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Abstract
The supersaturated design is often used to discover important factors in an experiment with a large number of factors

and a small number of runs. We propose a method for constructing supersaturated designs with small coherence. Such
designs are useful for variable selection methods such as the Lasso. Examples are provided to illustrate the proposed
method.
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Variable Selection.

1. INTRODUCTION
Modern experiments can involve a large number of fac-

tors. Assuming the effect sparsity principle [3], an experi-
ment with high-dimensional inputs only has a small number
of significant factors. Two-level supersaturated designs are
often used to identify important factors in screening experi-
ments. Data from such a design can be modeled by a linear
model [33] given by

y = Xβ + ε, (1.1)

where X is the n × p design matrix at two levels −1 and
+1, denoted by − and +, y is the response vector of the n
observations, β is the regression vector of p coefficients, the
error vector ε follows the multivariate normal distribution
Nn(0, σ

2I) and I is the n × n identity matrix. In X, the
first column is the intercept with all +’s and the remaining
columns represent the p − 1 factors. We call X balanced if
all its factors consist of an equal number of − and +. If
p = n, X is a saturated design since all the degrees of free-
dom are used to estimate β. If p > n, X is a supersaturated
design since there are not enough degrees of freedom to es-
timate all components of β. Construction of supersaturated
designs that can accommodate a large number of factors
relative to the number of runs has been gaining more and
more attention [5, 16, 30, 26]. Popular criteria for comparing
supersaturated designs include minimax [2], E(s2) [18, 27]
and mean square correlation [8].

It is increasingly common to use modern variable selec-
tion methods to analyze data from a supersaturated design
and identify important factors [18, 32, 17]. For example,
when the number of variables is greater than the number of
observations, Osborne, Presnell and Turlach [22] advised to
∗Corresponding author.

use the Lasso [28] for an initial selection, and then conduct
a best subset selection (or similar method) on the variables
selected by the Lasso. We focus on discussing and demon-
strating our method for the Lasso given its popularity. The
proposed designs also work with other penalized regression
methods. For variable selection methods such as the Lasso,
Zhao and Yu [34] showed that their performance depends
more critically on the worst case column correlation than
the average column correlation of the design matrix. More
details about this point can be found in Appendix B.

Motivated by the importance of controlling the worst
case column correlation, we propose a new method to con-
struct supersaturated designs according to the coherence cri-
terion [7], which measures the worst case column correlation.
The coherence of an n× p matrix X is

μ(X) = max
1≤i<j≤p

|〈xi,xj〉|
‖xi‖‖xj‖

,

where the subscript i denotes the ith column, 〈·, ·〉 is the
dot product and ‖ · ‖ is the L2-norm. Whenever there is no
confusion, hereinafter we will drop the symbol X in μ(X).
Clearly, 0 ≤ μ ≤ 1. The smaller μ is, the closer the matrix is
to orthogonal. If the columns of X are centered, μ is reduced
to the maximum absolute column correlation of X, which is
equivalent to the correlation criterion used in [19]. Note that

μ(X) = max
1≤i<j≤p

|x�
i xj |
n

=
smax

n
,

where smax = max1≤i<j≤p |x�
i xj | is the value used in the

minimax criterion [2]. Different from smax, μ(X) reflects the
sample size n in its definition. Because the sample size mat-
ters in many data analysis procedures, we will construct
designs under μ(X) instead of smax (we will also compare
designs with different sample sizes in Section 3.1).
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Our construction method allows some columns of the de-
sign matrix to be unbalanced. Factor balance in a super-
saturated design guarantees an accurate estimate of the in-
tercept but unbalance provides other significant benefits in
constructing designs. Being unbalanced provides flexibility
in controlling the column correlations between every pair of
the main effects to achieve a lower average column correla-
tion [29]. Sacrificing the precision of the estimate of the in-
tercept can better estimate the main effects. In addition, al-
lowing unbalance enables us to construct designs with more
flexible sizes.

The remainder of the article will unfold as follows. In
Section 2, we detail our construction method. In Section
3, we use several examples to demonstrate the advantage
of the constructed designs against some benchmark designs
for a variable selection problem. We conclude the paper and
provide some discussions in Section 4.

2. THE CONSTRUCTION METHOD
2.1 Notation and Definitions

Throughout, “#Balance” denotes the number of balanced
columns of a design. Let 1n denote the n-dimensional unit
vector with +1’s. Let I denote the identity matrix. For a
matrix A with entries in {−1,+1} and an even number of
rows, let A∗ denote a matrix obtained by changing the signs
of entries in all odd rows and A∗∗ denote a matrix obtained
by changing the signs of entries in all even rows, where ∗
and ∗∗ are two matrix operators. Note that (−A)∗∗ = A∗.
An n × n Hadamard matrix H is a matrix with entries in
{−1,+1} and H�H = nI, where n can only be 1, 2 or a
multiple of 4.

2.2 Construction Steps
Our construction method expands a 6m × p supersatu-

rated design D0 with μ ≤ 1/3 to a 12m × 4p design with
μ ≤ 1/3, where m, p are positive integers with 6m < p.
Partition D0 as

D0 =

[
U
L

]
, (2.1)

where U and L have 4m and 2m rows, respectively. The
proposed method has three steps.

• Step 1: Use two copies of D0 to obtain a matrix

D1 =

⎡
⎢⎢⎣

U
U
L
L

⎤
⎥⎥⎦ .

