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Abstract
Community detection in networks is the process by which unusually well-connected sub-networks are identified–a central

component of many applied network analyses. The paradigm of modularity quality function optimization stipulates a
partition of the network’s vertexes that maximizes the difference between the fraction of edges within communities and
the corresponding expected fraction if edges were randomly allocated among all vertex pairs while conserving the degree
distribution. The modularity quality function incorporates exclusively the network’s topology and has been extensively
studied whereas the integration of constraints or external information on community composition has largely remained
unexplored. We define a greedy, recursive-backtracking search procedure to identify the constitution of high-quality network
communities that satisfy the global constraint that each community be comprised of at least one vertex among a set of
so-called special vertexes and apply our methodology to identifying health care communities (HCCs) within a network of
hospitals such that each HCC consists of at least one hospital wherein at least a minimum number of cardiac defibrillator
surgeries were performed. This restriction permits meaningful comparisons in cardiac care among the resulting health care
communities by standardizing the distribution of cardiac care across the hospital network.

keywords and phrases: Modularity, Discrete and constrained optimization, Patient-sharing network, Health care net-
work communities.

1. INTRODUCTION
Networks are collections of interconnected entities, e.g.

social networks of communicating actors, ecological net-
works of flora and fauna commensalism, and computer net-
works.[31, 26] Network-graphs, or simply graphs, are math-
ematical objects consisting of a vertex set, e.g., one vertex
per network entity, and an edge set, e.g., a set of pairs of ver-
texes involved in a network connection, that represent the
arrangements of pairwise relationships in the network.[9]

Methodology developed in the fields of social networks,
network science, and graph theory provides for the analysis
of relational data generated from a variety of measurements
across scientific disciplines.[22, 8] Community detection is
the process of identifying exceptionally dense subnetworks
of mutually well-connected network entities, known as com-
munities, that often have functional meaning in the net-
work.[12] Notable approaches to community detection in-
clude the clique percolation method [24], spectral partition-
ing [5], degree-corrected stochastic block models [18], mod-
ularity optimization [21], and multi-slice network commu-
nity detection [20]. These approaches are designed for the
unsupervised partitioning of the vertex set of a graph into
unusually cohesive subsets of vertexes, and with varied ap-
plications in sociology [33], computer architecture [13], and
biology [2], illustrate that myriad methodology in commu-
nity detection procedures are applied broadly in scientific
research.
∗Corresponding author.

Community detection procedures commonly integrate
network connectivity exclusively, without regard for other
quantities of interest, e.g., auxiliary measurements on ver-
texes.[10]. We refer the reader to recent expositions on the
state of the science of community detection in networks in-
cluding [16, 30, 34, 27] that detail existing methods with
respect to certain applications. It is essential to note that
constraints are not commonly imposed on the community
structure in networks by existing methods.

We are motivated to partition a nation-wide network of
hospitals into subnetworks of hospitals that (i) exhibit a
high level of within-group patient sharing as quantified by
the network modularity quality function and (ii) consist of at
least one hospital that has hosted a minimum number of im-
plantable cardioverter defibrillator (ICD) surgeries to define
as health care communities (HCCs) that provide a compara-
ble level of cardiac care. We utilize data acquired from health
insurance claims made to the Medicare national social in-
surance program during the period 2006-2011 in addition
to the quantity of ICD surgeries at the major cardiovascu-
lar referral centers known as cardiac care facilities (CCFs).
The preeminent work in this domain is the Dartmouth Atlas
in which the then Center for the Evaluative Clinical Sci-
ences, Dartmouth Medical School [28] assigned hospitals to
one of 306 health referral regions (HRRs) representing mar-
kets for tertiary medical care. The significant contributions
made by the Dartmouth Atlas to health services research
motivates our work but our methodology, which is based
on network-graph topology, is a departure from the HRRs
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strict adherence to geographic proximity that continues to
be pursued by some efforts to modernize the designations.
[29] Related work in defining regions according to network
topology for the purposes of measuring health care variation
across regions are nonetheless fundamentally based on ge-
ography. [14, 17, 15] Note that geographic proximity could
be an alternative or additional constraint to our network-
based method but is not necessary. In particular, if the anal-
ysis health care services provided by telemedicine or remote
monitoring is desired then geographic information may be
ignored intentionally in the discovery of network communi-
ties.

We develop in the following a recursive backtracking pro-
cedure for greedy search of high modularity communities
that are each constrained by the requirement to contain
at least one of the so-called special vertexes, which in the
present application are the network-graph representatives of
the hospital network cardiac care facilities at which a mini-
mum number of ICD surgeries were performed and apply the
method to approximate the optimal health care community
assignment for each hospital in the network.

The inclusion of constraints in community detection, par-
ticularly a constraint of the nature under present consider-
ation, is pertinent across many domains and applications.
The community structure in any social network consisting of
entities possessing distinct classes or attributes, e.g., stan-
dard entities versus noteworthy entities, may be more ac-
curately characterized by our methodology. For example,
a researcher seeking to partition the individuals of social
communication networks that are the result of correspon-
dences among senior and junior members of an organiza-
tion, e.g., the Enron corpus [19], may enforce through our
methodology the constraint that each community of orga-
nization members in the network consist of at least one se-
nior member. (A reason for doing this is that the researcher
knows how the organization structures its workforce but
does not know which senior employee is grouped with which
junior employees). This example is retrospective in that la-
tent groups are being rediscovered by the researcher. The
same example could apply in a prospective form. For ex-
ample, given a network of professional relationships among
its employees of different ranks, a company could use the
algorithm to form optimal groups with at least one senior
employee per group. Analogous examples might also arise in
peer mentoring situations – a teacher in a classroom might
use a friendship network among the students to form work-
groups such that each group consists of at least one student
who is performing very well (on course for the top possi-
ble grade) who can help the other students understand the
material. On the other hand, a researcher investigating the
community structure in a trophic network [11] may desire
a partition of species in which each community contains at
least one member of the Canidae taxonomic family. We em-
phasize that applications of our methodology abound in net-
works consisting of heterogeneous entities.

