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Abstract
Data matrix centering is an ever-present yet under-examined aspect of data analysis. Functional data analysis (FDA)

often operates with a default of centering such that the vectors in one dimension have mean zero. We find that centering
along the other dimension identifies a novel useful mode of variation beyond those familiar in FDA. We explore ambiguities
in both matrix orientation and nomenclature. Differences between centerings and their potential interaction can be easily
misunderstood. We propose a unified framework and new terminology for centering operations. We clearly demonstrate
the intuition behind and consequences of each centering choice with informative graphics. We also propose a new direction
energy hypothesis test as part of a series of diagnostics for determining which choice of centering is best for a data set.
We explore the application of these diagnostics in several FDA settings.
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1. INTRODUCTION
Many data processing pipelines involve transformations

such as centering: the subtraction of the mean of a set of
values resulting in the transformed data having 0 mean. De-
spite the pervasiveness of such transformations, there are
surprising misunderstandings concerning their meaning and
implications. In this paper we present a survey of the ef-
fects of different forms of centering on data and the con-
sequences of those effects within widely-used data analysis
methods. We first seek to disambiguate the terminology used
to discuss centering colloquially by putting forth a carefully-
considered nomenclature framework. With a unified lexical
understanding we discuss the geometric effects of each cen-
tering in all relevant vector spaces. We find overall that new
and more complete data insights are available via a new
mode of variation derived from non-standard centering. The
case studies and hypothesis tests presented in this paper
provide a blueprint for how to determine which centering to
ultimately opt for in new analyses.

While the issues explored in this paper are relevant for a
wide range of settings, they play a central role in Functional
Data Analysis (FDA) where each item in a data set is a
function observed at finitely many points. The notion of a
mean function and the exact spaces in which centering takes
places must be carefully considered for these sorts of data.
Several excellent foundational references on FDA include [7],
[9], and [5]. For a more brief introduction, we refer to the
review paper by [13].

We consider the special case where each function in the
data set was observed at the exact same points. In this spe-
cial case, we may organize the data into a d×n matrix with
∗Corresponding author.

one of rows or columns considered as curves. In this pa-
per, we follow the convention in [10] of columns representing
those curves. We refer to each d-dimensional column vector
as a data object (i.e. experimental unit, data point, observa-
tion, case). This terminology appropriately reflects the full
generality of the kinds of data collected and stored in ma-
trix form in modern settings. We refer to each n-dimensional
row vector as a trait (i.e. feature, variable). While this term
is non-standard, it avoids potential ambiguity in using the
more popular term “feature.” In some areas of data science,
“feature vector” refers to what are called data objects here.
Because vectors along both dimensions of data matrices are
critical to our discussion, we need an appropriately distinct
name for each. As one of the main goals of this paper is
disambiguating the terminology surrounding centering, we
prefer the term “trait vector” to represent the vectors in the
dimension opposite the data objects.

Some researchers and software packages opt for the trans-
pose of our convention: using columns as traits and rows as
data objects. In fact, the legacy of structural limitations of
data analysis software reverberates through our choices of
matrix orientation to this day. Many tools placed stricter
limits on the number of columns a data table could have,
mirroring mathematical preferences for “long and skinny”
matrices. Most fields during this time period analyzed data
with many more objects than traits, so data was typically
entered and stored such that objects were rows and traits
were columns. Bioinformatics and related fields were in the
opposite position and often collected data on a very large
number of traits from a relatively small group of objects.
This led to data matrices being stored with the opposite
orientation: data objects as columns and traits as rows. We
follow the bioinformatics convention here. An agreement
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as to whether rows or columns are data objects is impor-
tant to facilitate discussion of data analysis between fields.
As we’ll see shortly, ambiguity in matrix orientation choice
has an acutely confounding effect when discussing centering
choices.

A time-honored, broadly-used tool in FDA is principal
component analysis (PCA). PCA decomposes the data into
modes of variation about the mean of the data objects.
These modes can be calculated from an eigenanalysis of the
covariance matrix of the data. To construct the covariance
matrix one must first center the data matrix such that the
data objects have a mean vector of 0. While this choice of
centering is very natural, it is unclear whether it should be
called “column centering” or “row centering” regardless of
matrix orientation convention. In our convention one might
first consider this a vector operation and call it “column
centering”. However, the operation is equivalent to finding
the mean value of each trait row vector and subtracting it
from each of that trait row vector’s entries. From this per-
spective the operation could be called “row centering” as
the entries of each row have mean zero after the operation.
In the other matrix orientation convention, the same could
be said of “column centering.” We propose new terminol-
ogy specifically aimed at avoiding this sort of ambiguity. As
this translation of the data objects in R

d (data object space)
such that they are centered at the origin is an important
effect of this centering operation, we will refer to this op-
eration as object centering a data matrix. Referring to the
intended target of the centering (object vs trait) as opposed
to the matrix dimension (column vs row) clarifies the in-
tended meaning while also unifying terminology regardless
of choice of matrix orientation.

Including object centering the matrix, there are in fact
four total centerings available besides leaving the matrix
uncentered.

• Trait centering is the dual operation to object centering.
From a vector point of view, the trait vectors are trans-
lated in R

n (trait space) such that their mean vector is
at the origin. As a result, the entries of each individual
data object have a mean of 0.

• Grand mean centering finds the mean of all entries of
the data matrix (the grand mean) and subtracts that
value from each entry.

• Double centering is the result of performing object cen-
tering followed by trait centering (or vice versa, the op-
erations commute) on the matrix. The resulting matrix
has all the properties of both object-centered matrices
and trait-centered matrices.

[15] examine the effects of each centering on the qual-
ity of low-rank matrix approximations. Here our purpose is
more focused on the interpretability and insights from the
data gained or lost by using these different forms of center-
ing in statistical analyses. Notably, that manuscript opts for
the ambiguous convention of referring to different centerings

Figure 1: Heatmap (left) and functional data (center, right)
views of synthetic data example. Heatmap shows a clear
undulating pattern. Data object functions (center panel),
corresponding to columns of the heatmap, are distorted cu-
bic functions. Trait functions (right panel), corresponding to
rows of the heatmap, are distorted linear functions. Green
dashed lines are mean curves.

according to matrix dimension (“row” and “column”) rather
than according to the goal of the centering operation. We
submit that our nomenclature allows for clearer explorations
of these kinds of topics.

