
The New England Journal of Statistics in Data Science Volume 2, 120–135 (2024)
DOI: https://doi.org/10.51387/23-NEJSDS28

Simultaneous False-Decision Error Rates in Master Protocols with
Shared Control: False Discovery Rate Perspective

Jingjing YE
∗
, Xiaoyun (Nicole) LI, Chengxing LU, and William WANG

Abstract
Master protocol is a type of trial designs where multiple therapies and/or multiple disease populations can be inves-

tigated in the same trial. A shared control can be used for multiple therapies to gain operational efficiency and gain
attraction to patients. To balance between controlling for false positive rate and having adequate power for detecting true
signals, the impact of False Discovery Rate (FDR) is evaluated when multiple investigational drugs are studied in the
master protocol. With the shared control group, the “random high” or “random low” in the control group can poten-
tially impact all hypotheses testing that compare each of the test regimens and the control group in terms of probability
of having at least one positive hypothesis outcome, or multiple positive outcomes. When regulatory agencies make the
decision of approving or declining one or more regimens based on the master protocol design, this introduces a different
type of error: simultaneous false-decision error. In this manuscript, we examine in detail the derivations and properties
of the simultaneous false-decision error in the master protocol with shared control under the framework of FDR. The
simultaneous false-decision error consists of two parts: simultaneous false-discovery rate (SFDR) and simultaneous false
non-discovery rate (SFNR). Based on our analytical evaluation and simulations, the magnitude of SFDR and SFNR in-
flation is small. Therefore, the multiple error rate controls are generally adequate, further adjustment to a pre-specified
level on SFDR or SFNR or reduce the alpha allocated to each individual treatment comparison to the shared control is
deemed unnecessary.

keywords and phrases: Shared control, False-discovery rate, Platform trial, Simultaneous decision error, Master pro-
tocol.

1. INTRODUCTION: MASTER PROTOCOLS
AND MULTIPLICITY ISSUES

Master protocols have received growing interests in drug
development in recent years. Master protocols, classified as
basket trials, umbrella trials or platform trials, refer to a
type of trial designs that test multiple therapies, either indi-
vidually or in combination, and/or in multiple disease popu-
lations in parallel under a single overarching protocol, with-
out a need to develop individual protocols for every sub-
study [6]. Master protocols can potentially address the clin-
ical development challenges of determining which therapy or
combinations could get the most robust response in diseases
that have heterogeneous patient populations or where multi-
ple therapeutic approaches exist. One type of master proto-
cols is platform trial with shared control, that compares mul-
tiple treatments simultaneously with a shared control arm.
This contrasts with the traditional designs where candidate
compounds are developed separately in separate studies; and
each of them has its own control arm. These traditional ap-
proaches have become expensive over the years. Platform
trials with a shared control arm can study multiple candi-
date compounds simultaneously, leading to reduction of the
∗Corresponding author: https://orcid.org/0000-0003-0086-2228.

total sample size [18]. One should note that although there
is no uniform definition of platform trials in literature, in our
paper, we use the definition based on the recommendation of
American Statistical Association (ASA) Biopharmaceutical
Section (BIOP) Oncology Scientific Working Group (SWG)
master protocol sub-team. Platform trial is defined as a mas-
ter protocol designed to incorporate design features of both
the basket and umbrella trials, or with focus on the perpet-
ual manner of a basket or/and umbrella trials [9]. Based on
this definition, master protocols with shared control can be
considered as platform trials with shared control.

Despite the advantages, platform trials with shared con-
trol present some unique statistical and regulatory chal-
lenges from the design perspective. Due to the potentially
large number of patient cohorts, treatment regimens or sub-
studies, it requires more careful assessments of multiplicity,
i.e, the control of Type I error for statistical and regula-
tory decision making. The traditional type I error of inter-
est, namely the family-wise type I error (FWER), is defined
as the probability of claiming at least one treatment pos-
itive assuming none is active. When multiple independent
two-arm trials are conducted comparing each investigational
regimen to its control in traditional designs, no multiplicity
adjustment is necessary if independent hypotheses are tested
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[5, 13]. However, in platform trials with shared controls, mul-
tiple experimental treatment regimens are integrated into
one trial. With the use of a shared control arm, test statistics
are positively correlated. [8] and [1] showed that the family-
wise error rate (FWER), e.g., the probability of at least
one false positive finding across the arms, is smaller com-
pared to tests in independent two-arm trials. Therefore, the
traditional FWER under global null is no longer the most
relevant measure in platform trial with a shared control [3].

As Fleming [7] eloquently pointed out, clinical trial re-
sults are subject to the sampling context, the phenomenon
of “random high” bias can lead to overestimation or un-
derestimation of outcomes. With the shared control group,
the “random high” or “random low” in the control group
can potentially result in inflated decision errors for all hy-
potheses that compare each of the test regimens and the
control group. In regulatory decision context, Collignon et
al (2020) [5] referred it as another error, simultaneous mul-
tiple false positive regulatory decisions. The simultaneous
false-positive regulatory error is different from the FWER
on multiple treatments because the decision is now corre-
lated when a shared control is in place. This can be illus-
trated as multiple false-positive error (MFPE) as the prob-
ability of making multiple (at least two) simultaneous false
positive decisions when all null is true. In the confirmatory
setting, regulators are mainly concerned on type-I error and
Type-II error is the sponsor’s risk. However, both are errors
that would need to be recognized and would lead to wrong
decisions.

Given a shared control, the simultaneous false-decision er-
ror would happen in two scenarios: 1) if the shared control
outcome is at ‘random low’, the statistical tests may then be
significant for more than one treatment comparison, even if
none of the investigational drugs are active. Therefore, the
chance of simultaneous false-positive increases compared to
that with independent two-arm trials [8]; 2) if the shared
control outcome by chance is overoptimistic, the statistical
tests may then not be able to reject the null hypothesis for
more than one treatment comparison, even if the alterna-
tive hypothesis of treatment efficacy is true for all investiga-
tional drugs, therefore the simultaneous false-negative may
increase compared to that with independent two-arm trials
[5]. Similar to FWER, family-wise type II error is defined
as probability of at least one treatment is negative when all
are active. The different kind of error, multiple false negative
error (MFNE) is then defined as the probability of making
multiple (at least two) simultaneous false negative decisions
when all alternative is true.

In recognizing the new type of error introduced because
of the shared control design, the goal of this paper is to
characterize and quantify such error under the framework
of false discovery rate. Collignon et al (2020) [5] restricted
their discussion of simultaneous decision error to the false-
positive. In our paper, we expand to define the Simultane-
ous False-Decision Error both to simultaneous type-I er-
ror and simultaneous type-II error. Additionally, Collignon

et al (2020) [5] and Howard et al (2018) [8] focused the
discussion on MFPE. However, in reality, some treatment
arms are effective, and some are not. The platform trial with
shared control can also be in exploratory phase rather than
confirmatory stage. This especially became relevant during
the COVID-19 pandemic. There is an urgent need to evalu-
ate multiple drugs in one study in treating COVID-19. Plat-
form trial with shared control has been utilized in response
to the requirement as an efficient design. ACTIV-2, a study
for outpatients with COVID-19, is such an example. Multi-
ple drugs were initiated in the platform trial and patients
were randomized to receive either the investigational drugs
or a shared placebo in Phase II setting. Then in phase III
portion, patients were randomized to receive either the in-
vestigational drug or a common active comparator [4]. The
concept becomes relevant in both the exploratory and con-
firmatory setting to evaluate the probability that multiple
ineffective treatment can be declared effective and the prob-
ability that multiple effective treatments can be declared
ineffective when a shared control is used.

