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Abstract
In online experimentation, appropriate metrics (e.g., purchase) provide strong evidence to support hypotheses and

enhance the decision-making process. However, incomplete metrics are frequently occurred in the online experimentation,
making the available data to be much fewer than the planned online experiments (e.g., A/B testing). In this work, we
introduce the concept of dropout buyers and categorize users with incomplete metric values into two groups: visitors and
dropout buyers. For the analysis of incomplete metrics, we propose a clustering-based imputation method using k-nearest
neighbors. Our proposed imputation method considers both the experiment-specific features and users’ activities along
their shopping paths, allowing different imputation values for different users. To facilitate efficient imputation of large-
scale data sets in online experimentation, the proposed method uses a combination of stratification and clustering. The
performance of the proposed method is compared to several conventional methods in both simulation studies and a real
online experiment at eBay.
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1. INTRODUCTION
Online experimentation has been playing a key role in

data-driven decision making in the IT industry including
Microsoft [16, 17], Google [29], Linkedin [33], Netflix [32],
Uber, eBay [23], and many others [9]. Generally, online
controlled experimentation, also known as A/B testing, is
conducted for a pre-determined amount of time to com-
pare the difference in metrics between the treatment group
and the control group where users are randomly assigned
to. Prior to experimentation, a set of high-quality metrics
are determined to assess the effects of new features in the
treatment group. The collected metric results can provide
strong evidence to support hypotheses and hence accelerate
the decision-making process [2, 4, 19]. However, incomplete
metrics are frequently occurred in the online experimenta-
tion, making the available data to be much fewer than the
planned A/B testing. In this work, our focus is on the anal-
ysis of metrics that have incomplete measurements at the
end of data collection in experiments.

According to the positions in the shopping funnel, metrics
can be categorized as top, middle, and bottom funnel met-
rics. For instance, a successful purchase typically requires
users to take multiple steps from the top homepage web-
page to the bottom purchase webpage in the shopping fun-
nel. In online experimentation, it is common for millions of
users to arrive at the top funnel (e.g., homepage webpage),
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while only a small percentage of users reach the bottom fun-
nel (e.g., purchase webpage). Between the transition from
the top funnel to the bottom funnel, users need to navi-
gate through multiple pages where they can exit from the
shopping process. There are numerous scenarios in which
users can exit the funnel, resulting in incomplete records of
their purchases or other metrics. A common occurrence is
simply that each experiment has its own experiment dura-
tion. Keeping experiments alive for a long period of time is
expensive due to the high operational efforts and business
opportunity costs. When we close experiments, we stop the
track of all users, but some users might yet complete their
purchases. This incompleteness in metrics due to the de-
lay in collecting measurements for bottom-funnel metrics
in experimentation are inevitable. There is also the possi-
bility that users are lost to follow due to technical issues or
user unavailability. For instance, when users switch from the
desktop app to the mobile app, they become unavailable. It
is essential to fill in the incomplete metrics to improve metric
quality, leading to trustworthy results and better decisions.

With incomplete metric measurements, the inference of
the difference in metrics between the treatment and the
control in experiments is at the risk of being inaccurate
[8, 13, 14]. To analyze experiments with missing metric val-
ues, a naive approach is to disregard users with incomplete
outcomes. This approach assumes that the missingness is
completely at random and that the fully observed users are
representative of the entire population. Such an approach
will reduce the total number of users in the study, leading
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to a decrease in the experiment power. The power decrease
is substantial especially when the proportion of missingness
is high.

Various imputation methods have been developed to ad-
dress problems with missing data. One widely used method
is the single imputation method, which fills in missing val-
ues with a single value, such as the mean of observed out-
comes, for both the treatment group and the control group.
The single imputation method preserves the full sample size,
but it raises concerns regarding results with a distorted
distribution and underestimated uncertainty [28]. In addi-
tion, the single imputation method disregards information
from other observed variables collected along users’ jour-
neys within the funnel. Other imputation methods have
been developed for missing at random (MAR) and miss-
ing not at random (MNAR) scenarios. The MAR assumes
that the missing mechanism is only associated with the ob-
served variables [1, 12, 26]. Likelihood-based methods, such
as generalized linear mixed models, are developed in clinical
trials with incomplete outcomes [22]. The performance of
the methods depends on the degree to which the assump-
tions are held for MAR. For MNAR in which the effect from
missing outcomes is non-ignorable, the observed difference
would be a biased estimate of the average treatment effect
[22]. Regression-based imputation methods, such as the lo-
gistic regression, are employed for modeling the indicator for
missingness [21]. Other prevalent methods, such as matching
imputations, identify similar users from a set of variables. In
general, these imputation methods require the identification
of users with missing outcomes and users with outcomes as
zero. In other words, general imputation methods are often
not appropriate to handle certain online experimentation
scenarios in which users’ missing outcomes represent both
missing cases and zero cases.

