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Abstract
Traditionally, research in nutritional epidemiology has focused on specific foods/food groups or single nutrients in their

relation with disease outcomes, including cancer. Dietary pattern analysis have been introduced to examine potential
cumulative and interactive effects of individual dietary components of the overall diet, in which foods are consumed in
combination. Dietary patterns can be identified by using evidence-based investigator-defined approaches or by using data-
driven approaches, which rely on either response independent (also named “a posteriori” dietary patterns) or response
dependent (also named “mixed-type” dietary patterns) multivariate statistical methods. Within the open methodological
challenges related to study design, dietary assessment, identification of dietary patterns, confounding phenomena, and
cancer risk assessment, the current paper provides an updated landscape review of novel methodological developments
in the statistical analysis of a posteriori/mixed-type dietary patterns and cancer risk. The review starts from standard a
posteriori dietary patterns from principal component, factor, and cluster analyses, including mixture models, and examines
mixed-type dietary patterns from reduced rank regression, partial least squares, classification and regression tree analysis,
and least absolute shrinkage and selection operator. Novel statistical approaches reviewed include Bayesian factor analysis
with modeling of sparsity through shrinkage and sparse priors and frequentist focused principal component analysis. Most
novelties relate to the reproducibility of dietary patterns across studies where potentialities of the Bayesian approach to
factor and cluster analysis work at best.

keywords and phrases: Dietary patterns, Cluster analysis, Factor analysis, Reduced rank regression, Multi-study factor
analysis, Robust profile clustering.

1. INTRODUCTION
There were an estimated 18.1 (9.3 in men and 8.8 in

women) million new cancer cases and 9.9 (5.5 in men and 4.4
in women) million cancer deaths worldwide in 2020. Breast
and lung cancers were the most common cancers worldwide
(12.5% and 12.2% of the total number of new cases diag-
nosed in 2020, excluding non-melanoma skin cancer), fol-
lowed by colorectal cancer (10.7% of new cases). With the
burden growing in almost every country, preventing cancer
is one of the most significant public health challenges of the
21st century. It has been estimated that 30–50% of cancer
cases could be prevented by tackling risk factors relating
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to diet, nutrition, and physical activity [117]. According to
the World Cancer Research Fund Prevention Recommenda-
tions, changing dietary patterns (i.e., eating whole grains,
vegetables, fruit, and limiting consumption of red and pro-
cessed meat, fast-food products, and sugary drinks), reduc-
ing alcohol consumption, increasing physical activity, and
achieving and maintaining a healthy body weight can im-
pact people’s likelihood of developing cancer and other non-
communicable diseases over their lifetimes [19]. Tailored sta-
tistical methods are essential to support the collection of a
sound evidence base for cancer prevention.

Traditionally, research in nutritional epidemiology has fo-
cused on specific foods/food groups or single nutrients. How-
ever, dietary determinants of non-communicable diseases
differ from those of undernutrition and nutrient deficien-
cies, which result from insufficient intake or absorption of a
particular nutrient. Multiple dietary determinants act inter-
actively and cumulatively affect disease risk over decades.
In addition, when one component of the diet changes, it
is typically substituted by another [118]. Consequently, nu-
tritional epidemiologic investigations of non-communicable
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diseases have integrated the single-nutrient and the single-
food approaches (named single-component approach) with
the overall diet evaluation through dietary patterns. Dietary
patterns can be broadly defined as the foods, food groups,
or nutrients included; their combination and variety; and
the frequency and quantity with which they are habitually
consumed.

Dietary patterns can be identified by using evidence-
based investigator-defined approaches (also named “a pri-
ori” dietary patterns) or by using data-driven approaches,
which rely on either response independent (also named “a
posteriori” dietary patterns) or response dependent (also
named “mixed-type” dietary patterns) multivariate statis-
tical methods. A priori dietary patterns express adherence
to benchmark diets, including those suggested by dietary
guidelines, using simple mathematical expressions, like sums
or ratios. A posteriori dietary patterns are mostly derived
with variants of principal component analysis (PCA), ex-
ploratory factor analysis (EFA), or cluster analysis (CA).
The mixed-type dietary patterns – which combine elements
of both previous approaches – are traditionally identified
by using the reduced rank regression, which directly al-
lows them to explain the most variability in (intermedi-
ate) response variables [67, 68, 89, 85, 33, 92, 70, 47, 135,
107].

In recent years, innovation has been observed in meth-
ods identifying a posteriori dietary patterns across different
studies or known subgroups (e.g., by center or ethnicity)
within the same study [24, 27]. These dietary patterns have
been successfully related to cancer risk [24].

The current paper will provide an updated landscape re-
view of novel methodological developments in the statistical
analysis of a posteriori/mixed-type dietary patterns, within
the open methodological challenges related to study de-
sign, dietary assessment, identification of dietary patterns,
confounding phenomena, and cancer risk assessment. The
strengths and limitations of standard and novel approaches
will be carefully described and evaluated.

2. RELIABLY MEASURE DIETARY INTAKES
Measuring diet in free-living populations is challenging.

Diet is a complex exposure, with numerous and (some-
times) poorly characterized components consumed in vary-
ing amounts and combinations by individuals. Diet is also
a time-varying exposure, with dietary habits and food com-
position changing over time [104].

Several techniques (i.e., dietary assessment methods)
have been developed to ascertain dietary intake in free-living
populations. Although each assessment method has its own
set of limitations and is prone to some form of (random or
systematic) error, its unique strengths make it appropriate
for use in specific applications [131].

2.1 Dietary Assessment Methods
Multiple-week diet records require participants to record

everything they eat/drink over several weeks. They are con-
sidered the gold standard for collecting dietary information
because, unlike other methods, they do not rely on mem-
ory. The high costs and participant burden have severely
limited their use in large-scale epidemiological studies; how-
ever, their ability to accurately provide detailed dietary in-
formation makes them useful in validation studies of other
dietary assessment tools and in monitoring compliance in
trials. In addition, recording can worsen as recording days
increase [131].

Multiple 24-hour recalls involve reporting all foods and
beverages consumed in the previous 24 hours (or in a cal-
endar day) to a trained interviewer in person or over the
phone for more than one assessment. Although reliance on
the participant’s memory leaves room for measurement er-
ror, a skilled interviewer can produce highly detailed and
useful nutritional data, (almost) comparable to a diet record
[22]. This method has been widely used in clinical nutrition
and dietary intervention trials. It is also employed in na-
tional surveys to monitor trends in nutritional intakes [131].

A food-frequency questionnaire (FFQ) consists of a struc-
tured food list and a frequency response section in which the
participant indicates his/her usual frequency of intake of
each food or beverage over a certain period in the past, usu-
ally one year. Portion sizes, with the indication of a standard
portion size (in grams or natural units), are also generally
queried [131]. Because of their relying on memory, FFQs are
more prone to a biased and/or partial recording of dietary
information, compared with 24-hour recalls and diet records
administered for many days spread out over the entire ref-
erence period of an FFQ [104]. The FFQ is, however, the
most common option for measuring intake in extensive ob-
servational studies. Indeed, it is easy to administer, has a
low participant burden, and well captures usual long-term
dietary intake. These features also allow for repeated assess-
ments of dietary habits via FFQ over time. This is crucial
for capturing longer-term diet variation [131].

Country-specific, complete, and up-to-date food compo-
sition databases are essential to convert food consumption
(as collected with any of the previous dietary assessment
tools) into macro-nutrients, micro-nutrients, bioactive sub-
stances (e.g., polyphenols), and non-nutrient (e.g., ethanol
or contaminants) intakes. The difference between macro-
and micro-nutrients is based on their different function:
the former create energy and then promote the organism’s
growth, and the latter contribute to other (i.e., optimal cell)
functions. The former are expressed in grams, the latter in
milligrams or micrograms. Estimating nutrient composition
from food intake data poses additional challenges. Among
others, a food’s nutrient content varies with production lo-
cation, season, growing conditions, storage, processing, and
cooking techniques. Some of these factors are unaccounted
for in food composition databases, generating estimates of
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nutritional content that can be affected by errors. However,
the degree to which this is problematic differs from nutri-
ent to nutrient. Food composition databases represent the
current composition of foods consumed by a given popula-
tion as far as they are regularly updated. Continuous up-
dates allow targeting and covering newly manufactured pre-
packaged products, whose formulation and nutrient compo-
sition is swiftly changing due to policies, customers’ demand,
and marketing strategies. The incomplete coverage of foods
and the lack of information on some nutrients or bioactive
substances of health interest in a food composition database
might be potential sources of error. While these sources of
error do not substantially compromise the ability to rank in-
dividuals based on nutrient intake and, therefore, to evaluate
associations with health outcomes [131], estimating nutrient
composition from food intake data requires continuous im-
provements in the accuracy of food composition databases,
especially given the changing food landscape [128].

When participants provide biological specimens, re-
searchers can also assay biomarkers to integrate informa-
tion on foods/beverages from the dietary assessment tool
or nutrients from the food composition databases. Exam-
ples of biomarkers include doubly labeled water (for total
energy intake), urinary nitrogen (for protein intake), 24-
hour urinary sodium and potassium, blood lipid profiles,
and serum and plasma folate. In principle, biomarkers pro-
vide objective intake measurements without bias due to self-
reporting. In practice, the use of biomarkers in investigating
nutrient-disease relations has been limited to nested case-
control studies, small trials, and validation studies of dietary
assessment tools. This is due to their inherent limitations,
including a lack of sensitive or specific biomarkers for many
foods and nutrients, their expensive collection, and assess-
ment errors from multiple sources. In addition, biomarkers
may not be indicators of individual long-term intake [104].

2.2 Measurement Error
While the appropriate application of different diet assess-

ment methods, alone or in combination, and of food com-
position databases allows for a reasonably comprehensive
assessment of the diet in free-living populations, awareness
of sources/types of measurement error in dietary intake data
is crucial in the analysis of the association between diet and
non-communicable diseases, including cancer [131, 52].

Usual intake (in the short or the long term) is esti-
mated via the reported intake, as derived from dietary as-
sessment methods. This estimation procedure poses critical
challenges. In its simplest form, the following additive model
expresses the relation between true, Ti, and reported, Rit,
intake:

Rit = β0 + β1Ti + ui + εi,t,

where the reported intake Rit for the i-th individual on the
t-th time (e.g., day) linearly depends on one source of ran-
dom error, εi,t, and three different sources of systematic er-
ror, β0, β1, and ui. In detail, the random measurement error

εi,t of the i-th individual on the t-th time models individual
consumption variation over time and usually reflects day-to-
day changes in consumption; β0 represents systematic error
occurring in the same way to all individuals, and therefore
the effect is constant; β1 depends on the true intake, Ti, and
its magnitude is proportional to or multiplied by the true
intake; ui is the subject-specific bias, depending on individ-
ual characteristics (i.e., age, sex, or education) that lead to
systematic under- or over-reporting consumption.

Validation studies allow for assessing the relationship be-
tween reported and true intake. In the absence of a “true”
gold standard, an alloyed gold standard (i.e., a reference di-
etary assessment method with random error only) is used to
estimate the true intake. This gold standard is generally a
multiple-week diet record or a recovery biomarker, such as
a specific biological product directly related to intake and
not subject to homestasis or substantial inter-individual dif-
ferences in metabolism. The gold standard is needed to dis-
tinguish the systematic error components and correct the
intake estimates.