• Step 2: Expand D1 to obtain a matrix

D2 =

⎡
⎢⎢⎣

U U
U U∗

L L
L −L

⎤
⎥⎥⎦ . (2.2)

• Step 3: Expand D2 to obtain a matrix

D3 =

⎡
⎢⎢⎣

U U U∗∗ U∗∗

U U∗ U U∗

L L L∗ L∗

L −L L∗∗ L∗

⎤
⎥⎥⎦ .

If D1 is viewed as a block matrix with four rows, Step
2 applies the operator ∗ to the second row and changes the
signs of all entries in the fourth row to obtain D2. If D2 is
viewed as a block matrix with four rows and two columns,
Step 3 applies the operator ∗∗ to the first and fourth rows
and applies the operator ∗ to the third row to obtain D3.
It can be proved that the coherence of D1, D2 and D3 is
no greater than 1/3 by Lemmas 1, 2, 3 and Theorem 1 in
Appendix A.

Since the design D3 from the construction is a 12m× 4p
design with μ ≤ 1/3, repeating the above procedure multiple
times with D0 being D3 produces a class of designs with
(2k × 6m) rows, (4k × p) columns and μ ≤ 1/3 for every
positive integer k.

The only requirement for D0 is to be a 6m× p two-level
supersaturated design with μ ≤ 1/3. For a given pair of
m and p, different choices of D0 yield different forms of
D3 but all of them have guaranteed small coherence. As
suggested by Chen and Lin [6] and Liu, Ruan and Dean [20],
a supersaturated design with coherence of 1/3 can identify
most of the important factors.

2.3 Examples
We now provide several examples for the proposed

method with different choices of D0. In the following ex-
amples, we show the first several designs constructed by the
proposed method and choose D0 to have as many columns
as possible.
Example 1. Let D0 be a 6× 16 design given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+ + + + + + + + + + + + + + + +

+ + + + − − − − − − − − + + + +

+ + − − + + − − + + − − + + − −
+ + − − + + − − − − + + − − + +

+ − + − + − + − + − + − + − + −
+ − + − − + − + + − + − − + − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where − and + denote −1 and +1, respectively, and its co-
herence is 1/3. The coherence of the above design attains the
lower bound derived in [31]. The sizes, coherence values and
numbers of the balanced columns of the first several designs
constructed by the proposed method are given in Table 1.

Example 2. Let

D0 =
[
124 D01 D02 D03

]
,

where D01 is the 24× 23 Plackett and Burman design [23],
D02 is formed by taking the two-order interaction terms of
D01 and D03 is formed by taking the three-order interaction
terms of D01. Then D0 is a 24× 2048 design with μ = 1/3.
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Table 1. Designs Constructed from a 6× 16 D0.
Size μ #Balance

12× 64 1/3 24
24× 256 1/3 168
48× 1024 1/3 840
96× 4096 1/3 3720

192× 16384 1/3 15624

Table 2. Designs Constructed from a 24× 2048 D0.
Size μ #Balance

48× 8192 1/3 2968
96× 32768 1/3 18616

192× 131072 1/3 99064

Table 3. Designs Constructed from a 30× 59 D0.
Size μ #Balance

60× 236 1/3 101
120× 944 1/3 550
240× 3776 1/3 2864
480× 15104 1/3 13156
960× 60416 1/3 56396

The first 277 columns of this design form the design in [32].
The sizes, coherence values and numbers of the balanced
columns of the first several designs constructed by the pro-
posed method are given in Table 2.

Example 3. Let D0 be the 30 × 59 design from Lin [18],
where an additional column 130 is added as the first column.
This design has μ = 0.2. The sizes, coherence values and
numbers of the balanced columns of the first several designs
constructed by the proposed method are given in Table 3.
This example illustrates that our method can use a design
D0 with μ < 1/3.

Whenever necessary, one can select some columns of the
designs constructed for use. Selecting a subset of columns
could remain coherence the same or further decrease it, but
will never increase coherence. For example, for a given p,
first, one can select as many balanced columns as possible.
If there are no sufficient balanced columns, then one can
select some unbalanced columns to achieve p columns. In
addition, one may also select the columns according to an
additional criterion such as E(s2).

2.4 Generalization
We now generalize the proposed method to obtain a su-

persaturated design with μ smaller than 1/3. Recall that our
method partitions D0 into two parts. The upper part U has
6mr rows and the lower part L has 6m(1−r) rows with a par-
tition ratio r = 2/3. We generalize the original construction
by using a different partition ratio and stopping at Step 2.
Suppose that D0 is an n×p two-level supersaturated design

Table 4. Designs Constructed from a 30× 59 D0 by the
Generalization.

Size μ #Balance
60× 118 0.2 76

120× 236 0.2 112
240× 472 0.2 184
480× 944 0.2 328
960× 1888 0.2 616

with μ ≤ t/n for t ∈ {2, 4, . . . , n/2} and an even n. Partition
D0 as in (2.1), where U has 2t rows and L has n− 2t rows
with r = 2t/n. Define D2 as in (2.2). Then D2 is the super-
saturated design constructed by our generalized method. It
can be proved that the coherence of D2 constructed here is
no greater than t/n by Theorem 2 in Appendix A.

