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Abstract
In the interest of business innovation, social network companies often carry out experiments to test product changes

and new ideas. In such experiments, users are typically assigned to one of two experimental conditions with some outcome
of interest observed and compared. In this setting, the outcome of one user may be influenced by not only the condition
to which they are assigned but also the conditions of other users via their network connections. This challenges classical
experimental design and analysis methodologies and requires specialized methods. We introduce the general additive
network effect (GANE) model, which encompasses many existing outcome models in the literature under a unified model-
based framework. The model is both interpretable and flexible in modeling the treatment effect as well as the network
influence. We show that (quasi) maximum likelihood estimators are consistent and asymptotically normal for a family
of model specifications. Quantities of interest such as the global treatment effect are defined and expressed as functions
of the GANE model parameters, and hence inference can be carried out using likelihood theory. We further propose the
“power-degree” (POW-DEG) specification of the GANE model. The performance of POW-DEG and other specifications
of the GANE model are investigated via simulations. Under model misspecification, the POW-DEG specification appears
to work well. Finally, we study the characteristics of good experimental designs for the POW-DEG specification. We find
that graph-cluster randomization and balanced designs are not necessarily optimal for precise estimation of the global
treatment effect, indicating the need for alternative design strategies.
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1. INTRODUCTION
1.1 Context

Network data encode not only information about individ-
uals but also the connections among them. Such data exist
in many settings: students who are friends with one another
[4, 33]; intersecting streets [27]; interconnected brain regions
[30]; and social network users who “follow” or “friend” one
another [47]. Network data can be represented by a graph
where nodes represent individuals and an edge between two
nodes indicates that there is a connection between them.
For example, Figure 1 visualizes a Caltech Facebook net-
work, which was collected in September 2005 [42, 43]. The
version of the data used in this paper contains information
about 770 users and was retrieved from the Network Data
Repository [38]. In Figure 1, the circles (nodes) represent
Caltech Facebook users and a line between two nodes (an
edge) signifies a Facebook friendship between two users.

The dependency structure in network data poses distinc-
tive challenges and opportunities and thus motivates special-
ized theory and methodology. In this paper, we focus on net-
work experimentation, a topic that has gained recent inter-
est given the widespread experimentation happening in so-
cial network companies like LinkedIn, Facebook, and Twit-
ter [17]. These businesses regularly develop updates and new
∗Corresponding author.

features to their platforms. To decide whether a new feature
or update should be deployed for all users, these companies
conduct controlled experiments on their user networks to
test a new feature and evaluate its causal impact [34, 47].

Current literature on network experimentation generally
focuses on the setting where the experiment is conducted on
a given network of a fixed number of individuals. Connec-
tions among individuals on the network are further assumed
to be known and unchanged over the duration of the experi-
ment. In addition, the experiment usually involves only two
experimental conditions: the proposed new condition (i.e.,
the treatment) and the existing or baseline condition (i.e.,
the control). This type of experiment is also known as an
A/B test, since two conditions A (control) and B (treat-
ment) are compared to determine which one performs better
in terms of some business metric. For example, the outcome
of interest may be a measure of engagement like time spent
on the platform, and the goal of the experiment may be to
determine which condition maximizes this metric. In gen-
eral, the experimental outcome is measured on experimental
units, who are assigned to the experimental conditions. In
the social network setting, the experimental units are often
the platform users.

There are two stages in running an experiment: design-
ing the experiment and analyzing the results. In the design
stage, the experimenter determines the treatment assign-
ment for the experimental units. Then in the analysis stage,
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Figure 1: Network of Facebook connections among 770 Cal-
tech Facebook users. The network was plotted using the
igraph package with the Fruchterman-Reingold layout [14]
generated from the qgraph package.

data collected from the experiment are used to estimate the
effect of the treatment on the outcome of interest. A pop-
ular estimand in the literature is the global treatment effect
(sometimes alternatively referred to as the average treat-
ment effect), which is the average difference in experimen-
tal outcomes when everyone in the population is assigned
to the treatment versus when everyone is assigned to the
control [9, 12]. A significantly positive global treatment ef-
fect (in the case where higher outcome values are desired)
would motivate a business decision to deploy the treatment
instead of the control to all users and vice versa. As such,
an accurate estimate of the global treatment effect is an im-
portant objective to consider when developing experimental
design and analysis methodologies. Another relevant con-
cern in network experimentation is the estimation of the
network effect: the influence of the network on the outcome
of interest.

Classical experimental design and analysis methodologies
treat individuals (or experimental units) as independent en-
tities, in the sense that the potential outcome of each unit
is assumed to be independent of the experimental condi-
tions the other units are assigned. This is known as the Sta-
ble Unit Treatment Value Assumption (SUTVA) [11]. How-
ever, when experimental units are connected on a network,
SUTVA is often violated. For example, consider an experi-
ment where the treatment is designed to increase the time
a user spends on the social network. Suppose Connie is as-
signed to control and her friend, Tracy, is assigned to treat-
ment. Due to the treatment, suppose Tracy spends more
time on the network. Connie may observe Tracy’s increased
activity and interact with Tracy more, resulting in an in-
creased amount of time spent on the platform despite being
in the control group. Thus, the fact that Tracy is assigned
to the treatment affects the potential outcome of Connie.

As such, SUTVA no longer holds and the potential outcome
of an individual depends not only on their own treatment
assignment but also the treatment assignment of other indi-
viduals in the network. Consequently, in a network setting,
the global treatment effect depends not only on the experi-
mental conditions but also on the structure of the network.
Therefore, specialized methods are required for the design
and analysis of network experiments.

1.2 Related Work
There are two major classes of approaches to the design

and analysis of experiments on networks. The first base their
methods on the exposure framework [2, 12, 16], in which ex-
perimental units (nodes) are classified into exposure groups
where group members have the same level of exposure to the
treatment. In a network experiment, even when two units
are assigned to the same experimental condition, they may
be exposed to different levels of the treatment (e.g., based on
the treatment assignment of those around them) and thus
belong to different exposure groups. For example, units i
and j may belong to different exposure groups if all neigh-
bors of unit i are assigned to treatment while all neighbors
of unit j are assigned to control even when units i and j have
the same treatment status. The literature often defines ex-
posure groups based on local treatment assignment patterns
of neighbors [2, 12, 39]. Based on the defined exposures, var-
ious causal effects, such as the global treatment effect and
others [20, 41], can be defined as contrasts of the exposure
groups’ potential outcomes [2]. Accordingly, estimators can
be derived using inverse probability weighting [2, 12]. As
an example, Gui et al. [16] define the treatment exposure
as containing units such that (i) they are assigned to the
treatment and (ii) the majority of their neighbors are also
assigned to the treatment. Similarly, units are said to belong
to the control exposure if (i) they are assigned to the control
and (ii) the majority of their neighbors are also assigned to
the control. The potential outcome of the treatment expo-
sure group serves as a proxy for the outcome observed if
the whole network is assigned to treatment. Similarly, the
control exposure group is assumed to behave as if the whole
network is assigned to control. The global treatment effect
can then be estimated by taking the (inverse probability
weighted) difference between the average outcome of the
treatment exposure group and that of the control exposure
group.

To achieve a precise estimator of the global treatment
effect, each exposure group needs to contain a large num-
ber of units. In other words, the exposure-based analysis
strategy requires that experimental units are mostly sur-
rounded by neighbors assigned to the same experimental
conditions as themselves. This motivates a popular design
strategy in the network experimentation literature based on
graph-cluster randomization [8, 16, 23, 44]. Graph-cluster
randomization designs first partition the network into clus-
ters, i.e., subgraphs of nodes that are densely connected
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within each cluster and sparsely connected between clusters.
These clusters are then randomly assigned to treatment or
control and all units in each cluster are assigned to the same
experimental condition. This ensures that most units share
the same experimental condition as their neighbors. Eckles
et al. [12] illustrate via simulations that graph-cluster ran-
domization, together with inverse-probability-weighted es-
timators, reduces bias in estimating the global treatment
effect in experiments on networks.

The second class of approaches is based on assuming a
statistical model for the experimental outcomes. There is
a rich literature on network regression models for inference
and prediction problems [1, 7, 22, 29, 31]. However, for net-
work experiments, models need to characterize and quantify
the influence of the treatment assignment to the outcome of
interest, compared to the control, while taking into account
the network influence. Parker et al. [35] and Koutra et al. [26]
posit that an experimental condition can affect the outcome
of a unit in two ways: (i) through the unit’s own treatment
assignment and/or (ii) through the treatment assignment of
the unit’s neighbors. These effects are assumed to be fixed
and additive and then modeled via an ordinary linear re-
gression model. Basse and Airoldi [5] and Pokhilko et al.
[36] instead suggest that the experimental conditions only
assert influence via the nodes’ own treatment assignment.
Network interference is then modeled via the correlation of
random errors based on the network structure, in a similar
fashion to the conditional autoregressive (CAR) model from
the spatial statistics literature [3, 10].

In the model-based framework, once the model is formal-
ized, experimenters can select design criteria to reduce, for
example, the variance of the model parameters and/or func-
tions of them. Designs that optimize the posed design cri-
teria can be found using exhaustive search [26, 35], random
search [35] or other optimal design search methods [4, 36].
In the analysis stage, model parameters will be estimated by
fitting the model to the observed data using methods such
as least squares or maximum likelihood.