The 24-hour recalls have generally larger random within-
person error than an FFQ, but smaller systematic error,
when the two tools are compared with a reference recov-
ery biomarker [105]. The random error in 24-hour recalls is
mostly driven by day-to-day variation in intake and other
random errors that affect reporting from day to day. It can
be mitigated by averaging over many repeats. FFQs usually
have lower random within-person variation than the other
dietary assessment methods, because they are designed to
assess the usual average intake over a longer time period.
In FFQs, the error is driven by inaccuracies associated with
recalling long-term intakes and features of the instrument,
such as the finite food list and the (relative) lack of detail
about foods consumed. These biases are systematic and are
not mitigated by averaging across repeated measures. On
average, at the population or group level, the Observing Pro-
tein and Energy Nutrition [105] and other validation stud-
ies suggest serious energy underreporting, of approximately
10% when using 24-hour recalls and about 30% when using
FFQs. This underreporting arises from sources of group-
level bias (ui), constant additive bias β0, and intake-related
bias β1.

Although FFQs may suffer from greater measurement er-
rors, they have been shown to have acceptable validity when
compared to reference measures [12, 116]: typical correla-
tion coefficients for individual nutrients or foods range from
0.4 to 0.7 [131]. Along with repeated FFQs, adjustment for
total energy intake in long-term prospective cohort studies
further improves these validity coefficients. When biomark-
ers are available together with dietary records, triangulation
methods can be used to obtain improved estimates of cor-
relations of FFQ intake with true intake [91]. These validity
coefficients can be used to correct for measurement error in
epidemiologic analyses, and the application of these mea-
surement error correction methods is increasingly being ex-
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tended to more complex analyses [97, 102, 112]. These tech-
niques have allowed for valid inferences to be drawn from
large cohort studies with the use of FFQ data.

In conclusion, the considerable progress made – especially
with the use of repeated measures of diet over time – has
enabled nutritional epidemiologists to increase reliability in
collecting and using dietary information at the individual
and population levels. However, continued improvements
in dietary assessment methodology and measurement error
correction are needed to support the current understand-
ing of the relationship between diet and non-communicable
diseases, including cancer [104].

3. STUDY DESIGNS AND RELATED ISSUES
IN NUTRITIONAL EPIDEMIOLOGY

The most suitable dietary assessment method for collect-
ing dietary exposure depends heavily on the overall study
design that is feasible to adopt for answering the research
question. Similarly, additional biases and forms of measure-
ment error not related to dietary exposure are relevant in
assessing the relationship between dietary habits and dis-
ease, including, but not limited to, cancer.

3.1 Study Designs in Nutritional Epidemiology
One of the major remarks against nutritional epidemiol-

ogy is that it mostly relies on observational data, which is
deemed inferior to experimental data in determining causal-
ity. While randomized controlled trials (RCTs) with hard
clinical endpoints occupy the highest position in this hierar-
chy, RCTs are usually not the most suitable/feasible study
design to answer nutritional epidemiologic questions regard-
ing long-term effects on health/disease (e.g., cancer) of spe-
cific foods or nutrients [104]. Unlike classic drug trials, in
RCTs of dietary interventions typically [104, 108]:

• blinding is not feasible, leading to the possibility that
the intervention effect is due to knowledge of treatment
assignment instead of the dietary component of the in-
tervention;

• higher dropout rates are more likely, especially if the
intervention is very demanding, including if it lasts for
long periods. When substantial, this high dropout will
reduce power in the presence of random losses to follow-
up. But, if the dropout is differential to treatment and
outcome, it may also introduce systematic bias in the
effect estimate, usually in unpredictable directions;

• insufficient adherence of participants to their assigned
intervention (i.e., noncompliance) is a major issue,
which may become severe in trials of longer duration;

• choosing the control group, when present, is more com-
plicated. Indeed:

1. when one control group is selected, this group is
asked to follow its usual diet; when more than
one control group is selected, different dietary reg-
imens are compared, and each is designed to differ

from the others in some respect; this makes results
interpretation more difficult in dietary interven-
tions trials;

2. since decreasing the intake of one nutrient/food
usually entails increasing the intake of another
nutrient/food to compensate for the reduction in
calories in isocaloric trials, the choice of the com-
parison group can influence the observed effect of
dietary intervention, further complicating its in-
terpretation.

In the absence of evidence from large RCTs on hard end-
points, nutritional epidemiologists typically rely on prospec-
tive cohort studies, the strongest available observational de-
sign, to infer causality. Being prospective, cohort studies
are less affected by the typical biases (i.e., reverse causa-
tion, recall bias, and selection bias) of retrospective or cross-
sectional study designs.

Reverse causation describes the situation in which the
outcome affects the exposure rather than the other way
around. This is a common concern with cross-sectional and
retrospective case-control studies as they assess exposure
and outcome simultaneously (although in case-control stud-
ies, exposure information concerns the past). Prospective
cohort studies can minimize the possibility of reverse causa-
tion because participants are followed forward in time; these
studies can also examine the extent of reverse causation from
subclinical disease by lagged analyses [104].

Compared to retrospective case-control studies, prospec-
tive cohort studies begin with a disease-free population at
baseline that is followed up to ascertain incident cases that
develop over time and can minimize both selection bias (con-
trols not being representative of the underlying population
that gave rise to cases) and recall bias (knowledge of disease
status affecting recall of diet) [104].

3.2 Confounding
A major challenge when working with observational data

is confounding. A confounder is a variable associated with
both the exposure (i.e., diet) and the outcome (i.e., can-
cer), and, when unaccounted for, introduces bias into the
exposure-outcome relation. The main reason why random-
ized trials are considered superior in inferring causality is
that, as far as the sample size is large enough, the random
allocation of participants to treatment groups nullifies mea-
sured and unmeasured confounding.

To account for this bias in an observational study design,
researchers must identify all relevant confounders based on
existing evidence/theory on the association between dietary
habits and the disease (e.g., cancer type) under consider-
ation. Once data are collected, the investigator can sta-
tistically adjust for confounders in a multiple regression
model, including the main exposure (i.e., diet) and/or re-
strict the analysis to a specific subgroup to minimize residual
confounding. Sensitivity analyses further strengthen results
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by suggesting the magnitude of unmeasured confounding
needed to neutralize an effect completely [104]. A prospec-
tive design additionally allows for up-to-date tracking of
confounders and, in this way, limits the risk of residual con-
founding. While updated information may reduce measure-
ment errors in the assessment of confounders, additional in-
formation can be collected when needed.

Although there are several ways to account for confound-
ing in prospective cohort studies, the critical assumption
of no unmeasured or residual confounding needed to infer
causality cannot be empirically verified in observational epi-
demiology [53]. For this reason, prospective cohort studies
are often seen as providing statistical associations but not
causality. However, when satisfied, the Hill criteria [54] sup-
ports the possibility of inferring causality from observational
data when randomized trials of hard endpoints are not fea-
sible [104].

In addition, evidence from prospective cohort studies
should be integrated with results from randomized trials of
intermediate responses, in vitro and in vivo studies, to arrive
at a consensus on diet and a health/disease (e.g., cancer).
The inference of causality is strengthened when these dif-
ferent types of studies provide consistent evidence in the
context of the larger evidence base.

In conclusion, when randomized trials of hard endpoints
are unfeasible, well-conducted prospective cohort studies
can be used to infer causality with a high degree of certainty.
Sources of bias, including confounding, can be minimized
by relying on high-quality study design, careful statistical
analysis and interpretation, and replications of the findings
across different populations. Corroborating data from mul-
tiple study types and populations can enhance the weight
of evidence [104].

4. DIFFERENT TYPES OF EXPOSURES:
FOOD ITEMS, FOOD GROUPS,

NUTRIENTS, AND BIOMARKERS
Given the complex nature of the human diet, another way

of inferring causality is to consider different types of expo-
sure (i.e., food items, food groups, nutrients, and biomark-
ers, if any) simultaneously within the same study [62, 58].
This is one of the unique features of nutritional epidemiol-
ogy, where dietary information is disentangled into different
sets of potentially related variables.

While food items are available from the dietary assess-
ment tools, and they are several (i.e., from 50 to 200, de-
pending on the dietary assessment and/or variety of the col-
lected diet), a smaller set of food groups – between 20 and 40
– may be created by the researchers to summarize key com-
ponents of the overall diet by summing up food items based
on similarities in nutrient content, consumption at meal, or
culinary use. Examples of food groups include citrus and
non-citrus fruit to summarize fruit consumption, raw and
cooked vegetables to summarize vegetable consumption, or
whole and refined grains to summarize grain consumption.

Measurements for food items and groups depend on how
foods are recorded in the dietary assessment tool (directly
as raw frequencies per day or week or in pre-specified con-
sumption categories roughly converted into frequencies for
the analysis). Generally, food items/groups are expressed
as counts, including frequency fractions to account for data
collection in consumption categories (e.g., 1–2 times/week
converted into 1.5 times/week). Nutrients are continuous
variables derived from country-specific food composition
databases. As derived by laboratory processing of collected
blood or urine samples, biomarkers are continuous vari-
ables too. Differently from the previous dietary components,
biomarkers are not generally used alone to represent diet
but are typically used jointly with other sources of dietary
information to validate them.

In conclusion, analyses in nutritional epidemiology can
rely on different sets of potentially correlated variables (i.e.,
food items, food groups, nutrients, biomarkers, if any) ex-
pressed in different scales to provide a comprehensive rep-
resentation of dietary exposure’s complexity.

5. SINGLE DIETARY COMPONENTS AND
DIETARY PATTERNS

Traditional analyses in nutritional epidemiology exam-
ine diseases in relation to a single dietary component (i.e.,
nutrient, food item, or food group). Typically, a series of re-
gression models are fitted to consider the same confounding
factors and one nutrient or food item/group at a time. The
single dietary components are categorized according to spe-
cific quantiles (e.g., tertiles, quartiles, or quintiles, depend-
ing on the sample size). Point estimates and corresponding
confidence intervals for measures of disease (e.g., cancer)
risk are related to the highest quantile-based categories of
consumption (vs. the lowest one); an additional p-value pro-
vides an analysis of the trend in risk for each nutrient or food
item/group. Quantiles are chosen in studies based on FFQs
as FFQs are valuable tools to rank individual consumption
in a population but do not necessarily provide accurate es-
timates of absolute intakes of food items.

Total energy intake represents a major confounding factor
in assessing the association between dietary habits and dis-
ease risk. Differences in working and leisure time physical ac-
tivity, body size, and metabolism may be roughly captured
by total energy intake [98, 129], which is directly available
from food composition databases. In addition, adjusting for
energy intake diminishes extraneous sources of variation in
dietary intake and, to some extent, also reduces systematic
sources of under- and over-reporting [131, 130, 1].

Correction for total energy intake can be accomplished in
different ways:

• total energy intake is entered together with other rele-
vant confounding factors in the regression model includ-
ing quantile-based categories of single nutrients or food
items/groups with no previous preprocessing of the di-
etary component considered as the main exposure;
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• single nutrients or food items/groups are preprocessed
to account for total energy intake using the residual,
the energy partition, or the density methods [69, 129,
120, 88].

In diseases where one nutrient/food is the predominant
etiologically relevant dietary component (e.g., folate intake
for the prevention of neural tube defects [131] or trans fatty
acids from partially hydrogenated oils and heart disease risk
[87]), the single-component approach has (likely) the great-
est power to identify the effect of a dietary component. In
addition, it allows for easier comparisons of results across
populations and studies, especially when nutrients or food
groups common to most diets are considered [34].