To address the above challenges, we propose a clustering-
based imputation method using k-nearest neighbors (kNN)
for the analysis of online controlled experimentation in the
presence of incomplete metrics. The key idea of the pro-
posed method is to identify and impute incomplete metrics
with users’ neighbors by incorporating the structure infor-
mation of data from online experimentation. Specifically, the
proposed method consists of two steps. The first step is to
partition the data set into clusters after the stratification
of experiment-specific features, including the treatment as-
signment and the buyers’ characteristics. In the second step,
we perform the kNN-based imputation. Moreover, we divide
users with missing outcomes into two categories: visitors
and dropout buyers, such that the information of dropout
buyers can be better utilized. Note that our framework as-
sumes that the treatment assignment and user covariates
are fully observed, whereas only the outcome at the bottom
of the funnel has missing values. The proposed method has
three key advantages. First, the proposed method uses the
informative covariates during users’ journeys in the shop-
ping funnel to impute incomplete metrics. Specifically, our

method evaluates the heterogeneous impact from different
user segments on missing rates in metrics. Second, the im-
puted values from our method are intuitive to understand.
Lastly, our method employs stratification and clustering to
alleviate the computation issues for large-scale data in on-
line experimentation.

Throughout the paper, we consider the metric Purchase
as an example of the incomplete metric at the funnel’s bot-
tom for illustration. We also assume that the Purchase is the
only metric (i.e., outcome) of interest in the experiment. The
rest of the paper is organized as follows. In Sections 2 and
3, we detail the problem formulation, the proposed method,
and the estimation procedures. In Section 4, we present sim-
ulations. A real case study is conducted in Section 5. We
conclude this work with some discussion in Section 6.

2. PROBLEM FORMULATION
In the context of online controlled experiments, we can

classify users into three types based on their purchase behav-
iors: visitors, real buyers, and dropout buyers. Visitors par-
ticipate in experiments but do not make contributions (e.g.,
purchases). Real buyers not only participate in experiments
but also make contributions (e.g., purchases). Dropout buy-
ers could have made their contributions (e.g., completed
their transactions) within the experimentation period but
failed due to various reasons. For example, users could drop
out of the experiment because of unexpected external pay-
ment issues. Another example is that the experiment lost
users due to various technical issues.

Suppose there are n users in an experiment, and let yi ∈
{0, 1} denote whether the i-th user is a buyer or not. That
is,

yi =

{
1, user i is either a real buyer or a dropout buyer,
0, user i is a visitor,

and yi = 1(zi > 0), where zi ≥ 0 denotes the purchase
metric value of the i-th user, and 1(·) is the indicator func-
tion. We know for sure that user i is a real buyer and the
corresponding value amount if he/she has completed trans-
action(s) during the experimentation period. In other cases,
it is ambiguous whether he/she is a dropout buyer or merely
a visitor. Therefore, we use yobsi and zobsi if the i-th user is
a real buyer and ymis

i and zmis
i to represent the ambiguous

situation (i.e., could be a dropout buyer or a visitor). To
clarify,

yi =

⎧⎪⎨
⎪⎩
yobsi = 1, user i is a real buyer,

ymis
i =

{
1, user i is a dropout buyer,
0, user i is a visitor.

However, some practitioners arbitrarily treat all ymis
i

and zmis
i as 0 without the diligence to distinguish between



Clustering-Based Imputation for Dropout Buyers in Large-Scale Online Experimentation 417

dropout buyers and visitors. Here, we denote such an arbi-
trary but simplified buyer indicator as

ỹi =

{
1, user i is a real buyer,
0, otherwise.

Their corresponding vectors are denoted as y =
(y1, . . . , yn), z = (z1, . . . , zn), ỹ = (ỹ1, . . . , ỹn). Addition-
ally, let xi denote the relevant features for user i, xi =
(xi1, . . . , xip) ∈ Rp, p ≥ 1, and let X = (x1, . . . ,xn)

T ,
Without loss of generality, we assume that p features are
continuous variables.

Suppose there are m real buyers among the total n users,
and without loss of generality, let us assume the first m users
are real buyers. Denote n users’ purchase and transactional
amount during the experimentation period using vectors

y = (yobs,ymis) = (yobs1 , . . . , yobsm , ymis
m+1, . . . , y

mis
n ),

z = (zobs, zmis) = (zobs1 , . . . , zobsm , zmis
m+1, . . . , z

mis
n ).

The problem of interest is to impute missing values ymis

and zmis in the context of online experimentation. Among
users with missing values, visitors are mixed with dropout
buyers. Therefore, our proposed method is to firstly iden-
tify the candidates of dropout buyers (i.e., identifying the
candidates of 1s in ymis) with the help of a classification
model and then impute the ymis and zmis using an efficient
cluster-based nearest neighbors-based approach.

3. THE PROPOSED METHOD
The objective of the imputation problem is to impute

missing values such that they are close to the underlying
true data. The missing value imputation problem can be
formulated as

min
ŷmis

l(ŷmis,ymis),

where l(ŷmis,ymis) is a loss function to quantify the dif-
ference between the imputed missing values ŷmis and the
underlying true values ymis.

