = rt−1 + 1/2

ct = ct−1 +
1

2

(
kt−1δt−1

kt−1δt−1 + 1
(x−mt−1)

2

)
.

3. Evolution of the time t+ 1 prior:

φt+1 | x0:t, σ
2
t+1 ∼ Normal

(
mt, σ

2
t+1/(ktδt)

)
σ2
t+1 | x0:t ∼ InverseGamma(rt, ct).

The third autoregressive model simply depends on the
flow in the preceding hour. Aside from dropping the lag at
T = 168, the model specification is exactly the same as for
the immediately previous model.

We fit these three models with prior parameters mij,0:T

initialized with the first week of data, kij,0:T , cij,0:T , rij,0:T =
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Figure 3: This figure shows the observed transformed power
needs and the transformed power needs predicted by the
model with two lags (the best model we considered) for the
City of Homestead BA. It also shows a pointwise 95% confi-
dence band (which becomes so tight that it is nearly invisible
as time advances).

1, β0 = 0, and σ2
β = 1. We compared the results in terms

of one-step-ahead predictive squared error (OPSE). The au-
toregressive model that included temperature had an OPSE
of 0.186, the autoregressive model with two lags had an
OPSE of 0.100, and the model that depended only on the
previous hour had OPSE equal to 0.281. The AIC value for
the two-lag model is -1083.52 and the AIC for the one-lag
model is 1125.84, so the former is preferred.

Figure 3 shows the predicted and observed values from
the two-lag model, along with a 95% pointwise confidence
band, for the City of Homestead BA. We selected that BA
because it was easy to gather its temperature data and be-
cause it had relatively few edges in the network. Based on
similar plots made for other BAs, we believe it is typical.

Similarly, Fig. 4 plots the model’s predicted values
against the actual values. It serves as a useful diagnostic.
For example, note the tendency towards higher variation
among the smaller values.

Using the two-lag model, we calculated the flows between
all connected pairs of the 64 BAs. It took a total of 40
minutes to perform the computation using a laptop with
a 2.5GHz CPU and 12 GB RAM. There are 296 edges in
the network, and our decoupling, which considers only the
flows between linked pairs of the BAs, enables massive par-
allelism. Further speed accrues from the conjugacy in our
model.

This application seeks to advise BAs on how to manage
their energy markets more efficiently, by accurately forecast-
ing future needs and enabling detection of changepoints. So

Figure 4: This figure is a scatterplot of the predicted trans-
formed hourly demand against the actual transformed de-
mand for the City of Homestead BA.

the sum-to-zero constraint that arises from the physics of en-
ergy transmission is not essential. (In fact, because of power
loss due to resistance and other factors, the constraint only
holds approximately). Nonetheless, it is interesting to ad-
dress that case.

For the predicted values ŷijt, let ŷ∗ijt = tanh(ŷijt) so that
the measurements are back on their original scale. Let Ni

be the set of indices corresponding to the BAs to which the
ith BA is connected. Let ŷ+ijt denote the modified estimates
that satisfy the sum-to-zero constraint, so that:

∀i, y+iit +
∑
j∈Ni

y+ijt +
∑
j∈Ni

y+jit = 0. (2.1)

This does not have a unique solution, so we add the condi-
tion that the y+ijt minimize∑

i

∑
j

|ŷ∗ijt − y+ijt|

at each value of t. This formulation is a linear equation with
a convex constraint, so it is easily solved with standard soft-
ware.

Ideally, this application would close with a comparison
the predictive accuracy of the model described to the predic-
tive accuracy of the forecasts made by BAs using commercial
software (and, of course, show that our methodology is su-
perior). Unfortunately, such software is proprietary and our
efforts to work with relevant practitioners have so far been
unsuccessful. Consequently, this publication represents what
we believe to be the first statistically sophisticated model for
predicting power markets among BAs in the literature.

3. THE HYDROLOGIC NETWORK
Let yijt denote the river flow in cubic feet (ft3) from node

i to node j at time t. In this study, we focus on the flows
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between nodes rather than self-loops. Hence, we are not ap-
plying sum-to-zero constraints on the overall hydrologic net-
work. The yiit denotes the change in volume at node i at
time t.