Of the two classes of approaches, the exposure framework
seems more popular in the network experimentation litera-
ture thanks to its focus on the global treatment effect. When
the main goal of the experiment is to accurately estimate
the global treatment effect, the exposure framework only re-
quires the experimenters to define the treatment and control
exposures. For instance, in the Gui et al. [16] method the
experimenter must determine what percentage of a unit’s
neighbors must be assigned to treatment for it to be classi-
fied into the treatment exposure group. After that, graph-
cluster randomization can be applied as a general design
strategy to reduce the bias of the global treatment effect es-
timate. Nevertheless, there exist pitfalls associated with this
class of approaches. Chin [9] points out that social networks
are usually locally dense, making it hard for algorithms to
partition the network into separate clusters. In addition, ex-
perimental outcomes on units not classified into the treat-
ment or the control exposures will be wastefully discarded

in the analysis stage [16], resulting in a low effective sample
size [39].

On the contrary, if the generating model for the ex-
perimental outcome is correctly specified, the model-based
framework will have several advantages over the exposure
framework. First, data from all units participating in the ex-
periment can be utilized when fitting the model in the anal-
ysis stage. Second, additional inference beyond the global
treatment effect can be achieved via model parameters and
functions of them. Finally, design selection can be calibrated
according to the experimenters’ specific interests, which may
sometimes be something other than the global treatment ef-
fect.

1.3 Our Contribution
In this paper, we attempt to unify many of the model-

based approaches by introducing the general additive net-
work effect (GANE) model, in which the experimental out-
come of a unit is modeled as an additive function of the effect
of its own treatment assignment and the effects that come
from other treated or controlled nodes in the network. The
model not only encompasses (as special cases) many network
experiment models from the literature, but it also flexibly
extends the manner in which network effects are modeled.
In particular, the network influence from the treatment and
control groups can be modeled differently in terms of both
size and functional form. Moreover, the model is specified
such that its parameters are interpretable. We show that
(quasi) maximum likelihood estimation is possible for a fam-
ily of model specifications. The resulting (quasi) maximum
likelihood estimators are then proven to be consistent and
asymptotically normal, which facilitates familiar likelihood-
based inference.

Existing work in the model-based direction concentrates
on inference for the model parameters themselves, however,
in many cases, the global treatment effect is the main quan-
tity of interest. To expand the utility of the model-based
framework, we illustrate how quantities such as the global
treatment effect can be expressed as functions of the GANE
model parameters, which permits inference via the delta
method [45]. Similarly, via the model parameters, the exper-
imenters can also build design criteria and select experimen-
tal designs that optimize these criteria. Overall, through the
GANE model, we provide a generalized model-based frame-
work for the design and analysis of experiments on networks.

We further propose a particular specification of the
GANE model, the power-degree (POW-DEG) specification,
where the network effects are modeled as a nonlinear func-
tion of the number of neighbors assigned to treatment or
control. Using the power as an additional parameter, the
POW-DEG model specification gains additional flexibility in
capturing the network effect compared to the linear coun-
terpart that has been proposed in the literature [35]. We
investigate inferential properties of the POW-DEG specifi-
cation as well as other existing specifications in the litera-
ture via simulations on real-life networks. We find that the
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POW-DEG specification yields good estimates of the true
global treatment effect, even under model misspecification.
By examining designs in the context of the POW-DEG spec-
ification, we also find that cluster randomization and bal-
anced treatment assignment are not necessarily optimal for
this model specification and other design strategies should
therefore be explored in the future.

As with any model-based approach, the GANE model
framework faces the challenge of model selection. When the
GANE model is estimated via maximum likelihood, exper-
imenters can use popular model selection criteria such as
AIC, BIC, etc. to choose the model specification that best
fits the data. However, in the design phase, before data have
been collected, experimenters must use their domain knowl-
edge to select a suitable model specification, with which they
can build design criteria and select a design. In the absence
of information concerning which model specification is ap-
propriate, we suggest the use of the POW-DEG specifica-
tion because of its flexibility and good performance in terms
of global treatment effect estimation and inference. Never-
theless, model selection for both the design and analysis of
experiments on networks remains an open area for future
study.

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce the general additive network effect
(GANE) model framework. We present the theoretical re-
sults for maximum likelihood estimation in Section 3. In
Section 4 we report the results of several simulation studies
used to investigate the design and inferential properties of
a few particular specifications of the GANE model. In Sec-
tion 5 we conclude with a summary and discussion of several
extensions to this work.

2. GENERAL ADDITIVE NETWORK
EFFECT MODEL

2.1 Modeling Framework
Suppose that the experiment is on a network of n exper-

imental units. Let G = (V , E) denote the network where V
denotes the set of experimental units (i.e., nodes) and E de-
notes the set of connections among experimental units (i.e.,
edges). As in most of the network experiment literature,
we assume that G is known and fixed throughout the ex-
periment. Furthermore, G is assumed to be undirected and
simple, and so G can be represented by an n× n adjacency
matrix A where for i, j = 1, 2, . . . , n

Aij =Aji =

{
1 if units i �= j are connected
0 if i = j or if units i �= j are not connected

.

If Aij = 1, unit i and j are said to be neighbors. The num-
ber of neighbors of unit i, i.e., the sum of the ith row (or
ith column) in the adjacency matrix, is called the degree of
unit i, which we denote by ki. We assume the treatment vs.
control setting and let Zi be the binary indicator denoting

the experimental condition of unit i, where Zi = 1 if unit
i is assigned to treatment and Zi = 0 if unit i is assigned
to control. Let Yi denote the experimental outcome of unit
i and further let D = (A,Z,Y,X) denote the experimental
data where Z and Y are the treatment assignment and out-
come vectors respectively, A is the adjacency matrix defined
above, and X is a possible n×p matrix containing the units’
covariates.

Parker et al. [35] introduce the linear network effect
(LNE) model

Yi = μ+τZi+γT

n∑
j=1

AijZj +γC

n∑
j=1

Aij(1−Zj)+ εi, (2.1)

where εi ∼ N (0, 1) independently for all i = 1, 2, . . . , n. The
model assumes that when a unit is assigned to the treat-
ment group, the unit itself will experience an effect of size τ
while exerting an effect of size γT on each of its neighbors.
If a unit is assigned to the control, it will exert an effect of
size γC on each of its neighbors. The outcome of a unit i is
then the sum of the baseline μ, the effect of the treatment
assignment, and the sum of the effects from its neighbors
plus some random error εi. In other words, the experimen-
tal outcome of unit i is a linear combination of which ex-
perimental condition it belongs to and the numbers of its
neighbors that are assigned to treatment (treatment degree)
and control (control degree). The model offers a straightfor-
ward parameter interpretation: μ is the expected baseline
outcome, τ is the effect of the treatment assignment, and
γT and γC quantify the effect of the neighbors’ treatment
assignments. The model is linear in the parameters and can
therefore be fit using ordinary least squares.

However, on a network, the outcome of a unit may not
only be influenced by the number of neighbors it has. It may
also be influenced by the outcomes of its neighbors [1, 40],
or by neighbors of neighbors, etc. To enable experimenters
to model the experimental outcomes more flexibly, we pro-
pose a more general model for the design and analysis of
experiments on networks, which we call the general additive
network effect (GANE) model:

Yi = μ+ τZi + fT,i(D,η) + fC,i(D,η) + εi, (2.2)

where fT,i models the effect of treated units on unit i and
fC,i models the effect of controlled units. Hence, fT and
fC are functions of the network (via the adjacency matrix
A) and the treatment assignment vector Z. They may also
be functions of the outcome vector Y, a possible covari-
ate matrix X, and a parameter vector η. By separating the
network effect based on the source (treatment or control),
the GANE model not only allows the network effect to come
from both treated and controlled neighbors, but the network
effect can also be of different forms and sizes, i.e., fT and
fC may have different forms and/or may depend on different
parameters (which are all contained in the vector η). The
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functional forms of fT and fC may be determined by the
experimenters’ domain knowledge or other considerations.

The GANE model has a structure similar to that of
the LNE model (2.1) by Parker et al. [35], in which μ
parametrizes the baseline outcome, τ parametrizes the ef-
fect of the treatment assignment to a unit and fT and fC
respectively model the influence the unit receives from other
treated and controlled units. Therefore, it retains the clear
interpretability of Model (2.1) while increasing the flexibility
with which the influence of other nodes is modeled.

2.2 Model Specifications
The GANE model encompasses several existing models

in the literature, a few of which are identified below.

The Linear Network Effect (LNE) Model: Model (2.1)
is a GANE model with fT modeling the treatment degree
and fC modeling the control degree:

fT,i(D,η) = γT

n∑
j=1

AijZj

fC,i(D,η) = γC

n∑
j=1

Aij(1− Zj), (2.3)

where η = (γT , γC)
�.

The Local Aggregate (LAG) Model: Advani and Malde
[1] propose that the outcome of a unit may be influenced
by the sum of its neighbors’ outcomes in cases such as (i)
a person’s criminal behavior might depend on the number
of crimes committed by their friends; (ii) the number of
items purchased by a customer may depend on the number
of items purchased by their friends; and (iii) the number of
hours a student spends studying may depend on the number
of hours their friends spend studying. Accordingly, under the
GANE model, functions fT and fC can respectively model
the sum of the treated and controlled neighbors’ outcomes:

fT,i(D,η) = ρT

n∑
j=1

AijZjYj ,

fC,i(D,η) = ρC

n∑
j=1

Aij(1− Zj)Yj , (2.4)

where η = (ρT , ρC)
�.

The Homophily (HOM) Model: In the social economics
literature, a unit’s outcome is often modeled as a function
of the average outcome of its neighbors [7, 31]. This is often
referred to as the homophily effect [40] which is summarized
by the conjecture that “you are the average of the people
around you”, and a result of people’s desire to conform to
social norms [1]. Gui et al. [16] formalize a model with ho-
mophily effect for the analysis of a network A/B test as

follows:

Yi = μ+ τZi + γ

n∑
j=1

AijZj + ρ
1

ki

n∑
j=1

AijYj + εi. (2.5)

That is, besides the homophily effect, each treated node will
exert an effect of size γ on each of its neighbors. This model
can be reparameterized and written in the GANE model
framework with

fT,i(D,η) = γT

n∑
j=1

AijZj + ρT
1

ki

n∑
j=1

AijZjYj ,

fC,i(D,η) = ρC
1

ki

n∑
j=1

Aij(1− Zj)Yj .