Figures 1–4 visually explore the centerings listed above
through different points of view of a common synthetic data
set. The synthetic data matrix is 50×25; we display its con-
tents in Figure 1. The left panel shows a heatmap view of
the data matrix. In a heatmap view, the numerical value of
each entry is encoded as a color, with hue indicating a pos-
itive (red) or negative (blue) entry and saturation indicat-
ing magnitude. The heatmap reveals strong patterns across
both the traits and the data objects. We alternatively dis-
play these patterns with functional data views of both the
data objects and the traits in the center and right panels re-
spectively. The data objects (heatmap columns, center panel
curves) are a bundle of distorted and vertically shifted cu-
bic functions with a cubic function mean (center panel green
dashed line). The traits (heatmap rows, right panel curves)
are a bundle of distorted linear functions with a linear func-
tion mean (right panel green dashed line). Curve height in
the center & right panels corresponds with pixel color in the
heatmap.

In subsequent views of this data we will perform three of
the four centerings on the original matrix and examine the
changes in the visual patterns of the data matrix. Each view
will substantially and uniquely alter which aspects of the
data are prominent and which are hidden. We omit grand
mean centering as it amounts to a simple modification of
the heatmap colors and a vertical shift of the curves in the
functional data plots.

We first perform object centering, with results shown in
Figure 2. The center panel now shows a series of vertical
shifts and amplitude scalings of a sine wave as the cubic
structure was removed with the object mean (green dashed
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Figure 2: Heatmap (left) and functional data (center, right)
view of object-centered synthetic data example. Cubic effect
in data objects (center), corresponding to columns of the
heatmap, is removed and linear effect now dominates. Data
objects are now shifted and scaled low-amplitude sine waves.
Traits (right), corresponding to rows of the heatmap, all
coalesce around the linear mean curve.

Figure 3: Heatmap (left) and functional data view (center,
right) of trait-centered synthetic data example. Linear effect
in traits (right), corresponding to rows of the heatmap, is
removed to reveal another smaller-scale wave effect. Data
objects (center), corresponding to columns of the heatmap,
all coalesce around the cubic mean curve.

line in center panel of Figure 1). The right panel shows a
strong vertical shift of each of the trait curves, bringing them
together around their linear function mean. The heatmap in
the left panel is now dominated by the linear effect in each
row. We have kept the heatmap color saturation scale and
vertical axes in the center & right panel identical to those
in Figure 1 for effective comparison.

Next we examine the effects of trait centering. As this
is the dual operation to object centering, Figure 3 displays
effects dual to those from Figure 2. The right panel now
shows a series of vertically shifted waves as the sloped linear
structure was removed with the trait mean. The center panel
shows a strong vertical shift of each of the data object curves,
bringing them together around their cubic function mean.
The heatmap in the left panel is now dominated by the
cubic effect in each column, with some columns containing

Figure 4: Heatmap (right) and functional data (center, left)
view of double-centered synthetic data example. Both the
data object (center) and trait (right) curve bundles are clear
sine waves. Heatmap shows a clear planar wave pattern due
to the outer product of the sine waves along both dimen-
sions (data objects, traits). Scale of the heatmap color bar
is changed to emphasize this subtle but meaningful effect.

small, higher-frequency oscillations reflecting the sine wave
distortion that was hard to see in Figure 1. Once again, this
figure uses the same scalings as those in Figure 1.

Finally, we perform double centering, which will remove
both the cubic function mean among the data objects as well
as the linear function mean among the traits. In Figure 4, the
residual curves along both dimensions are pure sine waves,
and the resulting heatmap in the left panel shows a very
clear planar wave pattern. This underlying mode of variation
was obscured in Figure 1 by the mean effects along either
dimension. In this figure the curve plots use the same vertical
axes as Figures 1–3 but the color saturation scale of the
heatmap is adjusted because the pattern would appear too
faint otherwise.

The fundamental point is that each form of centering
leads to a substantially different interpretation of the promi-
nent traits of the data matrix. The visual impression of
the raw data differs greatly from each of the centered ver-
sions. The distinct and interesting pattern that remains in
the double-centered data is largely hidden in views contain-
ing either the object mean or the trait mean. An important
premise of this paper is that paying more attention to this
phenomenon can lead to improved insights from exploratory
analysis. In particular, we propose a new, insightful mode of
variation based on the trait mean for FDA decompositions.

Notably, while our analyses throughout this paper em-
ploy FDA perspectives for visualization and interpretation,
they all ultimately involve data that can also be considered
in a matrix without missing values. This framing provides
R

d and R
n as natural choices for data object space and

trait space respectively. Potential extensions of the ideas
presented in this paper to more general types of data such
as irregularly sampled functional data are discussed in Sec-
tion 5.
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The rest of the paper proceeds as follows. In Section 2, we
will analyze mortality and genomic data sets under multi-
ple centering regimes to demonstrate the value of exploring
non-standard centerings. In both cases we find enhanced vi-
sual interpretability after additional centering operations.
In Section 3 we mathematically investigate the geometry
of different forms of centering in the dual data object and
trait spaces. Combining insights from both of these analy-
ses, in Section 4 we develop a novel statistical test which
determines whether a significant mean effect is lurking as a
substantial portion of a mode of variation. Section 5 contains
some brief discussion of results. Finally, in Appendix A, we
examine how these lessons on centering can be applied in a
multi-block data integration context.

2. FDA CASE STUDIES
In FDA, the data objects are typically vectors represent-

ing digitized curves. As with other kinds of data objects
we’re interested in how the objects vary in the space they
occupy. We can use traditional tools like PCA and singular
value decomposition (SVD) to discover informative modes
of variation in the data, and then use the functional in-
terpretation of the data in question to produce insightful
visualization of those modes of variation. In the following
subsections we present functional data analyses of two data
sets: a collection of mortality rates in Spain during the 20th
century and a cohort of base-pair level RNAseq observa-
tions. In both cases we’ll examine the effects that different
centering choices have on the visual interpretation of the
analysis.

2.1 Spanish Mortality
[10] consider a data matrix containing mortality rates

(proportion of the population of a given age that died in
a year) of Spanish males from 1908 to 2002 using informa-
tion downloaded from the Human Mortality Database [14].
We are interested in how mortality rates, as a function of age
from 0 (birth) to 98, changed over this time span. Hence, we
will treat each year as a data object (column) and the mor-
tality rates of each age as a trait (row). We first conduct
a classical FDA based on object centering. We then com-
pare those results to a naive uncentered SVD and a double
centered FDA.