Imputing missing values with non-parametric methods
such as the nearest neighbors algorithm in large-scale data
sets is challenging due to the large computation require-
ments for distances between pairs of data points. To solve
this challenge, we propose to incorporate the data clustering
patterns into the imputation. In other words, we partition
users into c clusters and then perform imputations within
each cluster. Thus, the cluster-based imputation problem is
described as

min
ŷmis

c∑
h=1

∑
C(i)=h

l(ŷmis
i , ymis

i ), (3.1)

s.t.

c∑
h=1

∑
C(i)=h

||xi − μh||22 ≤ g, i ∈ I,

where xi denotes the features for user i, and C(i) = h rep-
resents the user i with missing value ymis

i belongs to cluster
h with the centroid μh, the constant g controls the within-
cluster distances, and ||·||2 is the L2-norm. The set of indices
I is defined as I = {i : yi is missing}. The features are se-
lected based on experiment owners’ domain knowledge. Af-
ter imputing ymis

i , we can estimate the corresponding zmis
i

as well.
Note that it is unknown whether a user with an incom-

plete metric is a visitor or a dropout buyer. The dropout
buyers are mixed with visitors because both do not have
their purchase information recorded. To address the chal-
lenge, in Section 3.1, we apply the logistic regression model
to identify a certain portion of visitors and narrow down the
candidates of dropout buyers. Section 3.2 will detail the pro-
posed cluster-based imputation. Notice that the data set in
online controlled experiments often is very large such that
the conventional clustering methods cannot be conducted
efficiently. To alleviate the computation issue, Section 3.3
will consider a stratification-based clustering and describe
how to choose the number of clusters.

3.1 Identifying Dropout Buyer Candidates
The practitioners’ simplified buyer indicator ỹ reveals

partial information in the true buyer indicator y. There-
fore, a classification model based on (X, ỹ) provides us with
the likelihood of purchases. Users with a high likelihood but
missing purchase records can serve as the candidates for
dropout buyers. Since ỹ is used as a substitution of y, we
call ỹ pseudo-response.

Specifically, we propose to apply the logistic regression
model for the buyer identification. Denote the conditional
probability for user i as p(xi) = Pr(ỹi = 1|xi), that is,

ỹi|xi =

{
1, w.p. p(xi),
0, w.p. 1− p(xi).

We model the conditional probability p(xi) with the logistic
model log(p(xi)/(1−p(xi))) = xT

i β with β = (β1, . . . , βp)
T .

Note that the features used in the logistic regression model
are believed to be closely related to users’ purchase behav-
iors. A threshold is needed in the logistic model for classi-
fication. One widely used threshold value is 0.5. Customers
can choose the percentage of TN in the whole samples as
the threshold according to their domain knowledge.

Comparing the model prediction and pseudo-response,
Table 1 summarizes four types of classification results: false
positive (FP), true negative (TN), false negative (FN), and
true positive (TP) from the classification model. The FP
indicates that the users with pseudo-response as 0 should
have purchase information. We use this inconsistency to
figure out the candidates of dropout buyers. That is, the
FP cases can be either visitors or dropout buyers. The TN
suggests the agreement that these users do not have pur-
chases recorded. Thus, we treat all TN cases as visitors.
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Table 1. Summary of four categories of results in the logistic regression model.

Pseudo-response (ỹ) Prediction Description
True Negative (TN) 0 0 Visitors
False Positive (FP) 0 1 Candidates of dropout buyers
False Negative (FN) 1 0 Real buyers
True Positive (TP) 1 1 Real buyers

The FN and the TP are users recorded with purchase be-
haviors, and hence they are real buyers, not dropout buyers
or visitors.

Suppose there are r visitors and n−m− r dropout buyer
candidates that have been identified. Without loss of gener-
ality, let us assume the first r users in the missing set are
those visitors. Then we write ymis as

ymis = (yest,y∗) = (yestm+1, . . . , y
est
m+r, y

∗
m+r+1, . . . , y

∗
n),

where yesti = 0, i = m + 1, . . . ,m + r, and y∗i ∈ {0, 1}, i =
m+r+1, . . . , n with 0 representing visitors and 1 represent-
ing dropout buyers. Similarly, we denote the corresponding
continuous response for the purchase amount as

zmis = (zest, z∗) = (zestm+1, . . . , z
est
m+r, z

∗
m+r+1, . . . , z

∗
n),

where zesti = 0, i = m+1, . . . ,m+r, represents the purchase
amounts from estimated visitors and z∗i represents the miss-
ing non-negative response from n−m− r users. In the fol-
lowing imputation methods in Section 3.2, we consider zest

to be zeros and our major focus is to impute z∗.

3.2 Clustering-Based Imputation for Dropout
Buyers

To impute the missing purchase value z∗ of the dropout
buyers, we adopt the clustering-based method using kNN
techniques. It is noted that clustering improves data analy-
sis efficiency by identifying inherent structure patterns and
partitioning the large-scale data set into small subsets. In
each strata Xtu (described later in the stratification step),
we perform the K-means clustering method [20] to form
clusters, which is formulated as

minimize
C

c∑
h=1

∑
C(i)=h

||xi − μh||22.