The single-component approach has also conceptual and
methodological limitations [56]. First, free-living individu-
als do not eat isolated nutrients or foods. They eat meals
consisting of several foods [60] with complex combinations
of nutrients that are likely to be interactive or synergistic;
the “single-nutrient” approach may not take into account
complicated interactions among nutrients in studies of free-
living individuals [61, 59]. Even if one wishes to consider
such interactions, enormous sample sizes may be required
to assess even a few.

Second, the high correlation among some nutrients (such
as potassium and magnesium) makes it difficult to examine
their separate effects: the degree of independent variation of
each nutrient is markedly reduced when correlated nutrients
are entered into a regression model simultaneously.

Third, focusing only on one nutrient often fails to consider
substitution effects between nutrients and the potential ad-
ditional role of the associated food sources. In weight-stable
populations - in which changes in macro-nutrient composi-
tion occur in isocaloric conditions - when testing the effects
of reducing a dietary macro-nutrient, one must consider the
alternative macro-nutrient and its food sources. Hence, there
is no effect of a macro-nutrient in an absolute sense, because
this may change based on the replacement nutrient and the
foods that deliver them [118].

Fourth, the effect of a single nutrient may be too small to
detect, but the cumulative effects of multiple nutrients may
be sufficiently large to be detectable [56]. In addition, by
trying to parse the effect of dietary components, one might
miss associations between diet and disease because the ef-
fects of the individual components are examined against the
background of average risk associated with other nutrients
or foods. Adjustment for the other nutrients would provide
little help in this case.

Fifth, single-component analyses examining a large set of
nutrients/food groups may produce statistically significant
associations simply by chance, without a proper adjustment
for multiple comparisons [56].

Sixth, because nutrient intakes are commonly associated
with specific dietary patterns, the “single component” anal-
ysis may potentially be confounded by the effect of the over-
all dietary pattern. For example, diets high in fiber tend to

be high in vitamin C, folate, various carotenoids, magne-
sium, and potassium. When one sees a protective signifi-
cant effect of fiber on disease risk, can she/he be sure that
the relationship is not a consequence of a higher intake of
the other nutrients altogether? Even if we adjust for intakes
of other nutrients or foods, our ability to accomplish the
adjustment can be limited when these intakes are highly
correlated. Even when the models fit well, adjustment for
the single nutrients/food groups summarized in the dietary
pattern may not remove all the confounding effects because
these dietary components may interact with each other [56].

Since the mid-Nineties [122, 63, 79, 109], several authors
have proposed to integrate the single-component analysis
with the analysis of dietary patterns. Within this compre-
hensive approach to disease prevention or treatment, the
collinearity of nutrients and foods is taken into account and
exploited [67, 68, 89, 85, 33], in parallel with their separate
effects.

6. AN INTEGRATED APPROACH TO THE
ANALYSIS OF DIETARY DATA IN

RELATION TO DISEASE RISK
From the public health perspective, examining dietary

patterns would parallel the real world more closely. As is of-
ten stated by our colleagues in nutrition: “We don’t eat nu-
trients, we eat foods.” [60]. This statement can be amended
to say that we eat foods and eat them in certain combina-
tions or “patterns” [63]. This is why dietary patterns should
come first, followed and integrated by evidence on single
foods or food groups and then by nutrient-based research
findings.

This approach has been recently proposed again as a sys-
tematic strategy for the review of evidence underpinning
dietary guidelines [118, 132]: evidence supporting healthy
dietary patterns provides the foundation for the develop-
ment of dietary guidelines, whereas further reference to in-
dividual foods and nutrients follows from the foundation of
healthy dietary patterns. To put this in context, the 2015
Dietary Guidelines Advisory Committee in support of the
2015 Dietary Guidelines for Americans focused its evidence
review and recommendations on healthful dietary patterns
instead of individual nutrients or foods [30]. Due to re-
markable consistency in the findings over different disease
outcomes and dietary pattern identification methods, the
Committee review showed that a “healthy dietary pattern”
is higher in vegetables, fruits, whole grains, low- or non-
fat dairy, seafood, legumes, and nuts; moderate in alcohol
(among adults), lower in red and processed meat, and low
in sugar-sweetened foods/drinks, and refined grains. in ad-
dition, the core features of this healthy diet can be obtained
through many different healthy dietary patterns, potentially
accommodating varying individual needs and socio-cultural
preferences [30].

As a final note, dietary recommendations based on foods
and dietary patterns are likely to be more accessible to the
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general audience. It would be easier for people to understand
and adopt recommendations regarding cohesive dietary pat-
terns, as opposed to those regarding several different nutri-
ents. Additionally, dietary patterns have been shown to be
more stable than single food groups over time [37], and this
should help to communicate public health messages that
remain consistent as much as possible. However, it is still
essential to integrate information from dietary patterns and
single components because the former approach cannot be
specific about the particular dietary components responsi-
ble for the observed differences in disease risk, and it may
thus not be very informative about biological associations
between these components and disease risk [56].

7. HOW TO DEFINE DIETARY PATTERNS:
AVAILABLE APPROACHES

Dietary patterns are combinations of dietary components
(food items, food groups, or nutrients) intended to sum-
marize the total diet or key aspects of the diet in free-
living individuals. The majority of published reviews or-
ganize the statistical methods for dietary pattern analy-
sis into three categories that are described in the following
[67, 68, 89, 85, 33, 92, 70, 47, 135, 107]:

• a priori, investigator-driven, investigator-
defined, or dietary indexes/scores: patterns are
specified by researchers a priori based upon scientific
evidence or theory for specific diseases and, generally,
include foods or nutrients supported by current nu-
trition guidelines, recommendations, and/or a specific
dietary composition that is considered healthful;

• a posteriori, exploratory, empirically-derived,
data-driven, or “data-driven, response-
independent”: the patterns emerge a posteriori
from an analysis of dietary data – generally based
on multivariate statistics – (i.e., data-driven) and the
patterns are derived independent of their potential
relationship to a health outcome (i.e., response-
independent);

• mixed-type, hybrid, or “data-driven, response-
dependent”: the patterns emerge from an analysis of
dietary data – generally based on multivariate statistics
– (i.e., data-driven) expressly used to examine the rela-
tionship between dietary patterns and a health outcome
(i.e., response-dependent).

Note that previous names are simply shorthand nota-
tions to refer to how the patterns are derived. Data-driven
does not mean that a method is more evidence-based, and
investigator-defined does not mean a method includes more
subjectivity. Each method is built on evidence and includes
some degree of subjectivity [70].

All approaches allow assessing and/or ranking and quan-
tifying adherence of study participants to these patterns,
which is needed to evaluate their association with disease
(e.g., cancer) risk within a multiple regression model, in-
cluding confounding variables.

8. A PRIORI OR INVESTIGATOR-DEFINED
APPROACHES

A priori or “investigator-defined” methods compare sub-
jects’ diet against a pre-specified evidence-based benchmark
diet and express how individuals adhere to the benchmark
diet with a score [67, 85, 92]. Benchmark diets are built upon
scientific evidence/theory for specific diseases or include
foods or nutrients supported by current dietary guidance,
recommendations, and/or a specific dietary composition (for
instance, Mediterranean, vegetarian, vegan, or gluten-free
diets) that is considered healthful. The subject’s dietary in-
take (from food items/groups or nutrients) is scored on the
basis of each component of the benchmark diet following
the adopted scoring system; single scores are then combined
into a total score using the proper mathematical expres-
sion (e.g., sum or ratio). Typical examples in the literature
include the Diet Quality Index, Healthy Eating Index, Rec-
ommended Food Score, Dietary Approaches to Stop Hyper-
tension Index, World Cancer Research Fund Index, Mediter-
ranean Diet Score, and total Plant-based Diet Index [135].
Using these indices answers the question “How close is the
population to meeting a certain benchmark diet, expressed
as a dietary recommendation or a specific dietary composi-
tion?” For this reason, they are sometimes called measures
of diet quality [70].

Among major advantages, “investigator-defined” dietary
patterns generally characterize overall diet, they are intu-
itively appealing, analytically simple to compute (e.g., pri-
marily sums), easily reproducible and comparable. In index-
based summary analysis, the dimensions of the pattern and
how those dimensions are scaled are specified (and thus stan-
dardized) by the researcher based on external evidence re-
garding what constitutes a healthy diet [124]. Results can be
meaningful, interpretable and are generally well associated
with health outcomes, including cancer [101, 38, 46].

The major limitation of “investigator-defined” dietary
patterns is that scores are defined on, thus reduced to, cur-
rent knowledge and understanding of diet-disease associa-
tion. In addition, it is challenging to translate the inher-
ently qualitative concept of diet quality and its variants into
quantitative mathematical formulas. While dietary scores
are multidimensional in design, the end product is gen-
erally one number – the summary score – that may pro-
vide little information about the contributing components.
This is especially true for individuals with a middle-range
score, who might have different dietary behaviors. Construct
and content validity should be assessed for newly developed
“investigator-defined” dietary patterns. Subjectivity is in-
troduced in the interpretation of the guidelines (if any) and
in the construction of the scores (which foods are selected
for inclusion in each component). However, a big effort in
standardizing index construction has been recently made
within the Dietary Pattern Pooling Project sponsored by
the US National Institutes of Health [74]. No research has
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established the preferable scoring system for specific situa-
tions. The summation of equally weighted dietary compo-
nent scores implies that each component is equally impor-
tant and additively related to health. This might not be nu-
tritionally meaningful and may be different for different dis-
eases. More than one “investigator-defined” dietary pattern
is sometimes available to measure the same benchmark diet,
with differences in dietary components included, structure
(e.g., sum or ratio), processing of dietary variables, compo-
nent weighting (i.e., equal weights or not), and cut-off points
(i.e., population-specific or absolute). The different (recog-
nized) variants of Mediterranean diet have prevented so far a
meaningful recommendation in favor of Mediterranean diet
to fight against cancer, although a strong evidence of an ef-
fect on cancer risk was recognized and the association was
judged causal [19, 84].

9. A POSTERIORI OR “DATA-DRIVEN,
RESPONSE-INDEPENDENT”

APPROACHES
In nutritional epidemiological settings, data-driven meth-

ods estimate dietary patterns directly on dietary data [89,
47], and do not explicitly refer to a priori information in the
identification of dietary patterns. To highlight this aspect,
these methods are also indicated as exploratory approaches.
Variability in dietary habits might be explored in the overall
population, with no further reference to disease outcomes.
In this case, we have “data-driven, response-independent”
methods. Among these “data-driven, response-independent”
methods, the most used in nutritional epidemiology are
PCA, EFA, and CA [135].

In most applications in nutritional epidemiology, PCA,
EFA, and CA have been applied directly to the food-group
data matrix. While food groups provide the most immedi-
ate dietary pattern interpretation [55, 131], they are far from
continuous variables, as PCA, EFA, and most standard clus-
tering approaches would require. Fewer applications have
identified nutrient-based dietary patterns by following stan-
dard input data requirements [32, 35, 23]. From the epi-
demiological point of view, nutrient-based dietary patterns
have been suggested instead of the food-group-based ones
when the study target is the comparison of dietary patterns
across populations from different countries [86, 24]. A poly-
choric correlation matrix has sometimes been adopted as
the input data matrix for standard PCA/EFA to account
for binary (i.e., non-consumption versus consumption) and
ordinal food groups. This opens the possibility of tailoring
PCA, EFA, and CA variants to discrete metrical data in-
stead of scale/metrical data.