Figure 5 displays the data curves for the Spanish mortal-
ity data. Each curve represents a year of data, and the points
along each curve encode the mortality rates for each age in
that particular year. The curve colors represent chronology,
with earlier years displayed in cooler colors and later years
displayed in warmer colors. Each entry was adjusted by a
log10 transformation because mortality rates tend to vary
across several orders of magnitude.

Prominent details include higher mortality rates for new-
borns and the elderly as well as overall improvement in mor-
tality rate over the course of the 20th century. Both the var-
ied contributions to mortality by age group and the broad

Figure 5: Data curve view of the log10 Spanish mortality
data.

decline in mortality across Europe during the 20th century
are well-documented in [12], [1], and elsewhere. We observe
systematic spikes every 10 years, reflecting strong decadal
rounding in death records for older men in the earlier half
of the century.

We conduct a conventional FDA to find interesting modes
of variation in mortality rates over the course of the 20th
century. Insights into these modes of variation come from
considering both loadings and scores of a PCA. Figure 6
shows the loadings vectors as curves scaled by the scores.
The top panel shows the object mean curve as a function of
age, and subsequent panels show additional modes of vari-
ation about that mean. The second panel (first mode of
variation) shows an overall decrease in mortality rate over
time which benefitted younger individuals more strongly.
The year 1918 is visually distinct at the top of the plot due
to the global flu pandemic that year. The third panel (sec-
ond mode of variation) shows a contrast in mortality rate
trends between 18–49 year olds and the rest of the popu-
lation. This reflects three bursts in mortality for this age
group, including the flu pandemic, the Spanish Civil War,
and automobile fatalities. The causes of the rise in Span-
ish male mortality in the late 20th century are discussed
further in [4]. Throughout the first and third modes of vari-
ation there are remnants of “age-rounding” due to imprecise
records. This manifests visually as a repeating pattern over
time of length 10.

While Figure 6 explores the modes of variation of the data
via loadings, Figure 7 explores relationships between the
data objects by looking at scatter plots of projections of the
data onto score vectors. We generate one-dimensional views
of each score vector with score value on the horizontal axis
and chronology on the vertical axis overlaid with a smooth
histogram. We also plot two-dimensional views showing pro-
jections onto the two-dimensional planes generated by each
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Figure 6: Data curve view of the mean and first three principal modes of variation for the Spanish mortality data.
Component 1 (second panel) shows overall improvement over time and component 2 (third panel) shows differences
between young/middle-age adults and children/the elderly. Note that for each year adding the corresponding curves from
each plot together results in an approximation of the original data curves in Figure 5.
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Figure 7: Scatter plot view of Spanish mortality data. Most explainable and interpretable trends appear in the two-way
plot of components 1 and 2. Due to the object centering performed for conventional FDA, all 2D plots display 0 correlation.

pair of score vectors. These are all organized into a matrix
of plots with 1D views on the diagonal and corresponding
2D views in respective off-diagonal slots. The year-based
coloring in each plot is consistent with other views. In the
2D scatter plots, we connect the dots in chronological order.
The 2D plot between components 1 and 2 shows many of the
trends discussed previously. We can track overall improve-
ment over time with obstacles to that improvement arising
in the early 20th century (small cluster of blue points in the
bottom right) and late 20th century (cluster of orange points
in the top right). Notably the correlation in each 2D scatter-
plot is zero. As we will show in greater detail in Section 3,
this is a consequence of the object centering operation that
takes place as the first step of a conventional FDA.

The above PCA can be viewed either as an eigenanaly-
sis of a covariance matrix or as an SVD of the data matrix
after it has been object-centered. The right-singular vectors
from the SVD are the score vectors and the left-singular
vectors are the loadings vectors in our matrix orientation
convention. The SVD formulation suggests potential use of
other centerings. We could examine left and right singu-
lar vectors for an uncentered version of the matrix or a
differently-centered version of the matrix. In such cases, the
interpretation of the decomposition into modes of variation
will typically change substantially.

For instance, Figure 8 shows the modes of variation for
the uncentered version of the data matrix. The first compo-

nent contains information about both the general mortality
pattern across ages and the overall improvement over time.
The second component has a new contrast between young
children and everyone else, and the third component com-
bines many of the patterns separating young adults from
older adults with an additional infant effect. Finally, the
fourth component reveals a new contrast between younger
middle-aged men (ages 25–40) and the rest of the popula-
tion. The first component contains much of the information
taken out by the object mean in the conventional FDA in
Figure 6, but it also contains much of what is found in that
analysis’s first mode of variation.

Next, the double-centered FDA is studied in Figure 9.
The rank 2 double mean (first panel) contains both the
differences across ages found in the object mean and the
constant component of the overall improvement over time
found in the trait mean. This visualization of the double
mean matrix provides further meaning and context to the
first component of the uncentered FDA in Figure 8. We can
now see that component is a slightly perturbed and lower-
rank version of the double mean matrix. Subsequent panels
of Figure 9 then each show one additional effect, and each
panel’s effect roughly corresponds to the respective panel
from Figure 8. The second panel shows stronger improve-
ment over time for younger people, which was also shown
in the second panel of the previous figure, but for a more
lopsided age group. The third shows differences between the
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Figure 8: Data curve view of uncentered Spanish mortality data. Different centering dramatically changes the visual
analytic impression.
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Figure 9: Data curve view of double-centered Spanish mortality data. Both the overall improvement over time and
differences across ages are contained within the mean, leaving more specific effects for each subsequent mode of variation.
The double mean matrix is the sum of the object and trait mean matrices, and is typically rank 2.
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Table 1. Phenomena in FDA components after different forms
of centering. Missing phenomena are indicated by empty cells.
↓ Phenomenon, Centering → None Object Double

Difference across ages 1 Mean Object Mean
Overall mortality reduction 1 1 Trait Mean
Stronger reduction for young 2 1 1
Contrast: 18–49 and others 3 2 2
Contrast: 18–25 and 25–40 4 3

Infant Effects 3,4 3 3
Age Rounding 1,2,3 Mean,1,3 Object Mean,1,3

18–49 year-olds and the rest of the population, which again
lines up well with the effect shown in the third panel of the
previous figure. The fourth panel shows a difference between
older and younger individuals within the 18–49 age range,
representing a clearer picture of the contrast hinted at in
the fourth panel of Figure 8. Each component is cleanly in-
terpretable and untethered from interference due to mean
effects. The one aspect of the data still spread throughout
components is the age-rounding effect for older individuals,
though this happens regardless of the centering chosen.