On top of clustering, we use the triangle inequality rule
(described later) to ensure the consistent identification of
nearest neighbors in the k-nearest neighbors (kNN) ap-
proach for imputation. The main idea of the kNN method is
that nearby data points are similar to each other. The kNN
algorithm is straightforward and does not require paramet-
ric model estimation, but it is computationally expensive
and becomes slow as the size of the data set increases. How-
ever, this computational burden is greatly mitigated by the

strategy of clustering. Given the specific cluster h (i.e., the
fixed constraint in (1)), the imputation problem (1) with the
kNN method can be written as

y∗i = argmax
L

∑
xj∈Nk(xi)

1{yj = L}, i ∈ I, C(i) = h, (3.2)

where L ∈ {0, 1} is the binary label, k is a positive inte-
ger representing the size of target user’s nearest neighbors
Nk(xi) and j is the nearest neighbors’ user index. The per-
formance of the kNN method may be affected by different
k values. The optimal k value depends on the underlying
structure of data sets. In this work, we use a fixed value 15
for k. It is not difficult to derive the solution to the objective
function, which is written as

ŷ∗i =

{
1,

∑k
j=1 yj/k >= 0.5,

0, otherwise,

where
∑k

j=1 yj/k is the average of response y′js in the near-
est neighbors.

With the imputed ŷ∗i , we obtain the corresponding im-
puted missing value ẑ∗i from the cost function formulated
as

minimize
z∗
i

ŷ∗i

k∑
j=1

||z∗i − zj ||22 + (1− ŷ∗i )||z∗i ||22,

z∗i ≥ 0, i ∈ I, C(i) = h.

That is, the estimated ẑ∗i is given by

ẑ∗ =

{∑k
j=1 zj/k,

∑k
j=1 yj/k >= 0.5,

0, otherwise,

where
∑k

j=1 zj/k is the average of response z′js in the nearest
neighbors.

The nearest neighbors are determined based on their dis-
tances to the target user, that is, the k closest neighbors are
found by

min

k∑
j=1

d(xi,xj),

where d(xi,xj) is the distance between the users i and j.
To further accelerate the computation, we adopt the tri-

angle inequality rule [30], which avoids unnecessary distance
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calculations. We first obtain the k nearest neighbors within
the closet cluster and denote their largest distance as dmax.
We denote the distance between the target user and any
other cluster centroid as d1, the distance between any user
in the same cluster and its cluster centroid as d2, the dis-
tance between the target user and any user as d3. The idea
of the triangle inequality rule is that when dmax ≤ |d1−d2|,
then dmax ≤ d3. As a result, we do not have to explicitly
calculate d3, which greatly speeds up the distance computa-
tion and ensures that the identification of nearest neighbors
is robust to clustering. In this study, we use the L2-norm to
measure distances.

3.3 Efficient Clustering Strategy
Note that the data set in the online controlled experimen-

tation often is very large to cluster in the imputation step.
To reduce the computational burden in clustering, we pro-
pose the stratification-based clustering approach. The key
idea is to firstly stratify the user pool, and then perform
clustering within each strata.

In the stratification step, we stratify users into two hierar-
chical levels: treatment assignment and users’ buying char-
acteristics. The treatment assignment, including the treat-
ment group and the control group, is determined by the ex-
perimentation configuration. Generally, in online controlled
experiments there are two treatment assignments: control
and treatment. However, more than two treatment assign-
ments are possible in cases such as multivariant experiments.
User’s buying characteristics, including new buyers, infre-
quent buyers, frequent buyers, and idle buyers, are cate-
gorized based on users’ purchase activities at eBay. There
are in total 12 buyer categories. Note that both the experi-
mentation configuration and the users’ buying segments are
determined prior to the start of the experimentation. The
hierarchical stratification is formulated as

X =
T⋃

t=1

U⋃
u=1

Xtu,

where Xtu is the strata at the t-th treatment level and the
u-th users’ buying characteristics in the feature space X,
and there are in total T levels treatment assignment and U
levels users’ buying characteristics.

The combination of stratification and clustering within
each strata greatly improves computation efficiency in the
imputation step, where the neighbors of the target user are
searched within all clusters.

The number of clusters in each strata from the stratifi-
cation is obtained by maximizing a simplified version of the
Silhouette score, also known as simplified Silhouette. The
Silhouette score is an effective measure of clustering good-
ness [25], but it requires an intense computation of the dis-
tance between each data point and the rest data points. The
simplified Silhouette improves the computational efficiency

of the Silhouette score by calculating the distances between
each data point and centroids of clusters [11]. The simplified
Silhouette of data point i, denoted as SSi, is defined as

SSi =
bi − ai

max(ai, bi)
,

where ai is the distance between the data point i and the
centroid of the cluster it belongs to, and bi is the minimum of
distances between the data point i and the centroids of other
clusters. The final simplified Silhouette is the average of all
data points’ simplified Silhouette. Note that the distances
of each data point to its cluster centroid have already been
calculated and recorded during the modeling process of k-
means clustering, which greatly reduces the computational
burden of the simplified Silhouette.

A pseudo-code for the proposed method is summarized
in Algorithm 1.

Algorithm 1 Pseudo code for the proposed method.
1: INPUT: the binary response y = (yobs,ymis), the continuous

response z = (zobs, zmis), the pseudo-response ỹ, and the
predictor features X.

