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Abstract
Double generalized linear models provide a flexible framework for modeling data by allowing the mean and the dispersion

to vary across observations. Common members of the exponential dispersion family including the Gaussian, Poisson,
compound Poisson-gamma (CP-g), Gamma and inverse-Gaussian are known to admit such models. The lack of their use
can be attributed to ambiguities that exist in model specification under a large number of covariates and complications
that arise when data display complex spatial dependence. In this work we consider a hierarchical specification for the
CP-g model with a spatial random effect. The spatial effect is targeted at performing uncertainty quantification by
modeling dependence within the data arising from location based indexing of the response. We focus on a Gaussian
process specification for the spatial effect. Simultaneously, we tackle the problem of model specification for such models
using Bayesian variable selection. It is effected through a continuous spike and slab prior on the model parameters,
specifically the fixed effects. The novelty of our contribution lies in the Bayesian frameworks developed for such models.
We perform various synthetic experiments to showcase the accuracy of our frameworks. They are then applied to analyze
automobile insurance premiums in Connecticut, for the year of 2008.

keywords and phrases: Bayesian Modeling, Gaussian Process, Hierarchical Spatial Process Models, Spike and Slab
Priors, Tweedie Double Generalized Linear Models.

1. INTRODUCTION
Spatial processes have occupied center stage in statisti-

cal theory and applications for the last few decades. Their
voracious use can largely be explained by geographically
tagged data becoming increasingly commonplace in mod-
ern applications. Such data are often composed of complex
variables which are no longer amenable to a Gaussian as-
sumption. For example, spatially indexed counts [see for e.g.,
61, 9, 2, 39], proportions [see, for e.g., 23, 26, 21, 20], time
to event or, survival outcomes [see, for e.g. 4, 44, 67] are
some frequently occurring variables where spatial processes
have proved invaluable in performing uncertainty quantifica-
tion. The purpose being to quantify unobserved dependence
introduced within the variable of interest due to varying
location. The cornerstone for such studies is a spatially in-
dexed process variable of interest, often termed as a response
process and denoted by, y(s). This is accompanied by co-
variate information X(s) = [x1(s),x2(s), . . . ,xp(s)]. Here
s ∈ S = {s1, s2, . . . , sL} is the spatial indexing and, S is
a finite set of indices or, locations over which the response
variable and covariates are observed. The investigator often
encounters observation–level covariates that account for re-
sponse specific characteristics when learning such processes.
It becomes important to understand which of these covari-
∗Corresponding author.
1Equal contribution.

ates are important contributors to variation in the data.
From a model parsimony standpoint, model choice becomes
an important issue to the investigator. In statistical theory,
this problem is often addressed by performing shrinkage or,
variable selection on the model coefficients. Moreover, per-
forming spatial uncertainty quantification produces accurate
inference for model coefficients, which also raises the concern
regarding a more “honest” subset of covariates within X(s)
that primarily determine the variation in y(s). The crown
jewel of our contribution is Bayesian methodology for per-
forming spatial uncertainty quantification and model choice
simultaneously.

Spatial process modeling generally requires a hierarchi-
cal specification of an unobserved random effect within the
model [14]. Maintaining a hierarchical approach allows for
exploration of the effect of covariates, X(s), and the random
effect w(s) jointly on the response process y(s). Particularly,
considering generalized linear spatial process modeling, it is
assumed that y(s) | β,w(s) arise in a conditionally inde-
pendent fashion from a member of the exponential family
with mean μ(s) such that g(μ(s)) = X(s)β + F(s)w(s),
where g is a monotonic link function, β are model coeffi-
cients, or fixed effects and F(s) is a spatial incidence ma-
trix. In contrast to Gaussian response processes where a
direct hierarchical specification on the response is feasible,
modeling a non-Gaussian spatial process leverages the gen-
eralized linear model framework to employ a latent process

187

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS37


188 A. Halder, S. Mohammed, and D.K. Dey

specification [see for e.g., 64, 17, 16, 65, 5]. This is facili-
tated by the existence of a valid joint probability distribu-
tion, π (y(s1), y(s2), . . . , y(sL) | β,θpr), where θpr denotes
process parameters required for specification of w(s) [see
discussion in section 6.2, 5]. This hierarchical specification
gives us a natural way to perform variable selection by in-
corporating shrinkage priors into the hierarchical prior for-
mulation. There are several choices of shrinkage priors that
differ in their prior specification such as: the discrete spike-
and-slab prior [see, for e.g, 46, 27], other priors based on
the Gaussian-gamma family in linear Gaussian models [see,
for e.g, 51, 7], the continuous spike-and-slab prior [see, for
e.g, 33], the Bayesian counterparts of LASSO and elastic net
[see, for e.g, 50, 41], mixtures of g–priors [see, for e.g, 42],
the horseshoe priors and its variants [see, for e.g, 13], among
several others. We use the continuous spike-and-slab prior
to effect shrinkage on model coefficients.