In this case, η = (ρT , ρC , γT )
� with constraints ρT = ρC =

ρ and γT = γ.
The above are existing models that have been proposed

and discussed in the literature. We next propose a new spec-
ification under the GANE framework.

The Power-Degree (POW-DEG) Model: Let us con-
tinue with the example in Section 1.1 where the outcome of
interest is the amount of time that users spend on a social
network platform. Recall, since Tracy is assigned to treat-
ment, Connie (in the control group) may spend more time
on the platform simply because she is Tracy’s friend. How-
ever, Connie’s time increase due to her first treated friend
may not necessarily be equal to the time increase due to her
100th treated friend. In particular, as the number of treated
friends grows, the effect of an additional treated friend is
likely to decrease. This intuition is similar to the law of di-
minishing marginal utility in economics [15].

When the number of neighbors is low, for example, in
agricultural settings where units are plots placed on a lat-
tice, it may be reasonable to model the network effects ho-
mogeneously as in the LNE specification (2.3). However, in
the social network setting where a user can have hundreds
to thousands of friends, this linearity assumption seems less
likely. As a result, we suggest modeling the network effect
as a non-linear function of the number of neighbors (i.e.,
the degree). In particular, we propose the following GANE
model specification with

fT,i(D,η) = γT

⎛⎝ n∑
j=1

AijZj

⎞⎠λ

,

fC,i(D,η) = γC

⎛⎝ n∑
j=1

Aij(1− Zj)

⎞⎠λ

, (2.6)

where η = (γT , γC , λ)
�. We call this the power-degree

(POW-DEG) specification because the network effects are
modeled as powers of the treatment and control degrees.
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The power parameter λ serves to temper the growth of net-
work effects as the treatment and control degrees increase,
and so we expect that 0 < λ < 1. However, in the interest of
ample flexibility, we do not make this assumption. We allow
for the possibility that λ > 1 and also the possibility of the
LNE specification (2.3) arising as a special case when λ = 1.

Which estimation method is appropriate for fitting the
GANE model depends on the specification of the functions
fT and fC . For instance, estimation and inference for the
LNE specification (2.3) can be performed using ordinary
least squares. However, when fT and fC are more compli-
cated such as in specifications (2.4) or (2.5), the GANE
model becomes (spatially) autoregressive, in which case
maximum likelihood estimation is required.

2.3 Quantities of Interest
As discussed in Section 1.2, compared to the exposure

framework, one of the advantages of the model-based frame-
work is that more quantities can be easily estimated, assum-
ing they can be expressed as functions of the model param-
eters. Here, we review several such quantities that may be
of interest to experimenters.

Global treatment effect (GTE): As noted already, an
important quantity for business decision-making is the global
treatment effect (GTE), which is defined as the difference in
average outcomes when everyone in the network is assigned
to the treatment versus when everyone is assigned to the
control. Note that GTE measures the treatment effect at
the global level, instead of the individual level, taking into
account the structure of the network and possible network
effects. In the GANE framework, this quantity can be ex-
pressed as

GTE = E

[
1

n

n∑
i=1

Yi

∣∣∣∣∣ Z = 1n

]
− E

[
1

n

n∑
i=1

Yi

∣∣∣∣∣ Z = 0n

]

= τ +
1

n

n∑
i=1

E
[
fT,i(DZ=1n ,η)

]
− 1

n

n∑
i=1

E
[
fC,i(DZ=0n ,η)

]
(2.7)

where the subscripts on D indicate that the functions are
evaluated when all the experimental units are assigned to
treatment or control, respectively. Note that the expecta-
tions in the second equivalence are only necessary when fT
and/or fC are functions of the outcome Y. As shown, the
GTE can be expressed as a function of the model parame-
ters. Moreover, GTE can be decomposed into two compo-
nents, the direct and indirect treatment effects, which aid
interpretation.

Direct treatment effect (DTE): Traditionally, the direct
treatment effect with respect to a treatment assignment vec-
tor Z is defined as the average difference in expected out-
comes when the treatment assignment of one unit changes

while the others remain the same, i.e.,

DTE(Z) = 1

n

n∑
i=1

(
E
[
Yi

∣∣Zi = 1,Z−i

]
−E
[
Yi

∣∣Zi = 0,Z−i

])
,

where Z−i denotes vector Z without the ith element. This
definition is difficult to interpret and calculate, especially
when the network effect functions are complicated. So in-
stead, we define the direct treatment effect as the expected
difference in outcomes when a node is assigned to the treat-
ment versus when a node is assigned to control, keeping the
network effects fixed. In the GANE model framework, the
direct treatment effect is simply

DTE = τ. (2.8)

Our definition is clear, easy to interpret, easy to calculate,
and does not depend on any specific treatment assignment
vector. Hence, it can be used across all specifications of the
GANE model.

Indirect treatment effect (ITE): Interest may also lie in
quantifying the amount of the global treatment effect due to
the network. The ITE is therefore defined as the difference
between the global treatment effect and the direct treatment
effect. In the GANE framework, this is

ITE = GTE − τ

=
1

n

n∑
i=1

E
[
fT,i(DZ=1n ,η)

]
− 1

n

n∑
i=1

E
[
fC,i(DZ=0n ,η)

]
.

(2.9)

Hence, the indirect treatment effect can also be interpreted
as the difference between the network effect induced by the
treatment versus that induced by the control.

Each of these quantities can be expressed as functions of
the model parameters μ, τ , and η. When the expectations
of fT and fC are known, estimates and hypothesis tests for
these quantities can be developed based on parametric infer-
ence associated with the model. With respect to hypothesis
tests, the experimenters may be interested in one or more
of the following hypotheses.

Hypothesis 1 (Direct treatment effect). H01 : DTE = τ =
0 is the null hypothesis that the direct treatment effect is
0, i.e., keeping the network effect fixed, a node’s outcome
is the same no matter if it is assigned to treatment or to
control.

Hypothesis 2 (SUTVA). H02 : fT = fC = 0 is the null
hypothesis that there is no network effect and the SUTVA
is satisfied.

Hypothesis 3 (Indirect treatment effect). H03 : ITE = 0
is the null hypothesis that the indirect treatment effect is
0, i.e., the network influence from treated and controlled
neighbors is the same.
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Hypothesis 4 (Global treatment effect). H04 : GTE = 0 is
the null hypothesis that the global treatment effect is 0, i.e.,
on average, treatment does not have an effect on the nodes’
outcomes.

When the GANE model can be estimated using maxi-
mum likelihood estimation, since DTE, ITE, and GTE are
functions of the model parameters, Hypotheses 1, 3, and 4
can be tested using Wald-type tests, and Hypothesis 2 can
be tested using a likelihood ratio test.

2.4 Experimental Design
To design an A/B test, the experimenter decides which

units are assigned to the treatment group and which units
are assigned to the control group. This corresponds to spec-
ifying the treatment assignment vector Z where each unit
i is assigned Zi = 0 or 1. Interest lies in determining an
optimal treatment assignment.

Under the GANE framework, experimenters can define
design criteria related to the variance of the parameters’ es-
timators. For example, D-optimality [37] aims to minimize
the determinant of the variance-covariance matrix and is
therefore a popular choice to generally minimize the confi-
dence region for the parameters. However, in the network
experiment context, as discussed in Section 2.3, GTE (or
possibly DTE or ITE) is the primary quantity of interest.
Therefore, in the experimental design simulations in Section
4.4, we will focus on the variance of GTE estimates as our
design criterion.

With the design criterion determined, experimenters can
find good designs using methods such as exchange algo-
rithms [26, 35], or random search [35]. Random search refers
to the process in which the design is chosen by first randomly
generating a large number of designs, and then choosing the
design with the best-evaluated design criteria. Exchange al-
gorithms [26, 35] instead take a greedy approach by itera-
tively changing the treatment assignment for each unit in
the direction of optimizing the design criteria. Via simula-
tion, Parker et al. [35] find that random search, despite its
simplicity, yields nearly as good designs as the computation-
ally less efficient exchange algorithm. We thus use random
search as a design selection strategy in our simulations in
Section 4.4.

3. MAXIMUM LIKELIHOOD INFERENCE
3.1 Estimation

We have discussed in Section 2.2 that different specifica-
tions of the GANE model may require different estimation
techniques. In Section 2.3, we also mentioned that when
maximum likelihood estimation is possible, different hy-
potheses can be tested using the maximum likelihood frame-
work. Therefore, in this section, we discuss the maximum
likelihood estimation for the GANE model.

In order to obtain the likelihood of the outcome vector
Y, we consider the family of GANE specifications where

the outcome Yi either (i) does not depend on neighboring
outcomes, or (ii) depends linearly on neighboring outcomes.
That is,

fT,i(D,η) = ρT

n∑
j=1

WT,ijYj + γT gT,i(ϕ),

fC,i(D,η) = ρC

n∑
j=1

WC,ijYj + γCgC,i(ϕ), (3.1)

where η = (ρT , ρC , γT , γC ,ϕ
�)� and WT,ij (or WC,ij) is

the (i, j)th element of pre-specified weight matrix WT (or
WC). The diagonals of these weight matrices are zero, i.e.,
Wl,ii = 0 for l ∈ {T,C} and i = 1, . . . , n. In addition, gT,i(ϕ)
and gC,i(ϕ) are real-valued functions, possibly depending on
the parameter vector ϕ, the experimental data D, but not
the outcome vector Y. We can see that Model (3.1) gen-
eralizes all model specifications discussed in Section 2.2, in
which the outcome of an experiment may depend linearly on
other unit’s outcomes and/or possibly nonlinearly on other
covariates. Model (3.1), however, excludes cases where the
outcome of unit i is dependent on a nonlinear function of the
outcome vector Y, which complicates the maximum likeli-
hood theory.