2: Perform the logistic regression model on the data set with the
pseudo-response ỹ and the predictor features X. Obtain the
classification results including false positive (FP) and true
negative (TN).

3: Stratification. Stratify X based on the treatment assign-
ment and the users’ buying characteristics.

4: for each strata do
5: Use the FP as the test set, and the rest as the training set

in the kNN method.
6: for each target user in the test set do
7: Clustering. Perform k-means clustering in the strata,
8: Find out the cluster that the target user belongs to,
9: Imputation. Within that cluster, find the initial k near-

est neighbors and its corresponding maximum distance dmax.
10: for each user in other clusters from the farthest to the

nearest to the cluster centroid do
11: Obtain the distance between the target user and this

cluster centroid d1, and the distance between this user in this
cluster and its cluster centroid d2,

12: if dmax ≤ |d1 − d2| then
13: Move on to the next cluster.
14: else
15: Update the k nearest neighbors and dmax.
16: end if
17: end for
18: if

∑k
l=1 yl/k >= 0.5 then

19: Impute ŷ∗ = 1 and ẑ∗ =
∑k

l=1 zl/k.
20: else
21: Impute ŷ∗ = 0 and ẑ∗ = 0.
22: end if
23: end for
24: end for
25: OUTPUT: z = (zobs, ẑmis)
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4. SIMULATION
In this section, we conduct the simulation studies to eval-

uate the performance of the proposed cluster-based KNN
imputation method. The complete response has two parts:
the non-zero part and the zero part. The non-zero part of
response follows a Gaussian distribution zs = 1.5 + 1.1w +
1.1xs1 + 0.2xs2 + ε, ε ∼ N(0, 0.25) where w is the binary
assignment to the control and the treatment group, and
xs1 and xs2 are variables normally distributed N(0.1, 1)
and N(0.2, 2.25), respectively. The binary indicator of re-
sponse follows a Bernoulli distribution with the conditional
probability Pr(ys = 1|xs3) expressed by a logistic regres-
sion model logit(xs3) = −1+5.8xs3, where xs3 is a variable
with a Gaussian distribution N(0.2, 0.04). In the simulation,
we consider three scenarios for generating missing values in
the response for both the control and the treatment group.
In scenario 1 (S1), the missing is completely at random. In
scenario 2 (S2), the missing probability is described with a
logistic regression model depending on an unobserved vari-
able following a Gaussian distribution. In scenario 3 (S3),
the missing is dependent on the value of the response. Specif-
ically, the missing response is indicated if its value exceeds a
pre-defined threshold within the control and the treatment
group. In all three scenarios, we further treat responses with
zero as missing to represent real cases where users have in-
complete records. The sample size is fixed at 5000.

We compare the proposed method with six benchmark
models, including (i) Complete-case analysis (BM1), (ii) Un-
conditional control-mean imputation (BM2), (iii) Uncon-
ditional treatment-mean imputation (BM3), (iv) Uncondi-
tional zero imputation (BM4), (v) Best-case analysis (BM5),
(vi) Worst-case analysis (BM6).

Complete-case analysis removes cases with missing values
and uses only cases with complete outcomes. Specifically, we
discard zmis and the sample size is reduced to m, that is,

BM1 : z = zobs.

The complete-case analysis is easy to implement but gener-
ates unnecessary waste of information especially when the
number of incomplete cases is substantial.

Unconditional control-mean imputation uses the mean in
the observed users in the control group to impute missing
values while unconditional treatment-mean imputation uses
the mean in the observed users in the treatment group for
imputation. That is,

BM2 : ẑ∗i =

∑nc

c=1 z
obs
c

nc
, c ∈ C,

BM3 : ẑ∗i =

∑nt

t=1 z
obs
t

nt
, t ∈ T,

where the set of indices C is defined as C = {c :
zc is in the control group.} and the set of indices T is de-
fined as T = {t : zt is in the treatment group.}. nc and nt

is the number of sample sizes in the control group and in
the treatment group, respectively. Unconditional zero impu-
tation uses zero to impute missing values, that is,

BM4 : ẑ∗i = 0, i = m+ r + 1, . . . , n.

These three imputation methods are different types of sin-
gle value imputation approach, which can keep the full data
size. But these imputation methods treat the missing values
as fixed, distorting the distribution and ignoring the uncer-
tainty in the missing values.

The best-case analysis imputes missing values in the
treatment (control) group with the mean in the users in
the treatment (control) group. In contrast to the best-case
analysis, the worst-case analysis imputes missing values in
the treatment (control) group with the mean in the users
in the control (treatment) group. Here, we assume that the
testing feature in nature has a positive impact, and thus
the mean in the treatment group is expected to be greater
than the mean in the control group. As a result, the differ-
ence between the imputed missing values in the treatment
group and the control group aligns with the feature impact
in the best-case analysis, but contradicts the feature impact
in the worst-case analysis. The best-case analysis and the
worst-case analysis are expressed as

BM5 : ẑ∗t =

∑nt

t=1 z
obs
t

nt
, ẑ∗c =

∑nc

c=1 z
obs
c

nc
,

BM6 : ẑ∗t =

∑nc

c=1 z
obs
c

nc
, ẑ∗c =

∑nt

t=1 z
obs
t

nt
,

where ẑ∗t (ẑ∗c ) is the imputed missing value in the treat-
ment (control) group, zobst (zobsc ) is the observed value in
the treatment (control) group.