We focus on a subset of probability distributions within
the exponential family, termed as the exponential dispersion
family [see, for e.g., 34, 35, 36, 37]. It allows the dispersion
along with the mean to vary across observations, suppress-
ing the need for having a constant dispersion across obser-
vations. We focus on a particular member of the family, the
Tweedie compound Poisson-gamma (CP-g), more commonly
referred to as the Tweedie (probability) distribution [see,
58]. The corresponding random variable is constructively de-
fined as a Poisson sum of independently distributed Gamma
random variables. Allowing for a varying dispersion across
observations enables exploration of the effect of covariates
X(s) on the mean and the dispersion separately, by employ-
ing two separate generalized linear models (GLMs). This
gives rise to the double generalized linear model (DGLM)
[see, for e.g., 54, 59, 56]. Hierarchical frameworks for spec-
ifications of DGLMs were first developed in [40]. Although
not mandatory, it is customary to use the same covariates,
X(s) for both the mean and dispersion GLMs to avoid am-
biguities in model specification. Previous work [see for e.g.,
29, 30] uses this approach and considers developing infer-
ence for DGLMs under a frequentist framework. Inference
on spatial effects is obtained through penalizing the graph
Laplacian. In this paper we adopt a Bayesian discourse by
supplementing the DGLM framework with the continuous
version of the spike-and-slab prior to effect shrinkage and
thereby achieve better model specification. We integrate the
spike and slab prior into our hierarchical prior formulation
for both mean and dispersion models. We show that these
priors provide a natural way of incorporating sparsity into
the model, while offering straightforward posterior sampling
in the context of our spatial DGLMs.

The scale for spatial indexing is assumed to be point-
referenced. For example, latitude-longitude or easting–
northing. Generally, s ∈ R

2. Specification of a neighbor-
hood structure or, proximity is naturally important when
attempting to quantifying the behavior of response in loca-
tions that are near each other. We select the Euclidean dis-
tance between locations. This results in a Gaussian process

[see, for e.g., 60] prior on the spatial process, w(s). Other
choices exist for specifying such spatial process, w(s), for
e.g. log-Gamma [see 10, 11] etc. We particularly focus on
a Gaussian process specification on w(s) ∼ GP (0,K(·)),
where K is a covariance function. For arbitrary locations,
s and s′, dependence between y(s) and y(s′) is specified
through K(s, s′), which governs the covariance between w(s)
and w(s′). For point-referenced data, the Matérn family [see,
for e.g., 45] provides the most generic and widely adopted
covariance specification.

Next, we address Bayesian model specification. In the
absence of such concerns for the hierarchical process mod-
els discussed above, prior specification follows the generic
framework, [data | process, θ̃] × [process | θ̃]× [θm] × [θpr].
Here, θ̃ = {θm, θpr} denote model parameters [see for e.g.
8, 24, 5, Chapter 6, p. 125]. In particular, θpr constitute pa-
rameters instrumental in specification of the process, while
θm are other model parameters. We adopt a proper prior on
θpr to avoid the risk of generating improper posteriors [see,
for e.g., 6]. Building a Bayesian variable selection frame-
work that facilitates model specification for θm requires an
additional layer of hierarchical prior specification, append-
ing the latter framework with variable selection parameters,
θvs and, thereby producing

[data | process,θ]× [process | θ]× [θpr]× [θm]× [θvs], (1.1)

where θ = {θ̃,θvs}. We resort to Markov Chain Monte
Carlo (MCMC) sampling [see, for e.g. 12, 28] for perform-
ing posterior inference on θ. The novelty of our approach
lies in the simple Bayesian computation devised—employing
only Gibbs sampling updates for θvs. To the best of our
knowledge hierarchical Bayesian frameworks for fitting (a)
Tweedie DGLMs, (b) spatial Tweedie DGLMs with (or with-
out) variable selection, do not exist in the statistical liter-
ature. Evidently, proposed methodology in (1.1) remedies
that.