To perform estimation, we consider the matrix form of
Model (3.1) as follows

Y = μ1n + τZ+
(
ρTWTY + γTGT (ϕ)

)
+
(
ρCWCY + γCGC(ϕ)

)
+ ε, (3.2)

where GT (ϕ) denotes the n × 1 vector of gT,i(ϕ) values
and GC(ϕ) denotes the n × 1 vector of gC,i(ϕ) values.
Let M(ϕ) = [1n Z GT (ϕ) GC(ϕ)] be the model ma-
trix, which depends on the parameter vector ϕ. Further,
let β = (μ, τ, γT , γC)

� and ρ = (ρT , ρC)
�. The model may

be rewritten, isolating for Y on the left-hand side, as follows

Y =
(
ρTWT + ρCWC

)
Y +M(ϕ)β + ε,

= S(ρ)−1

(
M(ϕ)β + ε

)
, (3.3)

where S(ρ) = In−ρTWT −ρCWC . The expression in (3.3)
is possible if and only if S(ρ) is invertible. Lemma 1 gives
sufficient conditions on ρ so that S(ρ) is nonsingular. Al-
though the condition is based on any matrix norm, in prac-
tice, we can use the popular spectral norm [19] to derive the
constraints. The proof of Lemma 1 is given in Appendix A.1.

Lemma 1. If

max (|ρT |, |ρC |) <
1

||WT ||+ ||WC ||
,

where || · || denotes a matrix norm [19], then S(ρ) is invert-
ible.
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With Y expressed as in Equation (3.3) and assuming
ε ∼ N (0n, σ

2IN ), the log-likelihood function for Y is

logL(θ) = − n

2
log(2π)− n

2
log(σ2) + log |S(ρ)|

− 1

2σ2

(
S(ρ)Y −M(ϕ)β

)�(
S(ρ)Y −M(ϕ)β

)
,

(3.4)

where θ = (ρ�,β�,ϕ�, σ2)� is the vector of all model pa-
rameters. If the normality assumption is not made, then
(3.4) becomes the quasi log-likelihood [28] and the estima-
tors θ̂ that maximize (3.4) are called the quasi maximum
likelihood estimators.

To find the maximum likelihood estimates, we take the
first order derivatives with respect to β and σ2 and equate
them to zero to obtain

β̂(ρ,ϕ) =
(
M(ϕ)�M(ϕ)

)−1

M(ϕ)�S(ρ)Y; (3.5)

σ̂2(ρ,ϕ) =
1

n

(
S(ρ)Y −M(ϕ)β̂(ρ,ϕ)

)�
×
(
S(ρ)Y −M(ϕ)β̂(ρ,ϕ)

)
> 0. (3.6)

Note that these are the solution of an ordinary least squares
that regresses the transformed outcome variable S(ρ)Y on
the covariate matrix M(ϕ) when ρ and ϕ are known. Plug-
ging this into the log-likelihood (3.4), we can obtain the
profile log-likelihood

	P(ρ,ϕ) = −n

2
[log(2π) + 1] + log |S(ρ)| − n

2
log σ̂2(ρ,ϕ).

(3.7)
Then, we can find ϕ̂ and ρ̂ by maximizing 	P using a grid
search on their respective parameter space or using numer-
ical algorithms such as the Nelder-Mead method [32]. The
maximum likelihood estimates β̂ and σ̂2 can be obtained by
plugging ϕ̂ and ρ̂ into Equations (3.5) and (3.6).

Note that in (3.5), it is implicitly required that
M(ϕ)�M(ϕ) is invertible, i.e., that the columns of the
model matrix M(ϕ) are linearly independent. Although un-
likely, multicollinearity may exist. For instance, in the POW-
DEG specification (2.6), when the graph is fully connected
(i.e., every node is connected with one another), or when the
treatment and/or control degrees are the same for all nodes,
the model matrix will have linearly dependent columns. It
is thus important in the design stage to choose a design that
ensures the model matrix has full rank.

3.2 Asymptotic Results
Here, we study the behavior of the maximum likelihood

estimators as the network size increases to infinity. We use
the subscript n to denote the data for a given network size
n. Model (3.3) then becomes

Yn = Sn(ρ)
−1

(
Mn(ϕ)β + εn

)
,

where Sn(ρ) = In − ρTWTn − ρCWCn. Let θ0 =
(ρ�

0 ,β
�
0 ,ϕ

�
0 , σ

2
0)

� be the true parameter values. The consis-
tency and asymptotic normality properties of the maximum
likelihood estimators θ̂n are given in Theorem 1 below.

Theorem 1. Under Assumption 1–6 (given in Ap-
pendix A.2), the (quasi) maximum likelihood estimator θ̂n

obtained by maximizing the log-likelihood in (3.4) is consis-
tent to θ0. Further assuming that Jn(θ0) = −E

[
∂ logLn(θ0)

∂θ∂θ�

]
and Vn(θ0) = E

[(
∂ logLn(θ0)

∂θ

)(
∂ logLn(θ0)

∂θ

)�]
are positive

definite,

[Vn(θ0)]
−1/2[Jn(θ0)](θ̂n − θ0)

d→ N (0dim(θ), Idim(θ)),

where dim(·) denotes the length of a vector.

The proof of Theorem 1 is given in Appendix A.3, fol-
lowing the ideas of Lee [28], treating Sn(ρ) and Mn(ϕ) as
non-stochastic for any given ρ and ϕ. The random errors εi,n
are assumed to be independent and identically distributed
with mean zero and variance σ2

0 . When εi,n follow a nor-
mal distribution, θ̂n is the maximum likelihood estimator
(instead of a quasi maximum likelihood estimator), and we
have Vn(θ) = Jn(θ) and

[Jn(θ0)]
1/2(θ̂n − θ0)

d→ N (0dim(θ), Idim(θ)).

3.3 Inference for Causal Quantities
With the asymptotic normality result, inference for the

parameters can be performed accordingly. The inference for
the causal quantities given in Section 2.3 can then be car-
ried out via the Delta method [45]. In particular, the global
treatment effect for Model (3.1) is calculated as

GTE(θ) = 1

n
1�
n

[(
μ+ τ +

1

n

n∑
i=1

gT,i(DZ=1n ,ϕ)

)
× (In − ρTWT,Z=1n)

−1

−
(
μ+

1

n

n∑
i=1

gC,i(DZ=0n ,ϕ)

)

× (In − ρCWC,Z=0n))
−1

]
1n. (3.8)

Using the Delta method, the variance of the GTE can be
written as

Var
[
GTE(θ)

]
= t�Var(θ)t, (3.9)

where t = ∂ GTE(θ)

∂θ� . As DTE(θ) = τ and ITE(θ) =
GTE(θ) − τ , inference for DTE and ITE can be derived
in a similar manner.
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Table 1. Number of nodes and edges of the networks used in
the simulations.

Networks # of nodes (n) # of edges
Caltech network 770 16,656
UMich network 3,749 81,903

4. SIMULATIONS
In this section, we use simulation to study the properties

of different specifications of the GANE model. Specifically,
we study our proposed POW-DEG specification (2.6) and
the HOM specification (2.5) as an illustration of a spatially
autoregressive specification. In order to study these model
specifications on real-life networks, we use the Caltech Face-
book network and the UMichigan Facebook network, both
retrieved from the Network Repository [38]. The sizes of
these networks are summarized in Table 1. In both cases,
these networks provide realistic structure for the graph G,
but the experiment and outcomes are hypothetical and sim-
ulated using either the POW-DEG (2.6) or HOM (2.5) spec-
ifications.

4.1 The Distribution of the Estimates
We first investigate the asymptotic properties of the max-

imum likelihood estimates derived in Section 3. As the theo-
retical results concern the case where the treatment assign-
ment vector Z is known, in this simulation, we fix a partic-
ular design where half of the nodes are randomly assigned
to treatment and the other half are assigned to control.

First, we investigate the results for the POW-DEG spec-
ification (2.6) by generating outcomes on the given net-
work (either the Caltech or UMich Facebook network)
with the following parameter settings: β = (0, 1, 0.5, 0.1)�

and σ = 1. We further vary the power λ within the set
{0.5, 0.75, 1, 1.25}, where λ = 1 corresponds to the LNE
specification (2.3). With each combination of parameters,
1,000 runs are conducted where the outcomes are generated
and the maximum likelihood estimates are calculated ac-
cordingly.

The distribution of the parameter and GTE estimates for
the POW-DEG specification (2.6) are plotted in Figure 2.
We can see that the distributions of all estimates are rea-
sonably bell-shaped and symmetric and centered around the
true values (dashed vertical lines) as is expected given the
asymptotic theory. While the distribution of τ̂ remains the
same under different values of λ, the variances of the other
estimators decrease when λ increases. This is because the
ranges of values within GT and GC in the model matrix M
increase as λ increases, which in turn decreases the variance
of the parameter estimates.

The coverage of 95% asymptotic confidence intervals and
variances of the parameter estimates are given in Figure 3,
where left axes correspond to variances and right axes corre-
spond to coverage. The blue lines depict the asymptotic vari-
ances derived from J(θ0) and the red lines depict the sample

Figure 2: The distribution of parameter estimates of the
POW-DEG specification on the Caltech Facebook network
with β = (0, 1, 0.5, 0.1)� and λ ∈ {0.05, 0.75, 1.00, 1.25} over
1,000 simulation runs.