9.1 Principal Component Analysis and Factor
Analysis

The aim of PCA and EFA is to reduce the dimensionality
of the data by transforming an original, more extensive set

of correlated food groups/nutrients into a smaller and more
easily interpretable set of uncorrelated variables, called prin-
cipal components or factors. Both approaches answer the fol-
lowing question: “What are the major components/factors
in a population under study, i.e., those contributing most
to the variation of nutrient/food group intakes reported by
study participants?” [70].

To answer this question, PCA uses the singular value de-
composition and identifies principal components based on
the covariance/correlation matrix of the input variables (nu-
trients or food groups). The resulting components are linear
combinations of the original variables with suitable weights
(loadings) that explain as much of the variation in the orig-
inal variables as possible [47]. EFA starts from the same
covariance/correlation matrix and shares the data reduc-
tion rationale of PCA, but it is based on a statistical model
where the random vector of observations (i.e., individual’s
dietary data) is explained in terms of some latent common
and specific factors. The definition of a statistical model al-
lows rotation of the factor loading matrix, improving the
interpretation of the identified factors. EFA may use dif-
ferent estimation methods for model parameter estimation,
including PCA and maximum likelihood. Therefore, a prin-
cipal component factor analysis is defined as an EFA where
the PCA method is adopted for parameter estimation. Prin-
cipal component factor analysis is the more common method
used so far to derive a posteriori dietary patterns in nutri-
tional epidemiology [33].

The most followed approaches to select the appropri-
ate number of principal components/factors are eigenvalue
greater than 1 criterion (when the correlation matrix is
adopted), visual inspection of the scree-plot, and a sensi-
ble interpretation of the dietary patterns. A fixed threshold
(generally 5%) can also be decided, and only the compo-
nents/factors whose explained variance exceeds the chosen
threshold are incorporated in the analysis [47].

Following both approaches, individuals are ranked based
on the degree to which their diets conform to each of
the identified factors; this is done by adopting continu-
ously scaled scores either obtained by simple matrix algebra
(PCA) or by different estimating procedures (EFA).

Scores are further entered into a regression model for dis-
ease (e.g., cancer) risk estimation. In this case, scores cate-
gorization into quantiles improves results interpretation be-
cause scores, although continuous, have a restricted scale
and no measurement unit. Unlike most a priori indexes, any
one principal component/factor does not represent the en-
tire eating pattern for any individual or group because the
principal components/factors are not mutually exclusive.
However, each person’s overall eating pattern can be inferred
by assessing his/her multiple principal component/factor
scores [70]. The simultaneous inclusion of all dietary pat-
terns in the same regression model without additional multi-
collinearity issues is granted by scores being uncorrelated by
design (PCA) or by additional orthogonal rotation (EFA).
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This implies that the effect on disease (e.g., cancer) risk of
each dietary pattern can be easily adjusted for the remaining
dietary patterns.

In disentangling the overall diet into a few summarized
profiles, PCA and EFA provide an immediate representation
of how food groups/nutrients interact within each dietary
pattern. This happens through the principal component or
factor loadings. Indeed, the magnitude of each loading for
a given component/factor measures the importance of the
corresponding food group/nutrient to that component/fac-
tor [33, 47]. If a few loadings are high (in absolute value)
on a pattern, this pattern will be mostly characterized by
pairwise interactions of the corresponding food group/nu-
trients. Results are generally meaningful, interpretable, as-
sociated with health outcomes, including cancer [33, 6, 45],
and show modest but raw reproducibility across populations
[4, 77, 86].

PCA and EFA have also limitations and challenges. Sub-
jectivity is introduced in constructing food groups or select-
ing nutrients, in preprocessing input variables, in choosing
which data matrix to work on (e.g., covariance or correlation
matrix, separate analyses for known subgroups in the data
or not) or the number of factors to retain, in the opportu-
nity for factor rotation and which rotation to choose (in EFA
only), and in the identification of some criteria for labelling
the factors. Unless data collection methods are comparable,
input variable choice/preprocessing is standardized, and the
dietary pattern identification method is the same, results
are not comparable across studies. Even when the previ-
ous aspects are standardized, labelling of principal compo-
nents/factors is still very subjective. In principle, variables
corresponding to “large” loadings are interpreted as being
important for describing the original data; variables corre-
sponding to “small” loadings can be discarded. However,
such interpretation is complicated by the fact that all com-
ponent/factor loadings are nonzero. Various cut-off rules,
rotation strategies, and other procedures have been devel-
oped to simplify interpretation, but these largely ad hoc
procedures do not contribute to the transparency or objec-
tivity of PCA/EFA. Alternatives to PCA/EFA that offer
more interpretable components/factors by forcing loading
patterns to include many loadings exactly equal to zero (i.e.,
by forcing the identification of “sparse” components) are in-
teresting because they reflect current nutritional knowledge
where each pattern is typically described by a small subset of
food groups/nutrients [65]. In addition, since the label gen-
erally needs to be short, often they do not adequately convey
to what the underlying principal component/factor is [108].
This further makes comparison of results across studies more
challenging. Few rigorous statistical procedures have been
implemented to examine internal consistency and validity
of the identified solutions [85], although some efforts have
been made to assess reproducibility and validity of PCA-
based or EFA-based dietary patterns in more recent years
[36].

Confirmatory factor analysis (CFA) [50] has not been
so much used in nutritional epidemiology so far [126]. The
main difference with EFA is that CFA involves specifying
the number of factors, which variables will load on each fac-
tor (i.e., by putting some 0s in the factor-loading matrix
structure instead of estimating each loading) and which re-
lationship exists between each pair of latent factors [66].
In this way, CFA is able to perform hypothesis testing on
the overall factor structure and on factor loadings of food
groups/nutrients to estimate rigorously the number of fac-
tors and identify food groups/nutrients contributing signif-
icantly to those factors [85, 83]. Alternatively, CFA can be
employed to test the goodness of fit and validity of the fac-
tor structure of dietary patterns in a second step, i.e., after
PCA or EFA was performed [92, 103]. It is not scientifi-
cally confirmed if the results are more accurate than those
obtained in a single-step process [90]. With this motivation,
some studies performed CFA as a one-step approach instead
of using previous results from PCA or EFA.

The advantage of CFA compared to the two methods pre-
viously presented is that a latent structure can be specified
and tested, and if the researcher has some additional a priori
knowledge, this can be incorporated into the model [5].

9.2 Cluster Analysis
While PCA and EFA work on data matrix columns (i.e.,

food groups/nutrients), CA [9] is traditionally used in nutri-
tional epidemiology to explore data matrix rows (i.e., indi-
viduals), to identify groups of participants (clusters) with a
specific dietary behavior, based on a pre-specified measure
of similarity/difference in food group/nutrient intake among
individuals [28]. So, CA replies to the following question:
“Are there groups of individuals characterized by distinct
dietary patterns?” [70].

On the opposite of PCA and EFA, where the subjects
can belong to more than one principal component/factor,
CA provides one group belonging indicator for each sub-
ject. The group belonging indicator is then entered into a
multiple regression model with confounding factors to esti-
mate adjusted disease (e.g., cancer) risk related to specific
group belongings.

Hard clustering, where study participants are grouped
into mutually exclusive clusters, and individuals only be-
long to one cluster, is by far the most followed approach
in nutritional epidemiology [47]. Among available meth-
ods, K-means and Ward’s minimum-variance method are
widely used, with one paper only [75] comparing previous
approaches with the flexible beta one.

The K-means algorithm partitions observations into K
clusters in which each observation belongs to the cluster
with the nearest mean (cluster centers or centroids) by
minimizing within-cluster variances (squared Euclidean dis-
tances). The advantages of K-means clustering include its
simple interpretation, low computation complexity, fast cal-
culation speed, and suitability for large samples.
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Ward’s minimum-variance method is an agglomerative
hierarchical clustering algorithm, with the number of clus-
ters changing at each step [49]. Indeed, at each step, one has
to find the pair of clusters that leads to a minimum increase
(i.e., a weighted squared distance between cluster centers)
in total within-cluster variance after merging. Thus, the cal-
culation is slow, and the Ward’s approach is hard to apply
in large samples [135].

Among the advantages of hard CA, distinct subgroups
of individuals – where everyone belongs only to one spe-
cific dietary pattern group – are easy to interpret and relate
to disease (e.g., cancer) risk. The dendrogram from Ward’s
method shows the clustering process and results visually
[47].

Among limitations, uncertainty in individuals’ classifica-
tion is removed, and each individual is assigned to a cluster
with a probability of 1 or 0 [49]. Second, subjective deci-
sions are required at several steps and include selection of
input variables (i.e., nutrients, food groups, or factor scores)
and data preprocessing, similarity measure, clustering al-
gorithm, initial values, and number of clusters [47]. While
some objective methods for selecting appropriate cluster-
ing algorithms and the number of clusters exist, the repro-
ducibility of results cannot ensure their ability in represent-
ing actual dietary behavior and its relation with cancer risk
[75]. Third, sensitivity of the CA to outliers is also an issue.
Fourth, formal comparison of results from different cluster-
ing algorithms is not as easy as with PCA/EFA, where con-
gruence coefficients between factor loadings are recognized
as the preferred method to compare different solutions [16].
Fifth, the CA output is just a group belonging indicator, and
there is no PCA-based or FA-based loading matrix to pro-
vide an immediate representation of how food groups/nu-
trients interact within each dietary pattern. So, when the
CA is completed, further analyses to compare dietary, socio-
demographic, or socio-economic profiles across clusters must
be used to interpret the identified patterns [56]. Sixth, a ma-
jor drawback of both K-means and Ward’s method is their
tendency to create spherical clusters of equal volume [49],
which leads to biased clustering solutions when this assump-
tion is not met by the data. In addition, another limitation
of Ward’s method is its tendency to create clusters with an
equal number of observations, which is an unrealistic sce-
nario in nutritional epidemiology [49]. Seventh, the reference
category to estimate the effect of each dietary pattern on dis-
ease (e.g., cancer) risk is not as naturally identified as in re-
gression models based on PCA/EFA-based dietary patterns.
As one group has to be chosen as the reference group to ex-
press disease risk related to the remaining groups, what are
the main characteristics this reference group should show?
Should it be the bigger one or the one with a more balanced
diet? No consensus exists on this issue. Floating absolute
risk method has been used once to analyze the association
between CA-based patterns and breast and ovarian cancers,
to overcome this issue [32].

The term finite mixture model refers to a convex combi-
nation of a finite number of probability distributions, each of
these commonly designated as mixture component. Mixture
models can therefore be viewed as model-based clustering,
where clusters are groups of individuals in the data (with a
similar dietary behavior) induced by mixture components.
Classification uncertainty is taken into account by estimat-
ing individual probabilities of belonging to each identified
cluster, based on available data. For this reason, this ap-
proach provides an example of soft clustering, where sub-
jects are assigned to each class with a weight equal to pos-
terior membership probability for that class. The unknown
true parameter vector (including parameters of each mixture
component and the mixture weights) as well as the unknown
allocation variables are estimated by the maximum like-
lihood method using the Expectation-Maximization (EM)
algorithm [94, 49] in the frequentist framework. As an alter-
native to the EM algorithm, the mixture model parameters
can be deduced using posterior sampling as indicated by
Bayes’ theorem. This is still regarded as an incomplete data
problem whereby membership of data points is the missing
data. A two-step iterative procedure known as Gibbs sam-
pling can be used. In both cases, a “hard” clustering solution
can then be obtained by simply assigning each observation
to the cluster to which it belongs with the highest probabil-
ity, following Bayes’ Theorem.