To check the performance of the proposed method, we
estimate the mean and variance in the control group, and
compute lift in the mean between the treatment group and
the control group, the standard error (SE) of the difference
between the treatment and control group, coefficient of vari-
ation (CV) for the control group, zero rate (ZR) and p-value.
The lift in the mean between the treatment group and the
control group is described as

Lift = μt − μc

μc
× 100%

=

(∑nt

t=1 zt
nt

−
∑nc

c=1 zc
nc

)/∑nc

c=1 zc
nc

× 100%,

where μt and μc are the mean in the treatment group and
the control group, respectively.

The SE is expressed as

SE =

√
(nt − 1)s2t + (nc − 1)s2c

nt + nc − 2
·
(

1

nc
+

1

nt

)
,

where st and sc are the standard errors for the treatment
group and the control group, respectively.
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Table 2. Performance comparisons of benchmark methods from 50 simulation replications (mean and standard errors
(in parenthesis)). Note that method NoMissing uses the original complete response prior to the missing assignment.

Scenario Method Lift (%) μc μt sc CV nc ZR
S1 BM1 65.6 (4.96) 1.7 (0.05) 2.8 (0.04) 1.2 (0.03) 0.7 (0.03) 953.8 (30.33) 0 (0)

BM2 24.9 (2.24) 1.7 (0.05) 2.1 (0.03) 0.8 (0.02) 0.5 (0.02) 2504.1 (28.23) 0 (0)
BM3 17.8 (1.14) 2.4 (0.03) 2.8 (0.04) 0.9 (0.02) 0.4 (0.01) 2504.1 (28.23) 0 (0)
BM4 65.4 (9.85) 0.6 (0.02) 1.1 (0.04) 1.1 (0.02) 1.8 (0.04) 2504.1 (28.23) 0.6 (0.01)
BM5 65.6 (4.96) 1.7 (0.05) 2.8 (0.04) 0.8 (0.02) 0.5 (0.02) 2504.1 (28.23) 0 (0)
BM6 -11.1 (0.76) 2.4 (0.03) 2.1 (0.03) 0.9 (0.02) 0.4 (0.01) 2504.1 (28.23) 0 (0)

Proposed 40.3 (11.30) 1.1 (0.25) 1.5 (0.24) 1.3 (0.20) 1.2 (0.09) 2504.1 (28.23) 0.4 (0.01)
NoMissing 64.8 (7.41) 0.9 (0.03) 1.5 (0.04) 1.2 (0.02) 1.4 (0.03) 2504.1 (28.23) 0.5 (0.01)

S2 BM1 65.0 (4.41) 1.7 (0.04) 2.8 (0.04) 1.2 (0.03) 0.7 (0.03) 958.6 (29.9) 0 (0)
BM2 24.8 (2.02) 1.7 (0.04) 2.1 (0.03) 0.8 (0.02) 0.5 (0.02) 2504.1 (28.23) 0 (0)
BM3 17.8 (1.06) 2.4 (0.03) 2.8 (0.04) 0.9 (0.03) 0.4 (0.01) 2504.1 (28.23) 0 (0)
BM4 64.3 (9.47) 0.6 (0.02) 1.1 (0.04) 1.1 (0.02) 1.7 (0.04) 2504.1 (28.23) 0.6 (0.01)
BM5 65.0 (4.41) 1.7 (0.04) 2.8 (0.04) 0.8 (0.02) 0.5 (0.02) 2504.1 (28.23) 0 (0)
BM6 -11.0 (0.59) 2.4 (0.03) 2.1 (0.03) 0.9 (0.03) 0.4 (0.01) 2504.1 (28.23) 0 (0)

Proposed 39.4 (10.79) 1.1 (0.25) 1.5 (0.24) 1.3 (0.20) 1.2 (0.09) 2504.1 (28.23) 0.4 (0.01)
NoMissing 64.8 (7.41) 0.9 (0.03) 1.5 (0.04) 1.2 (0.02) 1.4 (0.03) 2504.1 (28.23) 0.5 (0.01)

S3 BM1 100.9 (8.84) 1.1 (0.05) 2.2 (0.03) 0.9 (0.02) 0.8 (0.05) 958.6 (29.9) 0 (0)
BM2 38.4 (4.02) 1.1 (0.05) 1.5 (0.03) 0.6 (0.02) 0.5 (0.03) 2504.1 (28.23) 0 (0)
BM3 23.7 (1.33) 1.8 (0.03) 2.2 (0.03) 0.8 (0.02) 0.4 (0.02) 2504.1 (28.23) 0 (0)
BM4 100.1 (15.36) 0.4 (0.02) 0.8 (0.03) 0.8 (0.02) 1.8 (0.06) 2504.1 (28.23) 0.6 (0.01)
BM5 100.9 (8.84) 1.1 (0.05) 2.2 (0.03) 0.6 (0.02) 0.5 (0.03) 2504.1 (28.23) 0 (0)
BM6 -14.7 (0.89) 1.8 (0.03) 1.5 (0.03) 0.8 (0.02) 0.4 (0.02) 2504.1 (28.23) 0 (0)