The ensuing developments in the paper are organized
as follows: In Section 2 we detail the proposed statistical
framework outlining Tweedie distributions—the likelihood
and parameterization, model formulation and the hierar-
chical prior specification. Section 3 provides comprehensive
synthetic experiments that document the efficacy of our pro-
posed statistical framework for Bayesian variable selection
in spatial DGLMs. Section 5 considers application of the
developed framework to automobile insurance premiums in
Connecticut, USA during 2008. Additional synthetic experi-
ments capturing various performance aspects for the models
are provided in the Supplementary Material.

2. STATISTICAL FRAMEWORK
The Tweedie distribution produces observations com-

posed of exact zeros with a continuous Gamma tail. Their
ability to model mixed data types featuring exact zeros and
continuous measurements jointly makes them suitable for
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modeling response arising from a variety of domains. Some
of the current applications include, actuarial science [see
55, 62, 29, 30], ecology [see for e.g., 57], public health [63],
environment [see for e.g., 38], ecology [53], gene expression
studies [43]. As evidenced by these applications, the pres-
ence of unobserved dependence between observations, affect-
ing the quality of inference, is not unlikely. In the following
subsections we provide more details on Tweedie distribu-
tions, followed by the model formulation and hierarchical
prior specification.

2.1 The Exponential Dispersion Family:
Tweedie Distributions

The Tweedie family of distributions belong to the expo-
nential dispersion (ED) family of models whose probability
density/mass function has the generic form,

π(y | θ, φ) = a(y, φ) exp
{
φ−1(yθ − κ(θ))

}
, (2.1)

where θ is the natural or canonical parameter, φ is the dis-
persion parameter, and κ(θ) is the cumulant function. Char-
acterizing the Tweedie family is an index parameter ξ, vary-
ing values of which produce different members of the family.
For e.g., the CP-g is obtained with ξ ∈ (1, 2), for ξ = 1 we
obtain a Poisson and ξ = 2 produces a Gamma distribution,
for ξ ∈ (0, 1) they do not exist [for further details see Table 1,
29]. We are particularly interested in the CP-g distributions
in this work. In general, for the ED family we have the
mean, μ = E(y) = κ′(θ) and the variance, V ar(y) = φκ′′(θ).
For the CP-g we have κ(θ) = (2 − ξ)−1{(1 − ξ)θ}2−ξ/1−ξ.
Using the relation, κ′(θ) = μ, some straightforward alge-
bra yields, κ(θ) = (2 − ξ)−1μ2−ξ and κ′′(θ) = μξ, implying
V ar(y) = φμξ and denoting α = (1− ξ)−1(2− ξ) we have,

a(y, φ) = 1 · I(y = 0) + y−1
∞∑
j=1

[
y−α(ξ − 1)α

φ1−α(2− ξ)

]j
1

j!Γ(−jα)
×

I(y > 0).

Evidently, π(0 | θ, φ) = exp{−φ−1κ(θ)}.
We introduce some notation. Let yij(si) denote the j-th

response at the i-th location si ∈ S, where j = 1, 2, . . . , ni

and i = 1, 2, . . . , L with
∑L

i=1 ni = N . Together we denote,
y = y(s) = {{yij(si)}ni

j=1}Li=1 as the N × 1 response. Simi-
larly, μ = μ(s) = {{μij(si)}ni

j=1}Li=1 and φ = {{φij}ni
j=1}Li=1

denotes the mean and dispersion vectors respectively. If
y | μ,φ, ξ arises independently from a CP-g distribution,
then the likelihood is given by

π(y | μ,φ, ξ) =
L∏

i=1

ni∏
j=1

aij(yij(si) | φij)×

exp

[
φ−1
ij

(
yij(si)μij(si)

1−ξ

1− ξ
− μij(si)

2−ξ

2− ξ

)]
.