The generalization indicates the possibility of expanding
any two-level supersaturated design with μ ≤ 1/2 and an
even number of runs while retaining its coherence. For the
original construction, coherence must be no greater than 1/3
and the initial design must have 6m runs but the initial de-
sign with p columns can be expanded to a design with 4p
columns and μ ≤ 1/3. The generalization only requires that
the coherence is no greater than 1/2 and the initial design
has an even number of runs but the initial design with p
columns can only be expanded to a design with 2p columns
and the same coherence. In addition, the number of balanced
columns can be fewer than the number of runs for the de-
signs constructed by the generalization. Here is an example.

Example 4. Let D0 be the 30 × 59 design in Example 3
with μ = 0.2. The sizes, coherence values and numbers of
the balanced columns of the first several designs constructed
by the generalization are given in Table 4.

3. SIMULATION STUDY
In this section, we compare the proposed designs with

four popular classes of supersaturated designs: Lin’s de-
signs [18], Wu’s designs [32], the Bayesian D-optimal super-
saturated designs (Jones, Lin, and Nachtsheim 2008) and
the UE(s2)-optimal designs [15] for the Lasso problem by
simulations. These designs are denoted by “LIN”, “WU”,
“BAYES” and “JM” respectively and our proposed designs
are denoted by “Proposed”.

Lin’s designs are constructed from the Plackett and Bur-
man design [23]. According to Bulutoglu and Cheng [4],
Lin’s designs are E(s2)-optimal among all the balanced two-
level supersaturated designs. Wu’s designs can be obtained
by appending interaction columns to a Hadamard matrix.
Bulutoglu and Cheng [4] showed that in certain cases, Wu’s
designs are E(s2)-optimal among all the balanced two-level
supersaturated designs. The Bayesian D-optimal supersat-
urated design is obtained by the coordinate exchange algo-
rithm [9, 14]. Any n rows of a p× p Hadamard matrix form
a type of UE(s2)-optimal design [15, 5].
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Table 5. Active Coefficients Settings.
Case #Active Active Coefficients and Their Values

1 2 β1 = 1 β21 = 5 β23 = 10
2 2 β1 = 0.1 β21 = 1 β23 = 1.5
3 4 β1 = 1 β6 = 5 β8 = 10 β9 = 10 β26 = 15
4 4 β1 = 0.1 β6 = 0.6 β8 = 1.7 β9 = 0.9 β26 = 1
5 4 β1 = 1 β19 = 5 β59 = 14 β143 = 10 β214 = 13
6 4 β1 = 0.1 β19 = 1.3 β59 = 0.9 β143 = 1 β214 = 1.2
7 6 β1 = 1 β38 = 5 β111 = 5 β122 = 9 β123 = 9 β147 = 9 β151 = 11
8 6 β1 = 0.1 β38 = 1.5 β111 = 1.5 β122 = 1.9 β123 = 1.9 β147 = 1.9 β151 = 2.8

Table 6. Comparison with Lin’s Design.
Case #Active Design Size μ E(s2) #Balance AFDR AMR MSE EME

1 2 Proposed 12× 27 0.33 9.70 24 0.49 0.00 0.64 7.22
LIN 14× 27 0.43 7.84 26 0.59 0.00 0.93 9.18

2 2 Proposed 12× 27 0.33 9.70 24 0.51 0.02 0.74 9.15
LIN 14× 27 0.43 7.84 26 0.59 0.08 1.13 12.51

3 4 Proposed 12× 27 0.33 9.70 24 0.25 0.18 73.58 537.69
LIN 14× 27 0.43 7.84 26 0.40 0.28 230.66 794.73

4 4 Proposed 12× 27 0.33 9.70 24 0.49 0.29 2.15 18.52
LIN 14× 27 0.43 7.84 26 0.64 0.53 4.19 19.79

We simulate data from the linear model in (1.1) with dif-
ferent designs and active coefficients, where the error vec-
tor ε follows the standard multivariate normal distribution
Nn(0, I). We use the Lasso to select the active factors and
fix the intercept term β1 as active. We repeat the above data
generation and variable selection procedure N = 300 times.
We use the “cv.glmnet” function [12] in the R software [24]
and calculate β̂ with “s=lambda.min”.

We conduct simulations using the eight active coefficients
settings in Table 5 and denote them as Case 1, . . . , Case 8,
respectively. We use “#Active” to denote the number of
active factors. For each group of active coefficients, we con-
sider both the case where they take large values, and the
case where they take small values. For example, for β1, β21

and β23, we consider both the case where they take values of
1, 5 and 10, and the case where they take values of 0.1, 1 and
1.5. We let the regression coefficients of all inactive factors be
zero and do not write them in Table 5. We neither use a sin-
gle setting of active coefficients for all the comparisons, nor
use all settings in Table 5 for each comparison, because of
the following reasons. First, the designs under consideration
have different numbers of columns and some designs do not
have enough columns for a given setting, which makes the
setting not applicable. Second, in practice, the more factors
we are considering, the more active factors there tends to be,
so we use settings with more active coefficients for designs
with large numbers of columns, and settings with fewer ac-
tive coefficients for designs with small numbers of columns.

For each design in our simulations, we will show its
size, coherence, and number of balanced columns. Although
E(s2) is not our focused criterion, we will also show the

E(s2) of each design for reference. We use the following four
criteria to compare variable selection and model fitting ac-
curacy of each design:

1. Average False Discovery Rate (AFDR)
∑N

i=1 FDRi

/
N ,

where

FDRi =
the number of falsely discovered coefficients

the number of discovered coefficients

if the discovered model is not a null model, and FDRi =
1 if the discovered model is a null model.