2. BACKGROUND
We represent the nation-wide hospital network with the

weighted, undirected graph G = (V,E) which designates
one vertex v ∈ V for each hospital and a positively weighted
edge {u, v, wuv} ∈ E for each pair of vertexes {u, v} ∈ V2

that represents interacting entities in the network, e.g.,
patient-sharing hospitals, where V2 = V × V is the set
of vertex pairs. Note that if wuv = 0 then {u, v, 0} /∈ E. The
weight wuv of edge {v, u, wuv} reflects the quantity of shared
patient visits recorded in Medicare claims data between the
hospitals represented by vertexes u, v ∈ V.

Suppose that the vertex subset V′ ⊆ V contains the ver-
texes that are called special vertexes and represent network
entities of a distinguishing nature. In the present scenario,
V′ consists of the vertexes that represent the cardiac care
facilities at which at least τ ICD surgeries, for some τ ≥ 0,1
were performed and define V′ = V′

τ accordingly. The in-
formation contained in the labeling of these special vertexes
in V′

τ is information not encoded in the graph topology
induced by the edge set E itself and, therefore, its integra-
tion into a standard community detection procedure must
be made explicitly.

A useful mathematical representation of the weighted,
undirected network-graph G in a variety of approaches to
network science applications is the non-negative, symmetric
p × p matrix W in which Wij = wvivj , for vi, vj ∈ V2, i.e.
i, j ∈ Z such that 1 ≤ i < j ≤ p corresponding to some
ordering of the vertexes vk ∈ V. The network modularity
quality function

Q(s|W) =
1

2m

p∑
i,j

(
Wij −

didj
2m

)
1{si = sj}, (2.1)

where s ∈ Łp = {1, 2, . . . , p}p is a community assignment
vector consisting of at most p unique community member-
ship labels, dj =

∑p
i=1 Wij is the degree of vertex vj , and

2m =
∑p

j=1 dj is the total degree of the network-graph G.
Note that Wij is the observed (true) weight of the edge
connecting vertexes vi and vj whereas Eij =

didj

2m is the ex-
pected weight of the edge connecting these vertexes under
randomization via the configuration model. [3]

The process of unconstrained modularity optimization in-
volves the identifying of a partition {V1, . . . ,Vn} ⊆ V of
size n ≤ p corresponding to the community assignment vec-
tor s such that sk = r if vk ∈ Vr, for some r ∈ {1, 2, . . . , n}.
For a partition of size n ≤ p, the Stirling number of the
second kind [1]

S(p, n) =
1

n!

n∑
k=0

(−1)k
(
n

k

)
(n− k)p

counts the number of unique community assignments. Note
that if the p′ = |V′

τ | special vertexes are partitioned into n

1The case that τ = 0 corresponds to unconstrained community detec-
tion, in which p = p′, and we include it here as a special case.
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vertex sets then the number of feasible community assign-
ments is

C(p, p′, n) = np−p′
S(p′, n), (2.2)

with n ≤ p′, which displays asymptotics similar to the
number of unconstrained partitions. The special case when
n = p′, for which C(p, p′, n) = np−n ∈ O(np), amounts to
the unconstrained optimization of the modularity quality
function over the set of non-special vertexes v ∈ V \ V′

with each of the special vertexes v ∈ V′ each belonging to a
unique community. This observation accordingly supports a
bottom-up approach that is a part of our forthcoming pro-
cedure.

On the extreme end of the spectrum, if τ = ω, where
ω equals the maximum number of ICD surgeries performed
at any cardiac care facility in the network, then p′ achieves
its minimum tenable value. In particular, if the maximum
number ω of ICD surgeries performed at any hospital in
the network is unique then p′ = 1. Moreover, if τ > ω then
no feasible solution to the constrained optimization problem
exists. In general, p′ is a non-increasing function of τ ≥ 0.

The community assignment vector that optimizes the
modularity quality function

sτopt = argmax
s∈Łp

Q(s|W), (2.3)

where Łp = {1, 2, . . . , p}p, is the community assignment
vector which, on average, labels similarly vertexes that are
more well-connected than expected to the same community
among the n ≤ p different communities.