The distribution of interpretable effects varies uniquely
with each form of centering. To summarize the differences,
Table 1 displays for each centering (columns), which phe-
nomena (rows) are contained in which component (num-
bers). For instance, the first component of the object-
centered analysis contains information about both overall
mortality improvement and the stronger improvement in
mortality rate for younger people, whereas those two phe-
nomena are split up in the double-centered analysis. The
former is contained in the mean and the latter is contained
in the first component.

The table shows that choice of centering determines in
which component different phenomena appear. Different an-
alysts may well have different preferences. We prefer double
centering for this data set because it provides the cleanest
separation of phenomena into individual modes of variation.
Object centering fails to find the additional contrast among
the younger adults found with no centering and double cen-
tering. While most of the effects are present in the uncen-
tered FDA, double centering allows for clearer attribution of
each phenomenon to a specific effect, centering or otherwise.
The contrast among younger men is also more prominent
and more straightforward in the third mode of variation of
the double-centered FDA as compared to the fourth mode
in the uncentered FDA.

Often the two most meaningful decompositions into
modes of variation will derive from object-centered and
double-centered data. In Section 4, we present a statistical
test to help determine whether object centering or double
centering may be more appropriate for a given data set. As
will be seen in Section 3, these two centerings result in mu-
tually uncorrelated score vectors, and double centering ad-
ditionally results in mutually uncorrelated loadings vectors.

Figure 10: Data curve view of lung cancer RNAseq data.
Important relationships in the data are hard to discern. The
large steps at the bottom are an artifact of the shifted log
transformation.

2.2 Lung Cancer Data
The default form of centering (usually object centering)

can sometimes be the best choice depending on the goals of
the analysis. One such situation is clustering in the context
of RNAseq lung cancer gene expression data from [8]. Here
our data matrix contains 180 observations from lung cancer
patients of 1709 base pairs along the gene CDKN2A. Fig-
ure 10 displays the data as a curve bundle. The horizontal
axis represents base pair location on the chromosome and
for each location the vertical axis displays the log10 of the
counts of RNA reads plus 1. Because these reads overlap,
traits near one another appear to be strongly correlated.

To look for relationships within the data, we perform a
traditional FDA. In particular, we project the data onto
the subspace defined by the first few modes of variation
as shown in the left half of Figure 11. The four panels on
the left are 1D and 2D scores plots laid out in a similar
format to Figure 7. The first two modes of variation suggest
three distinct clusters. We study those clusters via brushing:
manually coloring data based on visual information in the
left side of Figure 11 and then transferring those colors to
the curve bundle plot in the right panel of Figure 11.

The brushed clusters have a clear, obvious visual inter-
pretation in the curve view of the data. The red individuals
have low expression levels across the entire gene (these are
classically called unexpressed), while the blue & gold indi-
viduals are similar but differ in an important way within
the range of base pairs between 1000 and 1400. This event
is called alternate splicing and is very important in can-
cer research. Focusing on such differences has led to new
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Figure 11: (Left) Brushed scores view of traditional FDA of
lung cancer base pair RNA expression data. We have three
prominent clusters among the first two modes of variation.
(Right) Curve view colored with clusters. Red cluster has
low expression everywhere, blue & gold clusters differ be-
tween base pairs 1000 and 1400, suggesting alternate splic-
ing as discussed in [8].

discoveries by [8]. This data has a clear correspondence be-
tween clusters and modes of variation. In particular, the first
mode separates the red observations from the others, while
the second mode separates blue from gold with red in the
middle.

Given this straightforward and interpretable analysis
from traditional FDA, what happens when we double-center
the matrix instead? Figure 12 displays a matrix of 1D and

2D scores plots for the trait mean component and first two
orthogonal modes of variation. Note that the three clusters
are less visually distinct in these views and the correspon-
dence between modes and clusters is less clear. The sepa-
ration of the red observations is spread over the trait mean
and first orthogonal component, and the separation between
blue & gold is spread across all three directions. Choosing
new clusters by brushing this figure would also be much
more challenging as no single two-dimensional view shows
three clearly distinguished point clouds like those seen in
Figure 11.

In this case, introducing an additional form of centering
reduced the interpretability of the results without adding
any additional insights. The three-dimensional subspace
from the double-centered FDA does no better of a job de-
lineating clusters than the two-dimensional subspace from
the typical FDA, and the separation of each group is spread
across multiple modes of variation in the double-centered
FDA. Opting for double centering over object centering can
either enhance interpretability, as in the mortality data, or
obscure it, as in the lung cancer data.

3. FORMALISM
3.1 Consequences of Different Forms of

Centering
We investigate the effects of grand mean, object, trait,

and double centering on a small example data matrix X

Figure 12: Scores view of double-centered FDA of lung cancer base pair sequencing data. Clusters are made less distinct
by involving the trait mean in the visualization.
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Figure 13: Uncentered data matrix X shown in both object
space (R2, left) and the three-dimensional subspace of trait
space generated by the constant function direction and the
data (R25, right). Notably, the asterisks and plus sign in the
right panel do not lie in the mesh plane orthogonal to the
constant function direction (vertical axis).

with 2 traits (rows) and 25 data objects (columns). We can
then think of R

2 as the object space, and R
25 as the trait

space. Figure 13 shows the entries of X as they exist in
both object space and trait space. The left panel shows the
25 ordered pairs (circles) as a scatter plot in R

2. Visual-
ization in R

25 is more challenging. For studying centering,
the constant function direction, i.e. vector of 1’s, and the
subspace it generates are pivotal. Therefore, the right panel
shows the two 25-dimensional trait vectors (asterisks) pro-
jected into the three-dimensional subspace of R25 generated
by the constant function direction (z-coordinate), and the
two orthogonal trait space principal components (x and y
coordinates). Note that the subspace orthogonal to the con-
stant function direction contains every vector whose entries
have mean 0. The mesh plane represents the projection of
that subspace of R25 into the chosen three-dimensional sub-
space. Also note that in both spaces, the mean vectors of
the points (× in object space, + in trait space) are nonzero.
In the right panel, the two data points and their mean are
shown as vectors from the origin. In addition to a different
symbol, the mean vector is distinguished with a dashed line
type.