Rivers do not reverse their flow directions unless affected
by tides or by rare geological activities. Thus, yijt ≥ 0 if i
and j are connected. To account for the non-negativity of the
flows, we follow [13, section 5.5] and use a gamma distribu-
tion. Specifically, we have yijt|φijt ∼ Gamma(αij , αij/φijt),
where αij is a fixed shape parameter specified for the river
between nodes i and j and E(yijt|φijt) = φijt. Here φijt is a
latent level process, which evolves via the following Markov
model:

αij

φijt
=

αij

φi,j,t−1

ηijt
δijt

,

ηijt ∼ Beta(δijtrijt, (1− δijt)rijt),

ηijt ⊥ ηijs, φijs for s < t.

The discount factor is determined as δt = di + (1 −
di) exp(−lrt−1), where di is the constant baseline discount
factor for node i and l > 0 is a specified constant that de-
termines how close δt is to di when information is high.

A generalized beta prime distribution is formed by com-
pounding two gamma distributions:

β′(x;α, β, 1, q) =

∫ ∞

0

G(x;α, r)G(r;β, q)dr.

If a random variable X ∼ β′(α, β, p, q) then kX ∼
β′(α, β, p, kq), which is useful in accelerating computation.

Hence, we have the following equations by setting αij as
the value that maximizes the model marginal likelihood,

p(yij,1:t | yij0, φij,1:t) ∝
∏

s=1:T

p(yijs | yij,0:s−1, φijs)

∝
∏

s=1:T

β′(αij , rij,s−1, 1, cij,s−1/αij)

where the generalized beta prime distribution (or inverted
beta distribution) has density

f(x|α, β, p, q) =
p
(

x
q

)αp−1 (
1 +

(
x
q

)p)−α−β

qB(α, β)

for 0 ≤ x < ∞, α, β, p, q > 0, and B(·, ·) is the usual beta
function.

It is possible to include covariates xjt, such as precipita-
tion and temperature, at node j and time t to the model.
As before, we center the covariates. The resulting model is

yijt − φ̂ijt = βT
ijxjt + εijt,

where εijt ∼ Normal(0, σ2
ij).

At time t = 0, specify the prior as 1
φij0

| yij0 ∼
Gamma(r0, c0), where r0 > 0 and c0 > 0 are known. Then
the time t → t+ 1 update/evolution steps are:

1. Time t prior:

1

φijt
| yij,t−1 ∼ Gamma(δijtrij,t−1, δijtcij,t−1)

2. Updates to the posterior:

1

φijt
| yijt ∼ Gamma(rijt, cijt),

where rijt = αij + rij,t−1 and cijt = αijyijt + cij,t−1.
3. Evolves to the t+ 1 prior:

1

φij,t+1
| yijt ∼ Gamma(δij,t+1rijt, δij,t+1cijt).

For the Eel River hydrology data, we fit three models
on the log of river flow: one without covariates, one with
the log of precipitation, and one with the natural logarithm
of precipitation and temperature. The logarithmic transfor-
mations were chosen based upon a preliminary exploratory
data analysis. We set priors 1

φij0
∼ Gamma(rij0, cij0) with

rij0 = cij0 = 1. The model without covariates had an OPSE
of 0.00187, the model with one covariate had an OPSE
of 0.00185, and the two-covariate model had an OPSE of
0.00185. The AIC for the zero covariate model is -8133.64,
for the precipitation-only model it is -10571.28, and for the
model with precipitation and temperature it is -10573.36.
Since the two-covariate model has a lower AIC, it is pre-
ferred.

Figure 5 shows the predicted and observed river flow val-
ues for the two-covariate model for the flow at the gauge
near Fortuna. We see that the predicted flow (red) closely
follows the observed flow, as expected. Plots of the other
stream gauges also show similar results.

Figure 6 shows the predicted flow against the observed
flow. From the plot, it appears that the model tends to un-
derestimate more than overestimate river discharge. This is
reasonable since our analysis did not use relative humidity
as a covariate, which, in that area during this time period,
should reduce the evaporation rate.