2. Average Miss Rate (AMR)
∑N

i=1 MRi

/
N , where

MRi =
the number of undiscovered active coefficients

the number of active coefficients .

3. Mean Squared Error (MSE)
∑N

i=1 ‖β − β̂(i)‖2
/
N to

estimate E(‖β − β̂‖2).
4. Expected Model Error (EME)

∑N
i=1 ‖Xβ−Xβ̂(i)‖2

/
N

to estimate E(‖Xβ −Xβ̂‖2).
Smaller values of AFDR, AMR, MSE and EME are desir-
able. Note that AFDR and AMR are computed based on the
number of discovered or active coefficients, not the number
of discovered or active factors.

3.1 Comparison with Lin’s Design
We obtain the 12 × 27 proposed design by selecting the

intercept, the 24 balanced columns and the first two un-
balanced columns of the 12 × 64 design in Example 1. We
use Lin’s 14× 27 design directly. The result is shown in Ta-
ble 6, where and in other tables below, the smaller values
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Table 7. Comparison with Lin’s Design with Randomly Selected Active Factors.
Case #Active Design Size μ E(s2) #Balance AFDR AMR MSE EME

1 2 Proposed 12× 27 0.33 9.70 24 0.61 0.00 5.01 9.02
LIN 14× 27 0.43 7.84 26 0.61 0.00 1.59 11.58

2 2 Proposed 12× 27 0.33 9.70 24 0.58 0.09 1.34 10.83
LIN 14× 27 0.43 7.84 26 0.59 0.14 1.36 12.93

3 4 Proposed 12× 27 0.33 9.70 24 0.47 0.00 51.62 27.23
LIN 14× 27 0.43 7.84 26 0.41 0.04 33.89 135.42

4 4 Proposed 12× 27 0.33 9.70 24 0.55 0.15 2.11 13.23
LIN 14× 27 0.43 7.84 26 0.45 0.27 2.13 18.56

Table 8. Comparison with Wu’s Designs.
Case #Active Design Size μ E(s2) #Balance AFDR AMR MSE EME

1 2 Proposed 12× 64 0.33 9.90 24 0.65 0.00 0.95 8.41
WU 12× 64 0.33 11.06 63 0.54 0.00 0.89 9.03

2 2 Proposed 12× 64 0.33 9.90 24 0.66 0.05 1.20 12.46
WU 12× 64 0.33 11.06 63 0.56 0.04 0.98 11.22

3 4 Proposed 24× 256 0.33 21.84 168 0.41 0.00 0.96 19.96
WU 24× 256 0.33 23.00 255 0.65 0.00 2.08 23.25

4 4 Proposed 24× 256 0.33 21.84 168 0.67 0.04 0.94 18.20
WU 24× 256 0.33 23.00 255 0.68 0.14 1.76 24.90

7 6 Proposed 48× 300 0.33 93.05 299 0.62 0.00 1.76 27.15
WU 48× 300 0.33 41.99 299 0.75 0.00 2.52 37.94

8 6 Proposed 48× 300 0.33 93.05 299 0.71 0.00 1.74 21.65
WU 48× 300 0.33 41.99 299 0.77 0.01 2.58 44.09

of the four criteria are in boldface. Table 6 indicates that
the proposed design outperforms Lin’s design in terms of
variable selection and parameter estimation with the Lasso.
In addition, the proposed design has fewer runs than Lin’s
design.

To verify that this result is not due to some better prop-
erty of the selected active factors in one design versus an-
other, we also conducted a follow-up comparison with ran-
domly selected active factors. More specifically, for a given
setting in Table 5, we randomly select an #Active number
of active factors with the same values given in the setting,
and repeat 10 times to get 10 sets of active factors. Then,
for each set of randomly selected active factors, we repeat
the above data generation and variable selection procedure
N = 30 times for the proposed design and Lin’s design. The
final criteria are averaged over the criteria from the 10 sets of
active factors, and they can be found in Table 7. According
to Table 7, the proposed design still generally outperforms
Lin’s design, even with randomly selected active factors. To
save computational cost and keep our paper concise, we will
omit such a verification for the following comparisons.

3.2 Comparison with Wu’s Designs
We use the 12× 64, 24× 256 proposed designs in Exam-

ple 1 directly. We obtain the 48 × 300 proposed design by
selecting the intercept and the first 299 balanced columns of
the 48×8192 design in Example 2. We obtain Wu’s 12×64,

24×256 and 48×300 designs by selecting the first 64 columns
of Wu’s 12×67 design, the first 256 columns of Wu’s 24×277
design and the first 300 columns of Wu’s 48 × 1129 design,
respectively. The result shown in Table 8 indicates that the
proposed designs are generally better than Wu’s designs in
terms of variable selection and parameter estimation with
the Lasso. In almost all cases, the proposed designs have
better performance while in the first two cases, Wu’s de-
signs perform relatively better.