Suppose that R(s|V′
τ ) is the boolean function that re-

turns true if the community assignment vector s satisfies
the desired property that each community contain at least
one special vertex v′ ∈ V′

τ and define the restricted commu-
nity assignment vector that optimizes the modularity qual-
ity function

sτR = argmax
s∈Łp

{Q(s|W) : R(s|V′
τ )} , (2.4)

where, in the present scenario,

R(s|V′
τ ) =

{
True if U(s|V′

τ ) = U(s|V)

False otherwise,

where U(s|V′
τ ) is, for example, the set of unique community

labels for those vertexes v ∈ V′
τ . Defined as such, R(s|V′

τ )
returns True when each community is constituted by at least
one special vertex v′ ∈ V′

τ .
We define a health care community assignment as the des-

ignation of hospitals to communities in a community assign-
ment vector that optimizes the network modularity quality
function Q(s|W) in Equation (2.1). The quantity Q(s|W)
is proportional to the difference between the fraction of

(weighted) edges within communities and the expected frac-
tion if edges were randomly distributed according to the con-
figuration model, i.e. edge randomization with degree dis-
tribution conserved, subject to the constraint that to each
community belongs at least one special vertex, e.g. a ver-
tex representing a cardiac care facility where at least τ ≥ 0
ICD implantations occurred. Specifically, we seek to maxi-
mize modularity while requiring that the number of cardiac
care facilities per health care community is at least τ ≥ 0:
a restriction we encode with Boolean variable R(s|V′

τ ) in-
dicating the feasibility of a community assignment.

Existing work in this realm considers incorporating ad-
ditional information in the form of individual entity labels
and pairwise constraints, i.e., that two vertexes must be la-
beled similarly or differently. [7] A restriction of the type
we consider here has, to our knowledge, remained unstud-
ied. In the context of the hospital network, the HRRs de-
fined previously associated local health care markets to the
tertiary care facilities where the plurality of the residents
were referred for major cardiac procedures. An HRR is a
reflection of its regional health care market and, because
necessarily within each is a hospital specialized in cardiac
surgery, a comparison across regions is facilitated. In an ef-
fort to standardize cardiac care among health care subnet-
works, we present an initial undertaking towards developing
a paradigm of constrained community detection. In particu-
lar, because constraint satisfaction in optimization problems
provides context, the health care communities identified by
our constrained community detection approach have real-
world utility.

The organization of this article is as follows. In Section
3, we mathematically formulate the constrained optimiza-
tion problem. In Section 4, we define a greedy, recursively-
backtracking procedure for identifying high-quality, con-
strained communities. Utilizing our procedure in Section 5,
we estimate the health care communities of the nation-wide
hospital network and illustrate in Section 6 our method on
a network-graph of well-known community structure.

3. PROBLEM SPECIFICATION
Suppose that G = (V,E), with p = |V|, is a network-

graph and that V′ ⊂ V is a subset of vertexes. Moreover,
suppose that s ∈ {1, 2, . . . , n}p, for some n ∈ Z+, is a vector
of labels such at each label is applied at least once. We define
the collection of

(
p
2

)
binary variables xij = 1{si = sj}, for

i, j ∈ {1, 2, . . . , p}, along with the corresponding collection
of edge values bij = wij − didj/2m and the vertex values
uk = 1{vk ∈ V′}, for k ∈ {1, 2, . . . , p}. Let B = [bij ].

The constrained optimization problem under considera-
tion is described as follows.

Maximize: f(s,B) =

p∑
ij

bijxij over s ∈ {1, 2, . . . , n}p

and n ∈ Z+
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Subject to: xij = 1{si = sj} for i, j ∈ {1, 2, . . . , p}∑
{h:sh=r}

uh ≥ η, for r ∈ {1, 2, . . . , n}

η ≥ 0

uh = 1{vh ∈ V′} for h ∈ {1, 2, . . . , p}.

This discrete optimization problem is, in general, at least as
difficult as the corresponding, unconstrained NP-hard de-
cision problem which seeks an answer to whether or not a
partition of the vertex set exists with a modularity quality
function value of at least some minimum value. In particu-
lar, the boundary value η = 0 corresponds to the special case
of an unconstrained optimization problem in the description
above.

A greedy unconstrained method may readily agglomerate
communities toward achieving a local maximum of the net-
work modularity function f(s,B). On the other hand, satis-
fying the constraint requires the consideration of many per-
mutations of such mergers and any recursive backtracking
procedure for identifying high-quality, with respect to the
network modularity function, has potentially intractably-
many paths in the search space to traverse. Note that if
the graph G happens to be unweighted then the adjacency
matrix W is binary and, up to quantities involving a 2m
denominator, Equations (4.1) and (4.2) involve integers on
similar scales. Accordingly, the various sequences of commu-
nity assignment label updates through the recursive back-
tracking procedure are reduced. In the application of our
method toward the defining of health care communities in
the nationwide social network of cardiac-related Medicare
referrals between hospitals we make this binary transforma-
tion A = 1{g(W) > ζ}, where g : Rp×p �→ R

p×p is defined
in Section 5.1, the indicator function 1{P} = 1 if proposition
P is true and 1{P} = 0 otherwise, and ζ > 0 is determined
from the data, to facilitate tractable computations.

4. GREEDY, RECURSIVE-BACKTRACKING
PROCEDURE

We begin this section by presenting the existing work
on unconstrained network modularity quality function op-
timization upon which our generalized procedure, which
seeks to maximize the network modularity quality function
over the space of feasible community assignment vectors, is
based. Subsequently we outline our method for constrained
optimization of the network modularity quality function and
provide pseudocode for pertinent procedures.

4.1 Louvain Method
The Louvain method [4] is a greedy modularity opti-

mization procedure that proceeds in two fundamental and
repeating steps: (i) the local optimization of the modu-
larity quality function and (ii) the folding of communi-
ties into super-vertexes to create a super-graph in which

the newly-created super-vertexes are representatives in the
super-graph of the communities in the former graph and the
newly-created edge weights between super-vertexes are the
sums of the edge weights between pairs of communities in
the original graph. This process is continued until the super-
graph resulting from repeated local optimizations and folds
no longer warrants a subsequent fold, at which point, the
folding process is reversed to recover the vertex-level com-
munity assignment vector, see [4] for details.