From a societal perspective, platform-wise (or indication-
wise) error rates are of importance: what is the probability,
that at least one ineffective treatment is declared effective?
What is the probability that multiple ineffective treatment is
declared effective in a platform trial setting? What is the ex-
pected number of ineffective treatments declared effective?
Proper statistical procedures may be needed to address this
to ensure scientifically valid decision making.

Alternative approach to address multiplicity is thus pro-
posed evaluating False Discovery Rate (FDR) by [2] when
multiple investigational drugs are evaluated. The control of
false discoveries is particularly relevant in a multi-arm plat-
form trial with a shared control. The false discovery rate is
the expected proportion of false positives among all treat-
ment arms declared effective [17]. For example, when con-
ducting a phase 2 platform trial to select ‘performing’ com-
bination therapies into confirmatory phase 3 testing, one
would be interested in the more practical question: among
the ones that are tested positive in the platform trial under
certain pairwise type I error, how many are truly effective,
and how many are ineffective. This corresponds exactly the
definition of false discovery rate. By the same token, one
would also be interested in the rate of true positive among
the ones that were tested non-positive, this corresponds to
the false negative rate or false non-discovery rate.

This manuscript expands beyond the traditional type
I error control and examine specifically different errors in
terms of false discovery rate (FDR) and false non-discovery
rate (FNR) to enable scientific decision making for multi-
arm platform trials. We examine in detail the derivations
and properties of the simultaneous false-decision error in the
platform with shared control under the framework of FDR.
The simultaneous false-decision error consists of two parts:
simultaneous false-discovery rate (SFDR) and simultaneous
false non-discovery rate (SFNR). We quantify the magni-
tude of SFDR and SFNR inflation based on our analytical
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evaluation and simulations when regulatory agencies make
the decision of approving or declining an application based
on a platform design. These evaluation and simulations show
that the magnitude of SFDR and SFNR inflation is small.
With such small magnitude, our recommendation is that at
the study design stage, we need be aware of this type of er-
ror, and their impact on the conclusions of a platform trial.
Overall, the multiple error rate controls are generally ade-
quate, further adjustment to a pre-specified level on SFDR
or SFNR or reduce the alpha allocated to each individual
treatment comparison to the shared control is deemed un-
necessary.

The manuscript is organized as follows: Section 2 dis-
cusses the concepts of false discovery rate and false non-
discovery rate. Applying these rates in a multi-arm trial
allows us to balance the control of false discoveries while
maintaining the power of detecting true treatment effects.
Section 3 defines simultaneous false-decision error rates in
the context of false discovery rate and false non-discovery
rate, i.e., simultaneous false discover rate (SFDR) and si-
multaneous false non-discovery rate (SFNR). [17] explored
the idea of FDR via simulation studies. In our manuscript,
statistical derivations for these error rates will be provided
in the situations with independent control (i.e., for indepen-
dent test statistics) and with shared control (i.e., for cor-
related test statistics). Additionally, theoretical derivations
on FNR will be provided. Section 4 will provide analytical
and simulation results that further illustrate the statistical
properties of these error rates. Section 5 discusses the real-
world setting for possible design changes using SFDR and
SFNR. Section 6 will provide summary and discussion.

2. FALSE DISCOVERY RATE (FDR) AND
FALSE NON-DISCOVERY RATE (FNR)

In platform trials with shared control, each treatment-
control pair would have a hypothesis to test its efficacy
against the null hypothesis. In a confirmatory setting in
phase III clinical trials, multiple hypotheses testing may be
a concern when testing several hypotheses simultaneously.

2.1 Definition
Instead of controlling FWER, Soric (1989) [12] proposed

the framework for quantifying the statistical significance of
multiple hypothesis tests based on the proportion of Type I
error among all hypothesis tests declared statistically signifi-
cant and proposed the concept of false discovery rate (FDR),
that concerns the proportion of false discoveries among the
ones that are claimed statistically significant.

Table 1 summarizes the various outcomes that occur
when testing m hypotheses. V is the number of type I errors
(or false positive results). T is the number of type II errors
(or false negative results).

In a multi-arm platform trial setting, the commonly used
measure of family-wise type I error rate (FWER) can thus

Table 1. Outcomes when testing m hypotheses.
Null is true Alternative is true Total

Rejected V S R
Not rejected U T m−R

Total m0 m−m0 m

be defined to be Pr(V ≥ 1), while false discovery rate (FDR)
is defined to be FDR = E

(
V
R

∣∣ R > 0
)
.

As discussed in [15], our definition of false discovery rate
(FDR) is referred as the definition of positive false discov-
ery rate (pFDR). In [14], the positive false discovery rate
describes the fact that we have conditioned on at least one
positive finding having occurred. In practice, evidence-based
decisions (e.g., regulatory approval, continuation of further
clinical investment) are often made among those treatments
that have shown positive results. It would be important to
control the total rates of false positive decisions. If none of
the positive findings has occurred, the decision on the treat-
ment arms would likely be no plan for further development.
Therefore, by conditioning on at least one positive finding
is more relevant in practice in multi-arm platform trials.

Similarly, one can consider the type II error rate in a
multi-arm platform trial setting as the probability of at
least one alternative hypothesis tested negative. We call it
family-wise type-II error rate in this manuscript. The family-
wise-type II error can be defined as Pr(T ≥ 1). Similar to
FDR, false non-discovery rate (FNR) in [14] is defined as
FNR = E

(
T

m−R

∣∣∣ m − R > 0
)
. Of note, our definition of

false non-discovery rate is referred as the definition of posi-
tive false non-discovery rate (pFNR) in [14]. This definition
conditions on at least one negative finding having occurred
and it is more relevant in the multi-arm trial setting.

2.2 Algorithm
When m hypotheses are tested, Storey (2011) [15] gave

the following algorithm. Denote the p-values of the m tests
by {p1, p2, . . . , pm}. For a given type-I error α, let V (α) =
#{false positive pi : pi ≤ α}, assuming m0 null hypothe-
ses, and R(α) = #{pi : pi ≤ α} be the total number of
hypotheses that are rejected.

When R(α) > 0, Storey and Tibshirani (2001) [16] sug-
gested estimating FDR by the approximation:

FDR(α) = E
[
V (α)
R(α)

∣∣∣ R(α) > 0
]
≈ E[V (α)]

E[R(α)] . They pointed
out that a simple estimate of E[R(α)] is the observed R(α).