Proposed 71.6 (9.67) 0.6 (0.03) 1.0 (0.03) 0.8 (0.02) 1.4 (0.05) 2504.1 (28.23) 0.5 (0.01)
NoMissing 64.8 (7.41) 0.9 (0.03) 1.5 (0.04) 1.2 (0.02) 1.4 (0.03) 2504.1 (28.23) 0.5 (0.01)

In online experimentation, the faster we run experiments,
the more economic benefits, and less operational costs are
achieved. Given constant user traffic, running experiments
faster means a smaller number of users required [3, 31].
The CV is proportional to the number of users required for
achieving a pre-determined statistical power of experiments.
The CV is expressed as

CV =
sc
μc

.

The smaller the CV, the smaller the user size required to
detect the difference at the specific statistical power, and
thus the higher sensitivity.

The ZR is the ratio of the number of zero’s (nzero) in
imputed z out of total data size n, described as

ZR =
nzero

n
.

The ZR evaluates the proportion of visitors with the out-
come as zero after the imputation method.

We compare the performance of the proposed method and
benchmark methods in all scenarios in Table 2. In S1 and
S2, the proposed cluster-based KNN imputation method has
the closest μc, μt and ZR compared to the method NoMiss-
ing. The BM2 and BM3 methods have larger μc and μt be-
cause these methods impute all missing values with nonzero

values, which is indicated by their ZR values being 0. The
proposed method has a comparable sc value to the method
NoMissing, while the BM2, BM3, BM4, and BM5 methods
have smaller values. This might be explained that the im-
putation values in the proposed method are not fixed as in
the BM2, BM3, BM4, and BM5 methods. Though the BM1
method has a similar sc compared to the proposed method,
its sample size is smaller due to the removal of samples with
missing responses. In S3, the proposed method does not out-
perform the BM2 method. This is probably due to the fact
that in S3 the missing response values can be partitioned
into one particular group. When this entire group is miss-
ing, it is difficult for the KNN-based imputation approach
to find good neighbors of missing responses. As a result, the
estimated μc and μt are not close to the truth.

5. CASE STUDY: SEARCH RANKING
EXPERIMENT

To illustrate the proposed method, this section uses a real
online experiment whose objective was to improve eBay’s
item ranking search results based on one ranking algorithm.
The experiment hypothesis is that integrating information
about negative buyer experiences into the ranking algorithm
will reduce the visibility of items with a high probability
of negative buyer experiences in search results, resulting in
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Table 3. Performance comparisons of benchmark methods in the ranking search experiment. Note that the values of s2c, μc,
CV, and SE are not real and masked with particular linear transformation to meet the disclosure requirement.

Method s2c μc CV ZR Lift (%) SE p-value
BM1 107035.21 1235.8 0.265 0.00 -0.37 0.33 0.17
BM2 20003.17 390.5 0.362 0.00 -0.16 0.06 0.28
BM3 20004.96 389.9 0.363 0.00 -0.17 0.06 0.28
BM4 20693.30 213.7 0.673 0.83 -0.29 0.06 0.31
BM5 20003.17 390.5 0.362 0.00 -0.29 0.06 0.05
BM6 20004.96 389.9 0.363 0.00 -0.03 0.06 0.82
Proposed 21194.12 246.6 0.590 0.80 -0.50 0.06 0.05

lower product return rates and increased revenues. This ex-
periment lasts three weeks. A portion of eligible eBay users
are selected and randomized into three variants – two treat-
ment groups and one control group. The number of partic-
ipant users in each variant exceeds 10 million. One of the
most important outcomes is related to purchases, denoted
here as PR.

The outcome PR is incomplete due to its high missing
rate. The PR is recorded when users made purchases dur-
ing the experiment’s data collection period, but not when
either of the following occurred: users did not make pur-
chases, or the platform was unable to record the purchases
before the end of the experiment’s data collection period. To
impute PR and thus identify visitors and dropout buyers,
we use these informative covariates, including the treatment
assignment, the number of sessions, the number of sessions
with searches, the number of sessions with qualified events
highly related to purchases at eBay, and the user’s buying
characteristics. The treatment assignment is pre-determined
before running the experiment to assign users to the treat-
ment group and the control group. The number of sessions
corresponds to the number of sessions users have through-
out the experiment. The number of sessions with searches
is the number of sessions that contain at least one search
activity. The number of sessions with qualified events is the
number of sessions that include at least one qualified event
activity. The buying characteristics of users are their histori-
cal purchasing patterns at eBay. These useful covariates are
complete and do not have missing values. We impute the
outcome PR using the proposed cluster-based imputation
method. In the step of stratification, we divided the large-
scale data set into smaller subsets based on two variables:
the treatment assignment and user’s buying characteristic.
When performing clustering within each strata, we use the
number of sessions, the number of sessions with searches,
and the number of sessions with qualified events.