4.2 Modifications to Base Louvain Procedures
We modify the local optimization procedure of the Lou-

vain method to cycle through the vertex set V in turn, with
the exception of vertexes v ∈ U, and assigning its commu-
nity label sk to

sk ← argmax
sk∈{1,...,n}

Q(sk|s−k,W).

This process is continued until no community label has been
modified in one complete pass through the vertex set. The
modification to restrict the updating of vertex community
assignment labels to vertexes v ∈ V \ U permits, in the
present context, the community labels of special vertexes
v′ ∈ V′

τ to be updated while the community labels of non-
special vertexes v ∈ V\V′

τ are held constant and vice versa.
Moreover, we modify the folding procedure to trace a subset
of vertexes U ⊆ V through to the super-vertexes which
ultimately represent them as part of the community folding
process. This permits, in the present context, super-vertexes
to inherit the special designation.

4.3 Constraint Corrected Louvain Method
Perhaps the most straightforward approach toward con-

strained greedy optimization of the modularity quality func-
tion leads through the unconstrained greedy optimization
procedure of the Louvain method. That is, one may consider
first estimating the unconstrained community assignment
vector and then, subsequently, modify the unconstrained so-
lution to a feasible state. We provide pseudocode in Proce-
dure 1 for this recursive-backtracking procedure that mod-
ifies an infeasible community assignment vector in an ag-
glomerative approach, i.e. by merging communities, in a
manner that least reduces modularity until a constraint-
satisfying solution is achieved. Of course, given enough com-
munity mergers, this procedure is guaranteed to eventually
halt.

Note that within Procedure 1, the Correct local function
is simplified by the fact that the merging of two communities
that are respectively constituted by vertexes with indices in
I1 and I2 results in the modularity gain proportional to

ΔcommQ ∝
∑
i1∈I1

∑
i2∈I2

Wi1i2 −
1

2m

(∑
i1∈I1

di1

)(∑
i2∈I2

di2

)
.

(4.1)
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Procedure 1: Recur.
Input:
W: a p× p symmetric, weighted adjacency matrix
V′

τ : a set of size p′ of special vertexes
s(0): a length p community assignment vector,

s(0) ∈ {1, 2, . . . , p}p // Default: s(0) = (1, 2, . . . , p)
Output:
s(1): a locally optimized length p community assignment

vector // the community assignment vector with
the greatest modularity among the rows of Z
(see below)

// Local Functions:
// Translate: removes one a special vertex from a

community with a surplus of special vertexes
and places it into a community in violation in
constraint in a manner that least reduces
modularity

// Merge_Correct: merges two communities in the
existing community labeling assignment in a
manner that least reduces modularity and
applies Correct (see below) to the result

// Correct: applies Procedure 2 with U = V′
τ and,

subsequently, applies Procedure 2 to the
one-time folded graph resulting from Procedure
3.

// R(·|V′
τ ): Boolean constraint-satisfaction

function

// Global Variables:
// H ← Z

0×p
+ : storage of community assignment

vectors discovered by the procedure
// Z ← Z

0×p
+ : storage of community assignment

vectors discovered by the procedure and
satisfy the contraint

// modmax: maximum modularity community
assignment vector discovered by the procedure
at the present iteration

if R(s(0)|W) then
// Row append s(0) to Z

modmax ← max{modmax, Q(s(0)|W)}
else

// Row append s(0) to H

str ← Translate(s(0), . . .)
if Q(str|W) > modmax and str /∈ H then

Recur(W,V′
τ , str)

smc ← Merge_Correct(s(0), . . .)
if Q(smc|W) > modmax and smc /∈ H then

Recur(W,V′
τ , smc)

return s(1)

More specifically, if vertex vj currently belongs to the same
community as vertexes with indices in I0 and vertex vj is
to be relabeled to belong to the same community as ver-
texes with indices in I1 then the change in modularity is

Procedure 2: Local Optimization.
Input:
W: a p× p symmetric, weighted adjacency matrix
U: the set of vertex indices to exclude in local

optimization procedure // Default: U = ∅
s(0): a length p community assignment vector,

s(0) ∈ {1, 2, . . . , p}p // Default: s(0) = (1, 2, . . . , p)
Output:
s(1): a locally optimized length p community assignment
vector
Change ← True
while Change do

Change ← False

for k ∈ {1, 2, . . . , p} \U do
s
(1)
k ← argmax sk∈{1,...,n} Q(sk|s−k,W)

if Q(s
(1)
k |s−k,W) > Q(sk|s−k,W) then

sk ← s
(1)
k

Change ← True

return s

proportional to

ΔvertQ ∝
(
Wjj −

d2j
2m

)
+

(∑
i1∈I1

Wji1 −
∑
i0∈I0

Wji0

)

− dj
2m

(∑
i1∈I1

di1 −
∑
i0∈I0

di0

)
. (4.2)

These two formulas provide, in general, substantial compu-
tational savings over direct O(p2) computation of the net-
work modularity quality function in Equation (2.1), see Ap-
pendix A for derivations.

4.4 Modified Core Procedures
Many discrete optimization problems, including the

present one, are computationally difficult and frequently in-
tractable. That is, the size of the solution space is, in general,
prohibitively large for a complete search and the objective
function is, in general, not monotonic in a mathematically-
useful manner. For these reasons, an exact solution to
the modularity optimization problem is not often sought
but, instead, a satisfactory solution that is encountered
by an algorithmic procedure is frequently reported as is
the case with, for example, the Louvain method described
above.