(2.2)

Working with the likelihood, π(·), when devising computa-
tion, evaluating the infinite series representation of a(y, φ)

is required. The two commonly used methods are—saddle-
point approximation [see for e.g. 49, 55, 18, 66] and Fourier
inversion [see, for e.g. 19]. The saddle-point approxima-
tion to (2.1) uses a deviance function based representa-
tion where, π̃(y | μ, φ) = b(y, φ) exp{−(2φ)−1d(y | μ)}.
For CP-g distributions, the deviance function is d(y | μ) =
d(y | μ, ξ) = 2{(y2−ξ − yμ1−ξ)(1 − ξ)−1 − (y2−ξ − μ2−ξ) ×
(2 − ξ)−1}, and b(y | φ, ξ) = (2πφyξ)−1/2I(y > 0) +
1 · I(y = 0) ≈ a(y, φ) exp{φ−1y2−ξ(1 − ξ)−1(2 − ξ)−1}. We
performed experiments which showed that the saddle-point
approximation performs well when fewer zeros are present
in the data. Under higher proportions of zeros its perfor-
mance was sub-optimal. However, albeit its computationally
intensive nature, in all scenarios the Fourier inversion based
method had stable performance. Hence, in this paper we use
the evaluation of a(y, φ) that is based on Fourier inversion.
The adopted Bayesian approach requires MCMC computa-
tion that relies on accurate likelihood evaluations. Hence, we
emphasize the importance of choosing the appropriate likeli-
hood function for application purposes. We denote the like-
lihood in (2.2) as Tw(μ,φ, ξ). Tweedie distributions are the
only members of the ED family that possess a scale invari-
ance property [see, for e.g., 37, Theorem 4.1]. This suggests
for cij > 0, y∗(s) = {cijyij(si)} ∼ Tw(cTμ, c2−ξTφ, ξ) al-
lowing observations with different scales of measurement to
be modeled jointly.

2.2 Model Formulation
Formulating DGLMs with spatial effects theoretically in-

volves specification of a spatial random effect in both mean
and dispersion models. In such a scenario complex depen-
dencies can be specified to account for varied degrees of
uncertainty quantification. In the simplest case the corre-
sponding spatial random effects for the mean and disper-
sion models are independent Gaussian processes. More com-
plex scenarios can feature dependent Gaussian processes,
where the dependence arises from a cross-covariance ma-
trix. Spatial random effects in the mean model are read-
ily interpretable—risk faced (adjustment to mean premium
paid in our case) owing to location. However, spatial random
effects in the dispersion model are not readily interpretable.
Subsequently, we choose to include spatial random effects
only in the mean model for this work.

Let xij(si) denote a p × 1 vector of observed covariates
for the mean model and β be the corresponding a p × 1
vector of coefficients. fij(si) denotes a L× 1 vector specify-
ing the location and w(si) is the spatial effect at location si
with w = w(s) = (w(s1), w(s2), . . . , w(sL))

T denoting the
L × 1 vector of spatial effects; zij(si) denotes a q × 1 vec-
tor of known covariates for the dispersion model and γ is
the corresponding q × 1 vector of coefficients. A Bayesian
hierarchical double generalized linear model (DGLM) using
a non-canonical logarithmic link function is specified as

logμij(si) = xT
ij(si)β + fij(si)

Tw(si),

log φij = zTijγ,
(2.3)
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which implies μij(si) = μij(β,w) = exp(xT
ij(si)β +

fTij (si)w(si)) and φij = φij(γ) = exp(zTijγ).

2.3 Hierarchical Prior Specification
In this section, we first present the hierarchical prior for-

mulation for the model and process parameters, θ̃, followed
by the prior formulation for the variable selection parame-
ters θvs. Prior specification for model and process parame-
ters are as follows:

Model Parameters: ξ ∼ U(aξ, bξ);

β ∼ Np

(
0p,λ

T
β Ip

)
;γ ∼ Nq

(
0q,λ

T
γ Iq

)
,

Process Parameters: φs ∼ U (aφs , bφs) ;

σ−2 ∼ Gamma (aσ, bσ) ; ν ∼ U(aν , bν),

Process: w ∼ NL

(
0L, σ

2R(φs)
)
,

(2.4)