3.3 Comparison with the Bayesian D-Optimal
Supersaturated Designs

We use the 12 × 64 proposed design in Example 1 di-
rectly. We obtain the 24 × 253 proposed design by select-
ing the intercept, the 168 balanced columns and the first
84 unbalanced columns of the 24 × 256 design in Example
1. We first search a 12 × 64 and a 24 × 256 Bayesian D-
optimal supersaturated design by the JMP® software [13]
with 500 random starting designs. We use the 12 × 64 de-
sign directly. We remove the 22th, 134th and 209th columns
of the 24× 256 design to obtain the 24× 253 design used in
the simulations since the original searched 24×256 Bayesian
D-optimal supersaturated design has μ = 0.83. The result
shown in Table 9 indicates that the proposed designs gen-
erally outperform the Bayesian D-optimal supersaturated
designs in terms of variable selection and parameter estima-
tion with the Lasso.
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Table 9. Comparison with the Bayesian D-Optimal Supersaturated Designs.
Case #Active Design Size μ E(s2) #Balance AFDR AMR MSE EME

1 2 Proposed 12× 64 0.33 9.90 24 0.65 0.00 0.95 8.41
BAYES 12× 64 0.67 11.04 63 0.76 0.06 45.02 76.31

2 2 Proposed 12× 64 0.33 9.90 24 0.66 0.05 1.20 12.46
BAYES 12× 64 0.67 11.04 63 0.78 0.45 3.20 16.31

3 4 Proposed 12× 64 0.33 9.90 24 0.30 0.00 1.83 18.04
BAYES 12× 64 0.67 11.04 63 0.66 0.16 240.96 535.21

4 4 Proposed 12× 64 0.33 9.90 24 0.65 0.06 1.48 12.77
BAYES 12× 64 0.67 11.04 63 0.63 0.46 4.61 30.40

5 4 Proposed 24× 253 0.33 21.84 168 0.60 0.00 1.61 21.59
BAYES 24× 253 0.67 22.91 252 0.67 0.00 3.62 27.99

6 4 Proposed 24× 253 0.33 21.84 168 0.70 0.05 1.85 29.70
BAYES 24× 253 0.67 22.91 252 0.61 0.28 3.36 50.61

7 6 Proposed 24× 253 0.33 21.84 168 0.54 0.00 4.24 38.37
BAYES 24× 253 0.67 22.91 252 0.67 0.28 162.70 934.85

8 6 Proposed 24× 253 0.33 21.84 168 0.72 0.01 3.49 25.34
BAYES 24× 253 0.67 22.91 252 0.70 0.44 16.57 158.04

Table 10. Comparison with the UE(s2)-Optimal Designs.

Case #Active Design Size μ E(s2) #Balance MAFDR MAMR MMSE MEME

1 2 Proposed 12× 64 0.33 9.90 24 0.67 0.00 0.87 7.99
JM 12× 64 0.83 9.90 16 0.61 0.00 2.53 11.02

2 2 Proposed 12× 64 0.33 9.90 24 0.67 0.03 1.04 10.38
JM 12× 64 0.83 9.90 16 0.66 0.26 2.35 15.26

3 4 Proposed 12× 64 0.33 9.90 24 0.30 0.00 2.03 21.28
JM 12× 64 0.83 9.90 16 0.62 0.45 351.16 956.38

4 4 Proposed 12× 64 0.33 9.90 24 0.59 0.09 1.44 13.18
JM 12× 64 0.83 9.90 16 0.66 0.55 4.47 24.95

5 4 Proposed 24× 256 0.33 21.84 168 0.58 0.00 1.68 26.33
JM 24× 256 0.58 21.84 44 0.69 0.00 66.86 61.37

6 4 Proposed 24× 256 0.33 21.84 168 0.72 0.02 1.42 20.00
JM 24× 256 0.58 21.84 44 0.73 0.31 3.73 41.41

7 6 Proposed 24× 256 0.33 21.84 168 0.71 0.30 260.42 398.54
JM 24× 256 0.58 21.84 44 0.72 0.32 294.96 1336.26

8 6 Proposed 24× 256 0.33 21.84 168 0.62 0.35 13.62 110.92
JM 24× 256 0.58 21.84 44 0.72 0.43 18.54 147.44

3.4 Comparison with the UE(s2)-Optimal
Designs

According to Jones and Majumdar [15], for given n and
p, there are a large number of UE(s2)-optimal designs. In
practical scenarios, people may randomly generate only one
UE(s2)-optimal design and use it to screen important fac-
tors. In our comparison, we want to mimic such a scenario,
i.e., we want to know whether people will have a higher
chance (> 0.5) of getting a worse design (compared with our
design) if they generate a UE(s2)-optimal design in this way.
Therefore, we randomly generate 500 UE(s2)-optimal de-
signs and for each of them, repeat the simulation procedure
N = 30 times (rather than N = 300 in comparisons with
other competing designs). We take the median values for
the four criteria introduced in the beginning of the section
over the 500 randomly generated designs and compare these

median values with the corresponding criteria of the pro-
posed design. If the AFDR of a proposed design is less than
the median AFDR (MAFDR) of all the 500 UE(s2)-optimal
designs, it means the AFDR of the proposed design is less
than that of the UE(s2)-optimal design with more than half
probability. The coherence, E(s2) and number of balanced
columns in the table are also the corresponding medians. In
addition, it is possible that a generated UE(s2)-optimal de-
sign has μ = 1 and we will avoid using these designs in the
simulations, because in practice if people get a bad design
with μ = 1, they will probably regenerate another one.

We use the 12× 64 and 24× 256 proposed designs in Ex-
ample 1 directly. We obtain the UE(s2)-optimal designs by
randomly sampling 12 rows of a 64 × 64 Hadamard matrix
500 times and 24 rows of a 256× 256 Hadamard matrix 500
times, respectively. The result shown in Table 10 indicates
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Figure 1: Comparison between the UE(s2)-optimal design and the proposed design in Case 8. The solid curves are the
kernel density estimates of the probability density functions of UE(s2)-optimal design’s criteria and the solid lines are the
corresponding median values. The dashed lines are the values of the proposed design’s criteria.