Prior to proposing our approach to the constrained op-
timization problem described in Section 3, we present our
modified versions of the greedy, local optimization (Proce-
dure 2) and community folding (Procedure 3) procedures.
In particular, we provide for the flexibility to exclude a sub-
set of vertexes from the local optimization process in Pro-
cedure 2 so that, in the present context, the community
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Procedure 3: Community Folding.
Input:
W(0): a p0 × p0 symmetric, weighted adjacency matrix
U(0): the set of vertex indices to track in folding process

s: a length p0 community assignment vector
// s ∈ {1, 2, . . . , n}p0

Output:
W(1): a p1 × p1 symmetric, weighted adjacency matrix

for super-graph // p1 = |U(s)|, U(s) = unique
elements in s

U(1): the set of super-vertexes representing at least one
vertex v ∈ U(0)

W(1) ← a p1 × p1 matrix of zeros
for u1, u2 ∈ U(s) do

W
(1)
u1,u2 ←

∑
{i:si=u1}

∑
{j:sj=u2} W

(0)
i,j

return W(1), U(1)

labels corresponding to special vertexes v′ ∈ V′
τ may be

held fixed while the community labels corresponding to reg-
ular, i.e. non-special, vertexes v ∈ V \ V′

τ are locally and
greedily optimized. Moreover, in the process of folding, we
provide the adapted Procedure 3 which traces a set of ver-
texes through the folding process and reports which super-
vertexes, i.e. the vertexes resulting from folded communi-
ties, are representative of any vertexes from that original
set. In the present context, this permits the tracing of spe-
cial vertexes through the folding process and reporting on
the status of the super-vertexes that result from the folding
process. Pseudocode for Procedures 2 and 3 are provided in
the following.

4.5 Initialization Generalizations

The default community assignment vector s(0) =
(1, 2, . . . , p) in Procedure 2 is consistent with the initializa-
tion of the Louvain method and represents a bottom-up ap-
proach in the greedy optimization process. Experimentally,
we have found that a top-down approach is often more effec-
tive in the context of the constraint that each community
must consist of at least one special vertex.. We provide a
summary of this procedure in the following pseudocode for
Procedure 4.

4.6 CMOP

We finally present the pseudocode for the main Con-
strained Modularity Optimization Procedure (CMOP) in Pro-
cedure 5.

Among the three constrained, high-modularity commu-
nity assignment vector std, smr, and snull, as computed in
Algorithm 5, the vector corresponding to the greatest mod-
ularity value is ultimately returned.

Procedure 4: Initialization.
Input:
W: a p× p symmetric, weighted adjacency matrix
V′

τ : special vertex set of size p′

top_down: Boolean, return the community assignment
vector computed by the Louvain method
merge_regular: Boolean, assign to the same community
regular (non-special) vertexes that belong to the same
connected component.
Output:
s: a community assignment vector

if top_down then
s ← Louvain_Method(W)

else
if merge_regular then

// Assign in the community assignment
vector s a unique community label to
each v′ ∈ V′

τ

// Then label together all regular
(non-special) vertexes v ∈ V \V′

τ that
belong to the same connected component

else
// Assign to each vertex v ∈ V a unique

community label in the community
assignment vector s

return s

Procedure 5: CMOP: Constrained Modularity Op-
timization Procedure.
Input:
W: a p× p weighted, symmetric adjacency matrix
V′

τ : a set of size p′ consisting of special vertexes
Output:
ŝ∗R: the maximum modularity community assignment
vector discovered by the procedure that satisfies the
constraint that to each community belongs at least one
special vertex v′ ∈ V′

τ

// Use Initialization in Procedure 4 to
generate...

// std: using the top_down flag
// smr:: using the merge_regular flag
// snull: using neither flag

// Apply Recur in Procedure 1 to each std, smr,
and snull

return argmax s∈{std,smr,snull} Q(s|W)

5. APPLICATION: DEFINITION OF HEALTH
CARE COMMUNITIES

The nationwide hospital network we consider consists of
p = 4734 hospitals, as depicted in Figure 1a, among which
1388 (29.3%) are CCFs hosting at least τ = 1 ICD surgeries
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and correspond to special vertexes in v′ ∈ V′. We begin this
analysis by processing the data.

Figure 1: Hospital Network-graph: (a) plot of log his-
togram density vs log degree for all hospitals (black points)
and only CCF hospitals (green points). Lines of best fits
for the head (red line) and tail (blue line) of the log degree
distribution of all hospitals. (b, c) The edges retained af-
ter pruning, see Appendix B. All hospitals are marked as
small yellow points whereas, in (b) the vertexes with de-
grees in the tail of the degree distribution are marked with
red points with radii proportional to their degree and in
(c) the vertexes representing cardiac care facilities (CCFs)
are marked in green points with radii proportional to the
total number of ICD implantations that took place during
the study period at that facility. (d) Using a database of
all United States zip codes, along with their respective lati-
tude and longitude coordinate, we indicated on the map the
community of the nearest hospital to that zip code, with
the understanding that a patient in that zip code is likely to
travel to the nearest hospital in case of cardiac emergency.