where 0m is the m × 1 zero vector and Im is the m × m
identity matrix; X ∈ R

n×p and Z ∈ R
n×q are design matri-

ces corresponding to the mean and dispersion models, with
coefficients β ∈ R

p and γ ∈ R
q, respectively; F ∈ R

n×L

is the spatial incidence matrix, w ∈ R
L is the spatial ef-

fect, and R(φs) = σ2(φ||Δ||)νKν(φ||Δ||), where Kν is the
modified Bessel function of order ν [1], is the Matérn co-
variance kernel. Here {||Δ||}ii′ = ||si − si′ ||2, is the Eu-
clidean distance between locations si and si′ . U(· | a, b)
denotes the uniform distribution, Nm(· | 0,Σ) is the m-
dimensional Gaussian with zero mean and covariance ma-
trix Σ, and Gamma(· | a, b) is the Gamma distribution
with shape-rate parameterization. Note that the priors on
λβ = (λβ,1, . . . , λβ,p) and λγ = (λγ,1, . . . , λγ,q) are a part of
the variable selection priors and are discussed next. Refer-
ring to the framework in (1.1), the resulting posterior from
(2.4) establishes the [data | process,θ] × [process | θ̃] step.
Conditional posteriors for θ̃ are outlined in Section S1 of
Supplementary Materials.

For the continuous spike-and-slab prior formulation,
θvs = {ζβ , ζγ , σ2

β , σ
2
γ , αβ , αγ} [see, for e.g., 33]. Note that we

have separate prior formulations for mean and dispersion
models. Let β = (β1, β2, . . . , βp)

T and γ = (γ1, γ2, . . . , γq)
T

be the model coefficients corresponding to the mean and
the dispersion models. Let us define λβ,u = ζβ,uσ

2
β,u and

λγ,v = ζγ,vσ
2
γ,v for u = 1, . . . , p and v = 1, . . . , q, respec-

tively. We consider the following prior formulation:

π(θvs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζβ,u
iid∼ (1− αβ)δν0(·) + αβδ1(·),

ζγ,v
iid∼ (1− αγ)δν0(·) + αγδ1(·),

αβ ∼ U(0, 1), αγ ∼ U(0, 1),

σ−2
β,u

iid∼ Gamma(aσβ
, bσβ

),

σ−2
γ,v

iid∼ Gamma(aσγ , bσγ ),

(2.5)

where βu and γv have normal priors with mean 0 and vari-
ance ζβ,uσ

2
β,u and ζγ,uσ

2
γ,u, respectively. Here, δc(·) denotes

the discrete measure at c; hence, ζβ,u and ζγ,u are indicators
taking values 1 or v0 (small number close to 0) based on the
selection of their corresponding covariates. The probabili-
ties of these indicators taking the value 1 is given by αβ and
αγ respectively. We place a uniform prior on these selection
probabilities and an inverse-Gamma prior on the parameters
σ2
β,u and σ2

γ,u. The choice of the shape and rate parameters
(aσβ

, bσβ
; aσγ , bσγ ) of these inverse-Gamma priors induces a

continuous bimodal distributions on ζβ,uσ
2
β,u and ζγ,uσ

2
γ,u

with a spike at ν0 and a right continuous tail. Combining
the priors in (2.4) and (2.5) completes the hierarchical prior
formulation for parameters θ as defined in (1.1). Evidently,
the above prior formulation allows for sufficient flexibility
regarding variations in implementation. For instance, a hi-
erarchical Bayesian framework for a simple DGLM can be
obtained by omitting the process specification and variable
selection. Analogously, DGLMs featuring variable selection
or, spatial effects are obtained by omitting respective com-
ponents from the prior specification outlined previously.

2.4 Bayesian Estimation and Inference
In its full capacity (a model with spatial effects and vari-

able selection) the model structure with prior specifications
in (2.4) and (2.5) contains 3p+ L+ 3q + 4 parameters. De-
pending on the dimensions of X(s) and Z, and the num-
ber of locations L, posterior inference can be a sufficiently
daunting task. Traditional Metropolis–Hasting (M-H) ran-
dom walk strategies are sub-optimal, involving costly pilot
runs to determine viable initial starting points and unrea-
sonably long chains while performing MCMC sampling. To
avoid such issues, we use an adaptive rejection sampling
while leveraging the log-concavity of the posteriors to per-
form effective inference that is not plagued by the above
described issues [for more details, see, for e.g, 28]. In the fol-
lowing, we describe (i) briefly, our adaptive rejection MCMC
sampling approach (more details are provided in the Sup-
plementary Materials), (ii) the identifiability issues on the
overall intercept that arise due to inclusion of a spatial effect
and a strategy to address this, and (iii) a false discovery rate
(FDR)–based approach for performing variable selection.