In finite mixture models, the number of components is
still pre-specified to be equal to K. Covariates can be accom-
modated [41, 99] or not [49] within the model to describe
dependence of main dietary variables on other lifestyle or
anthropometric variables. In the former case we have the
general multivariate mixture model, also denoted by regres-
sion mixture model. In the latter case, standard mixture
models are assumed and fitted. Both approaches have been
applied in nutritional epidemiology in the frequentist frame-
work [96, 94, 111, 41, 99, 49, 20, 21].

The paper by Greve et al. [49] shows the higher flexibil-
ity of Gaussian mixture models as implemented by Fraley
and Raftery [44] in comparison with K-means and Ward’s
hierarchical clustering on simulated and real-life data. Even
on simulated data with spherical clusters of equal volume,
the clustering solutions obtained from this Gaussian mix-
ture model were more similar to the true cluster structure
than those obtained from the K-means algorithm or Ward’s
method in more than 72% of all simulated data sets. For sim-
ulated data sets with clusters of variable volume, shape and
orientation, the Gaussian mixture model achieved a higher
agreement with the true cluster structure in more than
90% of data sets [49]. The decomposition of the variance-
covariance matrix proposed in this approach enables the re-
searchers to place constraints on the geometrical properties
of the clusters and thus to specify a desired degree of flexibil-
ity in terms of cluster volume, shape, and orientation. The
choice of the number of clusters and of the available models
(i.e., different parameterizations of the variance-covariance
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matrix) is transformed into a model selection problem. The
final model is then identified according to information crite-
ria after the finite mixture model is fitted by setting different
values for the number of clusters or imposing different re-
strictions on the variance-covariance matrix [49].

Because finite mixture models has many parameters,
large samples are generally required, especially when the
number of selected clusters is moderate-to-high. Thus, a re-
stricted mixture model is proposed that reduces the number
of parameters and is suitable for small-to moderately-sized
samples [99]. This regression mixture model has been shown
to generalize the one by Fahey et al., also applied in nutri-
tional epidemiology [41], and includes in the same model the
Gaussian and binomial distributions for modeling different
forms of food group consumption within the exponential
family.

The finite mixture model method can also be used to clas-
sify the population according to the factor scores derived
from EFA-based CFA. This so called two-step classification
approach combines the advantages of both finite mixture
models on food items to identify mutually exclusive clusters
and CFA to understand which foods are eaten in combina-
tion [111].

Among major advantages, finite mixture models are more
oriented towards capturing real-life dietary behavior because
they can account for the within-cluster correlation between
dietary variables [49], allow the variances of dietary com-
ponents to vary within and between clusters, and enable
covariate adjustment (e.g., age, sex, non-alcohol or total en-
ergy intake) for food intake simultaneously with the fitting
process [41, 99, 20, 111].

Among major issues, the observed data may violate the
distributional hypotheses, which are per se difficult to ad-
here to in a multivariate setting. When there are many 0
values – indicating non consumption – the need to deal with
them increases the models complexity, as does the high num-
ber of parameters to be estimated [41, 99]. In addition, sen-
sitivity to the initial values, convergence to local extremum,
and slow convergence speed have been reported for most
approaches [135]. Finally, although finite mixture models
improve on selection of the optimal number of clusters com-
pared to traditional CA approaches, still this selection is not
made simultaneously within an overall parameters’ estima-
tion process [94, 49, 20, 21].

9.3 Treelet Transform
A composite of hierarchical CA and traditional PCA,

treelet transform [72] provides an improvement over tra-
ditional PCA and an important contribution to cluster-
ing methodology. For clustering methodology, it provides a
framework which actively searches for the correct underly-
ing correlation structure of the data. Its improvement over
PCA happens especially when the correlation matrix is be-
lieved to be sparse, as in the analysis of dietary patterns,
and is generally worth note [123].

Firstly introduced in nutritional epidemiology in 2011
[48], treelet transform is a dimensionality reduction tech-
nique aimed at converting a set of observations of possibly
correlated variables into orthogonal components. Similarly
to PCA/EFA, identifying the optimal number of retained
components is based on scree-plot inspection (and related
percentage of explained variance) and interpretability, and
interpretation/labelling of components are based on load-
ings. Scores are determined for each component of the treelet
transform and measure adherence to a given component.
Unlike PCA scores which are always uncorrelated, treelet
transform scores generally have a small degree of correla-
tion.

Treelet transform combines the quantitative pattern ex-
traction of PCA with the interpretational advantages of hi-
erarchical clustering of variables. The two variables show-
ing the highest covariance/correlation are identified in the
treelet transform, and a PCA is performed on them. They
are then replaced with the score of their first principal com-
ponent, and a merge is indicated in the cluster tree. This
operation is re-iterated until all variables have joined the
cluster tree. In this way, the treelet transform produces a
hierarchical grouping of variables that may reveal the data
structure’s intrinsic characteristics.

By combining PCA and hierarchical clustering, treelet
transform introduces sparsity into principal components
(i.e., making many loadings equal to 0), thus potentially sim-
plifying the interpretation. While EFA achieves this struc-
ture in a post-hoc analysis with the use of factor rotation
and loading truncations (in which the factor loadings with
absolute values smaller than an arbitrary threshold are ig-
nored) [65], treelet transform directly derives sparse compo-
nents that, similarly to PCA components, account for a large
part of the variation in the original data and can be used
analogously; treelet transform leads to an associated cluster
tree that provides a concise visual representation of loading
sparsity patterns and the general dependency structure of
the data [48].

Alongside the cluster tree, treelet transform yields a co-
ordinate system for the data at each level of the cluster tree.
Selecting a cluster tree level (cut-level) amounts to choosing
the level of detail desired in the data dimensionality reduc-
tion [2]. As pointed out in one of the Discussions in the
original paper, the use of treelet transform leads to a trade-
off between the amount of variability explained and sparsity.
The objective is to “make the results as sparse as possible
but not any sparser” [2]. Treelet transform has been used to
derive dietary patterns using nutrients [2], food items [106],
and food groups [48, 93].

Treelet transform works best for dimensionality reduc-
tion and/or feature selection when sample sizes are relatively
small, and the data are sparse, with unknown groupings of
correlated variables. Unlike PCA and its subjective choice
of components to retain, treelet transform has a fast and
efficient algorithm for determining the optimal number of
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dietary patterns to be retained and assessing dietary pat-
tern internal reproducibility [107]. Each derived component
can involve only a small number of input dietary data, so
pattern structure is generally simpler than in PCA; the cor-
responding cluster tree for all variables also supports pattern
interpretation. Not only treelet transform provides a concise
visual representation of loading sparsity patterns, but it also
shows the data’s general dependency structure [48].

In line with other CA techniques, a degree of subjectiv-
ity exists in choosing the cut-level of the cluster tree before
extracting components. When the cut-level is close to the
root, most variables are included in the components, with
potential interpretation issues; the information is compara-
ble to PCA output when all variables contribute to treelet
components. As the cut-level moves away from the root, the
component loadings become sparse (as many are equal to
0), and the components possibly become more interpretable
[107]; however, this may lead to components that do not
capture dietary complexity and are therefore not informa-
tive [2]. Cross-validation can be used to identify an optimal
cut-level. Once the cut-level is chosen, the loadings com-
puted are invariant to the number of retained components;
hence, the number of components is an a priori parameter to
be specified in the cross-validation step. In addition, if the
correlation of some nutrients/food groups is too strong, then
the sparsity hypothesis may not hold [57]. It also remains
debatable whether patterns derived by treelet transform are
more effective than those from PCA/EFA or CA methods in
exploring the relationship with health outcomes, including
cancer [106].

10. MIXED-TYPE OR “DATA-DRIVEN,
RESPONSE-DEPENDENT”

APPROACHES
Although previous multivariate statistical methods are

frequently used to identify a posteriori dietary patterns and
study their relationship with health outcomes, neither is ex-
pressly designed to derive dietary patterns that are predic-
tors of disease. Therefore, the resulting dietary patterns may
be significantly associated with a disease (e.g., cancer), but
their interpretation is not that such patterns are the best
(or worst) possible for disease prediction.

Disease prediction may be achieved in two ways:

• the disease is directly modeled as the response variable;
• other intermediate variables related to the disease are

chosen as response variables in the path between dietary
exposure and disease.

Both cases are included under the “data-driven, response-
dependent” methods developed and applied to nutritional
epidemiology.

10.1 Reduced Rank Regression
Reduced rank regression was formally introduced in nu-

tritional epidemiology in 2004 to combine the advantages of

the a priori and a posteriori approaches [55]. A posteriori
pattern method can be applied to investigate if major con-
sumption patterns of a specific population have relevance
for health outcomes; a priori patterns can help clarify if ad-
herence to specific benchmark diets is related to reduced
disease risk. Reduced rank regression fills a gap as it more
directly relates the step of data-driven pattern identifica-
tion to the health/disease outcome of interest. In detail, af-
ter about 20 years, researchers in nutritional epidemiology
are still increasingly interested in identifying specific dietary
patterns related to established and new pathways in the de-
velopment of major chronic diseases, including cancer [127].
So, reduced rank regression replies to the following ques-
tion: “What combinations of dietary components explain
the most variation in a set of intermediate health markers?
And then, in further analysis, does that pattern explain the
disease outcome of interest?” [70].

The method has similarities with PCA, but it uses two
different sets of variables: a set of independent variables or
predictors, generally dietary variables, and a set of response
variables, expected to be associated with the disease under
examination based on a priori knowledge [47]. Food groups
are generally used as predictors. Nutrient intakes, contam-
inants, and endogenous biomarkers or intermediate disease
phenotypes are generally used as response variables accord-
ing to the specific research question [135].

The identified dietary patterns are projections of the prin-
cipal components obtained from the covariance/correlation
matrix of the responses onto the space of predictors. They
can be interpreted as those linear functions of the original
dietary variables that maximally explain variation in the re-
sponse variables. Reduced rank regression can therefore be
interpreted as a PCA applied to responses and subsequent
linear regression of principal components on predictors, al-
though it is somewhat more efficient and sophisticated than
this two-step procedure [127].

Reduced rank regression starts from a linear function of
responses called response score that will then be projected
onto the space of predictors to produce a factor score, that is,
a linear function of predictors. Both scores form an insepa-
rable pair reflecting the same latent variable in different sets
of original variables. Because the first aim of this method is
to explain a high proportion of response variation, the evalu-
ation of factors extracted by reduced rank regression should
be based on response scores rather than factor scores. How-
ever, similarly to PCA and EFA, factor scores represent the
comprehensive variables used in subsequent statistical anal-
ysis, to assess the association between the identified dietary
patterns and disease outcome [55].

Given that linear functions of predictors are defined as
principal components of the responses, there will be as many
dietary patterns as were selected responses. This is different
from PCA, in which the analysis cab identify as many prin-
cipal components as predictors. Still, similar to PCA, only
a subset of patterns might be informative [47]. In reduced
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rank regression, only one or a few principal components of
responses might account for most of the responses’ varia-
tion, and the corresponding pattern would be the strongest
candidate to be selected [127].

The exploratory nature of the approach hampers the gen-
eralization of the results from one population to others.
However, compared to PCA and EFA, reduced rank regres-
sion allows the use of the same set of response variables in
different study populations and thus improves results com-
parison across different populations [33]. In addition, the
so-called simplified patterns (i.e., scores are calculated based
on only those food items strongly contributing to the pat-
tern, to which all contribute with equal weight) ease the
step of external validation of pattern-disease associations.
Such validation is highly recommended given that pattern
identification (using informative responses) is usually car-
ried out within the same study in which the pattern-disease
association is evaluated [127].