5.1 Data Processing

The weighted degree distributions of all hospitals and the
CCFs in Figure 1a illustrate the different orders of magni-
tude in their respective quantities. We compute the Pearson
chi-square test statistic for independence

χ2
ij =

(Wij − Eij)
2

Eij
,

where Eij =
didj

2m , for i, j ∈ {1, 2, . . . , p}, and note that in
Figure 1c, a rather clear trend reflecting the exponential de-
cay of the χ2

ij quantities in the nationwide hospital network-
graph. We set ζ = 266.4843 as the 0.995 quantile threshold
of the collection of

(
p
2

)
chi-square quantities above and define

the unweighted adjacency matrix A of the pruned nation-
wide hospital network as A = 1{χ2 > ζ}, where χ2 ∈ R

p×p

with elements χ2
ij for i, j ∈ {1, 2, . . . , p} and the indicator

function 1{·} is applied element-wise.
The argument s of the objective function Q(s|W) in

Equation (2.1) is of principal concern, as opposed to the
weighted network itself. Accordingly, we reduce the network
dataset by pruning the weighted network edges that are
relatively inconsequential in the evaluation of the modu-
larity quality function in Equation (2.1). If, for instance,
Wij −Eij ≈ 0, i.e., the observed weight of the edge connect-
ing vertexes vi and vj is approximately as expected under
the configuration model, then whether vertexes vi and vj
have the same or different community assignments results
in a small marginal change in Q(s|W). Conversely, if the
observed weight Wij � Eij or Wij 
 Eij then the com-
munity assignments of vertexes vi and vj has a relatively
greater marginal impact on Q(s|W). Accordingly, a large
value of (Wij −Eij)

2 implies that the correspondence of the
community assignments of vertexes vi and vj are important.
The χ2

ij value standardizes this value so that comparisons
among the magnitudes of (Wij−Eij)

2 across all vertex pairs
{(vi, vj) : i, j ∈ {1, 2, . . . , p}} are meaningful.

The United States map in Figure 1b indicates that the
bulk of ICD surgeries occur in hospitals located in the East-
ern States and have a higher frequency of shared patients
with physicians associated with other hospitals compared
to the entire population of hospitals in the network. Note
that in Figure 1a the degree distributions of all hospitals
and, separately, that of cardiac care facilities only are sim-
ilar and, moreover, Figure 5c of the quantiles of respective
degree distribution of regular (non-special) vertexes against
special vertexes indicates that there is no significant differ-
ence between the two distributions, see Appendix A. The
consequence of this fact is that the distribution of cardiac
care facilities within communities is not expected to be an
artifact of the network modularity quality function.

5.2 Unconstrained Hospital Network
Communities

To estimate unconstrained communities in the hospital
network we used the cluster_louvain function that be-
longs to the igraph R package. [25, 6] The resulting commu-
nities are mapped to local zip codes, and displayed in Figure
2, to reflect the hospital community into which a resident of
each zip code would likely be entered upon a cardiac emer-
gency.

The geographical proximity of unconstrained hospital
communities, as quantified by the network modularity qual-
ity function and estimated via the Louvain method, is
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Figure 2: Unconstrained Hospital Communities: (a)
Histogram of base ten logarithm of the pruned network de-
gree distribution using 0.995 quantile threshold on original
patient-sharing edge weights in the hospital network. (b)
Selection of threshold τα = 36, where the subscript reflects
the α = 0.265 quantile of the distribution of ICD procedures
performed at CCF hospitals, see Figure 5a, as the change
point in the trend of number of communities in violation of
the constraint, i.e., communities that do not possess a hos-
pital where at least τα ICD implantations were performed,
appears to change. Note that this trend and the correspond-
ing location of interest depends on the graph topology. (c)
The result of first employing the Louvain method on the na-
tionwide network of hospital referrals for cardiac care and
subsequently extending the communities to local zip codes
via the K = 1 nearest neighbor criterion. The unconstrained
communities exhibit some contiguity. However, because the
communities are not constrained to be geographically con-
tiguous, some of the communities have highly elongated
shapes as they include at least one hospital far apart from
the others. (d) Zip codes labeled as belonging to a commu-
nity in violation of the constraint (red) or as belonging to a
feasible community (blue).

relatively expected. In fact, if we consider the five most
geographically-proximal hospitals to each zip code in the
United States then we find that 72.1% of zip codes are clos-
est to five hospitals all of the same unconstrained community
and 24.5% are closest to five hospitals from two different un-
constrained communities.

5.3 Defining Heath Care Communities
We now apply Procedure 1 to the nationwide unweighted

hospital network-graph to identify the health care commu-

nities. As it turns out, the unconstrained community assign-
ment vector sopt results in a single network community that
is in violation of the constraint that each community have
at least one cardiac care facility (CCF) where at least one
implantable cardioverter defibrillator (ICD) procedure was
performed during the study period.

In order to more completely and accurately illustrate the
utility of our methodology, we restrict the special vertex set
to consist of vertexes corresponding to hospitals at which at
least τ0.265 = 36 ICD procedures were performed, where τα
is the α quantile of the distribution of ICD procedure counts
across all CCFs in the nationwide network, see Figure 2. This
restriction tightens the constraint of the optimization prob-
lem and, practically, corresponds to the requirement that
each health care community discovered by Procedure 1 has
a greater lower-bound on the quantity of ICD procedures
performed therein.