The joint posterior π(θ | y) generated as a result of
the hierarchical priors in Eq. 2.4 is sampled using a hy-
brid sampling strategy that includes M-H random walk
and the Metropolis-Adjusted Langevin Algorithm (MALA)
[52, 28]. We consider MALA updates for the model param-
eters {β,w} for the mean model. The dispersion model co-
efficients are sampled depending on the choice of likelihood,
i.e., γ is sampled using a MALA if a saddle-point approxi-
mation of the likelihood is considered, otherwise γ is sam-
pled using a MALA with a numerical approximation to the
derivative of the conditional posterior for γ or using a M-
H random walk. The parameters {ξ, φs} are updated using
a M-H random walk. All the other remaining parameters
are sampled using Gibbs sampling. In particular, we employ
block updates for βw = {β,w} and γ. Proposal variances
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feature adaptive scaling such that the optimal acceptance
rate (≈ 58%) to capture Langevin dynamics is achieved
upon convergence [see, 12, 28]. Proposal variances in the
M-H updates also feature adaptive scaling such that the op-
timal acceptance rate (≈ 33%) for random walks is achieved
upon convergence. We outline the full sampling algorithm
at the end of Section S1 of the Supplement. For the hier-
archical DGLM in (2.3), the specification of a spatial effect
translates to fitting a random intercept mean model. Con-
sequently, having an additional overall intercept β0 in the
model renders it unidentifiable [see, 25, 22]. Hence, β0 is
not estimable, although β0+w is estimable. β0 is estimated
through hierarchical centering of the posterior for w [see,
for e.g., 22].

The MCMC samples of β and γ explore their conditional
posterior distributions and point estimates for these model
parameters can be obtained using maximum a-posteriori
(MAP) estimates or, the posterior means. Although we ob-
tain point estimates, these estimates do not yield exact
zero values since we have considered a continuous spike-
and-slab prior with a spike at ν0 (a small positive num-
ber). Additionally, these estimates do not make use of all
the MCMC samples. We use a Bayesian model averaging–
based strategy that leverages all the MCMC samples to
build inference [see, for e.g., 32]. Specifically, we use a
FDR–based strategy—combining Bayesian model averag-
ing with point estimates [see for e.g., 48, 47]. Let β

(m)
u for

m = 1, . . . ,M denote the MCMC samples (after burn-in
and thinning) for the coefficients of the mean model. We
compute pu = 1

M

∑
m I

(
|β(m)

u | ≤ c
)
, where I(·) is the in-

dicator function; these probabilities pu can be interpreted
as local FDR [see, for e.g., 48]. The probability (1 − pu)
can be interpreted as the probability that covariate u is sig-
nificantly associated with the response. We use the pus to
decide on which covariates to select while controlling the
FDR at level α. Explicitly, we infer that the covariate u
has a non-zero coefficient if pu < κα for some threshold
κα ∈ (0, 1). We compute the threshold κα as follows: We
first sort the probabilities pu and denote the sorted proba-
bilities as p(u) for u = 1, . . . , p. We then assign κα = p(u∗),
where u∗ = max{ũ | 1

ũ

∑ũ
u=1 p(u) ≤ α}. This approach caps

our false discoveries of selected variables at 100α%. We em-
ploy the same approach using the MCMC samples of γ to
select significant coefficients for the dispersion models.

Posterior inference on β, γ is performed using MAP
(point) estimates along with posterior mean, median, stan-

dard deviation and highest posterior density (HPD) inter-
vals. For w we employ the mean, median, standard de-
viation and HPD intervals to perform posterior inference.
Next, we demonstrate some synthetic experiments that doc-
ument the performance of our proposed models using the
discussed metrics. The computation has been performed in
the R statistical environment. The required subroutines can
be accessed via an open-source repository at: https://github.
com/arh926/sptwdglm.