Given the above, we use conventional notations α and
β to be the type I error and type II error for each of the
hypotheses tested. If we assume m0 is known and here
R > 0, we have FDR ≈ m0α

m0α+(m−m0)(1−β) . Similarly, as-
sume m0 is known and assume T = m − R > 0, FNR =

E
(

T
m−R

∣∣∣ m0,m − R > 0
)
≈ (m−m0)β

m0(1−α)+(m−m0)β
. Therefore,

when m0 is given, FDR and FNR as well as their approxi-
mations are functions of α and β. In [15], the FDR is con-
trolled at pre-specified level, e.g., 0.05 (two-sided), as the
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number of hypothesis tests grows large. In the master pro-
tocol setting, when multiple investigational drugs compare
to a shared control, the control of simultaneous false dis-
covery rate would be equivalent to control the proportion of
positive findings out of the multiple pair-wise comparisons
between each investigational arm to the shared control.

3. SIMULTANEOUS FALSE-DECISION
ERROR RATES

In this section, we will define the simultaneous false-
decision error using the framework of FDR and FNR and
give the derivations.

3.1 Definition and Clinical Interpretation
The simultaneous false-decision error would consist of two

parts: simultaneous false-positive decision error and simul-
taneous false-negative decision error.

The simultaneous false-positive decision error would in-
crease when the shared control by chance is weak, where
the statistical tests would reject more than one treatment
comparison when no treatment effect is actually true. Using
the notations in section 2.1, it can be written as Pr(V > 1).
In the FDR framework, we define the simultaneous false-
positive decision error as simultaneous false-discovery rate
(SFDR) = E

(
V
R ∗ I(V > 1)

∣∣∣ R > 0
)
.

Similarly, the simultaneous false-negative decision error
would increase when the shared control by chance is overop-
timistic, where the statistical tests would be unable to
reject the null for more than one treatment comparisons
when treatment efficacy is true. Using the notations in sec-
tion 2.1, it can be written as Pr(T > 1). In the FNR
framework, we define the simultaneous false-negative deci-
sion error as simultaneous false non-discovery rate (SFNR)

= E
(

T
m−R ∗ I(T > 1)

∣∣∣ m−R > 0
)
.

The Simultaneous False-Decision Error (SFDE) consists
of two parts: SFDR = E

(
V
R ∗I(V > 1)

∣∣∣ R > 0
)
, and SFNR

= E
(

T
m−R ∗ I(T > 1)

∣∣∣ m − R > 0
)
, corresponding to the

commonly used measure Pr(V > 1) and Pr(T > 1).

3.2 Derivation
3.2.1 Derivation in the Case of Independent Tests

When m0 is known, using conventional notations α and
β as the type I error and type II error for each of the hy-
pothesis testing, assuming each hypothesis is independent
(i.e., m two-arm studies with no shared control), the mar-
gins of Table 1 would be known. To derive FDR and FNR,
the calculation would be:

FDR

= E

(
V

R

∣∣∣∣ R > 0,m0

)

=

m0∑
j=1

[(
m0

j,m0 − j

)m−m0∑
k=0

(
j

k + j
)

(
m−m0

k,m−m0 − k

)

× Pr(V = j, U = m0 − j, S = k, T = m−m0 − k)

]

=

m0∑
j=1

[(
m0

j,m0 − j

)
αj(1− α)

m0−j

×
m−m0∑
k=0

(
j

k + j
)

(
m−m0

k,m−m0 − k

)
(1− β)k ∗ βm−m0−k

]
.

FNR

= E

(
T

m−R

∣∣∣∣ m−R > 0,m0

)

=

m−m0∑
j=1

[(
m−m0

j,m−m0 − j

) m0∑
k=0

(
j

k + j

)(
m0

k,m0 − k

)

× Pr(T = j, U = k, V = m0 − k, S = m−m0 − j)

]

=

m−m0∑
j=1

[(
m−m0

j,m−m0 − j

)
βj(1− β)m−m0−j

×
m0∑
k=0

(
j

k + j

)(
m0

k,m0 − k

)
(1− α)k∗αm0−k

]
.

As shown in section 2.2, when m0 is known, we can
approximate FDR and FNR calculation to be: FDR ≈

m0α
m0α+(m−m0)(1−β) and FNR ≈ (m−m0)β

m0(1−α)+(m−m0)β
.

Similarly, SFDR and SFNR can be expressed as the fol-
lowing:

SFDR

= E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0,m0

)

=

m0∑
j=2

[(
m0

j,m0 − j

)
αj(1− α)m0−j

×
m−m0∑
k=0

(
j

k + j
)

(
m−m0

k,m−m0 − k

)
(1− β)k ∗ βm−m0−k)

]

SFNR

= E

(
T

m−R
∗ I(T > 1)

∣∣∣∣ m−R > 0,m0

)

=

m−m0∑
j=2

[(
m−m0

j,m−m0 − j

)
βj(1− β)m−m0−j

×
m0∑
k=0

(
j

k + j

)(
m0

k,m0 − k

)
(1− α)k∗αm0−k

]
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However, in reality, the number of null hypotheses m0

is unknown. In the independent trial setting, m0 fol-
lows Binomial distribution Bin(m, 1 − p), where p is the
probability that the arm is truly active. When p = 0,
all arms would be inactive, and when p = 1, all arms
would be active. When p is between 0 and 1, the ex-
pected number of active arms would be mp. Therefore,
the SFDR = E

(
V
R ∗ I(V > 1)

∣∣∣ R > 0
)

and SFNR =

E
(

T
m−R ∗ I(T > 1)

∣∣∣ m−R > 0
)

are calculated integrating
all possible combinations when m0 ≥ 2, V > 1, T > 1:

SFDR

= E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0

)

= Em0

[
E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0,m0

)]

=

m∑
m0=2

[(
m

m0,m−m0

)
pm−m0(1− p)

m0

×
m0∑
j=2

(
m0

j,m0 − j

)
αj(1− α)

m0−j

×
m−m0∑
k=0

(
m−m0

k,m−m0 − k

)
j

j + k
(1− β)

k
βm−m0−k

]

SFNR

= E

(
T

m−R
∗ I(T > 1)

∣∣∣∣ m−R > 0

)

= Em0

[
E

(
T

m−R
∗ I(T > 1)

∣∣∣∣ m−R > 0,m0

)]

=

m−2∑
m0=0

m0p
m−m0(1− p)m0

[
m−m0∑
j=2

(
m−m0

j,m−m0 − j

)
× βj ∗ (1− β)m−m0−j

×
m0∑
k=0

(
j

k + j

)(
m0

k,m0 − k

)
(1− α)k ∗ αm0−k

]
.

Notice here, m0 is the number of true null hypotheses in
the platform trials. In this SFDR and SFNR definition, we
enumerate all possible values of m0.

The statistical definition/interpretation of SFDR is the
probability among m investigational arms that there can
be at least two null hypotheses that are wrongly rejected.
Similarly, the statistical definition/interpretation of SFNR is
the probability among m investigational arms that there can
be at least two alternative hypotheses that are wrongly not
rejected. From clinical and regulatory perspectives, when we
have multiple arms in a platform, SFDR further quantify the
chance of wrongly approving at least two regimens among
these arms, while SFNR quantifies the chance of wrongly

disapproving at least two regimens. It further calibrates the
specificity and sensitivity of the multi-arm platform trial.
In particular, when setting up the overall platform under a
single master protocol, one of the key clinical and regulatory
interests is how these error rates (SFDR and SFNR) change
with the number of arms.