Figure 3: The variances of the estimates (left axes, lines) and
coverage rates (right axes, bars) of POW-DEG specification
on the Caltech Facebook network with β = (0, 1, 0.5, 0.1)�

and λ ∈ {0.5, 0.75, 1.00, 1.25} over 1,000 simulation runs.

variance of the 1,000 parameter estimates. The agreement
between these lines suggests that the asymptotic variances
may be used reliably for inference. With respect to coverage,
the coverage rates for the 95% confidence intervals are plot-
ted as grey bars on the right axes and the dotted lines serve
as a reference at 0.95. We can see that the obtained confi-
dence intervals have the correct coverage. To summarize, the
simulation corroborates the asymptotic theory and indicates
that maximum likelihood procedures work as expected for
the POW-DEG specification (2.6). Simulation results for a
different set of parameter values are included in Section S1
of the Supplementary Material. These results suggest that
when the network effect is small and the network size is
moderate, consistent estimation of γT , γC , and λ is more
difficult. However, the battery of simulations was also run
on the UMich Facebook network, whose size (n = 3, 749)
is almost 5 times that of the Caltech network, and we find
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Figure 4: (upper) The distribution of parameter estimates
of the HOM specification with μ = 0, τ = 1, γT = 0.5,
ρT = ρC = 0.1 over 1,000 simulation runs. (lower) The
corresponding variances of the estimates (left axes, lines)
and coverage rates (right axes, bars).

that estimation of all parameters, whether the network and
treatment effects are large or small, agrees with the asymp-
totic theory. These results are also available in Section S1
of the Supplementary Material.

We conducted a similar simulation study on the HOM
specification (2.5) with μ = 0, τ = 1, γT = 0.5, ρT =
ρC = 0.1 and σ2 = 1. The results for both the Caltech Face-
book network and the UMich Facebook network are shown
in Figure 4. As with the POW-DEG (2.6) estimates, and
in agreement with the likelihood theory, the distributions of
these parameter estimates are bell-shaped and centered at
the true values. Moreover, since the UMich Facebook net-
work is larger, the variation in the estimates decreases, as
expected. Notice that the true values of GTE are different
for the two networks, even though all parameters used are
the same. This illustrates how the true value of GTE de-
pends not only on the parameters but also on the structure
of the graph. Variances and confidence interval coverage are
also plotted in Figure 4. As we would expect, the asymptotic
variances are suitable for inference and the asymptotic con-
fidence intervals have acceptable coverage. To demonstrate

the generality of these findings we present additional simu-
lation results for another set of parameter values in Section
S1 of the Supplementary Material. The theory developed
in Section 3 and the simulations presented here (for multi-
ple GANE specifications, parameter values, and networks)
demonstrate the general utility of maximum likelihood in-
ference with GANE models.

4.2 Hypothesis Testing
As discussed in Section 2.3, under the GANE framework,

we can test hypotheses about the DTE, SUTVA, the ITE
and the GTE. In particular, testing DTE = 0 is equivalent
to testing H01 : τ = 0; testing whether SUTVA is satisfied is
equivalent to testing H02 : fT = fC = 0; the null hypothesis
for testing the indirect treatment effect is H03 : ITE = 0;
and the null hypothesis for testing the global treatment ef-
fect is H04 : GTE = 0. In the maximum likelihood frame-
work, Hypotheses 1, 3, and 4 can be tested using Wald-type
tests and Hypothesis 2 can be tested with a likelihood ratio
test.

We study the characteristics of these tests via simulation.
Again, as the design Z is treated as fixed in our analysis, we
randomly pick a design where half of the nodes are assigned
to treatment and the other half are assigned to control. The
parameters of the POW-DEG specification (2.6) are set at
β = (0, 1, 0.5, 0.1)�, σ = 1 and λ ∈ {0.5, 0.75, 1.00, 1.25}.
Separate simulations are conducted to investigate each of
the four hypothesis tests. For each simulation, values of cer-
tain parameters in β vary while the others stay as stated.
In particular, in the simulation for Hypothesis 1, τ varies in
the range [0, 1]; in the simulation for Hypothesis 2, γT = γC
and their values vary in the range [0, 0.05]; for Hypothesis 3,
γC is fixed at 0.1 and γT − γC varies in the range [0, 0.5].
Hypothesis 4 with H04 : GTE = 0 is also tested within each
of the three simulations (with different λ) and the results are
aggregated over different values of GTE, which corresponds
to different parameter combinations. All tests are done at a
5% significance level and 1,000 runs are conducted for each
parameter combination. The results are presented in Figure
5. The dotted horizontal line serves as a reference at the 5%
level.

As expected, the rejection rates for each test increase as
the respective parameter values depart from their null val-
ues. Moreover, tests for H01 : τ = 0 seem to behave similarly
over different values of λ. This is consistent with the model
estimation results in Figure 2 where the variances for τ̂ and
ĜTE look similar over different values of λ while the vari-
ances for γ̂’s decrease as λ increases. We also remark that
the results at null values deviate slightly from the nominal
5% level. This can be attributed to the use of asymptotic
(inexact) variances in these tests. Although we do not in-
clude the results for the UMich Facebook network, given its
size and given the results from Section 4.1, we expect simi-
lar results to those presented here for the Caltech Facebook
network.
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Table 2. Parameters for the simulation in Section 4.3.
Specification μ τ ρT ρC γT γC λ σ

SUTVA 0 2 0 0 0 0 1
LNE 0 1 0 0 0.1231 0.1 1

POW-DEG 0 1 0 0 0.2691 0.1 0.5 1
LAG 0 1 0.008492 0.001 0 0 0.9977
HOM 0 1 0.1 0.1 0.01728 0 0.9999

Figure 5: Rejection rates of hypothesis tests for POW-DEG
specification on the Caltech Facebook network with varying
parameters.

We conducted similar simulations for the HOM specifica-
tion (2.5) with μ = 0, τ = 1, γT = 0.5, ρT = ρC = 0.1, and
varying τ , γT = ρC and γT − ρC in different simulations for
different hypothesis tests. The results are included in Sec-
tion S2 of the Supplementary Material. It can be noted that
the results are similar in both networks, except for different
values of τ , signifying that this is an important parameter
for the HOM specification (2.5). We also note that the re-
jection rates for Hypothesis 3 always stay at 100% even at
γT = ρC (i.e., when the scaling coefficients for fT and fC
are equal). This shows that the indirect effect is not only
affected by the sizes of the network effects, but also by the
functional forms of fT and fC . These are different in the
HOM specification (2.5).

4.3 Model Misspecification
The simulations in Sections 4.1 and 4.2 explore properties

of maximum likelihood inference for different GANE specifi-
cations when they are correctly specified. In this section, we
further investigate properties of these specifications under
model misspecification. The specifications considered here
are (i) the SUTVA specification, in which network effects
do not exist and fT = fC = 0; (ii) the linear network effect
(LNE) specification in (2.3); (iii) the POW-DEG specifica-
tion in (2.6); (iv) the local aggregate (LAG) specification in
(2.4); and (v) the homophily (HOM) specification in (2.5).

Figure 6: Model misspecification simulation results.

In this simulation, on the Caltech Facebook network, out-
comes are generated 1,000 times for each of the listed model
specifications. The data are then fitted using each of the five
model specifications. We use global treatment effect (GTE)
estimation and its inference results to compare performance
among specifications because the GTE is generally of pri-
mary interest. To make the comparison fair, parameters for
each model specification are chosen such that the true global
treatment effect (GTE) is fixed at 2.0 and the average out-
come variance is 1.0 in all data-generating scenarios. The
exact parameter values for each specification are provided
in Table 2.

Results of the simulation are plotted as heatmaps in Fig-
ure 6. The columns correspond to outcome-generating mod-
els and the rows correspond to estimating models. The top
left panel shows the log ratio of the average estimated GTE
to the true GTE. The desired value is 0, which is colored
white. Red represents overestimation and blue represents
underestimation. We see that all specifications can estimate
the SUTVA specification well because it is nested within all
GANE specifications. The POW-DEG specification seems
to provide estimates with the lowest bias, even under model
misspecification.

The top right panel shows the variances of the GTE esti-
mates where white represents low variances and dark green
represents high variances. We can see that the SUTVA and
HOM (2.5) specifications provide the lowest variances while
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the highest variances come from the LAG specification (2.4).
Both the POW-DEG (2.6) and the LNE (2.3) specifications
provide reasonably low variances.

The bottom left panel shows the coverage rate of 95%
confidence intervals for the GTE constructed by each esti-
mating model. The results show that LNE (2.3), POW-DEG
(2.6) and LAG (2.4) specifications have high coverage rates
while the HOM specification (2.5) has lower coverage rates
and the SUTVA specification has the worst. This is because
the SUTVA specification does not capture the network ef-
fects introduced by other specifications.

Finally, on the bottom right, the model selection results
by AIC are presented. Green represents high selection rates
while white represents low selection rates. AIC works well as
it selects the correct model specification most of the time,
which is shown by the green diagonal. This supports the
use of likelihood-based model selection criteria such as AIC
for the GANE framework. Furthermore, it can be seen that
POW-DEG specification (2.6) is selected fairly often no mat-
ter the data-generating model, which suggests that it fits the
data reasonably well even under model misspecification.

As illustrated in Figure 6, the POW-DEG specification
(2.6) is the only one that performs well in each dimension.
This illustrates the flexibility of the POW-DEG model to
capture a variety of network effects. Hence, we advocate its
use generally, especially when there is no prior information
or preference for another specification.

4.4 Experimental Design
Given the suggestion for the general use of the POW-

DEG specification (2.6) in Section 4.3, in this section, we
examine the characteristics of good designs in the context
of this specification. Identifying such characteristics will pro-
vide useful insights to consider when designing the experi-
ment. To do so, we randomly generate 10,000 designs for
the Caltech Facebook network as follows: (i) take a random
draw m from the discrete uniform distribution on [1, n− 1];
(ii) randomly select m nodes and assign them to treatment,
and assign the remaining n−m nodes to control.