3. SYNTHETIC EXPERIMENTS
We begin with an observation—the spatial heterogene-

ity that our models aim to quantify is not observed in
real life. Hence, it is imperative to document the accu-
racy of estimating such effects through synthetic exper-
iments. Settings used are outlined—we consider varying
proportion of zeros (15%, 30%, 60%, 80% and 95%) un-
der which the quality of posterior inference for θ is as-
sessed. Proportion of zeros can be interpreted as an in-
verse signal-to-noise ratio for the synthetic response. For
the sake of brevity, we only show the results for synthetic
experiments pertaining to Bayesian variable selection in
the presence of spatial effects. Additional simulations can
be found in the online Supplement. To construct the syn-
thetic data we consider three scenarios pertaining to model
structure, (a) there is no overlap (i.e. selected β’s and γ’s
do not intersect) (b) 50% overlap (in the union of all se-
lected variables across the mean and dispersion models) (c)
100% overlap between mean and dispersion model specifi-
cation. We use 10 covariates including an intercept, where
the columns of the synthetic design matrices X and Z are
hierarchically centered and scaled, independently sampled
Gaussian variables with mean 0 and variance 1. Naturally,
specification of the true β, w and γ parameters determine
the proportion of zeros in the synthetic response. Table 2
contains the parameter specifications used. The true value
of the index parameter, ξ = 1.5. In an attempt to pro-
duce a synthetic setup that resembles reality we simulate,
w ∼ N(5(sin(3πs1) + cos(3πs2)), 1) (see Figure 1, second
row). The alternative route would be to fix values of σ2

and φs and generate a realization w ∼ NL(0L, σ
2R(φs))

(see Figure 1, first row). Under each setting we consider
M = 10 replications. Within each replication we fit all the
proposed modeling frameworks as shown in Table 1. The
hyper-parameter settings used while specifying priors for
the models are, aξ = 1, bξ = 2, aσ = aσβ

= aσγ = 2,

Table 1. Proposed Bayesian Hierarchical Double Generalized Linear Modeling Frameworks.
Models Frameworks Specification (θ) Number of Parameters
M1 DGLM θm p+ q + 1
M2 DGLM + Variable Selection θm, θvs 3p+ 3q + 1
M3 DGLM + Spatial Effect θm, θpr p+ q + L+ 4
M4 DGLM + Spatial Effect + Variable Selection θm, θvs, θpr 3p+ 3q + L+ 4

https://github.com/arh926/sptwdglm
https://github.com/arh926/sptwdglm
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Table 2. Parameter settings used to obtain varying proportion
of zeros in the synthetic data.

Proportion of 0s μβ−0
(σβ−0

) γ0 μγ−0
(σγ−0

)

15% 0.50 (0.1) −1.50 0.50 (0.1)
30% 0.50 (0.1) 0.70 0.50 (0.1)
60% 0.50 (0.1) 2.50 0.50 (0.1)
80% 1.00 (0.1) 4.50 0.50 (0.1)
95% 1.00 (0.1) 7.00 0.50 (0.1)

Figure 1: Plots showing synthetic spatial patterns, pattern 1
(top, left column) and pattern 2 (bottom, left column) and
corresponding logarithm of aggregated synthetic response
(right column).

bσ = bσβ
= bσγ = 1 (producing inverse-Gamma priors

with mean 1 and infinite variance), aφs = 0, bφs = 30,
σ−2
β = σ−2

γ = 10−6 and ν0 = 5×10−4, producing a vague and
non-informative hierarchical prior. We maintain an FDR of
5% for all settings while performing model selection. The
sample size varies from N = {2 × 103, 5 × 103, 1 × 104}
and the number of locations are L = 1×102. Across replica-
tions, false positive rate (FPR) and true positive rate (TPR)
are computed to measure accuracy of our model selection
procedure. To record the quality of estimation, we com-
pute the mean squared error (MSE), for e.g. MSE(β) =
1
p

∑p
iβ=1(βiβ − β̂iβ )

2, which can be computed similarly for
the other parameters. We also compute average coverage
probabilities, for e.g. considering these probabilities for β
we define CP (β) = 1

M

∑M
m=1 I(βtrue ∈ (lm(β), um(β))),

where lm(β) and um(β) are the lower and upper 95% HPD
intervals respectively for β in replication m; we obtain cov-
erage probabilities for w and γ similarly. The results ob-
tained under the above settings are shown in Table 3. The
first column is named configuration (abbreviated as config.)
with entries denoting the proportion of overlap between se-
lected coefficients in the mean and dispersion models, which
is indicative of model structure. This is estimated by ob-

serving the overlap between selected variables following the
model fit (for models M2 and M4). No variable selection is
performed for models M1 and M3.