Major challenges in performing reduced rank regression
include the choice of predictors and response variables to
work on, the number of response variables to consider and
their relationship, the number of principal components to
retain, and their labelling. Most studies try to cover the
whole diet including all available food items or food groups
and very few studies investigated the influences of the se-
lection or building of food groups on the extraction of di-
etary patterns [127]. The value of the application of reduced
rank regression is considerably dependent on a good selec-
tion of response variables. If responses with no or little in-
tercorrelation are selected for analysis, they will unlikely be
well reflected by a single response score. Instead, it is more
likely that only a fraction of responses is accounted for – in
the worst-case scenario, single response scores (and conse-
quently single reduced rank regression patterns) reflect only
a single response variable. In this case, more than a dietary
pattern have to be retained and these dietary patterns might
reflect different pathways relevant to disease risk [127]. Con-
founding for responses is a second crucial issue. The derived
pattern may considerably differ depending on an adequate
consideration of confounders [127]. So far, medication and
anthropometric characteristics have been considered in some
studies as confounding factors, but there could be scenarios
where the role of confounding factors is less obvious.

10.2 Partial Least Squares
A method similar to reduced rank regression is partial

least squares, a regression model of multiple predictor vari-
ables on multiple response variables, sometimes used in nu-
tritional epidemiology in comparison with PCA and reduced
rank regression (e.g., [55, 29, 81]).

The partial least squares method is a compromise be-
tween PCA and reduced rank regression [55, 29, 81]. Indeed,
while PCA selects factors that explain as much predictor
variation as possible and reduced rank regression extracts
factors that explain as much response variation as possible,

partial least squares balances the two goals of explaining pre-
dictor variation and explaining response variation [92]. So,
partial least squares replies to the following question: “What
combinations of dietary components explain the most vari-
ation in dietary components and in a set of intermediate
health markers? And then, in further analysis, does that
pattern explain the disease outcome of interest?” [70].

The three methods are similar in terms of their mathe-
matical foundation and their technique of deriving factors.
For each method, the coefficient vectors of the extracted lin-
ear functions are eigenvectors of a covariance matrix. PCA
uses the covariance matrix of predictors, whereas reduced
rank regression starts from the covariance matrix of re-
sponses. Partial least squares uses the matrix of covariances
between predictors and responses. However, as the number
of factors cannot be greater than the rank of the correspond-
ing covariance matrix, partial least squares can extract as
many dietary patterns as were the selected predictor vari-
ables, like in PCA, but differently from reduced rank regres-
sion. The eigenvalue belonging to an eigenvector quantifies
the percentage of variation explained by the corresponding
linear function of the original variables (i.e., predictors or
responses depedenign on the method). The factors obtained
by PCA, partial least squares, and reduced rank regression
usually are sorted by decreasing eigenvalues. While the first
factor of PCA is the linear function of predictors that maxi-
mizes the explained variation in predictors, it is, in general,
not optimal in terms of response variation. In contrast, the
first factor of reduced rank regression explains more varia-
tion in response than any other linear function of predictors,
but possibly explains only a moderate fraction of predictor
variation. The first factor from partial least squares maxi-
mizes the covariance between linear combinations of predic-
tors and responses [55].

Due to the orthogonality of eigenvectors, successive ex-
tracted factors from all three methods are uncorrelated.
Therefore, the variation in the original variables (i.e., pre-
dictors or responses, depending on the method), can be de-
composed into percentages of variation explained by the
obtained factors. These uncorrelated factors can simulta-
neously be chosen as independent variables in a regression
model for predicting disease (e.g., cancer) risk without con-
founding each other [55].

Similarly to reduced rank regression, major challenges in
performing partial least squares include the choice of both
predictors and response variables to work on, the number
of response variables and food groups to consider and their
relationships, as well as the number of factors to retain, and
their labelling.

10.3 Classification and Regression Tree
CA has a parallel methodology that defines distinct sub-

groups in a population while making full use of information
on a response variable. This is “classification and regres-
sion tree” analysis [11]. Classification and regression tree
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is a non-parametric decision tree procedure (i.e., selection
of nodes with successive splitting to produce different sub-
groups) that identifies mutually exclusive and exhaustive
subgroups of subjects sharing common characteristics that
are associated with the response variable of interest [73].

Compared to reduced rank regression, decision tree anal-
ysis uses one response variable only. This may be a disease
risk factor, including also overall measures of diet quality
[51], or the disease outcome [13]. Therefore classification and
regression tree could be used to answer the question: “What
combinations of dietary components explain the most vari-
ation in one response variable, like the disease outcome or a
selected risk factor for the disease?” [70]. The response vari-
able can be either categorical (in the so called classification
tree analysis) or continuous (in the so called regression tree
analysis), whereas independent variables can be any com-
bination of categorical and continuous variables. No data
assumptions are required [73, 92].

Decision tree analysis ends up with a graphical output
that is a multi-level structure that resembles branches of a
tree, with the root node and several leaf nodes. A classifi-
cation rule is a path from the root node to a leaf node as-
sociated with the response variable. The results can thus be
interpreted as “hierarchical” dietary patterns. For example,
one might find that in predicting a health outcome the most
important variable is the amount of added sugars consumed.
If intake of added sugars is high, the next most important
factor in predicting the health outcome might be the amount
of, say, solid fats, but, if added sugars are low, the next most
important factor might be fruit intake. The terminal nodes
show the specific pattern features of the sub-populations in
percentage, including the number of participants and the
probability or mean values of the response variable in the
terminal node [119].

Until now, decision tree analysis was seldom applied to
derive dietary patterns [51] or risk-related patterns, includ-
ing dietary and other risk factors [13].

Among major advantages, classification and regression
tree can be used to reveal heterogeneity in the dietary be-
havior of a population, when present, and to develop preven-
tive measures tailored to specific sub-populations. In princi-
ple, the output is very intuitive and, due to its transparent
nature, users can trace back through the generated model.
When selected rules involve a few variables, this approach
may allow to demonstrate the effect (on disease risk) associ-
ated to modifications of single dietary habits, prompting to
an individualized approach to public health messages [71].
Decision tree analysis is also able to generate new aetiologi-
cal hypotheses, without prior assumptions on potential risk
factors. It might be particularly suitable in identifying dis-
ease risk based on a combination of food groups and other
non-dietary risk factors. In this sense, it is crucial that this
approach allows for independent variables of any kind (i.e.,
categorical or continuous variables).

Major disadvantages have likely avoided a wider diffu-
sion of classification and regression tree in nutritional epi-
demiology. In particular, one key variable can dominate the
model [135], misclassification can be rather large [70], and
overfitting may be a serious issue [51]. If many classification
rules are generated, the selection of meaningful rules will re-
quire considerable professional knowledge. Rules containing
many variables can be long and/or complex even if they are
meaningful, making it difficult to translate them into simple
health recommendations [135].

Other data mining techniques, such as random forest,
artificial neural networks, and Naïve Bayes Classifiers, have
also been used to analyze the relationship between dietary
patterns and diseases in a few applications [51, 31, 8].

10.4 Least Absolute Shrinkage and Selection
Operator

In nutritional epidemiology, multicollinearity may be
strong between nutrients, as well as between food groups.
In observational studies, several confounding factors poten-
tially measure slightly different variants of the same lifestyle
characteristics (e.g., physical activity or alcohol drinking
consumption). Interactions may also exist between dietary
exposures and confounding factors (e.g., between dietary
patterns and alcohol consumption or education). This makes
fitting a standard regression model for assessing disease risk
challenging.

Least absolute shrinkage and selection operator (LASSO)
is a regression-based methodology that allows a large num-
ber of covariates to be included in the model and penal-
izes the absolute value of the regression coefficients, thus,
regulating the impact a coefficient may have on the over-
all regression. The greater the penalization, the greater the
shrinkage of coefficients (some reaching 0), thus automat-
ically removing unnecessary/uninfluential covariates. Thus
the LASSO minimizes regression coefficients in order to re-
duce the likelihood of overfitting. The algorithm shrinks the
sum of the absolute value of regression coefficients, produc-
ing coefficients that are exactly 0, and thus selecting the
nonzero variables to remain in the model. The shrinkage
amount is controlled by the shrinkage parameter λ.

A critical choice in the LASSO method is selecting the
appropriate amount of shrinkage, as controlled by λ.

We identified two papers [134, 80] applying LASSO in
nutritional epidemiology. The former paper [80] adopts the
logistic LASSO in the National Health and Nutrition Ex-
amination Survey (NHANES) 1999-2010 to estimate the as-
sociation between a composite risk pattern, including diet
and other risk factors, and self-reported breast cancer (bi-
nary variable, no/yes), in females ≥ 50 years. Based on 29
variables, including 21 macro- (density method) and micro-
nutrients, alcohol, and coffee, the following variables: age,
parity, vitamin B12, caffeine, and alcohol remain in the
model, as far as the penalty parameter λ increases in the
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LASSO. This paper adopts the cross-validation technique
to choose the optimal λ value.

In the latter paper, LASSO is not directly used to iden-
tify a disease-related risk profile, but as an alternative
approach for assessing disease risk. Based on FFQ data
from the NHANES 2005-2006, including healthy US adults
(n = 2609), ten PCA-based dietary patterns (65% of the to-
tal variation) are associated with cardiovascular disease risk
factors via the LASSO method. It is shown that the LASSO
method outperforms the traditional linear regression model,
by better predicting the levels of triglycerides, LDL choles-
terol, HDL cholesterol, and total cholesterol (LASSO ad-
justed R2 = 0.861, versus traditional linear model adjusted
R2 = 0.163). The study adjusts for confounding factors such
as age and body mass index. The authors also test the pre-
diction accuracy of the model performance using an inde-
pendent test set.

11. NOVEL STATISTICAL APPROACHES IN
THE ANALYSIS OF A POSTERIORI

DIETARY PATTERNS
Maximum likelihood may be used in EFA, and is gen-

erally used in finite mixture models in nutritional epidemi-
ology. However, in some applications and especially for the
EFA, in order to regularize the factor loadings, priors or
penalties are used to induce sparsity [76, 15, 40]. This might
be particularly interesting in the identification of a posteri-
ori dietary patterns. Sparse factor loadings can be used to
identify specific subsets of nutrients and interpret them as
interacting subsets, helping elucidate the name chosen for
a dietary pattern. In contrast to the frequentist approach,
Bayesian methods model sparsity through the introduction
of shrinkage and sparse priors on EFA. Sparse latent factor
models therefore exploit sparsity-inducing priors as an in-
tegral part of the identification of dietary patterns. In the
Bayesian approach to sparsity, two main priors have been
widely used and developed.

The first one is the Bayesian LASSO prior, introduced
by Park and Casella (2008) [95], and developed in different
settings [15, 100]. Based on the LASSO penalty of Tibshi-
rani (1996) [121], the Bayesian LASSO prior is a conditional
Laplace prior for the loadings λpj with p = 1, . . . , P vari-
ables and j = 1, . . . , J factors

λpj |ψp ∼ τ

2
√
ψp

e−τ |λpj |/
√

ψp ,

where ψp is the diagonal element of the covariance error
matrix and τ > 0 is the scale hyper parameter. In this
modeling setting, the posterior mode of λpj is the LASSO
estimate with the penalty equal to 2τψp, which regulates
the amount of shrinkage. Posterior inference is developed
via Gibbs sampling. This approach’s major limitation lies
in the lack of unimodality for the posterior distribution of
λpj . Indeed, the posterior distribution of the factor loadings

could present a bimodality, and this problem leads to point
estimates less meaningful [95]. This problem can also occur
considering the prior error variance ψp as proper.