Table 11. Comparison Between Designs with the Same Size and Active Coefficients.
Case #Active Design Size μ E(s2) #Balance AFDR AMR MSE EME

1 2

Proposed 12× 64 0.33 9.90 24 0.65 0.00 0.95 8.41
WU 12× 64 0.33 11.06 63 0.54 0.00 0.89 9.03

BAYES 12× 64 0.67 11.04 63 0.76 0.06 45.02 76.31
JM 12× 64 0.83 9.90 16 0.61 0.00 2.53 11.02

2 2

Proposed 12× 64 0.33 9.90 24 0.66 0.05 1.20 12.46
WU 12× 64 0.33 11.06 63 0.56 0.04 0.98 11.22

BAYES 12× 64 0.67 11.04 63 0.78 0.45 3.20 16.31
JM 12× 64 0.83 9.90 16 0.66 0.26 2.35 15.26

that with more than half probability, the proposed designs
outperform the UE(s2)-optimal designs in terms of variable
selection and parameter estimation with the Lasso. Further-
more, one may want to see the distributions of the criteria of
500 UE(s2)-optimal designs. We take Case 8 for an example
and show the distributions of the criteria in Figure 1.

3.5 Summary of Comparisons
To help people better understand how the proposed de-

sign performs compared to competing designs with the same
size and under the same active coefficient setting, we collect
the comparisons between designs with exactly the same size
and active coefficient setting all together in Table 11. Lin’s
design is not of size 12×64, so it is not included in the table
(it is actually impossible to construct a design of this size
with Lin’s method).

According to Table 11, the proposed design significantly
outperforms the Bayesian D-optimal design and the UE(s2)-
optimal design. In this scenario, Wu’s design performs
slightly better than the proposed design, but there are also

scenarios where the proposed design performs better than
Wu’s design (see Table 8).

In summary, for Wu’s design, the proposed design is gen-
erally comparable to it, because of the same coherence they
have. For Lin’s design, the Bayesian D-optimal design and
the UE(s2)-optimal design, the proposed design generally
outperforms them, except that it sometimes tends to select
more factors and gives a larger AFDR. However, the pro-
posed design always gives a smaller AMR when compared
to these three designs. In practice, a small AMR is more im-
portant than a small AFDR, because missing active factors
is a more serious problem than falsely discovering inactive
factors. This is because we can conduct follow-up experi-
ments to screen out spurious factors, but we can never detect
active factors that were already removed in the screening
phase [21].

4. CONCLUSION AND DISCUSSION
We have proposed a method for constructing supersatu-

rated designs with small coherence. The constructed designs
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are allowed to be unbalanced to achieve more flexible sample
sizes. The proposed method uses direct constructions and it
entails no intensive computing even for large p. Since the
proposed method can efficiently construct a supersaturated
design with a large number of columns, it can be applied to
high-dimensional variable selection problems in marketing,
biology, engineering and other areas.

Here are possible directions for future work. First, the
proposed method can expand a 6m × p design D0 with
μ ≤ 1/3 to a larger design with μ ≤ 1/3. One may be inter-
ested in finding a special D0 such that the expanded design
has coherence strictly smaller than 1/3 or using a different
construction method to reduce the coherence upper bound.
Second, beyond the Lasso, the proposed design can be ap-
plicable to other variable selection and high-dimensional
problems where controlling coherence of the design matrix
is important. Moreover, many new powerful variable selec-
tion techniques have emerged. For example, Fan and Lv [10]
and Fan, Feng and Song [11] proposed the sure indepen-
dence screening and nonparametric independence screening
for ultrahigh dimensional variable selection. Another exam-
ple is the best subset regression. Shen, Pan, Zhu and Zhou
[25] provided theoretical support for the use of best subset
regression. Bertsimas, King and Mazumder [1] proposed a
mixed integer optimization approach for the best subset se-
lection problem, where they showed that coherence plays a
role in parameter specification of their approach. In future
work, our proposed designs will be applied to other penalized
variable selection methods with results reported elsewhere.

APPENDIX A. PROOF FOR THE UPPER
BOUND OF COHERENCE

Lemma 1. For any matrix with levels − and +, if the signs
of all the entries in a row are changed simultaneously, then

the dot product of every two columns remains the same.
Thus, the coherence of the matrix remains the same.

Lemma 2. The coherence of D1 constructed in Section 2.2
is no greater than 1/3.

Proof. Throughout, for two columns di and dj of a two-
level design D with n rows, we call |d�

i dj |/n their absolute
column correlation. Since D1 is obtained by two copies of
D0, the absolute column correlations of any two columns of
D1 are the same as those of D0. Thus, the coherence of D1

equals that of D0, which is no greater than 1/3.

Lemma 3. The coherence of D2 constructed in Section 2.2
is no greater than 1/3.

Proof. Let d(i) denote the ith column of D2 and d
(i)
j denote

the jth entry of d(i). Put

D2 =
[
C1 C2

]
=

⎡
⎢⎢⎣

U U
U U∗

L L
L −L

⎤
⎥⎥⎦ ,

where C1 and C2 are 12m× p matrices.
Pick two arbitrary columns of D2.

(i) Suppose that both of them are from C1 or C2. By
Lemma 2, μ(C1) is ≤ 1/3. By Lemmas 1 and 2, μ(C2)
is ≤ 1/3. Thus, the absolute column correlation of the
two columns is ≤ 1/3.