As GTE is the primary focus for many experiments on
networks, in this simulation we use the variance of the esti-
mated global treatment effect Var[ĜTE] as the design crite-
rion to evaluate the designs. Good designs are ones that give
lower values of the design criterion. The criterion is evalu-
ated based on the Fisher information matrix of the POW-
DEG specification (2.6) with parameters μ = 0, τ = 1,
λ ∈ {0.50, 0.75, 1.00, 1.25}. We also vary γT and γC in three
settings: (i) γT = 0.5 > γC = 0.1; (ii) γT = 0.5 = γC ; (iii)
γT = 0.1 < γC = 0.5.

For each parameter combination, the best and worst 500
(i.e., 5%) designs with respect to Var[ĜTE] are recorded. We
investigate three characteristics of these designs using three
metrics. First, as Bowers et al. [6] point out, in the pres-
ence of network interference, balanced allocation may not
be optimal. As such, we examine the percentage of treated

Figure 7: Characteristics of “best” 5%, randomly selected,
and “worst” 5% designs with respect to the variance of es-
timated global treatment effect on the Caltech Facebook
network.

nodes in each of the designs. Second, Parker et al. [35] ob-
serve that for certain design criteria, it is better to assign
nodes with high degrees to treatment and nodes with low de-
grees to control. Hence we calculate the difference in average
degrees of treated and controlled nodes to verify this obser-
vation. Third, if the best designs are clustered as graph-
cluster randomization algorithms suggest, then nodes will
be more likely to be surrounded by neighbors who share the
same treatment assignment as themselves. This means that
for each node, the percentage of neighbors having the same
treatment assignment will be high. However, with our two-
step design-generating procedure, we are considering both
balanced and unbalanced designs. Suppose a design has b%
of treated nodes, then the nodes will be expected to have b%
of neighbors treated and (100− b)% of neighbors controlled.
Nodes in a clustered design will have a high percentage of
similarly treated neighbors regardless of such expectation.
Therefore, we use the percentage of treated neighbors in
each design as a threshold and calculate the percentage of
nodes in the design that have the proportion of neighbors
sharing the same treatment with themselves higher than this
threshold.

Figure 7 shows characteristics of the best 500, the worst
500, and 500 randomly selected designs from the 10,000 that
were generated. First, let us look at the best 5% designs.
We see that the designs are more balanced at higher values
of λ. At smaller values of λ, when γT is greater, we need
more treated nodes and when γC is lower, we need more
controlled nodes. Thus, in order to decide which treatment
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Table 3. Efficiency in terms of Var[ĜTE] of the best and worst 500 designs selected from 10,000 randomly generated designs
compared to 500 randomly generated designs on the Caltech Facebook network.

Designs λ 0.5 0.75 1.00 1.75
γT > γC 1.7521 2.3841 5.5776 23.7801

Best 500 designs γT = γC 1.3875 2.0251 5.1557 23.2936
γT < γC 1.6177 2.3152 5.5369 23.7562
γT > γC 0.2469 0.16627 0.0807 0.0486

Worst 500 designs γT = γC 0.4772 0.2032 0.0792 0.04791
γT < γC 0.2291 0.1588 0.0797 0.0484

allocation to use, we need to know which of γT or γC is
greater. This information may or may not be available in
practice. Second, the differences in average degrees between
treated nodes and controlled nodes distribute evenly around
zero, suggesting that there is no preference in terms of degree
when assigning treatments to the nodes. Last, in the third
panel, we only observe a slight deviance of the boxplots from
the 0.5 reference line at low values of λ. This suggests that
graph cluster randomization is not very effective, at least in
this specific setting. In contrast, the random designs have
all the characteristics randomly distributed around the ref-
erence lines, while the worst designs will assign almost all of
the nodes to either treatment or control.

Table 3 shows the efficiency gained (lost) by selecting
the best (worst) 500 designs out of 10,000 random designs
relative to a randomly selected design. We can see that the
efficiency gained by the best 500 designs increases when net-
work effects are present, i.e., when ITE �= 0 or γT �= γC for
the POW-DEG specification (2.6). It also increases when the
sizes of the network effects increase, and when λ increases.
Hence, even though a randomly generated design may be
suitable when there is no network effect, when some net-
work effect is present, other design selection techniques are
necessary. We perform an analogous investigation with the
UMich Facebook network, the results of which are provided
in Section S3 of the Supplementary Material. The findings
are similar to those presented here for the Caltech Facebook
network, but we also notice that with a larger network, the
efficiency of this random search procedure decreased. This
suggests that when there are many experimental units, a
balanced randomized design may still be efficient.

5. DISCUSSION
We introduce the general additive network effect model

for network A/B tests, which unifies many existing mod-
els in the literature and enhances the modeling flexibility.
We further bridge the model-based framework and the ex-
posure framework by defining causal quantities of interest:
the global treatment effect, the direct treatment effect, and
the indirect treatment effect as functions of the model pa-
rameters. Inference for all three quantities may be carried
out via the maximum likelihood framework.

Although the model is studied under the A/B testing
setting where there are just two experimental conditions

(treatment and control) and under the normal independent
error assumptions, the GANE model framework can be ex-
tended for use in other settings. First, by expanding the
model equation, the GANE model can be used to analyze
experiments with more than two experimental conditions.
Second, by introducing link functions and other distribu-
tional and functional assumptions, the framework can be
extended to deal with non-normal distributions and dis-
crete outcomes in manners similar to generalized linear mod-
els.

Despite the GANE framework’s wide modeling possibil-
ities, we specifically propose the POW-DEG specification
(2.6), which models the network effect as powers of the treat-
ment and control degrees. Via simulation, we found that
the specification is robust against model misspecification in
terms of inference for the global treatment effect. Thus we
suggest the use of this specification, especially in the de-
sign stage, when there is no prior information or modeling
preference. Characteristics of good designs with respect to
different criteria on the POW-DEG specification (2.6) are
also investigated via simulation. We find that balanced ran-
domization to treatment and control and graph cluster ran-
domization are not necessarily optimal for the estimation of
the global treatment effect in this specification.

The design simulation in Section 4.4 suggests that differ-
ent parameter settings lead to a different desired percentage
of treated nodes. In addition, the optimal design search re-
quires the formula of the Fisher information matrix, which
further demands the knowledge of both the model and pa-
rameters. This is often unknown in the design stage, thus
posing challenges for the model-based framework. Future
work could consider methods such as Bayesian design to al-
leviate the dependence on unknown parameters [13]. More-
over, although AIC appears to work in the model misspec-
ification simulation in Section 4.3, the use of AIC is only
possible in the analysis stage once the data is observed, or
when preliminary data are available. Model selection for the
design and analysis of experiments on networks thus remains
an open problem for future research.

SUPPLEMENTARY MATERIAL
The Supplementary Material to “General Additive Net-

work Effect Models” contains additional simulation results
for Section 4.
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APPENDIX A. MATHEMATICAL DETAILS
FOR SECTION 3

A.1 Proof of Lemma 1
We use the following two lemmas.

Lemma 2 (Theorem 18.2.16 of Harville [18]). Let A repre-
sent an n×n matrix. Then, the infinite series I+A+A2+
A3 + · · · converges if and only if limk→∞ Ak = 0, in which
case I−A is nonsingular and

(I−A)−1 =

∞∑
k=0

Ak = I+A+A2 +A3 + · · · ,

where A0 = I.
Lemma 3 (Lemma 5.6.11 of Horn and Johnson [19]). Let
A be an n× n given matrix. If there is a matrix norm || · ||
such that ||A|| < 1, then limk→∞ Ak = 0, that is, each entry
of Ak tends to zero as k → ∞.

From the two lemmas, if we have ||ρTWT + ρCWC || <
1 for any matrix norm || · ||, then S(ρ) will be invertible.
Now, if the condition of Lemma 1 is satisfied, using triangle
inequality, we can derive

||ρTWT + ρCWC || ≤ |ρT |||WT ||+ |ρC |||WC ||,
≤ max(|ρT |, |ρC |) [||WT ||+ ||WC ||] ,
< 1,

i.e., S(ρ) is invertible.

A.2 Assumptions Needed for Asymptotic
Results

In order to achieve the asymptotic results in Theorem 1
in Appendix A.3, we make the following assumptions.
Assumption 1. εn = (ε1n, ε2n, . . . , εnn)

� are indepen-
dently and identically distributed with mean 0 and variance
σ2
0 > 0. In addition, the moment E(|εi,n|4+η) exists for some

η > 0.
Assumption 2. The true parameters ρ0 and ϕ0 lie in
the interior of a compact parameter space P × Φ. The
parameters are uniquely identifiable, in the sense that
P (Ln(θ1) = Ln(θ2)) = 0 for θ1 �= θ2.
Assumption 3. The elements of WTn and WCn are at
most of order hn uniformly, i.e., Wln,ij = O(1/hn) ∀i, j and
l ∈ {T,C}. The sequence hn can be bounded or divergent.
Furthermore, limn→∞ hn/n = 0.
Assumption 4. The matrix Sn(ρ0) is nonsingular.
Assumption 5. The weight matrices WTn, WCn and the
matrix Sn(ρ0)

−1 are uniformly bounded in both row and
column sums. Moreover, Sn(ρ)

−1 is uniformly bounded in
either row or column sums.
Assumption 6. For each i, the functions gT,i and gC,i

are twice continuously differentiable with respect to ϕ.

The values of these functions and their derivatives are
uniformly bounded ∀ϕ ∈ Φ. Furthermore, ∀ϕ ∈ Φ,
limn→∞ Mn(ϕ)

�Mn(ϕ)/n exists and nonsingular.