The second approach is focused on a mixture prior [15]
defined by the random variable δpj assigned to each element
of the loadings λpj , p = 1, . . . , P , k = 1, . . . ,K, of the factor
loadings matrix Λ:

λpj |δpj ∼ (1− δpj)N(0, ζ2pj) + δpjN(0, c2λpj
ζ2pj),

and

P (δpj = 1) = 1− P (δpj = 0) = ppj .

The priors for the factor loadings belong to the class of
absolutely continuous spike and slab priors where ζ2pj is a
small constant, thus representing the spike of the factors,
respectively, and so the distributions are concentrated on
zero. Instead, c2λpj

are large constants (� 1), thus repre-
senting the slab part of the mixture of the factor loadings.
This prior was used on identifying sparse latent factor mod-
els in dietary pattern analysis on 102 food items in young
American adults [65]. This paper illustrates the potential
of using EFA in a Bayesian perspective, by shrinking some
loadings and improving dietary pattern interpretation, while
potentially allowing for the incorporation of covariates that
may provide important information when exploring dietary
patterns or measurement error. Sparse latent factor mod-
els exploit sparsity-inducing priors as an integral part of the
identification of dietary patterns. Indeed, prior distributions
over individual probabilities are chosen to have substantial
probability mass at zero to induce shrinkage of negligible
loadings to zero. On the other hand, they ensure that the
probability mass is spread over a wide range of plausible
values so that important loadings escape shrinkage and take
nonzero values [65]. In addition, the proposed sparse latent
factor analysis robustly derives dietary patterns while si-
multaneously controlling for potential interaction with other
variables, including total energy intake. Covariates are di-
rectly included as additional regressors in the model, instead
of proposing preprocessing of input data to account for them
(e.g., residual method for energy intake) or separate EFAs
by relevant covariates to be ad-hoc combined. While con-
trolling for influence of covariates, their information is also
jointly used to derive dietary patterns [65]. Other possible
extensions rely on the spike and slab with a LASSO prior
[100, 3], but to our knowledge they have not been applied
in nutritional epidemiology so far.

In many circumstances, researchers aim to provide insight
into dietary patterns that emerge based on a given char-
acteristic of the sample, for example a socio-demographic
characteristic (e.g., age, education, or income) and a method
called Focused Principal Component Analysis (FPCA) [14]
is available. This method derives principal components, so it
is a data-driven approach, but it is more similar to a “data-
driven, response-dependent” method, where, however, the
response is generally a confounding factor.
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Unlike in PCA, dietary patterns focusing on a partic-
ular variable of interest (i.e., a population characteristic)
are formed, and are presented exclusively in graphical for-
mat. Applying FPCA to dietary data makes it possible to
view the correlation between each dietary variable and a
given variable of interest, at the same time as enabling de-
tection of correlations between the different dietary vari-
ables themselves. So, FPCA replies to the following research
question: “How to represent the relation between food/nu-
trient consumption and one selected population characteris-
tic, without loosing the relationship that the different food
groups/nutrients have with each other?”.

The FPCA method considers a set of P variables mea-
sured on n subjects. The variables are n-dimensional column
vectors xp. The correlation matrix of each column vector xp

can be geometrically represented thus by the P points pp on
the unit hypersphere of an n-dimensional Euclidean space.
The correlation of x1 and x2 is close to 0 if and only if p1

and p2 lie on perpendicular radii; on the opposite the corre-
lation of x1 and x2 is close to 1 if p1 and p2 are neighbours;
finally the correlation of x1 and x2 is close to −1 if p1 and
p2 are diametrically opposed [43]. The smaller the radius,
the stronger the correlation.

In order to do that, FPCA projects all the variables vec-
tors onto the hyperplane perpendicular to one variable taken
as reference (for example, x1):

Pr1xp = xp − (x�
p x1)x1,

The FPCA displays the vectors Pr1xp(p = 2, . . . , P ) in
a low-dimensional space, obtaining a (P − 1)× (P − 1) co-
variance matrix:

Σp,k,1 = (Pr1xp)
�(Pr1xk),

and projects them onto the space spanned by a few of the
eigenvectors with the largest eigenvalues. The projected and
scaled vectors xp, 2 ≤ p ≤ P , are displayed in a scatterplot of
the eigenvector component. Each of the P points represents
a variable with two components: 1) the correlations between
x1 and the other variables’ vectors, 2) the correlations with
the other vectors.

The FPCA derives the dietary patterns by the variable
of interest in the hypersphere or concentric circles. Circles
of smaller radius represent stronger correlations. The cen-
ter of these circles is the variable of interest. Negative and
positive correlations with the variable of interest are differ-
entiated in the graph by use of different colors. Two points
close to one another indicate a strong positive correlation
between the intakes of the corresponding food groups/nu-
trients, whereas two diametrically opposed points indicate a
strong negative correlation between the intakes of the cor-
responding food groups/nutrients; two points placed at a
similar distance from the origin, parallel to one of the axes,
indicate absence of correlation between the intakes of the

corresponding food groups/nutrients. Finally, a dashed cir-
cle may additional delimit statistical significance at some
level [14].

In a study of 1,968 Brazilian adults interviewed with a 26-
item FFQ [14], FPCA is applied with three focus variables,
age, income, and schooling, to identify the relationship be-
tween diet and the variable of interest and the correlation
between different foods [42]. These analyses allow to asso-
ciate socio-economic inequities with dietary patterns and
provide reasonable results. For example, whole-wheat foods,
fruit, and vegetables are positively correlated with income
and schooling, whereas for refined cereals, animal fats (lard),
and white bread, the same correlation is negative.

Among major advantages, FPCA provides an immedi-
ate graphical representation to answer to a tailored research
question. As a major limitation, only one variable of inter-
est at a time can be considered. This opens up the question
on how to compare dietary patterns obtained from similar
variables of interest in the same study.

12. CROSS-STUDY REPRODUCIBILITY OF
DIETARY PATTERNS: NOVEL
STATISTICAL APPROACHES

Compared to most a priori dietary patterns – especially
indexes of overall diet quality – which can be more eas-
ily used across different study populations, the a posteriori
approach estimates population-specific dietary patterns. In-
deed, if the patterns are derived by explaining the variability
among diets of one population, it is unlikely the same pat-
terns would be found in another population. While their
reproducibility is necessarily more limited, a posteriori di-
etary patterns reflect the actual dietary practices in the pop-
ulation under study and provide crucial information [37].
Dietary patterns should reveal those latent characteristics
of interest, including socio-demographic and socio-economic
factors, ethnic background, religion, and several other envi-
ronmental factors, like food supply, ability to purchase/pre-
pare foods, advertisements for foods, and the efforts of the
government and the nutrition community to foster healthy
diets [63], which are at the origin of actual dietary practices.
Common latent characteristics may end up in common di-
etary patterns across studies.

Re-analyses of existing evidence on dietary patterns have
been based on the same standardized approach [4, 86, 78, 74]
across a few European or US studies. Especially for the a
posteriori dietary patterns, this standardized approach of
analysis has guaranteed that the 2 to 4 consistently identi-
fied dietary patterns do represent common dietary habits
across European cohorts representing different countries
[4, 86, 78]. On the other hand, differences in the identified
dietary patterns have been identified and are more likely to
reflect genuine differences in dietary habits than artifacts
of statistical analysis [4, 86, 78]. A partial sharing of the a
posteriori dietary patterns across countries is therefore sup-
ported by existing evidence [4, 86, 78].
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In national multi-center studies including groups with dif-
ferent culinary habits, heterogeneous dietary pattern com-
positions can be estimated based on differences in food
group/nutrient intake distributions, likely related to latent
population characteristics [64]. This is true in particular for
regional and ethnic diversity that can be explored in a multi-
cultural perspective using a posteriori dietary patterns [63].

Although the reproducibility of dietary patterns across
populations is becoming crucial for assessing critical aspects
of the diet at national and international levels, standard
statistical approaches have been used so far [37]. EFA has
been initially applied by merging dietary information from
different studies in one dataset and forcing the studies to
have common dietary factors [39]. Other papers presented
separate EFAs by study and provided some ad-hoc stan-
dard statistical solutions to improve comparability of food
grouping schemes, factor loadings, and factor scores across
centers/studies or populations [17, 16, 86].

However, all these attempts have not fully explored the
presence and role of population-specific patterns, essential
to detect traditional or specific aspects of the diet among
subpopulations and their association with disease outcomes,
including cancer. Critical in this sense is the lack of a rigor-
ous statistical approach that can simultaneously manage the
identification of shared and subpopulation-specific a poste-
riori dietary patterns, together with an objective selection
of the optimal number of shared and subpopulation-specific
patterns.

The two novel statistical methods proposed in the next
well tackle this issue by extending EFA and CA to discover
common and study-specific (or subpopulation-specific) di-
etary patterns.

The multi-study factor analysis (MSFA) [25] generalizes
EFA and has three main goals. First, it combines multi-
ple studies to identify common factors consistent across the
studies. Second, it identifies an additional variability com-
ponent specific to single studies; study-specific latent factors
capture that. Third, analyzing study-specific latent factors
allows for identifying possible idiosyncratic variations lack-
ing cross-study reproducibility. Indeed, the model allows for
a residual component defined for each study and each vari-
able.

The observed variables in study s are decomposed into
K factors shared with the other studies and Js factors re-
flecting unique sources of variation. Factor loadings relate
the observed variables to the latent factors linearly. Let
fis, i = 1, . . . , ns be the common latent factor, and Φ with
K columns be its loadings; also let lis, i = 1, . . . , ns, be the
study-specific latent factor and Λs with Js columns be its
loadings. The MSFA assumes that observation of the vector
i in the study s, s = 1, . . . , S, xis is decomposed as:

xis = Φfis +Λslis + eis,

where eis is the Gaussian error term, with mean vector equal
to zero and variance equal to the diagonal matrix Ψs =

{ψ1s, . . . , ψps}. As a result, the marginal distribution of xis

is multivariate Gaussian with mean vector 0 and covariance
matrix:

Σs = ΦΦ� +ΛsΛ
�
s +Ψs.

The estimation is based on the maximum likeli-
hood method, computed via an Expectation Conditional-
Maximization (ECM) algorithm [82]. The approach ad-
dresses two separate identifiability issues. The first issue
deals with the orthogonal rotation indeterminacy, similar
to the standard EFA. The MSFA model must be further
constrained to avoid orthogonal rotation indeterminacy and
obtain an identifiable model. Specifically, if

Φ∗ = ΦQ and Λ∗
s = ΛsQs, s = 1, . . . , S,

where Q and each Qs are square orthogonal matrices with
K and Js rows respectively, there could be infinite possible
solutions for

Σs = Φ∗Φ∗�
+Λ∗

sΛ
∗�

s +Ψs.

and thus the covariance matrix Σs is not uniquely identified.
One popular constraint is to assume a block lower triangu-
lar (LT) matrix [76, 15]) for the factor loading matrix. The
MSFA adopts this constraint, and Φ and all the Λss are
LT matrices. Similarly to EFA, this solves the orthogonal
rotation indeterminacy.