(ii) Suppose that one of the two columns is the ith column
d(i) of C1 and the other column is the jth column d(p+j)

of C2 with 1 ≤ i, j ≤ p. Partition the two columns as
[
d(i) d(p+j)

]
=

[
A
B

]
,

where A and B have 8m and 4m rows, respectively. By
Step 2 in Section 2.2,

A =

[
d
(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m d

(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m

d
(j)
1 d

(j)
2 . . . d

(j)
4m−1 d

(j)
4m −d

(j)
1 d

(j)
2 . . . −d

(j)
4m−1 d

(j)
4m

]�

,

B =

[
d
(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m d

(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m

d
(j)
8m+1 d

(j)
8m+2 . . . d

(j)
10m−1 d

(j)
10m −d

(j)
8m+1 −d

(j)
8m+2 . . . −d

(j)
10m−1 −d

(j)
10m

]�

.

Note that A consists of 2m blocks with 4 rows and 2
columns⎡

⎢⎢⎢⎣
d
(i)
2l−1 d

(j)
2l−1

d
(i)
2l d

(j)
2l

d
(i)
2l−1 −d

(j)
2l−1

d
(i)
2l d

(j)
2l

⎤
⎥⎥⎥⎦ , l = 1, . . . , 2m.

Since the absolute dot products of the two columns in
these blocks are ≤ 2, the absolute dot product of the
two columns in A is ≤ 4m. Similarly, B consists of m
blocks with 4 rows and 2 columns⎡

⎢⎢⎢⎣
d
(i)
8m+2l−1 d

(j)
8m+2l−1

d
(i)
8m+2l d

(j)
8m+2l

d
(i)
8m+2l−1 −d

(j)
8m+2l−1

d
(i)
8m+2l −d

(j)
8m+2l

⎤
⎥⎥⎥⎦ , l = 1, . . . ,m.
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Since the absolute dot products of the two columns in
these blocks are 0, the absolute dot product of the two
columns in B is 0. Thus, the absolute dot product of
d(i) and d(p+j) is ≤ 4m and their absolute column cor-
relation is ≤ 4m/12m = 1/3.

Combining (i) and (ii) proves that μ(D2) is ≤ 1/3.

Theorem 1. The coherence of D3 constructed in Section
2.2 is no greater than 1/3.

Proof. Let d(i) denote the ith column of D3 and d
(i)
j denote

the jth entry of d(i). Put

D3 =
[
C1 C2 C3 C4

]
=

⎡
⎢⎢⎣

U U U∗∗ U∗∗

U U∗ U U∗

L L L∗ L∗

L −L L∗∗ L∗

⎤
⎥⎥⎦,

where C1, C2, C3 and C4 are 12m× p matrices.
Pick two arbitrary columns of D3.

(i) Suppose that both of them are from [C1,C2] or
[C3,C4]. By Lemma 3, the coherence of [C1,C2] is ≤
1/3. By Lemmas 1 and 3, the coherence of [C3,C4] is
≤ 1/3. Thus, the absolute column correlation of these
two columns is ≤ 1/3.

(ii) Suppose that one of the two columns is the ith col-
umn d(i) of C1 and the other column is the jth column
d(2p+j) of C3 with 1 ≤ i, j ≤ p. Partition these columns
as

[
d(i) d(2p+j)

]
=

[
A
B

]
,

where A and B have 8m and 4m rows, respectively. By
Step 3 in Section 2.2,

A =

[
d
(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m d

(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m

d
(j)
1 −d

(j)
2 . . . d

(j)
4m−1 −d

(j)
4m d

(j)
1 d

(j)
2 . . . d

(j)
4m−1 d

(j)
4m

]�

,

B =

[
d
(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m d

(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m

−d
(j)
8m+1 d

(j)
8m+2 . . . −d

(j)
10m−1 d

(j)
10m d

(j)
8m+1 −d

(j)
8m+2 . . . d

(j)
10m−1 −d

(j)
10m

]�

.

Note that A consists of 2m blocks with 4 rows and 2
columns⎡

⎢⎢⎢⎣
d
(i)
2l−1 d

(j)
2l−1

d
(i)
2l −d

(j)
2l

d
(i)
2l−1 d

(j)
2l−1

d
(i)
2l d

(j)
2l

⎤
⎥⎥⎥⎦ , l = 1, . . . , 2m.

Since the absolute dot products of the two columns in
these blocks are ≤ 2, the absolute dot product of the
two columns in A is ≤ 4m. Similarly, B consists of m
blocks with 4 rows and 2 columns⎡

⎢⎢⎢⎣
d
(i)
8m+2l−1 −d

(j)
8m+2l−1

d
(i)
8m+2l d

(j)
8m+2l

d
(i)
8m+2l−1 d

(j)
8m+2l−1

d
(i)
8m+2l −d

(j)
8m+2l

⎤
⎥⎥⎥⎦ , l = 1, . . . ,m.

Since the absolute dot products of the two columns in
these blocks are 0, the absolute dot product of the two
columns in B is 0. Thus, the absolute dot product of
d(i) and d(2p+j) is ≤ 4m and their absolute column
correlation is ≤ 4m/12m = 1/3.

(iii) Suppose that one of the two columns is the ith column
d(p+i) of C2 and the other column is the jth column
d(3p+j) of C4 with 1 ≤ i, j ≤ p. This case can be proved
similarly to (ii).