Assumptions 1, 2 and the differentiability requirement for
gT,i and gC,i in Assumption 6 are usual regularity conditions
for the consistency and asymptotic normality of nonlinear
least squares regression [21]. The identifiability requirement
in Assumption 2 contains the requirement that the columns
of the model matrix Mn(ϕ) are linearly independent as dis-
cussed in Section 3.1.

Note that we cannot use the usual central limit theorems
to derive the asymptotic behavior of Model (3.3) because
as the sample size n changes, the weight matrices may also
change, leading to changes in the outcomes Yn. For exam-
ple, when a new unit is added to the network, it can be
connected to other existing units, which in turn changes the
degree ki for each existing unit i, i = 1, 2, . . . , n. This results
in a different set of weight matrices for autoregressive speci-
fications such as the LAG (2.4) or the HOM (2.5) specifica-
tions. Therefore, we need to use the Central Limit Theorem
for linear-quadratic forms of triangular arrays [25]. Assump-
tions 3, 5, and 6 are introduced to satisfy the assumptions of
this theorem. Essentially, the bounds in these assumptions
control the spatial correlations to a manageable degree so
that they do not diverge as n goes to infinity [28]. For ex-
ample, suppose WTn = An, Assumption 3 is satisfied as all
elements of A are either 1 or 0, i.e., bounded. However, to
satisfy Assumption 5 in this case, we need to further require
that the degree of each unit i, i.e., the number of connec-
tions, is bounded as n goes to infinity. This is reasonable in
social network settings as one will not have infinitely many
friends.

Finally, Assumption 4 makes sure that Yn can be ex-
pressed in the reduced form as in (3.3).

A.3 Proof of Theorem 1
To prove consistency, we use the following lemma.

Lemma 4 (Theorem 3.4 of White [46]). Let (Ω,F ,P) be a
complete probability space, let Θ be a compact subset of Rp,
p ∈ N and let {Θn} be a sequence of compact subsets of Θ.
Let {Qn} be a sequence of random functions continuous on
Θ a.s. and let θ̂n = argmaxΘn Qn(·,θ) a.s. If Qn(·,θ) −
Q̄n(θ) → 0 as n → ∞ a.s. uniformly on Θ and if {Q̄n :
Θ → R} has identifiably unique maximizers {θ∗

n} on {Θn}
then θ̂n − θ∗

n → 0 as n → ∞ a.s.

From the reduced form (3.3), consider

Qn(ρ,ϕ) = max
β,σ2

E(logLn(θ)),

= max
β,σ2

[
− n

2
log 2π − n

2
log(σ2) + log |Sn(ρ)|

− 1

2σ2
β�Mn(ϕ)

�Mn(ϕ)β − σ2
0

2σ2
tr
(
Bn(ρ)

)
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+
1

σ2
β�Mn(ϕ)

�Sn(ρ)Sn(ρ0)
−1Mn(ϕ0)β0

− 1

2σ2
β�
0 Mn(ϕ0)

�Sn(ρ0)
−�Sn(ρ)

�

× Sn(ρ)Sn(ρ0)
−1Mn(ϕ0)β0

]
,

where Bn(ρ) = Sn(ρ0)
−�Sn(ρ)

�Sn(ρ)Sn(ρ0)
−1. Taking

the first derivative with respect to β and σ2, we obtain the
maximizers of Qn(ρ,ϕ) as follows:

β∗
n(ρ,ϕ) =

[
Mn(ϕ)

�Mn(ϕ)
]−1

Mn(ϕ)
�Sn(ρ)

× Sn(ρ0)
−1Mn(ϕ0)β0;

σ∗2
n (ρ,ϕ) =

1

n

{
β�
0 Mn(ϕ0)

�S−�
n (ρ0)Sn(ρ)

�[In −Hn(ϕ)
]

× Sn(ρ)Sn(ρ0)
−1Mn(ϕ0)β0 + σ2

0tr
(
Bn(ρ)

)}
.

(A.1)

where Hn(ϕ) = Mn(ϕ)
[
Mn(ϕ)

�Mn(ϕ)
]−1

Mn(ϕ)
�. Now,

	P,n(ρ,ϕ) = − n

2
log 2π − n

2
log σ̂2

n(ρ,ϕ)

+ log |Sn(ρ)| −
n

2
,

Qn(ρ,ϕ) = − n

2
log 2π − n

2
log σ∗2

n (ρ,ϕ)

+ log |Sn(ρ)| −
n

2
,

where σ̂2
n(ρ,ϕ) was given in (3.6). To use Lemma A4, we

first need to show that

1

n

{
	P,n(ρ,ϕ)−Qn(ρ,ϕ)

}
= − 1

2

{
log σ̂2

n(ρ,ϕ)− log σ∗2
n (ρ,ϕ)

}
= op(1).

Note that

σ̂2
n(ρ,ϕ)− σ∗2

n (ρ,ϕ) = 2R1n(ρ,ϕ) +R2n(ρ,ϕ)

− 1

n
σ2
0tr
(
Bn(ρ)

)
,

where

R1n(ρ,ϕ) =
1

n
β�
0 Mn(ρ0)

�S−�
n (ρ0)Sn(ρ)

�[In −Hn(ϕ)
]

× Sn(ρ)Sn(ρ0)
−1εn,

and

R2n(ρ,ϕ)

=
1

n
ε�nS

−�
n (ρ0)Sn(ρ)

�[In −Hn(ϕ)
]
Sn(ρ)Sn(ρ0)

−1εn

=
1

n
ε�nS

−�
n (ρ0)Sn(ρ)

�Sn(ρ)Sn(ρ0)
−1εn

− 1

n

[
1√
n
Mn(ϕ)

�Sn(ρ)Sn(ρ0)
−1εn

]�
×
[
1

n
[Mn(ϕ)

�Mn(ϕ)]
−1

]
×
[

1√
n
Mn(ϕ)

�Sn(ρ)Sn(ρ0)
−1εn

]
.

It can be shown that R1n(ρ,ϕ) = oP (1) and R2n(ρ,ϕ) −
1
nσ

2
0tr
(
Bn(ρ)

)
= oP (1) using the following three lemmas

given in Lee [28] and assumptions on the bounds of matrices.

Lemma 5. Suppose the elements An,ij of n × n matri-
ces An are O(1/hn) uniformly for all i, j. If n × n ma-
trices {Bn} are uniformly bounded in column sums (respec-
tively, row sums), then the elements of AnBn (respectively,
BnAn) have the uniform order O(1/hn). For these cases,
tr(AnBn) = tr(BnAn) = O(n/hn).

Lemma 6. Suppose {An} are uniformly bounded either
in row or column sums and their elements An,ij have or-
der O(1/hn) uniformly in i and j. Then E(ε�nAnεn) =
σ2
0tr(An) = O(n/hn) and Var(ε�nAnεn) = O(n/hn). If

limn→∞ hn/n = 0, then (hn/n)[ε
�
nAnεn − E(ε�nAnεn)] =

oP (1), where εn satisfies Assumption 1 (possibly without
normality but with E(|εn|4+γ) < ∞ for some γ > 0).

Lemma 7. Suppose that An is a square matrix with its col-
umn sums being uniformly bounded and elements of the n×k
matrix Zn are uniformly bounded. Then (1/

√
n)Z�

nAnεn =
Op(1). Furthermore, if the limit of Z�

nAnA
�
nZn/n ex-

ists and is positive definite, then (1/
√
n)Z′

nAnεn
d→

N (0, σ2
0 limn→∞ Z�

nAnA
�
nZn/n).

Therefore, σ̂2
n(ρ,ϕ) − σ∗2

n (ρ,ϕ) = oP (1) uniformly on
P × Φ. Hence, sup(ρ,ϕ)∈P×Φ

1
n{	P,n(ρ,ϕ) − Qn(ρ,ϕ)} =

oP (1). Second, we need to prove the identification unique-
ness condition that, for any ε1, ε2 > 0,

lim sup
n→∞

max
ρ∈N̄ε1 (ρ0),ϕ∈N̄ε2 (ϕ0)

1

n

[
Qn(ρ,ϕ)−Qn(ρ0,ϕ0)

]
< 0,

where N̄ε1(ρ0) denotes the complement of an open neigh-
borhood of ρ0 of diameter ε1 and likewise for ϕ. To see this,
we can write

1

n

[
Qn(ρ,ϕ)−Qn(ρ0,ϕ0)

]
=

1

n

{
E[logLn(ρ,β0,ϕ0)]− E[logLn(ρ0,β0,ϕ0)]

}
− 1

2

{
log σ∗2

n (ρ,ϕ)− log

(
σ2
0

n
tr(Bn(ρ))

)}
.

The first term is less than 0 by Jensen’s inequality and
the identifiability condition of Assumption 2. Furthermore,
σ∗2
n (ρ,ϕ) ≥ σ2

0

n tr(Bn(ρ)) from (A.1) by the positive semi-
definiteness of the annihilator matrix I−Hn(ϕ). Putting all
of these together, we proved θ̂n = θ0 + oP (1).
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Now, to prove the asymptotic normality, we apply the
mean-value theorem on the first order derivative of logLn(θ)

at θ̂n yielding

∂ logLn(θ̂n)

∂θ
= 0 =

∂ logLn(θ0)

∂θ
+ (θ̂n − θ0)

∂2 logLn(θ̃n)

∂θ∂θ� ,

where θ̃n lies between θ̂n and θ0. Therefore

θ̂n − θ0 = −
[
∂2 logLn(θ̃n)

∂θ∂θ�

]−1(
∂ logLn(θ0)

∂θ

)
.