Hydrology researchers measure the performance of a
model in several ways, including root mean squared error
and the percent bias in runoff ratio [6], and measures of
percent bias in model predictions [12]. But the most tra-
ditional metric is the Nash-Sutcliffe model efficiency coeffi-
cient (NSE) [14]. This measure is equivalent to the coefficient
of determination or r2 value between predicted values and
observations.

A second criterion important to the hydrological commu-
nity is model agility [7]. Model agility refers to the ability
of the same model to apply with high accuracy to differ-
ent river segments and across different river systems. For
many years, hydrology tried to micromodel the physical pro-
cesses that drove water flow, including such quantities as
leaf reflectance, maximum rate of carboxylation at 25◦, a
monthly leaf area index, and a plethora of other quantities
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Figure 5: This figure shows the observed log river flow and
the log river flow predicted by the model with log precip-
itation and temperature as covariates (the best model we
considered) for the stream gauge closest to Fortuna. It also
shows a pointwise 95% confidence band (which is so tight
that it is nearly invisible).

Figure 6: This figure shows the observed log river flow
against the log river flow predicted by the model with log
precipitation and temperature as covariates (the best model
we considered) for the stream gauge closest to Fortuna.

that encoded beliefs about the physical mechanisms that
drive evaporation, runoff, and rainfall. Our review of the
literature did not discover any discussion of the Curse of

Table 1. This table shows the NSE for each gauge in the Eel
River system. Gauge a123 is the closest to Fortuna, and it

flows into the ocean. The notation is such that if d3 flows to
to c3, then d3 → c3. We have d3 → c3 → b3 → a123,

c2 → b2 → a123, and b1 → a123.
Gauge NSE
a123 0.9971
b1 0.9909
b2 0.9970
b3 0.9966
c2 0.9952
c3 0.9967
d3 0.9937

Dimensionality [cf. 9, section 2.5], but surely that would an
issue in these models too.

Researchers found that these physics-based models lacked
agility [12, 15]. They pushed for simpler models that worked
well in general. To study the performance of our model with
respect to agility and NSE, we computed the NSE for every
gauge in the Eel River system. We see that the values are all
very close to 1, demonstrating that our models have agility.
Table 1 shows the results.

Values of NSE close to 1 correspond to good performance,
and values near 0 indicate poor performance. Table 1 shows
good performance across all the river segments, indicating
that, at least within the Eel River system, our model demon-
strates agility.

We initially considered a model that was lagged to reflect
the time required for a bolus of water to move between adja-
cent gauges. That model did not (with one gauge pair excep-
tion) outperform the model without distance-based lagging.
One possible reason for this lack of dependence is that the
Eel River system is only 111 miles long, so rainfall, evap-
oration, and runoff are similar across the entire geography.
Another issue is that flow rates are not constant. Typically
they are slower at the headwaters and faster at the coast,
but they also depend upon volume. After a heavy rainfall,
rivers flow faster. For these reasons, we chose to use the sim-
pler model which made no assumptions about travel time
between gauges.

4. CONCLUSION
This paper addresses the problem of modeling contin-

uous flows in networks, which arise in many physical and
engineering situations. The models are widely applicable, al-
though they will surely need to be tailored to specific appli-
cations. The examples in this paper provide some guidance
on how to do such tailoring, through transformations, the
use of covariates, and model selection based on such criteria
as the AIC. The paper treats both directed and bidirectional
flows.

The models use decoupling to enable massively parallel
solution, which is essential because the number of edges in a
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network often scale combinatorially. For the relatively sparse
networks in our examples, it was possible to do the compu-
tation upon a single laptop, but for many applications it
would be infeasible.

Similarly, we leverage conjugacy in the modeling to
achieve rapid computation. Such conjugacy is not always
faithful to the physical reality of the problem, but it is a
convenient starting point for the analysis. In our examples,
the conjugacy approximation performs well.

The electrical grid example has an interesting sum-to-
zero constraint that should be respected when the decou-
pled analyses are recoupled. In contrast, the hydrology ex-
ample does not, since precipitation runoff and evaporation
are poorly measured and highly variable, and can differ over
even relatively short geographic distances.

Accepted 7 March 2022
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