The following subsections each discuss the results of a
different centering on this data. Each subsection has an ac-
companying figure that visually demonstrates the impacts
of each type of centering on the example data matrix in both
spaces. Each accompanying figure is formatted similarly to
Figure 13: the left panel will show object space, and the
right panel will show a projection onto the same subspace
of trait space. In each subsection we will also discuss how
each centering can be interpreted in a third space: R

d×n,
the space of d × n matrices endowed with the Frobenius
norm.

Figure 14: Data matrix XG, centered version of X such that
all the entries have mean 0, shown in both object space
(R2, left) and trait space (R25, right). Shows grand mean
centering is a translation of point clouds in both spaces.

3.1.1 Grand Mean Centering

We begin our geometric exploration of centering with
grand mean centering: the form of centering that finds the
scalar grand mean value of all the entries of the matrix and
subtracts that value from each entry.

We calculate the grand mean matrix MG = 1d×nμG,
where μG is the average of all entries of X. The grand-mean-
centered version of X is then denoted XG = X−MG. While
this centering is not often performed on its own in data anal-
ysis, it serves as an appropriate first step for analyzing the
geometric implications of each subsequent centering. Fig-
ure 14 shows the results of this centering in both object
space and trait space, where the point clouds retain their
shapes but have been translated to different locations. In
both spaces, the data are translated parallel to their corre-
sponding constant function direction such that each mean
(× in R

2 and + in R
25) lies in the subspace orthogonal to

their constant function direction.
While we have described the geometric implications of

grand mean centering in both object space and trait space,
grand mean centering alone is typically not useful in data
analysis. The interpretation and consequences of grand
mean centering are better studied in R

d×n. In this space
MG lies in the constant function direction. Therefore when
we subtract MG from X, the resulting matrix XG is orthog-
onal to the constant function in the space of matrices. This
property then enforces a further orthogonal relationship be-
tween the object mean and trait mean matrices, denoted
MO and MT respectively. We calculate MO = μd1

T
n and

MT = 1dμ
T
n , where μd is the d-dimensional vector whose

entries are the mean of each trait of X and μn is the n-
dimensional vector whose entries are the mean of each data
object of X. Each of MO and MT are rank 1, and MO has
identical columns while MT has identical rows. If these mean
matrices are calculated with respect to XG rather than X,
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Figure 15: Data matrix XO, centered version of X such that
the data objects have mean vector 0, shown in both object
space (R2, left) and trait space (R25, right). The trait vectors
are projected onto the subspace orthogonal to the constant
function direction.

both of these matrices have entries that sum to 0. In this
case each column of MO sums to 0 and each row of MT

sums to 0. This means that with respect to the Frobenius
inner product in R

d×n, MO and MT are orthogonal after
grand mean centering.

3.1.2 Object Centering

Now we explore the centering which is performed on data
matrices as a part of typical FDA. We calculate XO, the
object-centered version of X such that the data objects have
a mean of the d-dimensional 0 vector. Figure 15 shows the
results of this form of centering on X. As shown in the left
panel, the points in object space now have a mean vector
at exactly the origin. The points have all been translated
from their locations in Figure 13 by the same amount and
in the same direction. The two trait vectors undergo a dif-
ferent transformation in R

25. Each vector, as well as their
vector mean, is projected into the 24-dimensional subspace
which is orthogonal to the constant function direction. This
24-dimensional subspace is again represented by the mesh
plane.

To facilitate a PCA-like decomposition into modes of vari-
ation of XO, consider an SVD of XO = UODOV

T
O. In our

matrix orientation convention, UO is associated with load-
ings and VO is associated with scores. The trait vectors of
XO lie in the subspace orthogonal to the constant function
direction in R

25. Therefore, the orthonormal basis for their
span, i.e. the columns of VO, will also be composed of vec-
tors orthogonal to the constant function direction. These
entries represent the scores of each observation along each
direction, and centering this way guarantees that each set
of scores has mean 0.

Figure 16: Data matrix XT , centered version of X such that
the traits have mean vector 0, shown in both object space
(R2, left) and trait space (R25, right). As a consequence,
the objects are projected onto the subspace orthogonal to
the respective constant function direction. This projection
demonstrates that XT is of lower rank than X.

3.1.3 Trait Centering

The second centering is the dual of the centering used
in PCA. We calculate XT : the centered version of X such
that the traits have a mean of the n-dimensional 0 vector.
Figure 16 shows the results of this centering on the data
matrix X from Figure 13. The left panel shows that the
points in object space have been projected onto the subspace
orthogonal to the R

2 constant function direction, while the
right panel shows that the points in trait space have been
translated such that their mean is at exactly the origin. This
result is of course the dual of the previous form of centering.
Note that the resulting matrix XT is now rank 1 instead of
rank 2.

To similarly find the modes of variation of XT , consider
an SVD of XT = UTDTV

T
T . The data object vectors of XT

lie in the subspace orthogonal to the constant function direc-
tion in R

2. Therefore, the orthonormal basis for their span,
i.e. the columns of UT , will also be composed of vectors in
this subspace. These entries represent the unweighted load-
ings of each trait within each mode of variation of the data
objects, and centering this way guarantees that each set of
loadings has mean 0.

3.1.4 Double Centering

The final mode of centering combines the operations of
both previous forms into a single transformation. We calcu-
late XD, the double-centered version of X where the traits
have a mean of the n-dimensional 0 vector and the data ob-
jects have a mean of the d-dimensional 0 vector. Figure 17
shows the results of double centering the matrix X from
Figure 13. In both panels, the original points have been
translated so that their mean lies at the origin and they
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Figure 17: Data matrix XD, centered version of X such that
the data objects and traits both have mean vector 0, shown
in both object space (R2, left) and trait space (R25, right).
As a consequence, both the data objects and traits are pro-
jected onto respective subspaces orthogonal to the constant
function direction.

are projected onto the subspace orthogonal to the corre-
sponding constant function direction. The double-centered
ordered pair objects in the left panel and corresponding
double-centered trait vectors are all shown in green.