By enumerating all possibilities of m0, SFDR and SFNR
are calculated as expected values when simultaneous (at
least two) errors can happen. The corresponding FDR and
FNR definitions can easily be derived to sum from m0 = 1
instead of from 2.

As described in [5], the Simultaneous False-Decision Er-
ror (SFDE) has two parts and can be quantified separately
by SFDR and SFNR. Note that the calculation of the joint
probability is under the assumption that each arm is inde-
pendently evaluated. This is the same as multiple indepen-
dent two-arm trials. Under the platform trial setting, Bai et
al (2020) [1] and Howard et al (2018) [8] discussed that with
common control, the test statistics to evaluate treatment
arms are positively correlated. We discuss the correspond-
ing derivation incorporating correlations in section 3.2.2.
3.2.2 Derivation in the Case of Correlated Tests

As discussed above, the calculation of the joint probabil-
ity in section 3.2.1 is under the assumption that each arm
is evaluated independently in separate two-arm studies to
support its claim of efficacy. Here we extend it to multi-
arm studies with m treatment arms and one shared control
arm. Let Zi denote the standardized test statistic compar-
ing each treatment arm i against the shared control arm
in a multi-arm trial, i = 1, . . . ,m. Assume a multivariate
normal distribution, if treatment arm i does not have treat-
ment effect under the null hypothesis, Zi ∼ N(0, 1). On the
other hand, denote δ as the unified treatment benefit under
the alternative hypothesis where δ > 0. If treatment arm i
has treatment effect, Zi ∼ N(δ, 1). Here δ can be derived
based on the desired α and β. For simplicity, we assume
the sample size in each treatment arm is same, as n1, and
the sample size in the shared control arm is n0. The covari-
ance between the two test statistics of different active arms
can be calculated as covij =

n1

n1+n0
, i, j = 1, 2, . . . ,m. With

equal allocation between treatment and shared control arms
(n1 = n0), the covariance is 0.5. In the illustrations below,
we assume α, β, and δ are given. Depending on the random-
ization ratio, sample size n0 and n1 would be different.

To derive E
(
V
R ∗ I(V > 1)

∣∣ R > 0
)
, since there is no

ordering of the treatment arms, from Table 2 a), without
loss of generality, the joint distribution can be written as
first j test statistics follow N(0, 1) with the next m0 − j
test statistics again follows N(0, 1), the next k test statistics
following N(δ, 1), the next m−m0−k test statistics follows
N(δ, 1), j = 2, . . . , k, k = 2, . . . ,m.

Therefore, Z = (Z1, . . . , Zj , Zj+1, . . . , Zm0 , Zm0+1, . . . ,
Zm0+k, Zm0+k+1, . . . , Zm) follows the m-dimensional mul-
tivariate normal distribution with mean μm = (0, . . . , 0︸ ︷︷ ︸

j

,
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Table 2. Break-down of the rejected and not rejected hypotheses in multi-arm platform trials.
a) with R = k + j rejected treatment arms out of m

Null is true Alternative is true Total
Rejected V = j S = k R = k + j

Not rejected U = m0 − j T = m−m0 − k m−R = m− k − j

Total m0 m−m0 m

b) with R = m− k − j rejected treatment arms out of m
Null is true Alternative is true Total

Rejected V = m0 − k S = m−m0 − j R = m− k − j
Not rejected U = k T = j m−R = k + j

Total m0 m−m0 m

0, . . . , 0︸ ︷︷ ︸
m0−j

, δ, . . . , δ︸ ︷︷ ︸
k

, δ, . . . , δ︸ ︷︷ ︸
m−m0−k

)m×1 and covariance matrix

σm =

⎛
⎜⎝

1 · · · n1

n1+n0

...
. . .

...
n1

n1+n0
· · · 1

⎞
⎟⎠

m×m

.

Given the m-dimensional multivariate normal distribu-
tion, the SFDR can be calculated as:

SFDR

= E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0

)

=

m∑
m0=2

Pr(m0)E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0,m0

)

=

m∑
m0=2

[(
m

m0,m−m0

)
pm−m0(1− p)m0

×
m0∑
j=2

(
m0

j,m0 − j

)m−m0∑
k=0

(
j

k + j

)(
m−m0

k,m−m0 − k

)

×
∫ uk

ak

f (Zk) dz

]

Where the lower bound ak = (1.96, . . . , 1.96︸ ︷︷ ︸
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) and f (Zk) is the pdf of the m-dimensional

multivariable normal with mean μm and variance-covariance
matrix σm.

Similarly, for Table 2 b), Z = (Z1, . . . , Zm0−k, Zm0−k+1,
. . . , Zm−j−k, Zm−j−k+1, . . . , Zm−j , Zm−j+1, . . . , Zm) fol-
lows the m-dimensional multivariate normal distribution

with mean μm = (0, . . . , 0︸ ︷︷ ︸
m0−k

, 0, . . . , 0︸ ︷︷ ︸
k

, δ, . . . , δ︸ ︷︷ ︸
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j
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and covariance matrix
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The SFNR can be written as:
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Where the lower bound ak = (1.96, . . . , 1.96︸ ︷︷ ︸
m0−k

,

−1.96, . . . ,−1.96︸ ︷︷ ︸
k

, 1.96, . . . , 1.96︸ ︷︷ ︸
m−m0−j

,−1.96, . . . ,−1.96︸ ︷︷ ︸
j

), and up-

per bound uk = (∞, . . . ,∞︸ ︷︷ ︸
m0−k

, 1.96, . . . , 1.96︸ ︷︷ ︸
k

,∞, . . . ,∞︸ ︷︷ ︸
m−m0−j

,

1.96, . . . , 1.96︸ ︷︷ ︸
j

) and f (Zk) is the pdf of the m-dimensional

multivariable normal with mean μm and variance-covariance
matrix σm. Note here the SFNR calculation is where the
k + j hypotheses are not rejected, while the SFDR calcula-
tion is where the k + j hypotheses are rejected. Similarly,
the definition of FDR and FNR can be seen as sum from
m0 = 1.
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Figure 1: Plot of Simultaneous False-Discovery Rate
(SFDR) (top) and Simultaneous False-Non-Discovery Rate
(SFNR) (bottom) given probability of active arms in inde-
pendent setting.

4. ANALYTICAL AND SIMULATION
RESULTS

Given the derivations in section 3, we can calculate simul-
taneous false-decision errors (SFDE). To show the results,
the number of investigational arms is generated for 4, 6, 10
and 15. We first evaluate the errors in the case of multi-
ple independent two-arm trials as reference. Assuming each
trial is tested at one-sided type-I error α = 0.025 and type-II
error β = 0.15, and patients are equally randomized to treat-
ment and control arm in its two-arm study, the SFDR and
SFNR across multiple trials are shown in Figure 1 against
the probability of truly active arms.

As shown on Figure 1 top plot, the simultaneous false-
discovery rate (SFDR) decreases with the probability of ac-
tive arms. Different colored lines show when there are 4,
6, 10, 15 arms in the platform respectively. When there are
more arms in the platform, the SFDR increases. The bottom
plot is the simultaneous false non-discovery rate (SFNR).

Figure 2: Equal randomization and unequal randomization
for multi-arm platform trials: simultaneous false-discovery
rate (SFDR) (top), simultaneous false non-discovery rate
(SFNR) (bottom).