In Table 3, we compare the performance between the
proposed cluster-based imputation method and benchmark
methods. The proposed method has a smaller mean in the
control group and ZR than other methods except for the
BM4. The proposed imputation method identifies visitors
and dropout buyers from missing values. That being said,

the proposed cluster-based imputation method imputes ze-
ros for visitors, which is a portion of users with missing out-
comes, and positive values for dropout buyers. Compared to
the BM4, the proposed imputation method has a smaller size
of zero and thus a larger mean in the control group. Com-
pared to other mean-imputation methods that impute all
missing values with a single value, the proposed imputation
method has more zero’s and a smaller mean in the control
group. The proposed method has a larger CV in the control
group than all other methods, with the exception of BM4.
This is largely attributable to the change in the mean of the
control group, as the pooled standard errors for all methods,
with the exception of BM4, are quite close. The proposed
method has the smallest lift, and all methods have a con-
sistent direction of lift. Based on the p-value and the Type
I error as 10%, the proposed method and BM5 are statisti-
cally significant, indicating that there is sufficient evidence
to reject the null hypothesis, whereas other methods are not
statistically significant. This is expected because it is well
known that single imputation methods tend to dilute mean
differences, producing results that there is no difference be-
tween the control group and the treatment group. The pro-
posed method has a larger variance in the control group and
SE than other methods except for the BM1. The BM1 has
a reduced sample size, resulting in the largest variance and
SE for the control group. Unlike other methods, with the
exception of the BM1, the proposed method does not ig-
nore variance among missing values, resulting in a greater
variance.

Figure 1 illustrates the increase in the mean of the con-
trol group across users’ buying segments for the proposed
cluster-based imputation method and the zero-imputation
method. Different user segments have different mean val-
ues, with the top two being the frequent buyer levels II and
III. The proposed imputation method has larger mean val-
ues than the zero imputation method in nearly all user seg-
ments. The segments the frequent buyer levels II and III
have considerably larger mean increases than the idle buyer
levels. This suggests that the dropout buyers are more likely
to occur in the frequent buyer levels II and III, while in the
segments such as idle buyer levels, users with unrecorded
outcomes are more likely to be visitors. This is consistent
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Figure 1: Comparison of mu across user segments between
the proposed imputation method and the zero imputation
method for the treatment group. The tick values in the ver-
tical axis are omitted for the restriction of disclosure.

Figure 2: Comparison of zero rate across user segments be-
tween the proposed imputation method and the zero impu-
tation method.

with the findings in Figure 2 regarding the allocation of
the zero rate across user segments. Different user segments
have varying degrees of zero rate. The zero rates for frequent
buyer levels II and III are approximately 45%, whereas the
zero rates for idle buyer levels II and III are above 90%. This
is reasonable given that frequent buyer levels II and III are
more likely to make purchases, resulting in low zero values

Figure 3: Comparison of CV across user segments between
the proposed imputation method and the zero imputation
method for the treatment group. The tick values in the ver-
tical axis are omitted for the restriction of disclosure.

for outcome PR. The high zero rate corresponds to the low
mean value in Figure 1.

Figure 3 shows the distribution of CV across user seg-
ments for the proposed imputation method and the zero
imputation method. For both methods, the CV values for
the frequent buyer levels are less than half of those for the
idle buyer levels. However, the CV of the proposed method is
consistently lower than that of the zero imputation method
across all user segments. The decrease in the CV indicates
an improvement in sensitivity for the outcome PR. This im-
provement in sensitivity is largely attributable to the change
in mean values.

6. DISCUSSION
Metrics provide strong evidence to support hypotheses

in online experimentation and hence reduce debates in the
decision-making process. This paper introduces the con-
cept of dropout buyers and classifies users with incom-
plete metric values into two categories: visitors and dropout
buyers. For the analysis of incomplete metrics, we pro-
pose a cluster-based k-nearest neighbors-based imputation
method. The proposed imputation method considers both
the experiment-specific features and users’ activities along
their shopping paths. The proposed method incorporates
uncertainty among missing values in the outcome metrics
using the k-nearest neighbors method. To facilitate efficient
imputation in large-scale data sets in online experimenta-
tion, the proposed method employs a combination of strat-
ification and clustering. The stratification approach divides
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the entire large-scale data set into small subsets to improve
computation efficiency in the clustering step. The clustering
approach identifies inherent structure patterns to improve
the performance of the k-nearest neighbors method within
each cluster.

It is worth to remarking that the kNN method used in
this work considered the average of responses in nearest
neighbors. The weighted average of nearest neighbors has
been proposed to suggest that different data points in the
neighbor contribute differently to the decision based on their
distances from the target point [10]. That is, nearby data
points, which are closer to the target in the neighbors, have
higher influence on the decision than distant data points.
Moreover, one would incorporate the network structure in-
formation into the kNN for the networked A/B testing [34].
Another direction for future research is to study ratio met-
rics [15] related to purchases in the proposed imputation
framework. On the other hand, the proposed imputation
method aims to impute missing values for each user with
missing outcomes. It would be interesting to categorize users
with missing outcomes into various hubs and investigate the
imputation strategy for each hub of users altogether.
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