Our procedure considers each of the initial conditions
of the recursive-backtracking Procedure 1 and ultimately
selects sopt. Subsequently, two options are considered: (i)
should a special vertex be relabeled according to the com-
munity in violation and then subsequently update the ele-
ments of the community assignment vector by applying an
alternating sequence of Procedures 2 and 3 until the local
optimum shcc = sR is identified via many computations of
the forms in Equations (4.1) and (4.2). We consider the
length p = 4734 vector y0 containing the number of ICD
procedures taking place at each corresponding hospital, e.g.
yk = 0 if vk does not represent a hospital where any ICD
procedures were performed and otherwise yk > 0. Define the
vector y(α) with elements

y
(α)
k =

{
yk if yk > τα

0 otherwise,

for some τα ≥ 0. Note that, as displayed in Figure 2b, with
τ0.96 = quantile(y0, 0.96) and V′

α = {vk : yk > τα, for k ∈
{1, 2, . . . , p}} then, with this subset V′

α ⊂ V′ of special ver-
texes, the number of communities in violation of the con-
straint has risen to seven. We subsequently executed Proce-
dure 1 with W = A and V′ = V′

α. Please see Appendix B
for more details.

The role of τα in this application is that of τ in the pre-
ceding description of the general procedure. Note that this
is the only parameter that modifies the contents of the aux-
iliary information contained in V′ ⊆ V. Other parameters,
including ζ, which control the topology of the unweighted
network-graph A, are pertinent to the general problem of
modularity quality function optimization and are related to
the base Louvain method.

5.4 Results Using a Subset of Special Vertices
By applying Procedure 1 to the unweighted adjacency

matrix A and the reduced special vertex set V′
α, we approxi-

mate the maximizer community assignment vector shcc = sR
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Figure 3: Depiction of Health Care Communities
(a) The nationwide-network of hospitals is partitioned into
a constraint-satisfying communities of hospitals such that
each community contains at least one of the CCFs exceeding
the defined ICD procedure threshold. Because the commu-
nities are not constrained to be geographically contiguous,
some of the communities have highly elongated shapes as
they include at least one hospital far apart from the oth-
ers. (b) A bipartite graph reflecting the overlap between
unconstrained communities (bottom row) and constrained
communities (top row). The width of the line segment be-
tween vertexes, each of which is representing a community
consisting of a number of vertexes that is proportional to
its dot radius on the plot, reflects the relative overlap of the
communities in each class. The number below or above each
vertex equals the number of CCFs contained within each
community.

of the network modularity quality function subject to the
constraint that each community include at least one vertex
v′ ∈ V′

α and note that it corresponds to a network mod-
ularity quality function value of Q ≈ 0.6814, whereas the
unconstrained modularity value of Q ≈ 0.6805. It turns out
that the marginal adjustments subsequent to the constraint-
satisfaction elements of Procedure 1 may indeed identify a
yet greater local maximum than the community assignment
vector identified by the Louvain procedure. We do not con-
sider this marginal improvement as worthwhile, however,
due to the computational time requirements of such adjust-
ments. We nevertheless note that, importantly, our strategy
for identifying high-quality constrained communities is able
to do so effectively. A plot of the health care communities
identified by Procedure 1 is provided in Figure 3. We note
that nmi(sopt, sR) ≈ 0.9432, implying that the relative mu-
tual correspondence between the two vertex community as-
signments. Note that this procedure requires approximately
14.35 minutes to halt compared with the near instantaneous
computation of unconstrained communities on the same net-
work with the Louvain method.

It is imperative for the reader to recognize the Louvain
method as agnostic to vertex attributes and, in particular,
to the accumulation of vertexes with particular attributes
in communities discovered by the method. The modular-
ity quality function, which the Louvain method optimizes

in a greedy manner, is exclusively a function of the edge
set of a graph. Accordingly, modifying the designation of
special vertexes, as in the present context, does not modify
the composition of the resulting communities discovered by
the method. Our proposed method, by contrast, is specifi-
cally devised to address the composition of discovered net-
work communities, that is, the assignment of special ver-
texes to each community. It follows that, if the number of
special vertices is diminished, as was demonstrated in the
present application, then the constraint that each commu-
nity contain at least one special vertex becomes more strin-
gent and the community structure discovered by our proce-
dure is modified. We have depicted, in the context described
in this section, precisely how the community structure of
the network is modified by including a strict constraint.
Although the computational time required to compute the
constraint-satisfying community structure exceeds that of
the time required to compute an unconstrained community
structure, the leveraging of additional information related to
vertex attributes is worthwhile, in this context and in many
other contexts as discussed in the Introduction section of the
present article, to facilitate meaningful comparisons across
communities that are standardized by the constraint.

6. SIMULATION ON ZACHARY KARATE
CLUB

In the following, we consider each k-tuple, for k ∈
{2, 3, 4, 5, 6} as the set of special vertexes V′, among the
set of p = 34 vertexes in the unweighted Zachary Karate
Club social network-graph. [32] We apply Procedure 1 to
determine, for each of these tuples of special vertexes, to
record the modularity of each constraint-satisfying commu-
nity assignment vector returned by Procedure 1, the initial
position selected by the procedure, and the relative length
of the computational time for the procedure to halt. The
results of the simulation study are presented in Figure 4.