Recall that SFNR evaluates the probability among m inves-
tigational arms that there can be at least two alternative
hypotheses that are wrongly not rejected. It increases with
the probability of active arms. As more and more arms are
truly active, the chance of simultaneous error will also in-
crease. SFNR is also a lot higher when there are 15 arms
than when there are only 4 investigational arms indicating
more chances for simultaneous error.

Next, we evaluate SFDR and SFNR for cases in a plat-
form trial with shared control, in which case the test statis-
tics of the multiple hypotheses are positively correlated. We
assume each hypothesis is still evaluated at the pairwise
type-I error α = 0.025, and its own type-II error β = 0.15.
We use p = 0.3 (30% of the arms are truly active) for the il-
lustration. We evaluate the number of treatment arms from
2 to 15. SFDR and SFNR in these scenarios are plotted in
Figure 2. The black line in Figure 2 (top) is the simultane-
ous false-discovery rate (SFDR) when each drug is evaluated
independently (i.e., independent two-arm trial setting) to es-
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Figure 3: Multiple False-Positive Error (MFPE) and Multiple False-Negative Error (MFNE) with shared control in plat-
form trial.

tablish its efficacy and patients are equally randomized to
treatment and control arms.

The red line in Figure 2 (top) plotted the case where
the test statistics are correlated with equal randomization
(i.e., platform trial with shared control setting). As ex-
pected, when the test statistics are correlated, the SFDR
would be higher than that with independent testing statis-
tics. Recall we define multiple false-positive error (MFPE)
as the probability of making multiple (at least two) si-
multaneous false positive decisions when all null is true.
When p = 0, the SFDR is same as MFPE. Note that un-
like MFPE, SFDR is calculated for mixed scenarios, where
the true number of alternative hypotheses are unknown,
and the calculation is an exhaustive search when there can
be at least two null hypotheses that are wrongly rejected.
When all arms are inactive, the SFDR would be the same
as MFPE.

The black line in Figure 2 (bottom) is the simultaneous
false non-discovery rate (SFNR) when each drug is evalu-
ated independently and patients are equally randomized to
treatment and control arms. The red line is the correspond-
ing SFNR where the test statistics are correlated with equal
randomization. The SFNR is similar when the test statis-
tics are correlated compared to that with independent test
statistics and stays smaller than independent test statistics
when the number of arms is larger than 8. As discussed in
[1], for the case where the shared control arm is at random
high, it is more likely that all tests are all negative at the
same time, however, in independent setting, the probabil-
ity of all control arms being random high is much smaller.
similarly, the corresponding SFNR, when p = 1, would be
same as MFNE (Figure 3). Unlike MFNE, SFNR is calcu-
lated as an exhaustive search when there can be at least two
alternative hypotheses that are wrongly not rejected.

In addition to equal randomization, we also evaluate cases
where unequal randomization ratio between each of the in-
vestigational drugs and the shared control is used. For il-

lustration here, we evaluate the situation where the ratio
of each treatment arm to the control arm is 1:2, i.e., more
patients would be randomized to the shared control in the
multi-arm platform trials compared to each investigational
drug. The test statistics of the arms are still positively cor-
related. Assuming the pairwise type-I error α = 0.025 and
type-II error β = 0.15, the updated sample size would be 38
for each treatment arms and 75 for the shared control arm.
The results are plotted in Figure 2 shown as the green line.

After increasing the ratio of shared control, even though
the SFDR is still larger than when the treatment arms
are evaluated independently, the difference became smaller
than that with equal randomization since the correlation
decreased. For SFNR, it stays similar as the case of equal
randomization.

If we further increase the randomization ratio between
each treatment arms and shared control to 1:3, this cor-
responds to 33 patients in each treatment arms and 101
in shared control arm given the same type-I, type-II errors
and δ. From Figure 2 shown as the dark blue dotted line,
the SFDR is reduced to be similar as the case where the
treatment arms are evaluated independently. For SFNR, it
continues to be similar as the case of equal randomization
and randomization ratio of 1:2, approaching the indepen-
dent studies.

Additional simulation studies are conducted given various
scenarios on the number of investigational arms, proportion
of truly active arms and the randomization ratio between
the experimental arms and the control. The number of arms
in the platform is either 5 or 8 and the % of active arms
are either 30% or 50% based on practical scenarios seen in
current master protocol landscape. The randomization ratio
between the investigational arm and the control is either 1:1
or 1:2. The goal of the simulation is not to do exhaustive
simulations covering all scenarios, but to evaluate the prac-
tical scenarios that seen in current master protocol studies.
The results are included in the Table 3.
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Table 3. Simulation Results given different number of investigational arms in the platform, % of truly active arms and the
randomization ratio between the investigational arm and the control.

sFDR
Randomization Indep. Analytical Shared Analytical

Ratio (Trt: Con) Simulation Derivation Control Derivation
, Indep. Simulation Shared control

1 : 1

m = 5, % Active arm = 30% 0.0085 0.008 0.019 0.025
m = 8, % Active arm = 30% 0.016 0.019 0.031 0.037
m = 5, % Active arm = 50% 0.0036 0.0039 0.01 0.012
m = 8, % Active arm = 50% 0.0075 0.0075 0.015 0.018

1 : 2

m = 5, % Active arm = 30% 0.01 0.01 0.014 0.019
m = 8, % Active arm = 30% 0.015 0.019 0.028 0.032
m = 5, % Active arm = 50% 0.003 0.004 0.008 0.009
m = 8, % Active arm = 50% 0.007 0.008 0.012 0.015

In Table 3, simulations are conducted to show the im-
pact of sFDR when shared control vs independent control
for each experimental arm is used. For each of the scenario,
a total of 10000 simulations are run. The sample size for
each experimental arm is 50 and the control arm is 50 when
1:1 equal randomization is used. The control arm is 100
when 1:2 randomization ratio is used. Endpoint of interest
is a continuous endpoint assuming following a normal distri-
bution. Data from H0 follow a normal distribution N(0, 1)
and data from Ha follow a normal distribution N(3, 1) cor-
responding to 85% power and one-sided 2.5% type-I error
rate. Two-sample t-test is conducted for each experimental
arm vs. control arm at 5% level (two-sided).

Based on the simulations, the analytical derivations in
section 3 generally match with the simulation scenarios. As
shown in the table, the derivation may be slightly higher
than the simulations, thus reflecting being more conserva-
tive. This may be due to the limited sample size in each
investigational arm. Here we only report SFDR because it
is more interest to the regulatory agencies. Similar results
in SFNR are seen.

5. REAL-WORLD SETTING
CONSIDERATIONS

In practice, a platform trial can be implemented solely
by one organization or a collaboration with various orga-
nizations. When the platform trial is solely sponsored by
one organization with a common control arm in a particular
disease/indication, the objective is usually to study drugs’
efficacy and safety either as monotherapy or in combination
in one overarching framework to advance one or more arms
into the next phase development.