However, in MSFA, a second identifiability issue emerges,
since there will be S different equations, and the block
LT does not uniquely identify the S + 1 solutions
{Φ,Λ1, . . . ,Λs}. To address this, further conditions for the
MSFA are required. In particular, this paper [25] assumes
that the concatenated matrix Ω = {Φ,Λ1, . . . ,Λs} has a
full column rank:

r(Ω) = K +

s∑
i=1

Js, with K +

s∑
i=1

Js ≤ P.

This solves all the identifiability issues that arise in the
MSFA.

While the method is focused on genomic applications, it
can be applied to other situations where similarities and dif-
ferences are warranted across multiple data sets. Following
this direction, the approach is receiving much attention in
the nutritional epidemiological context, as some nutritional
epidemiological papers have already adopted it, enhancing
the crucial theoretical contributions of the MSFA [24, 37]. A
recent paper [24] adopts the MSFA model to derive nutrient-
based dietary patterns in the International Head and Neck
Cancer Epidemiology (INHANCE) consortium [10] consid-
ering 10,668 subjects from 7 different countries (3 from Eu-
rope and 4 from the US). The method examines the shared
and study-specific patterns in relation to head and neck can-
cers via multiple logistic regression, taking confounders into
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account. While this approach does not account for covari-
ates (e.g., energy intake and sex) in dietary pattern identifi-
cation, it well manages the choice of the number of common
and study-specific factors within the statistical model by
relying on a combination of information criteria and stan-
dard techniques adopted in EFA [24]. It does not provide,
however, a way to integrate the selection of the number of
factors to be retained within parameter estimation.

The Bayesian MSFA generalizes MSFA in the Bayesian
framework [26]. The method explores the multiplicative
gamma shrinkage prior, widely used in the Bayesian ap-
proach for a single EFA [7], and generalizes it in a multi-
study setting. The method develops a fast and efficient
Gibbs Sampling, with increasing shrinkage as the column
index increases. The prior defined in this approach, called
the Sparse Bayesian Infinite factor model, is for the loadings
in the s = 1, . . . , S study:

λpjs | ωpjs, τjs ∼ N(0, ω−1
pjsτ

−1
js ), p = 1, . . . , P, j = 1, . . . ,∞,

ωpjs ∼ Γ
(νs
2
,
νs

2

)
, τjs =

j∏
l=1

δsl ,

δs1 ∼ Γ(as1, 1), δ
s
l ∼ Γ(as2, 1), ≥ 2,

where δsl (l = 1, 2, . . . ) are independent, τjs is the global
shrinkage parameter for column j, and ωpjs is the local
shrinkage for the element p in column j for the study
s = 1, . . . , S. The idea is rather suitable for high dimensions,
where, if more factors are added, it is crucial to consider an
increment of the shrinkage.

The Bayesian MSFA is adopted in the Hispanic Commu-
nity Health Study/Study of Latinos (HCHS/SOL) [110], a
US multi-site community-based cohort, focusing on health
and risk factors of cardiovascular and pulmonary out-
comes of Hispanic/Latino adults [27]. The method cap-
tures common and subpopulation-specific dietary patterns
on 42 nutrients across available combinations of 4 US field
sites (Bronx, Chicago, Miami, and San Diego) and 6 His-
panic/Latino ethnic backgrounds (Cuban, Dominican Re-
public, Mexican, Puerto Rican, Central and South Ameri-
can). This analysis identified four common patterns: “Plant-
based foods”, “Processed foods”, “Dairy products”, and
“Seafood”. Twelve additional study-specific patterns, one for
each ethnic background – site category, represent variants of
foods from animal sources. These variants can be grouped
based on visual inspection of the factor-loading matrices and
congruence coefficients between factor loadings into 3 over-
arching (i.e., more similar) dietary patterns.

A direct comparison with frequentist MSFA and standard
EFA (with the principal component method) on the over-
all sample is also carried out and highlights the Bayesian
approach’s merits. The introduction of prior distributions
(which act like rotations) shows that:

• Bayesian MSFA-based shared dietary patterns are
equivalent to their counterparts from standard EFA and
frequentist MSFA;

• ethnic background site-specific dietary patterns from
Bayesian MSFA are better characterized than those
from frequentist MSFA, which oppose vegetable and
animal sources of foods in most ethnic background –
site categories.

This is the first attempt to use a Bayesian multi-study
framework in nutritional epidemiology, which suggests that
relevant dietary patterns are shared across different ethnic
backgrounds and recruitment sites; additional patterns exist
also that are specific to a single category.

The Robust Profile Clustering (RPC) [113] is a general-
ization of mixture models to handle diverse populations or
studies. The RPC identifies robust “global” clusters for each
individual i = 1, . . . , ns and variable p = 1, . . . , P across all
subpopulations si and locally within a subject’s respective
subpopulation.

The method performs for the food items, and thus the
vector variables x1, . . . ,xp are drawn from a multinomial
distribution. The RPC approach focuses on probability
models with three different elements: 1) the global clustering
Ci, 2) the deviation indicator Gip, and 3) the local clustering
membership, Lip with the corresponding probabilities equal
to

Pr(Ci = h) = πh,

P r(Gip = 1|si = s) = υ(s)
p

Pr(Lip = l|si = s) = λ
(s)
l .

The deviation indicator is equal to one, Gip = 1, if the
variable, in this case, the food item, p is identified in the
global cluster Ci for subject i, Gip = 0 otherwise. They also
adopted a Bayesian approach for parameter estimation with
a Gibbs sampler. Then, the model for the subpopulation
parameter is a beta-Bernoulli process:

Gip ∼ Bern(υ(s)
p ), υ(s)

p ∼ Bern(1, β(s)), β(s) ∼ Γ(a, b),

with the hyperparameters (a, b) used for varying the overall
weight of each local component (deviated food item) of its
corresponding subpopulation.

For the global clustering process, the RPC adopts an
overfitted finite mixture model [125], with an upper bound
equal to 50 for the number of clusters K:

Pr(Ci = h) = πh,

π· = (π1, . . . , πK)� ∼ Dir
( 1

K
, . . . ,

1

K

)
.

where Dir indicates a Dirichlet distribution. The RPC
replicates this scheme to specify the model for the local clus-
tering:

Pr(Lip = l|si = s) = λ
(s)
l ,
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λ
(s)
· = (λ

(s)
1 , . . . , λ

(s)
K )� ∼ Dir

( 1

K
, . . . ,

1

K

)
.

The method is applied to the National Birth Defects Pre-
vention Study [133], a case-control study of birth defects
in the United States focusing on 9,010 control live-born
infants without any birth defects and a total of p = 63
food items with four consumption levels (d = 4). The ap-
proach estimates 7 global cluster patterns: “meats and fatty
foods”, “fast foods”, “chicken, cheese, and beef”, “Tex-Mex”
or Latino style diet, “snack-style foods”, “caffeine products”,
“wheat bread, fruit cocktail and low-fat milk”.

As the BMSFA, the RPC is also used in the HCHS/SOL
[110] to estimate differences in dietary consumption for
study sites and Hispanic/Latino ethnic backgrounds [114].

The RPC method estimates both shared and specific con-
sumption behaviors derived from 132 food groups. Specif-
ically, the method estimates 48 shared consumption be-
haviors of foods and beverages across all the subpopula-
tions, with some differences in subpopulations for these same
foods. Several foods were common within the study site clus-
ter (e.g., chicken, orange juice, milk) and ethnic background
(e.g., papayas, plantain, coffee). Different from the BMSFA,
which provides an accurate estimate of the factor loadings
and scores allowing a direct association with the disease,
the RPC is a Bayesian nonparametric approach estimating
food item response differences within a region/subpopula-
tion. The RPC allows the number of clusters not to exceed
a certain number for better interpretability.

However, this clustering method estimates components
likely to describe differences in global behaviors compared to
those relevant to specific subpopulations. It becomes crucial
to associate these derived clusters with response variables,
including socio-demographic or socio-economic factors, or a
disease outcome. Specifically for the RPC method, differ-
ent subjects from two subpopulations could be in the same
global cluster and differ in behavioral patterns and/or socio-
economic and socio-demographic factors.

A recent method developed the RPC in a supervised set-
ting [115], namely the Supervised RPC. The method is a
two-step process: first, it develops the global and local clus-
ter, then it builds the likelihood by associating the cluster
to a binary response variable yi of individual i, adopting a
probit regression model.

The global cluster dietary pattern is adjusted for the co-
variates ξ in the model, i.e., potential confounders, and the
subject-specific vector of observed demographic information
is represented by Wi. Then the probit model can be written
as:

Pr(yi=1|ξ,Wi) = Φ(Wiξ)

= Φ

(
K0∑
i=1

1(Ci = h)ξh +Wdemξdem

)
,

where K0 is the number of global clusters.

They jointly derived a one-estimation-step process for
handling the two models together. The model is applied
to the National Birth Defects Prevention Study [133], find-
ing the same seven global clusters mentioned before and
associating those with orofacial clefts among offspring. The
method is one attempt to associate clusters with disease
outcomes in multi-study settings.

13. CONCLUSIONS
Diet is a complex exposure, which calls for multiple ap-

proaches to examine its relationship with non-communicable
diseases, including cancer. Evidence on the effect of diet
is enhanced when results from multiple study types (i.e.,
observational studies, randomized trials of intermediate re-
sponses, in vitro and in vivo studies) and from multiple
forms of dietary exposure (i.e., food items/groups, nutrients,
biomarkers, and dietary patterns) are consistent.

Being complementary to the traditional single-
component analysis, the dietary pattern approach has
been proposed in nutritional epidemiology to exploit the
collinearity of nutrients and foods. This approach is not
effective if the effect is “caused” by a specific nutrient,
because the effect of the nutrient would be diluted. It may
be useful when traditional single-component analyses have
identified few dietary associations with the disease (e.g.,
breast cancer). On the other hand, when many dietary
associations have been demonstrated for the disease (e.g.,
coronary heart disease or colorectal cancer), dietary pattern
analysis may also prove to be useful because it allows to
examine the effects of this overall, but likely well-structured,
dietary exposure. In addition, a dietary pattern can be
used as a covariate when examining a specific nutrient/food
group, to determine whether its effect is independent of
the overall dietary pattern. Furthermore, dietary pattern
analysis can be useful in evaluating dietary guidelines [56].

As methods to assess dietary patterns have been refined
and the evidence base has been strengthened, the advan-
tages that dietary patterns offer as an approach for inform-
ing public health recommendations have increasingly been
recognized [18].

In the future, like all of nutritional epidemiology, pat-
terns research will be advanced by using methods of dietary
capture and analysis that better estimate usual intakes and
by considering how they may change over time. In addition,
continued clarification of the most useful treatment of input
variables for EFA and CA, continued development of best
practices for standardizing statistical procedures in a pos-
teriori dietary patterns, refinement of indices, and progress
in methods to correct for measurement error would advance
the field [70].

Novel statistical methods have been reviewed in this pa-
per, especially those aimed at evaluating cross-study repro-
ducibility of a posteriori or mixed-type dietary patterns.
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Among relevant features common to them, it is worth to
mention sparsity modeling and related adjustment for ad-
ditional covariates influencing individuals dietary practices,
such as age, sex, socio-cultural factors, and energy intake
[65].

In parallel with standardization of statistical procedures
for dietary patterns identification, these contributions will
further enhance our understanding of the dietary habits –
cancer risk association as far as content knowledge of nutri-
tionists and the broad know-how of nutritional epidemiolo-
gists meet with statisticians willing to tailor methods to the
specific needs of dietary pattern analysis.
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