Note that these two operations, projection and transla-
tion, are commutative. Projecting the first-translated points
results in the same transformed data as translating the first-
projected points. We can see this commutation in both pan-
els of Figure 17. In the left panel we can arrive at the green
points either by projecting the previously-translated blue
points onto the line orthogonal to the constant function di-
rection or by translating the previously-projected red points
such that their vector mean now lies at the origin. In the
dual situation in the right panel, we can arrive at the green
points either by projecting the previously-translated red
points onto the mesh plane indicating the subspace orthogo-
nal to the constant function or by translating the previously-
projected blue points such that their vector mean now lies
at the origin.

This matrix is also of lower rank than X.
To similarly find the modes of variation of XD, consider

an SVD of XD = UDDDVT
D. Both the data objects and

trait vectors lie in subspaces orthogonal to their respective
constant function direction, so both the sets of loadings and
the sets of scores for this data will have mean 0.

3.2 Discussion
There is a strong connection between mutual orthogo-

nality of vectors and correlation in corresponding scatter-
plots that is driven by the means of the entries of each
vector. For two observed unit vectors x and y, because∑

x2
i =

∑
y2i = 1, the correlation of their entries is

Corr(x,y) =
∑

(xiyi)−
∑

(xi)
∑

(yi). Since FDA scores and

Table 2. Summary of which centerings produce which
outcome for sets of scores and loadings vectors in FDA.

↓ Effect, Centering Type → None Object Trait Double
Orthogonal Score Vectors � � � �

Uncorrelated Score Vectors � �
Orthogonal Loadings Vectors � � � �

Uncorrelated Loadings Vectors � �

loadings vectors are mutually orthogonal in their respective
spaces, we will always have

∑
(xiyi) = 0. Therefore a suffi-

cient condition for the entries of two scores and/or loadings
vectors to be uncorrelated is for the entries of one vector to
have mean zero.

Table 2 summarizes how this condition enforces uncor-
relatedness in scores and loadings vectors found via FDA
of differently-centered matrices. Whether FDA of a single
matrix is treated as an eigenanalysis of a covariance ma-
trix or as an SVD of a (possibly centered) data matrix, the
scores and loadings vectors will always be mutually orthog-
onal. This fact combined with the projection operations in-
volved in different centerings can produce mutually uncorre-
lated scores and/or loadings vectors. This uncorrelatedness
is most prominent and important when forming scatter plots
like those shown in Figure 7.

As a remark, some of the centerings resulted in loss of
rank in our synthetic data matrix. Recall that the matrix
was 2 × 25, and the matrix became rank 1 after trait cen-
tering and double centering. The centerings that involved
translation in R

25, and therefore projection in R
2, were the

ones that reduced the rank of the matrix. In general, the
centering that involves projection in the lower-dimensional
space out of the trait vector and object vector spaces will
result in loss of rank.

4. QUANTIFYING DOUBLE CENTERING IN
FUNCTIONAL DATA ANALYSIS

As discussed in Sections 2 and 3, object centering is the
standard default for FDA. This is recommended because
interesting structure is often found in variation about that
mean vector so its dominating effect is removed and treated
separately. As seen in the transition between the left panels
of Figures 13 and 15, subtraction of the object mean results
in a translation of the data objects in object space

(
R

d
)

so their mean vector becomes the origin. The FDA modes
of variation among the now-translated point cloud are then
readily calculable via SVD.

However, in cases like the Spanish Mortality data stud-
ied in Section 2, an additional dominating effect due to the
trait mean can remain within the point cloud even after re-
moval of the object mean. In object space, the trait mean
manifests through projection onto the constant function di-
rection. Each entry of the trait vector mean is the signed
magnitude of the projection of a corresponding data object
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Figure 18: Left Panel: Direction Energy Hypothesis Test on Spanish Mortality data. Energy proportion in constant function
is much larger than what would be expected due to random chance. Right Panel: Direction energy hypothesis test on
n = 100 synthetic 100-dimensional Gaussian observations. Energy proportion in constant function direction is not distinct
from empirical null distribution.

vector onto the constant function direction. If a substan-
tial proportion of the object-centered point cloud energy lies
along the constant function direction, the trait mean effect
may be concealing more interesting structure. In this section
we develop a direction-energy hypothesis test to determine
when the proportion of energy in the constant function di-
rection becomes “substantial” enough to warrant potential
separate consideration of the trait mean mode of variation
and the remaining (double centered) modes.

Consider an object-centered data matrix XO. Define the
total energy of the data matrix as its squared Frobenius
norm, Etotal = ||XO||22. Define the energy in a direction for
the data matrix as the squared Frobenius norm of the projec-
tion of XO onto the 1-dimensional subspace spanned by the
unit vector v in R

d, Ev = ||vv�XO||22. For any given unit
vector v, primary interest is in the proportion pv = Ev

Etotal

of the total energy attributable to that direction. To evalu-
ate the potential significance of the proportion of energy in
the constant function direction p1d

, we generate an empir-
ical null distribution of energy proportions in D randomly
chosen directions. If p1d

lies above a high percentile of that
empirical null distribution, we say there is evidence of statis-
tically significant energy in the constant function direction
for the data matrix. Note that the number of sampled ran-
dom directions D should scale with the dimension of object
space d to ensure a representative sample of the possible
energies for the empirical null distribution.

Figure 18 visually displays the results of the hypothesis
test described above for two data sets. The left panel shows
the test as administered to the mortality data, and the right
panel shows the test administered to a synthetically gen-
erated matrix of 100 observations from a 100-dimensional
standard normal distribution. We plot energy proportion
on the horizontal axis with the vertical axis representing
density of the randomly generated energy proportions The
black dots in each panel represent D = 500 energy pro-
portions from the randomly chosen directions. The black

curve in each panel is a smooth histogram representing the
empirical null distribution of random direction energy pro-
portions. The red dot-dash line in each panel represents the
energy proportion in the constant function direction. For
the Spanish mortality data in the left panel, nearly 65%
of the energy is congregated around the constant function
direction, as is apparent from Figures 6, 8, and 9. This pro-
portion is much higher than that in any random direction,
whose energy proportions are shown with the black circles.
This result indicates that substantial gains in interpretabil-
ity are possible for this data set via opting to double-center
the data matrix before performing FDA, as demonstrated
in Figure 9 and Table 1. Contrastingly, in the right panel,
the energy proportion in the constant function direction is
not remarkable in any way in the spherically-symmetrical
synthetic data displayed.