For the case when the platform trial is in collaboration
between organizations, the decisions are likely made for each
investigational arm independently for each sponsor. In this
situation, due to “random high” or “random low” in the
common control arm, SFDR may get inflated comparing to
the case with independent two-arm studies, Furthermore,

even if multiple treatment arms are sponsored by differ-
ent organizations, the overall SFDR and SFNR across these
treatment arms may have public health impacts and could
be evaluated in that context. As introduced in the introduc-
tion section, the ACTIV-2 COVID-19 platform trial with
shared control is one such example.

For SFNR, it stays close to independent cases and crosses
with independent cases when the number of arms is around
8. Based on the results, design changes do not deem nec-
essary. However, if the goal is to reduce the error close to
independent cases as shown by SFDR and SFNR, two op-
tions can be implemented: 1) by randomizing more patients
to the common control arm, for example, 1:3 ratio of in-
vestigational arm to common control can shrink the simul-
taneous error close to independent two-arm studies; 2) if
equal randomization is used, making more stringent type-I
error for individual arms will reduce the simultaneous false-
positive error. Either option can offer a better chance to
make the right conclusion out of the trial but would reduce
the original efficiency of using the platform trial framework.
Trade-offs between the two options can be explored given
the number of planned arms in the platform trial in ad-
dition to other factors typically considered in drug devel-
opment. Table 4 illustrates the comparison of SFDR and
SFNR to the independent two-arm trials when either type-
I error on individual arm or randomization ratio changes
at design stage. From the table and the plots, unequal ran-
domization offers the chance of approaching both simultane-
ous errors to independent cases. However, if the goal of the
development is to randomize more patients into investiga-
tional arms to learn, keeping equal randomization while in-
creasing individual type-I error rate to be 0.05 would reduce
the SFNR smaller than the independent studies, therefore a
great chance to advance the right arms to further develop-
ment.

6. DISCUSSION
Master protocol trials with a shared control, referred in

this paper as platform trials with a shared control, has re-
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Table 4. Comparison of SFDR and SFNR given design changes in the multi-arm platform trials, assuming 30% arms are active.

# of Arms

1:1 1:1 1:3 1:1
Randomization Randomization Randomization Randomization Independent

Ratio and Ratio and Ratio and and Type-I Two-Arm
Type-I error = 0.0125 Type-I error = 0.05 Type-I error = 0.025 error = 0.025 Trial*
SFDR SFNR SFDR SFNR SFDR SFNR SFDR SFNR SFDR SFNR

5 0.0042 0.016 0.025 0.0011 0.006 0.012 0.01 0.014 0.002 0.009
10 0.0084 0.023 0.043 0.0012 0.014 0.018 0.019 0.018 0.007 0.02
15 0.011 0.026 0.052 0.0012 0.019 0.02 0.024 0.019 0.012 0.029

*For independent two-arm trial, each experimental arm and control is randomized 1:1 and type-I error rate for each arm is 0.025.

cently gained increasing interest in clinical drug develop-
ment. Extensive discussions have taken place on type I er-
ror considerations for platform trial with a shared control.
A consensus achieved from these discussions is that, with
the ‘random high’ and ‘random low’ performances from the
shared control and due to the fact the same control has been
used as the comparator in comparisons for multiple treat-
ments, the chances of SFDE (some also refer it as ‘clustered
errors’ to be brief) could increase [5]. This paper conducted
detailed evaluations of different errors by formulating the
SFDE under the FDR framework and presenting numeri-
cal results to demonstrate the factors impacting SFDE, the
magnitude of the error and some recommendations to po-
tentially reduce the error.

The reason FDR-based framework is concerned in this
research is that the concept of FDR in the platform trial
context is focusing on the question that out of the positive
arms identified by the platform trial, how many of them
are not truly effective and on the flip side, how many of
them are. The relationship between type I error, power and
FDR is similar to sensitivity (analogous to 1 minus type
I error), specificity (analogous to power) and positive pre-
dictive value (analogous to 1 minus FDR) where the latter
are terminologies widely used in the field of diagnosis tests.
Therefore, unlike type I and type II errors that only focus
on α or β alone, the concept of FDR is a function of α and
β with the consideration of proportion of truly active arms
among total number of arms being investigated (analogous
to the prevalence in the diagnostics field). This is also seen
in the mathematical formula derived for SFDR and SFNR
in section 3 and the analytical results. Therefore, this may
provide a different angle to the multiple simultaneous errors
introduced by the common shared control.

As indicated by the analytical results, in platform trial
design, SFDR is larger than in the scenario when separate
two-arm studies are conducted. This trend is consistent with
multiple type I error (or Multiple False Positive Error in [8])
in the master protocol design comparing to the design with
multiple independent studies. The proposed methods can
readily be applied in the signal finding studies. These studies
not only drive further development of investigational com-
pounds but also have impacts on regulatory decisions. Al-
though not strict adjustment is deemed as necessary, to un-

derstand what level of type-I error for each treatment-shared
control needs to match to the level of conventional indepen-
dent two-arm trials, evaluation is conducted and presented
in Appendix B. Except when there are 3 arms in the plat-
form, milder multiplicity adjustments than Bonferroni can
be made to each arm-shared control comparison. If more
patients are allocated to control than randomization ratio
of 1:1, even milder adjustment is shown between treatment
and shared control. Notice here, as shown in Table 4, the
relative SFDR inflation shrinks as the number of arms in-
crease in the platform, i.e., 5-fold inflation when there are
5-arm in the platform versus 2-fold inflation when there are
15-arm. Nonetheless, the absolute magnitude of SFDR infla-
tion is still small. Our exercise in the Appendix B indicates
the level of adjustment relates to the relative SFDR infla-
tion rather than the absolute values of inflation. Again, we
emphasize that the adjustments provided in the Appendix B
are demonstrations of the magnitude of adjustment if per-
formed but not necessarily recommending adjustments like
such in real practices.

Without loss of generality, in the derivation of SFDR and
SFNR, the probability of truly active arms is assumed to be
p, the same for each arm. In reality, the probability p may
be different given different MOAs (mechanism of actions)
of the arms. As discussed in the Appendix B, the number
of arms in the platform rather than the proportion of truly
active arms impacts the SFDR. Based on biological knowl-
edge, certain MOAs may be more promising than others.
In the case of combination therapy, the arms with combi-
nation drugs may offer better chance of being effective than
arms with monotherapy. In both cases, the probability p
may be higher in certain MOA or combination than other
arms. In understanding the SFDR and SFNR when different
probabilities of success can exist, we can use the minimum
and maximum probabilities to quantify the range of simul-
taneous errors. Alternatively, if we understand the rough
distribution of probabilities of treatment success, the expec-
tations on the probabilities can be implemented to estimate
the SFDR and SFNR. For more detailed derivation based
on mixed scenarios of success given the treatment arms in
the platform trial, this can be explored as future research.

It is worth noting that [11] derived a step-up procedure
on k-FWER and a less constrained k-FDR procedure. In
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[11], the k-FWER is defined as k − FWER = Pr(V ≥ k),
while k − FDR = E(k − FDP ), where

k − FDP =

{
0, otherwise
V
R , if V ≥ k

.