The quantity C(p, p′, n) in Equation (2.2) counts the
number of feasible community assignments for a given p =
|V|, p′ = |V′|, and number of communities n. While this
number reflects the number of community assignments nec-
essary to brute-force check and, therefore, guarantee that
the optimum defined in Equation (2.4) has been obtained,
our greedy procedure is guided by the network topology and
halts in many fewer iterations. Since the number of com-
munities n is automatically chosen by the procedure, the
computational time required for our procedure to halt is a
function of (i) the number p′ of special vertexes and (ii)
the distribution of the special vertexes within the network-
graph. For example, if nopt is the number of unique labels,
i.e. communities, represented in sopt in Equation (2.3) and
p′ < nopt or if p′ ≥ nopt but the special vertexes are fre-
quently labeled similarly in sopt then some work is necessary
to compute sR of in Equation (2.4).
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Figure 4: Simulation: Zachary Karate Club (a) The
optimal community assignments in this social network of
p = 34 vertexes. (b) The marginal relative frequency that
each initial condition was selected by Procedure 5 over all(
p
d

)
choices of special vertexes, for d = 2, 3, 4, 5, 6. (c) The

relative gain in modularity (modularity of constrained com-
munity assignment)/(modularity of unconstrained commu-
nity assignment) - 1 by number of special vertexes in the
network d = 2, 3, 4, 5, 6. (d) Logarithm base 10 of the rel-
ative (to the median computational time with two special
vertexes in the network) amount of computational time for
Procedure 5 to halt. We did not include instances when the
unconstrained community assignment vector satisfied the
constraint.

7. CONCLUSION
Our method for identifying network communities opti-

mizes a quality function while adhering to constraints. The
results in this paper establish the utility of penalized opti-
mization in community detection. Our method is versatile
and amenable to many types of constraints on the composi-
tion of communities. We note that our procedure is valid for
any constraint which is an increasing function of the vari-
able of interest, e.g., number of CCF hospitals belonging
to a community, number of cardiac surgeons, quantity of
cases involving improper medical procedures, etc. The key
requirement of our constrained optimization procedure is
that the merging of two communities must not be the basis
for the resulting community to be in violation of the con-
straint. A constraint that imposes a maximum ICD volume
is, for example, not of this type.

There exists a disconnect between network science and

health services research due in part to the incongruence be-
tween mathematical elegance and real-world constraints. We
have provided an illustration of the application of both a
pure (unconstrained) method and one with constraints. We
solved the practical problem of partitioning a network of
hospitals with the constraint that the number of ICD sur-
gical procedures that have taken place at at least one hos-
pital belonging to each community exceeds some threshold.
Though our method advances both the community detec-
tion and heath services literature, it is not complete from the
perspective of a health care policy maker since many real-
world constraints remain to be incorporated. Another type
of constraint is, for example, given the geographic locations
of hospitals, a requirement that communities not exceed a
defined geographic maximum diameter or that they satisfy
a geographic congruity constraint. On the other hand, one
shouldn’t necessarily seek to impose geographic contiguity
constraints, for example, if one is interested in analyzing
the effect of telemedicine or remote monitoring, for which
the organization of health care does not need to conform as
much to geography. This article is an initial exploration of a
line of thinking that we anticipate will substantially advance
the practical utility of community detection.

In terms of health policy, our future research involving an
outcomes-based analysis of the communities discovered by
our method, as constrained here by minimum ICD surgery
volume and subsequently by other factors, will lead to en-
hanced acuity and potentially greater statistical power for
studying variations in health care markets (based on patient
referral patterns). Through standardizing the composition
of the HCCs, our method provides the tools for such com-
parisons to be made meaningfully.

APPENDIX A. CHANGE IN MODULARITY
Let Ii, I2 ⊆ V be two disjoint vertex subsets that are to

be merged into I = I1 ∪ I2 ⊆ V and define QI1,I2 and QI

respectively as the modularity of a vertex partition prior to
and subsequent to the merger. The change in modularity

ΔcommQ = QI −QI1,I2

=
1

2m

∑
i1∈I1

(∑
i2∈I2

Wi1i2 −
1

2m
di1di2

)

gives rise to Equation (4.1). On the other hand, suppose that
I0, I1 ⊆ V and that the vertex vj ∈ I0 is to be reassigned
to I1 and define ΔQ−

I0
as the change in modularity resulting

from removing vertex vj from I0 and define ΔQ+
I1

as the
change in modularity resulting from adding vertex vj to I1.
The change in modularity

ΔvertQ = Δ+
I1
−Δ−

I0

∝
∑
i1∈I1

(
Wi1j −

di1dj
2m

)
−

∑
i0∈I0
i0 �=j

(
Wi0j −

di0dj
2m

)
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Figure 5: Pruning the Special Vertex Set: (a.) His-
togram of number of ICD implantation procedures per-
formed at CCF hospitals. (b) Quantiles of the degree dis-
tribution conditional on CCF status vs quantiles of the full
vertex set degree distribution.

∝
∑
i1∈I1

(
Wi1j −

di1dj
2m

)
−

∑
i0∈I0

(
Wi0j −

di0dj
2m

)

+

(
Wjj −

d2j
2m

)
,

where the individual term Wjj−d2j/2m must be added since
vj ∈ I0 at the outset, gives rise to Equation (4.2).

APPENDIX B. PRUNING
There are several hospitals where few ICD implantations

occurred and, in order to isolate those where relatively many
were performed, we first estimated the unconstrained net-
work communities using the Louvain method. We subse-
quently counted the number of communities in violation of
the constraint over a range of α ∈ [0, 1] and with the corre-
sponding

τα = inf{x ∈ Z+ : F̂icd(x) ≥ α},

that is, the α · 100% quantile of the distribution of ICD
procedures across all hospitals where at least one such pro-
cedure was performed (Figure 5a.). We find that α = 0.96,
which corresponds to τ0.265 = 36 (Figure 5b.)
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