We can further study the effects of removal of the trait
mean by plotting the energies in each FDA component be-
fore and after double centering. Figure 19 shows such a
breakdown for the Spanish mortality data (left panel) and
breast cancer RNAseq data studied in [2] (right panel). The
solid blue lines show how much energy is accounted for
in each object-centered FDA component; components are
shown in the order they’re found from bottom to top in the
figure. The red dashed lines show how much energy is ac-
counted for in each double-centered FDA component; and
they’re displayed in a similar fashion to the blue lines. All
energy proportions are in terms of the total energy in the
object-centered data matrix, so the constant function direc-
tion energy is included in the total for the double-centered
FDA. Consequentially, there is less energy to be allocated
for the double-centered components. The blue lines in the
left panel correspond with the components shown in Fig-
ure 6 while the red dashed lines in the left panel correspond
with the components shown in Figure 9.

In the object-centered FDA of the mortality data, the
first component accounted for more than 95% of the energy
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Figure 19: Direction energy hypothesis tests on Spanish Mortality (left) and Breast Cancer RNAseq (right) with energy
breakdowns by FDA component. Left Panel: Constant function direction almost entirely takes energy from the first com-
ponent. Right Panel: Constant function direction contains significant information, but its spread across many components
and its total energy share is small relative to the first several components.

in the data, but after double centering that energy is split
between the constant function direction and the first or-
thogonal component. In fact the drop in energy share of the
first component between object-centered & double-centered
FDA accounts for 99.3% of the energy share of the constant
function direction. This corresponds with the interpretation
of this operation in Section 2, where the first object-centered
FDA component contained information about both over-
all improvement and greater improvement for young peo-
ple, while the first double-centered FDA component is only
about greater improvement for young people as the overall
improvement is sequestered to the constant function mode.

The effect of the constant function direction is much less
pronounced in the RNAseq data. While it appears to include
a statistically significant amount of the overall matrix en-
ergy, its energy proportion is still trumped by those of sev-
eral orthogonal principal components, including the three
shown in the right panel. This is likely because a procedure
of a similar flavor to removal of the trait mean has already
been performed on this data. The columns of this data are
normalized such that each has an identical upper quartile.
While this operation doesn’t entirely remove the effect of
the trait mean, it still removes much of the variation in the
data objects not explained by the traits.

5. DISCUSSION
In this manuscript we presented a unified framework for

describing, understanding, and implementing centering as
part of data matrix analysis. We put forth disambiguating
terminology for describing data matrix dimensions and cen-
tering operations. We highlighted double centering in FDA
as a way to incorporate the constant function direction mode
of variation in data analyses. Correspondingly, we proposed
a hypothesis test for determining whether the constant func-
tion direction mode of variation is significant for a given data
set.

Functional data made up of curves with differing num-
bers of observations or observations at differing points in
time don’t align neatly with the framework presented above.
To consider the impacts of different forms of centering for
more complex data, suitable choices for data object space
and trait space must first be identified. One common ap-
proach for this form of functional data is to choose a basis
in the space of square-integrable functions over R and ap-
proximate each observation as a linear combination of func-
tions in that basis. In this case the data object space is
populated by the vectors of coefficients of that linear com-
bination, and the trait space is a subspace of the infinite-
dimensional function space from which the basis was cho-
sen. Consequently, the ideas presented in this paper should
generalized to the settings where the functions may be ob-
served at irregular and/or differing points, and the constant
function will still represent an important direction in the
trait space. In section 2.4 of the FDA review paper by [13],
they describe an example of functional principal components
analysis (FPCA) on observations of helper T cell counts in
25 patients at differing time points. Figure 4 of the review
paper displays plots of the first four functional modes of
variation after the FPCA. The first and by far the most ex-
planatory mode for this data in fact appears to be a slightly
perturbed version of the constant function. Projection into
the space orthogonal to the constant function appears to be
a potentially fruitful further direction of research.

APPENDIX A. CENTERING IN DATA
INTEGRATION

In data integration tasks, two or more data matrices that
share common row and/or column dimensions are analyzed
in tandem. The goals of such tasks are to reveal what infor-
mation is shared between the data matrices and to combine
the information from each data block to arrive at a more
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complete picture of the population and/or traits in ques-
tion. Data matrix centering can play an even more complex
role in these situations than in single-matrix FDA as both
data objects and traits play critical roles in the analysis.
Depending on the chosen methodology, different centering
choices may affect the outputs in surprising ways.

We explore the integrative analysis of two data blocks
using partial least squares (PLS) under different centering
regimes. We choose PLS as a simple and direct method that
takes into account potential scaling differences between data
blocks.

A.1 Partial Least Squares
PLS as a data integration procedure derives shared infor-

mation from the cross-covariance matrix Σ1,2 between the
two data blocks. Here, the cross-covariance matrix refers to
the submatrix of the grand covariance matrix of all traits in
either data block associated with the covariances between
traits across blocks:

cov
([

X1

X2

])
=

[
Σ1 Σ1,2

ΣT
1,2 Σ2

]

We can also find the cross-covariance matrix by multiply-
ing object-centered versions of the two data blocks together:
Σ1,2 = 1

nX1OX
T
2O. As PLS operates on covariance matrices,

it chooses pairs of score vectors for each data block with
maximal covariance between them.

Importantly, as discussed in [11], different variations of
PLS lead to different centering-based consequences. As is
the case in many data integration methods, one piece of in-
formation, either scores or loadings, is calculated first while
the other is found subsequently with a projection operation
involving the first piece of information and the original data
blocks. Whichever set of vectors is found first will be pre-
dictably affected by centering choices during preprocessing
of the data blocks, but the subsequently found set of vec-
tors are typically not even mutually orthogonal due to the
projection.

One approach is to directly take a singular value decom-
position of the cross-covariance matrix; the resulting left and
right singular vectors then constitute the estimated loadings
vectors for X1 and X2 respectively. This results in loadings
vectors that are uncorrelated only when the data blocks are
double centered. As per Table 2, trait centering and double
centering are the two choices that result in loadings vectors
with uncorrelated entries. We do not consider trait center-
ing as a possible choice since object centering is required to
correctly form the cross-covariance matrix in the first place.

Another approach is to sequentially and algorithmically
calculate each score vector, then its corresponding loadings
vector, then remove the one-dimensional subspace approxi-
mation defined by those vectors before searching for subse-
quent scores and loadings vectors. As this procedure calcu-
lates score vectors first, we can guarantee that the calculated
score vectors will be uncorrelated due to object-centering the

data blocks. We opt for this approach to mirror other data
integration methods that first locate score vectors, including
canonical correlations analysis (CCA) from [6] and angle-
based joint and individual variation explained (AJIVE) from
[3].