Sarkar (2007) [11] further derived the procedure using the
upper bound to control the k-FDP at certain level rather
than deriving a closed form. The objective of [11] is to gen-
eralize the procedure of Benjamini-Hochberg (BH) and es-
tablish the critical value for rejection and control the k-FDP
at α. It should be noted that he derived the procedure under
the assumption that individual hypotheses are independent
or weekly dependent; while our attempt is to quantify the er-
ror understanding that the test statistics are positively cor-
related. Moreover, Sarkar (2007) [11] focused on the FDR,
while our goal is to quantify the error in both directions
(false positives and false negatives). Additionally, we exam-
ine the error in relationship to the randomization ratio in
the platform trial design because the correlation is closely
tied to the randomization ratio between the arms and the
common control.

There is now an increasing trend in industry as a single
sponsor to use platform trial as proof-of-concept studies.
The simultaneous decision error concept is readily appli-
cable to exploratory platform trials. The decision for each
sponsor may include moving forward or stopping any inves-
tigational arm at the end of phase 2 in the platform trial.
The exploratory platform trials may have a common con-
trol or without. Even when the exploratory platform trial is
without a common control, the simultaneous decision errors
can still occur when the arm is actually inactive compared
to historical control or against a benchmark.

One of the hallmarks of the platform trials is the abil-
ity for investigational drugs to enter and exit the platform
at different times. For example, the platform trial may start
with one investigational drug A and the control. During mid-
trial, additional investigational drug B is added to the plat-
form sharing the same control. The common control thus
includes concurrent common control for drug B and non-
concurrent common control for those enrolled prior to drug
B entering the platform. The simultaneous decision errors
can still occur; however, this will depend on the common
control overlap between drug A and drug B. As reported in
[10], as the overlap increases, positive correlation increases.
It is the largest when the overlap is 100%, i.e., drug A
and drug B share the entire concurrent common control.
The SFDR and SFNR derived in our paper thus represent
the maximum values since it represents all investigational
arms share concurrent common control. When the overlap
decreases, so does the positive correlation. The SFDR and
SFNR would approach independent studies.

Through our evaluation, the magnitude of potential de-
cision errors has been quantified through SFDR and SFNR
when regulatory agencies make the decision of approving or

declining an application based on a platform trial design.
With such small magnitude, our recommendation is that at
the study design stage, we need be aware of this type of er-
ror, and their impact on the conclusions of a platform trial.
Overall, the multiple error rate controls are generally ade-
quate, further adjustment to a pre-specified level on SFDR
or SFNR or reduce the alpha allocated to each individual
treatment comparison to the shared control is deemed un-
necessary.

APPENDIX A. R CODE
The R code to calculate the simultaneous multiple testing

errors is provided in Source Code 1.

APPENDIX B. THE LEVEL OF TYPE-I
ERROR ADJUSTMENT

RELATES TO THE
RELATIVE SFDR INFLATION

Because of shared control in platform trial, the SFDR can
be larger compared to that in the conventional independent
two-arm trials. To further evaluate the relationship between
the SFDR and p, different proportion of active arms in the
platform, we plotted the SFDR against the p in Figure 4,
the proportion ranges from 0% to 95%. The black line is the
SFDR given independent two-arm trials, and the red line
is the corresponding SFDR in platform trial with shared
control. Four panels indicate when there are 3, 5, 8 and 10
arms in the platform respectively. As can be seen from the
plot, the SFDR shrinks to independent two-arm trials as the
proportion of active arms increases. The difference between
the platform trial with share control and independent two-
arm becomes very small when the over half of the arms are
truly active. When there are more investigational arms in
the platform, the SFDR is also higher. This can be seen
on the y-axis when SFDR is around 0.01 when there are 3
arms in the platform with shared control and increases to
0.06 when there are 10 arms in the platform. However, the
relative inflations from independent two-arm trials are not
much since the SFDR for independent two-arm trials also
increases. Note here even though the SFDR is inflated in
platform trial with shared control, the absolute magnitude
is still small for all scenarios.

Although the magnitude is small, potentially multiplic-
ity can be considered when multiple treatment arms are in-
cluded in the same platform if the intention is to minimize
the inflation of SFDR. We evaluate the adjusted type-I error
α for each treatment-shared control comparison to match
the independent two-arm trials. The proportion of active
arms from 0% to 100% is evaluated and commonly used β,
e.g., 0.1, 0.15 and 0.2, are also evaluated. The results showed
that the adjusted α-levels only vary slightly given differ-
ent proportion of active arms. For example, given β = 0.1,
with 3-arm platform trial with shared control, the adjusted
α-level ranges from 0.0062–0.0067 when the proportions of
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Listing 1: R code to calculate the simultaneous multiple testing errors.

1 #Simultaneous false-discovery rate (SFDR)
2 #m is the number of treatment arms in multi-arm trials
3 #alpha is type-I error for each treatment-control comparison
4 #beta is type-II error for each treatment-control comparison
5 #p is the probability that the arm is active
6 #multiple false-positive error
7 SFDR <- function(m,alpha,betas,p){
8 tempm <- rep(NA,m-1)
9 for(m0 in 2:m){

10 pm <- choose(m,m0)*(1-p)^m0*p^(m-m0)
11 temp2 <- rep(NA,m0-1)
12 for(j in 2:m0){
13 temp <- choose(m0,j)*alpha^j*(1-alpha)^(m0-j)
14 psum <- rep(NA,m-m0+1)
15 for(k in 0:(m-m0)){
16 psum[k+1] <- ((j/(k+j))*choose(m-m0,k)*(1-betas)^k*betas^(m-m0-k))
17 }
18 temp2[j-1] <- temp*sum(psum)
19 }
20 tempm[m0-1] <- pm*sum(temp2)
21 }
22 pFDR <- sum(tempm)
23 pFDR
24 }
25 #Simultaneous false non-discovery rate (SFNR)
26 #m is the number of treatment arms in multi-arm trials
27 #alpha is type-I error for each treatment-control comparison
28 #beta is type-II error for each treatment-control comparison
29 #p is the probability that the arm is active
30

31 SFNR <- function(m,alpha,betas,p){
32 tempm <- rep(NA,m-1)
33 for(m0 in 0:(m-2)){
34 pm <- choose(m,m0)*(1-p)^m0*p^(m-m0)
35 temp2 <- rep(NA,m-m0-1)
36 for(j in 2:(m-m0)){
37 temp <- choose(m-m0,j)*betas^j*(1-betas)^(m-m0-j)
38 psum <- rep(NA,m0+1)
39 for(k in 0:m0){
40 psum[k+1] <- ((j/(k+j))*choose(m0,k)*(1-alpha)^k*alpha^(m0-k))
41 }
42 temp2[j-1] <- temp*sum(psum)
43 }
44 tempm[m0+1] <- pm*sum(temp2)
45 }
46 pFNR <- sum(tempm)
47 pFNR
48 }
49 #Examples
50 #When there are 4 arms of treatments comparing to common control, alpha is 0.025 and beta is 0.15
51 # Simultaneous multiple false-positive error
52 mpFDRr <- SFDR(4,0.025,0.15,0.3)
53 # Simultaneous multiple false-negative error
54 mpFNRr <- SFNR(4,0.025,0.15,0.3)
55