(iv) Suppose that one of the two columns is the ith col-
umn d(i) of C1 and the other column is the jth column
d(3p+j) of C4 with 1 ≤ i, j ≤ p. Partition these columns
as

[
d(i) d(3p+j)

]
=

[
A
B

]
,

where A and B have 8m and 4m rows, respectively. By
Step 3 in Section 2.2,

A =

[
d
(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m d

(i)
1 d

(i)
2 . . . d

(i)
4m−1 d

(i)
4m

d
(j)
1 −d

(j)
2 . . . d

(j)
4m−1 −d

(j)
4m −d

(j)
1 d

(j)
2 . . . −d

(j)
4m−1 d

(j)
4m

]�

,

B =

[
d
(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m d

(i)
8m+1 d

(i)
8m+2 . . . d

(i)
10m−1 d

(i)
10m

−d
(j)
8m+1 d

(j)
8m+2 . . . −d

(j)
10m−1 d

(j)
10m −d

(j)
8m+1 d

(j)
8m+2 . . . −d

(j)
10m−1 d

(j)
10m

]�

.



332 Y. Qi and P. Chien

Note that A consists of 2m blocks with 4 rows and 2
columns⎡

⎢⎢⎢⎣
d
(i)
2l−1 d

(j)
2l−1

d
(i)
2l −d

(j)
2l

d
(i)
2l−1 −d

(j)
2l−1

d
(i)
2l d

(j)
2l

⎤
⎥⎥⎥⎦ , l = 1, . . . , 2m.

Since the absolute dot products of the two columns in
these blocks are 0, the absolute dot product of the two
columns in A is 0. Similarly, B consists of m blocks
with 4 rows and 2 columns⎡

⎢⎢⎢⎣
d
(i)
8m+2l−1 −d

(j)
8m+2l−1

d
(i)
8m+2l d

(j)
8m+2l

d
(i)
8m+2l−1 −d

(j)
8m+2l−1

d
(i)
8m+2l d

(j)
8m+2l

⎤
⎥⎥⎥⎦ , l = 1, . . . ,m.

The absolute dot product of the two columns in the lth
block is

2| − d
(i)
8m+2l−1d

(j)
8m+2l−1 + d

(i)
8m+2ld

(j)
8m+2l|,

which is either 0 or 4. This implies that the absolute dot
product of the two columns in B is ≤ 4m. Thus, the
absolute dot product of d(i) and d(3p+j) is ≤ 4m and
their absolute column correlation is ≤ 4m/12m = 1/3.

(v) Suppose that one of the two columns is the ith column
d(p+i) of C2 and the other column is the jth column
d(2p+j) of C3 with 1 ≤ i, j ≤ p. This case can be proved
similarly to (iv).

Combining (i), (ii), (iii), (iv) and (v) proves that μ(D3) is
≤ 1/3.

Theorem 2. The coherence of D2 constructed in Section
2.4 is no greater than t/n.

Proof. To prove this theorem, we use the same notation from
the proof of Lemma 3, and pick two arbitrary columns of D2.

(i) Suppose that both of the two columns are from C1 or
C2. By a similar argument to Lemma 2, the coherence
of C1 is ≤ t/n. Further, by Lemma 1, the coherence of
C2 is ≤ t/n. Thus, the absolute column correlation of
these two columns is ≤ t/n.

(ii) Suppose that one of the two columns is from C1 and
the other column is from C2. Since the matrices A and
B have 4t and 2n−4t rows respectively, both of which
are multiples of 4, a similar argument to Lemma 3 (ii)
still works. Hence, the absolute column correlation of
these two columns is ≤ (4t/4× 2)/2n = t/n.

Combining (i) and (ii) proves that the coherence of D2 is ≤
t/n.

APPENDIX B. COHERENCE AND MODEL
SELECTION CONSISTENCY

OF THE LASSO
Zhao and Yu [34] studied the model selection consistency

of the Lasso, i.e., the ability of the Lasso to exactly identify
all the active factors from a large number of factors as the
sample size n gets large. Assuming the model in (1.1), they
defined the Strong Irrepresentable Condition, which requires
the existence of a positive constant vector η such that

|C21C
−1
11 sign(β(1))| ≤ 1− η,

where C21 = X(2)�X(1)/n, C11 = X(1)�X(1)/n is in-
vertible, X(1) and X(2) are the submatrices consisting of
the columns of X corresponding to the active and inactive
factors respectively, the element-wise function sign(·) maps
zero to zero, positive numbers to +1 and negative numbers
to −1, β(1) is the vector of coefficients of active factors, 1 is a
vector of +1’s, and the inequality holds element-wise. They
showed that for fixed p and β, under regularity conditions

lim
n→+∞

1

n
X�X = C, C is a positive definite matrix,

lim
n→+∞

1

n
max
1≤i≤n

x�
(i)x(i) = 0,

where x(i) is the ith row of X, if the Strong Irrepresentable
Condition holds, then there exists a λn = f(n) such that

lim
n→+∞

P (sign(β̂(λn)) = sign(β)) = 1,

where β̂(λn) is the Lasso estimate. Further, in Corollary 2
of their paper, they showed that if the worst case column
correlation is no greater than c/(2‖β‖0 − 1) for a constant
0 ≤ c < 1, then the Strong Irrepresentable Condition holds.
In sum, a small worst case column correlation implies the
Strong Irrepresentable Condition, which in turn guarantees
the model selection consistency of the Lasso.
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