A.2 Synthetic Data Example
To demonstrate the additional complexities involved in

centering choice for data integration, we first use the syn-
thetic two-block data set shown in Figure 20. The first block,
X1, is 300 × 200, and the second block X2, is 500 × 200.
Note that each block has the same number of data objects
(columns) but different numbers of traits (rows). For exam-
ple, one could represent demographic data and the other
could represent various biomarker observations about a co-
hort of patients. Each data block is formed by adding a
rank-two signal matrix to a full-rank Gaussian noise ma-
trix. The underlying components of each signal matrix lie
in the same common subspace of trait space, representing
shared information between the blocks. However, the over-
lapping subspaces are obscured by object and trait mean
effects in each matrix.

Figure 20 uses heatmaps to display the construction of
the synthetic data example we will use to demonstrate the
value of exploring double centering in data integration con-
texts. The left panels show the observed data matrices,
which are formed by additively combining the other matrices
in each respective row. The heatmaps in the second column
display a shared, underlying rank-two signal in both X1 and
X2. By construction, this underlying rank-two joint signal
is double centered. The heatmaps in the third column show
the mean effects added to each matrix. The matrix added
to X1 is rank 1 and represents an object mean matrix as
each column is identical. The matrix added to X2 is rank
2 and represents a double mean matrix with both object
mean and trait mean components. Finally, the heatmaps in
the fourth column display the i.i.d. Gaussian noise added
to the observations. The color scale is kept constant across
all heatmaps in Figure 20 to appropriately convey differ-
ences in effect size between the shared signal and mean ef-
fects.

The object mean vector added to columns of X1 increased
the values in the top 100 rows and decreased the values in
the bottom 100 rows. An object mean vector was added to
X2, but its visual impression is swamped by that of the
trait mean effect. The trait mean vector has entries that
gradually increase from the first observation’s entry to the
last. This creates the color gradient visual effect seen in the
third panel of the second row.

We perform PLS on this two block data set after object
centering and after double centering. Figure 21 displays the
first two PLS components of each data block found using
the object-centered versions of the matrices. The top panels
show the X1 components and the bottom panels show the
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Figure 20: Three stages of synthetic data example construction. Underlying rank-two signal (left), underlying signal with
added mean effect perturbation (middle), noise perturbation (right).

Figure 21: First two PLS components of each object centered synthetic data block. Recovery and parsing of distinct
underlying signal pieces is reasonable for X1 but the trait mean effect dominates the first component of X2.

X2 components. Each estimated X1 component roughly cor-
responds with one of the rank one underlying signal compo-
nents shown in the left panels of Figure 20, as expected. This
is because X1 only had an object mean added to its shared

signal. However, the first X2 component is completely dom-
inated by the large linear trend in the trait mean rather
than one of the underlying shared effects. This is a conse-
quence of PLS choosing score vectors to maximize covari-
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Figure 22: First two PLS components of each double centered synthetic data block. Recovery and parsing of distinct
underlying signal pieces is strong for both blocks.

ance rather than correlation. The trait mean effect is much
larger in magnitude than the underlying shared structure,
so the best way to maximize covariance is to choose a score
vector close to the trait mean effect for X2.

Figure 22 displays the first two PLS components of each
data block found using the double centered versions of the
matrices. The top panels show the X1 components and the
bottom two panels show the X2 components. Now that the
strong trait mean effect in X2 has been removed, the recov-
ery of the underlying shared signal is greatly improved in
both blocks. The first component in both blocks is distinctly
the long-checkered pattern and the second component in
both blocks is distinctly the short-checkered pattern.

In this synthetically constructed example, a strong trait
mean effect dominated the calculated components from data
integration. Removal of the trait means of each block in
addition to the typical and necessary removal of the object
means of each block drastically improved interpretability of
results.

A.3 Spanish Mortality: Males versus Females
We return to the Spanish mortality data from Section 2

to further explore the implications of additional centering
in data integration tasks. Here we combine the observations
of male mortality rates from 1908 to 2002 with correspond-
ing measurements of female mortality rates over the same
time period. We perform PLS on these two data blocks to
locate the shared information between them. We opt for
the algorithmic approach outlined in Section A.1 to ensure

score vectors are orthogonal. We will compare the analy-
sis after object centering and double centering. In both of
these centering regimes, the score vectors will be mutually
uncorrelated (See Table 2).

Figure 23 shows the results of PLS on the two data blocks
after each has been object centered. We display the loadings
vectors scaled by the scores of each observation in a similar
fashion to Figures 6, 8, and 9. The object mean and first
three joint modes of variation for males are shown on the
left, and the corresponding modes for females are shown on
the right. While each mode of variation manifests differently
in each data block, the same broad trends are identifiable
for each gender. The first mode shows overall improvement
and more dramatic improvement for younger people, and
the second mode shows a contrast between younger adults
and the rest of the population. This contrast highlights ages
18–50 for males and ages 15–45 for females. The third mode
is much harder to interpret as there is no obvious common-
ality between the patterns for each gender outside of the ap-
pearance of age rounding. Overall these modes correspond
with those found via the PCA analysis of male mortality
in Section 2. Since PCA finds modes of maximal variation
and PLS tries to find directions with maximal covariance
between blocks, this correspondence between PCA and PLS
modes of variation is not surprising.

Figure 24 shows the results of PLS on the two data blocks
after each has been double centered, organized in a similar
fashion to Figure 23. Again the first two modes of variation
match expectations. The first mode shows stronger improve-
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Figure 23: Object-centered PLS of male and female mortality rates. First and second mode show expected trends, but
third mode is challenging to interpret.
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Figure 24: Double-centered PLS of male and female mortality rates. First and second mode show expected trends, and
third mode highlights record-keeping anomalies in each gender.
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ment for younger individuals as the overall improvement has
been removed with the trait mean, and the second mode
again shows a contrast between younger adults and the rest
of the population. The third mode now more clearly pertains
to age rounding for both males and females. In addition to
large spikes every ten years, we also see smaller spikes every
five years, further reflecting a bias towards rounder numbers
on death certificates of older individuals.

As in previous analyses of this kind of data, we feel the
choice to double-center each data block enhances the inter-
pretability of the results.
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