We can write down the first derivatives of logLn(θ) with
respect to θ as follows:

∂ logLn(θ)

∂β
=

1

σ2
ε�nMn(ϕ),

∂ logLn(θ)

∂σ2
= − n

2σ2
+

1

2σ4
ε�n εn,

∂ logLn(θ)

∂ρj

=
1

σ2
ε�nWjnSn(ρ)

−1Mn(ϕ)β

+

(
1

σ2
ε�WjnSn(ρ)

−1εn − tr(WjnS
−1
n (ρ))

)
,

∂ logLn(θ)

∂ϕ
=

1

σ2
ε�n

∂Mn(ϕ)

∂ϕ
β,

for j ∈ {T,C}. Note that these are linear and quadratic
functions of εn. Therefore we can apply the Central Limit
Theorem for linear-quadratic functions [25] given as Lemma
A8 below.

Lemma 8 (Theorem A.1 of Kelejian and Prucha [25]). Con-
sider the linear quadratic forms (r = 1, . . . ,m)

Qr,n = ε�nAr,nεn + b�
r,nεn,

where εn = (ε1,n, . . . , εn,n)
� is an n × 1 random vector,

and Ar,n = (aij,r,n)i,j=1,...,n is an n× n non-stochastic real
matrix, and br,n = (b1,r,n, . . . , bn,r,n)

� is an n × 1 non-
stochastic real vector. We make the following assumptions:

1. The real-valued random variables of the array {εi,n :
1 ≤ i ≤ n, n ≥ 1} satisfy E[εi,n] = 0. Furthermore,
for each n ≥ 1, the random variables ε1,n, . . . , εn,n are
totally independent.

2. For r = 1, . . . ,m, the elements of the array of real num-
bers {aij,r,n : 1 ≤ i, j ≤ n, n ≥ 1} satisfy aij,r,n = aji,r,n
and sup1≤j≤n,n≥1

∑n
i=1 |aij,r,n| < ∞. The elements of

the array of real numbers {bi,r,n : 1 ≤ i ≤ n, n ≥ 1} sat-
isfy supn n

−1
∑n

i=1 |bi,r,n|2+η1 < ∞ for some η1 > 0.
3. For r = 1, . . . ,m, one of the following two conditions

holds
(a) sup1≤i≤n,n≥1 E|εi,n|2+η2 < ∞ for some η2 > 0 and

aii,r,n = 0.
(b) sup1≤i≤n,n≥1 E|εi,n|4+η2 < ∞ for some η2 > 0

(but possibly aii,r,n �= 0)

Let

Un = [Q1,n, . . . ,Qm,n]
�,

and μUn
= E[Un] and ΣUn denote the mean and variance-

covariance matrix of Un, respectively. Suppose the assump-
tions hold and n−1λmin(ΣUn) ≥ c for some c > 0. Let
ΣUn =

(
Σ

1/2
Un

)(
Σ

1/2
Un

)�, then

Σ
−1/2
Un

(Un − μUn
)

d→ N (0, Im).

Therefore, we can apply the above theorem to ∂ logLn(θ0)
∂β

with m = dim(θ) since all the multipliers to εn are bounded.
Note that the assumption on the minimum eigenvalue of the
variance-covariance matrix is to ensure that matrices ΣVn

stay invertible as n → ∞, to which we have an equivalent
condition in Theorem (1). The assumption of symmetry is
W.L.O.G since εnAnεn = ε�n [(An + A�

n )/2]εn [24]. Hence
we have

[Vn(θ0)]
−1/2 ∂ logLn(θ0)

∂θ

d→ N (0dim(θ), Idim.(θ)) (A.2)

Now, what is left to be proved is

1

n

∂ logLn(θ̃n)

∂θ∂θ� =
1

n

∂ logLn(θ0)

∂θ∂θ� + oP (1)

=
1

n
E

[
∂ logLn(θ0)

∂θ∂θ�

]
+ oP (1). (A.3)

The second derivatives of logLn(θ) with respect to θ are

∂2 logLn(θ)

∂β∂β� = − 1

σ2
Mn(ϕ)

�Mn(ϕ),

∂2 logLn(θ)

(∂σ)2
=

n

2σ4
− 1

σ6
ε�n εn,

∂2 logLn(θ)

∂ρj∂ρl

= − 1

σ2
Y�

nW
�
lnWjnYn

− tr(WlnSn(ρ)
−1WjnSn(ρ)

−1),

∂2 logLn(θ)

∂ϕ∂ϕ� =
1

σ2

[
− β�

(
∂Mn(ϕ)

∂ϕ

)�(
∂Mn(ϕ)

∂ϕ

)
β

+ β�
(
∂2Mn(ϕ)

∂ϕ∂ϕ�

)�
εn

]
,

∂2 logLn(θ)

∂σ2∂β� = − 1

σ4
Mn(ϕ)

�εn,

∂2 logLn(θ)

∂σ2∂ρj

= − 1

σ4
Y�

nW
�
jnεn,

∂2 logLn(θ)

∂σ2∂ϕ� = − 1

σ4
β�
(
∂Mn(ϕ)

∂ϕ

)�
εn,

∂2 logLn(θ)

∂β∂ρj

= − 1

σ2
Y�

nW
�
jnMn(ϕ),

∂2 logLn(θ)

∂ϕ∂ρj

= − 1

σ2
Y�

nW
�
jn

(
∂Mn(ϕ)

∂ϕ

)
β,
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∂2 logLn(θ)

∂β∂ϕ� =
1

σ2

[
− β�

(
∂Mn(ϕ)

∂ϕ

)�
Mn(ϕ)

+ ε�n

(
∂Mn(ϕ)

∂ϕ

)]
,

for l, j ∈ {T,C}. Let Ckn(ρ) = WknSn(ρ)
−1 for k ∈

{T,C}. Using the mean-value theorem, we have

1

n
tr(WlnSn(ρ̃n)

−1WjnSn(ρ̃n)
−1)

=
1

n
tr(Cln(ρ̃n)Cjn(ρ̃n))

=
1

n
tr(Cln(ρ0)Cjn(ρ0)) +

1

n
(ρ̃n − ρ0)

�

×

⎡⎢⎢⎣
...

tr

{
Ckn(ρ̄n)

(
Cln(ρ̄n)Cjn(ρ̄n) +Cjn(ρ̄n)Cln(ρ̄n)

)}
...

⎤⎥⎥⎦
=

1

n
tr(Cln(ρ0)Cjn(ρ0)) + oP (1),

where ρ̄n lies between ρ̃n and ρ0. By consistency,
θ̂n = θ0 + oP (1), thus θ̃n = θ0 + oP (1) and ρ̄n =
θ0 + oP (1). The elements of Ckn(ρ̄n)Cln(ρ̄n)Cjn(ρ̄n) and
Ckn(ρ̄n)Cjn(ρ̄n)Cln(ρ̄n) are O(1) and the elements of
Y�

nW
�
lnWjnYn are OP (n/hn) by Lemma A7. Therefore

1

n

∂2 logLn(θ̃n)

∂ρj∂ρl

=
1

n

∂2 logLn(θ0)

∂ρj∂ρl

+ oP (1).

For other partial derivative terms, we can use the fact that

Mn(ϕ̃n) = Mn(ϕ0) + o(1),

∂Mn(ϕ̃n)

∂ϕ
=

∂Mn(ϕ0)

∂ϕ
+ o(1),

∂2Mn(ϕ̃n)

∂ϕ∂ϕ� =
∂2Mn(ϕ0)

∂ϕ∂ϕ� + o(1),

by Assumption 6 and the continuous mapping theorem
[45]; the fact that elements of Mn(ϕ), ∂Mn(ϕ)/∂ϕ and
∂2Mn(ϕ)/∂ϕ∂ϕ

� are all O(1); and Lemma A5, A6 and
A7. Similarly, we also can prove

1

n

∂ logLn(θ0)

∂θ∂θ� + oP (1) =
1

n
E

[
∂ logLn(θ0)

∂θ∂θ�

]
+ oP (1),

with

E

[
∂2 logLn(θ)

∂β∂β�

]
= − 1

σ2
Mn(ϕ)

�Mn(ϕ),

E

[
∂2 logLn(θ)

(∂σ)2

]
= − n

2σ4
,

E

[
∂2 logLn(θ)

∂ρj∂ρl

]
= − 1

σ2
β�Mn(ϕ)

�Cln(ρ)
�Cjn(ρ)Mn(ϕ)β

− tr(Cln(ρ)
�Cjn(ρ))− tr(Cln(ρ)Cjn(ρ)),

E

[
∂2 logLn(θ)

∂ϕ∂ϕ�

]
= − 1

σ2
β�
(
∂Mn(ϕ)

∂ϕ

)�(
∂Mn(ϕ)

∂ϕ

)
β,

E

[
∂2 logLn(θ)

∂σ2∂β�

]
= 04,

E

[
∂2 logLn(θ)

∂σ2∂ρj

]
= − 1

σ2
tr(Cjn),

E

[
∂2 logLn(θ)

∂σ2∂ϕ�

]
= 0p,

E

[
∂2 logLn(θ)

∂β∂ρj

]
= − 1

σ2
β�Mn(ϕ)

�Cjn(ρ)
�Mn(ϕ),

E

[
∂2 logLn(θ)

∂ϕ∂ρj

]
= − 1

σ2
β�Mn(ϕ)

�Cjn(ρ)
�
(
∂Mn(ϕ)

∂ϕ

)
β,

E

[
∂2 logLn(θ)

∂β∂ϕ�

]
= − 1

σ2
β�
(
∂Mn(ϕ)

∂ϕ

)�
Mn(ϕ),

where p is the number of parameters in ϕ. This completes
the proof for (A.3). Finally, from (A.2), (A.3), and Slutsky’s
theorem, Theorem 1 is proved.
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