132 J. Ye et al.

56 #Simultaneous false discovery-rate (SFDR), correlated test statistics
57 #variance_covariance function
58 #n0 is the number of patients in control arm
59 #n1 is the number of patients in each treatment arm in the multi-arm trials
60 covvar <- function(m,n0,n1){
61 corrM <- n1/(n1+n0)
62 covM <- matrix(corrM,m,m)
63 diag(covM) <- 1
64 covM
65 }
66 library(mvtnorm)
67 #SFDR, correlated test statistics
68 #n0 is the number of patients in control arm
69 #n1 is the number of patients in each treatment arm in the multi-arm trials
70 #delta is the mean of treatment arm that alternative hypotheses are true,
71 # determined by the alpha and beta
72 #p is the probability that the arm is active
73 SFDRcor <- function(alpha,m,n0,n1,beta,p){
74 delta<-qnorm(1-alpha)+qnorm(1-beta)
75 tempm <- rep(NA,m-1)
76 for(m0 in 2:m){
77 pm <- choose(m,m0)*(1-p)^m0*p^(m-m0)
78 temp2 <- rep(NA,m0-1)
79 for(j in 2:m0){
80 temp <- choose(m0,j)
81 psum <- rep(NA,m-m0+1)
82 for(k in 0:(m-m0)){
83 muk <- c(rep(0,j),rep(0,m0-j),rep(delta,m-m0)) #mean
84 covM <- covvar(m,n0,n1) #covariance matrix
85 lk <- c(rep(qnorm(1-alpha),j),rep(qnorm(alpha),m0-j),rep(qnorm(1-alpha/2),k),
86 rep(qnorm(alpha),m-m0-k)) #lower limits
87 uk <- c(rep(Inf,j),rep(qnorm(1-alpha),m0-j),rep(Inf,k),
88 rep(qnorm(1-alpha),m-m0-k)) #upper limits
89 psum[k+1] <- ((j/(k+j))*choose(m-m0,k)*pmvnorm(lower=lk, upper=uk, mean=muk, corr=covM)[1])
90 }
91 temp2[j-1] <- temp*sum(psum)
92 }
93

94 tempm[m0-1] <- pm*sum(temp2)
95 }
96 pFDR <- sum(tempm)
97 return(pFDR)
98 }
99 #Simultaneous false non-discovery rate (SFNR), correlated test statistics

100 #multiple false-negative error with correlation
101 #SFNR with correlation
102 SFNRcor <- function(alpha,m,n0,n1,beta,p){
103 delta<-qnorm(1-alpha)+qnorm(1-beta)
104 tempm <- rep(NA,m-1)
105 for(m0 in 0:(m-2)){
106 pm <- choose(m,m0)*(1-p)^m0*p^(m-m0)
107 temp2 <- rep(NA,m-m0-1)
108 for(j in 2:(m-m0)){
109 temp <- choose(m-m0,j)
110 psum <- rep(NA,m0+1)
111 for(k in 0:m0){
112 muk <- c(rep(0,m0-k),rep(0,k),rep(delta,m-m0)) #mean
113 covM <- covvar(m,n0,n1) #covariance matrix
114 lk <- c(rep(qnorm(1-alpha),m0-k),rep(qnorm(alpha),k),rep(qnorm(1-alpha),m-m0-j),
115 rep(qnorm(alpha),j)) #lower limits
116 uk <- c(rep(Inf,m0-k),rep(qnorm(1-alpha),k),rep(Inf,m-m0-j),
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118 psum[k+1] <- (j/(k+j))*choose(m0,k)*pmvnorm(lower=lk, upper=uk, mean=muk, corr=covM)[1]
119 }
120 temp2[j-1] <- temp*sum(psum)
121 }
122 tempm[m0+1] <- pm*sum(temp2)
123 }
124 pFNR <- sum(tempm)
125 pFNR
126 }
127 #Example
128 #correlated test statistics, SFDR
129 mpFDRcorr <- SFDRcor (0.025,10, 60,60,0.15,0.3)
130 #correlated test statistics, SFNR
131 mpFNRcorr <- SFNRcor (0.025,10, 60,60,0.15,0.3)

Figure 4: The relationship between SFDR and the proportion of active arms in the platform trial with shared control.

Table 5. Adjusted α-level for each treatment-shared control
comparison to match independent two-arm trials on the

SFDR, when all arms are inactive.
# of Arms 1:1 1:3 Bonferroni

3 0.0067 0.013 0.0083
5 0.0083 0.014 0.005
8 0.011 0.016 0.0031
10 0.0123 0.016 0.0025

truly active arms are less than 95%. The difference between
different β is also very small. For example, when there are
30% truly active arms in the 3-arm platform trial, the ad-
justed α-level is around 0.0066 for β = 0.1, 0.15 and 0.2.
The number of arms in the platform, and the randomiza-
tion ratio rather than the proportion of active arms impacts
the adjusted α-level. Therefore, the adjusted α-level given
number of arms in the platform trial, and randomization
ratio is shown in Table 5 as 0% of arms is active and with
different randomization ratios.

In Table 5, all arms are inactive. When there are 3
arms in the platform, each comparison will be conducted
at 0.0067 level instead of 0.025 and this will give the same
SFDR as if the evaluation is done in independent two-arm
trial. For Bonferroni-adjustment, 0.025/3 = 0.0083. Com-
pared to Bonferroni multiplicity, the adjusted α-level for 3-
arm platform trial with shared control is more conservative
than Bonferroni. However, when the arms increase, the ad-
justed α-level would be milder and milder. When there are
10 arms in the platform, the adjusted α-level is 0.0123 for
each treatment-shared control comparison while Bonferroni-
adjustment would require 0.025/10 = 0.0025. The random-
ization ratio of treatment to shared control as 1:3 would
yield even milder adjustment compared to 1:1 randomiza-
tion ratio.

When all arms are active, there is no α penalty for each
treatment-shared control comparison and each treatment-
shared control comparison can use the full 0.025. However,
Bonferroni multiplicity control would require the same level
of adjustment.
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APPENDIX C. DETAILED DERIVATION OF
SFDR AND SFNR IN
INDEPENDENT CASE

When m0 is known, SFDR and SFNR can be derived as:

SFDR

= E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0,m0

)

=

m0∑
j=2

[(
m0

j,m0 − j

)m−m0∑
k=0

(
j

k + j
)

(
m−m0

k,m−m0 − k

)

× Pr(V = j, U = m0 − j, S = k, T = m−m0 − k)

]

=

m0∑
j=2

[(
m0

j,m0 − j

)
αj(1− α)

m0−j

×
m−m0∑
k=0

(
j

k + j

)(
m−m0

k,m−m0 − k

)
(1− β)k ∗ βm−m0−k)

]
.

SFNR

= E

(
T

m−R
∗ I(T > 1)

∣∣∣∣ m−R > 0,m0

)

=

m−m0∑
j=2

[(
m−m0

j,m−m0 − j

) m0∑
k=0

(
j

k + j

)(
m0

k,m0 − k

)

× Pr(T = j, U = k, V = m0 − k, S = m−m0 − j)

]

=
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[(
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×
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k=0

(
j
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)(
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)
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]
.

When m0 is unknown, SFDR and SFNR can be derived
as:

SFDR

= E

(
V

R
∗ I(V > 1)

∣∣∣∣ R > 0

)

= Em0

[
E

(
V

R
∗ I(V > 1)
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)]

=
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