From the results shown, we see that models M1 and M2
perform poorly. Estimates, β̂ remain fairly unaffected as
compared to γ̂ and ξ̂, where all of the variation not quanti-
fied, yet present in the synthetic data spills over to corrupt
and compromise the quality of estimates. This also does not
produce reliable results pertaining to model structure re-
covery for M1 and M2. However, significant improvements
show up with M3 and M4. Particularly, under higher pro-
portion of zeros in the synthetic data (low signal to noise
ratio) the performance of M4 remains stable with respect to
model structure recovery and estimation of parameters (re-
fer to Table 3), thereby producing robust inference among
the models in comparison. As an example within our sim-
ulation setting, under 95% of 0s in the data and under low
sample sizes, for example 2000 or, 5000, the estimates of
model coefficients and spatial effects in M3 and M4 are
adversely affected by locations having fewer non-zero ob-
servations. This observation addresses the concern around
specifying DGLMs without spatial random effects in a sce-
nario where the data displays spatial variation. The results
demonstrate expected gains when our model in its full ca-
pacity is used instead of an usual DGLM.

We use the MCMC algorithm featuring MALA updates
for β,w and γ. Chain lengths are set to 1 × 104, with the
initial 5,000 samples as burn-in and thin the rest by select-
ing every 10-th sample which reduces any remaining auto-
correlation and produces 500 independent posterior sam-
ples for each setting. The posterior estimate, θ̂ is then ob-
tained using the produced samples by computing the median
or a MAP estimate as applicable for the model. Coverage
probabilities for model M4 remained sufficiently high (≈ 1)
across all settings; only declining marginally for w (remain-
ing above 90%) under high proportions of zeros (low signal
to noise ratio) in the data. We performed additional syn-
thetic experiments to showcase (a) the performance of M3
with respect to the quality of estimation for spatial effects
and (b) the performance of M2. They are detailed in the
Supplementary materials—we briefly outline its contents in
the next section.

4. SUPPLEMENTARY ANALYSIS
The online Supplement to this paper contains details on

the derivations of the posteriors essential for constructing
MCMC subroutines. They are outlined in Section S1. Sec-
tion S2 features additional simulation experiments that sup-
plement those outlined previously in Section 3. It documents
performance of M2, shown in Table S1, contains results of
experiments for scenarios featuring spatial covariates, shown
in Table S2, and varying spatial patterns as seen in Figure
1, shown in Tables S3 and S4. Convergence diagnostics are
shown for selected model parameters (index parameter ξ)
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Figure 2: Results for synthetic experiments showing model performance, where MSE is plotted against proportion of zeros
in the synthetic response which is tabulated across models (M1, M2, M3, M4) vs. {θm,θpr}× configuration.

in Section S2.2. Contents of the R-package are described in
Section S2.3. Finally, results for models M1 and M3 pertain-
ing to the real data analysis described in the next section
appear in Section S3, Tables S5, S6, S7 and S8.

5. AUTOMOBILE INSURANCE PREMIUMS,
CONNECTICUT, 2008

We analyze automobile insurance premiums for colli-
sion coverage in the state of Connecticut, for the year
2008. The data is obtained from a comprehensive repos-
itory named Highway Loss Data Institute (HLDI) main-
tained by the independent non-profit, Insurance Institute
for Highway Safety (IIHS) (https://www.iihs.org/) working
towards reducing losses arising from motor vehicle collisions
in North America. We briefly describe the variables con-
tained in HLDI data. It records covariate information at
three levels for an insured individual. They are as follows,

a. Individual Level: (i) accident and model year of the ve-
hicle, (ii) age, gender, marital status.

b. Policy level: (i) policy payments, measured in United
States dollars, (ii) exposure–measured in policy years,
for e.g. 0.5 indicates a coverage period of 6 months or,
half a year, measured in years, (iii) policy risk–having
two levels, which is assigned by the insurance company
based on provided information by the individual, (iv)
deductible limit–with 8 categories.

c. Spatial: 5-digit zip code.

Figure 3: (left) Spatial plot of zip-code level aggregated
pure-premium ×10−6 for the state of Connecticut, 2008
(right) histogram for the pure-premium overlaid with a
probability density estimate (in red).

Derived variables like age categories, vehicle age in years and
interactions like gender × marital status are computed and
used as covariates in the model. For the state of Connecti-
cut, 1,513,655 (≈ 1.5 million) data records were obtained in
the year 2008, at 281 zip-codes. Zip-codes are areal units,
we consider the latitude-longitude corresponding to the cen-
troid of each zip code as the point reference counterpart
unit for our application purposes. Distance between two zip-
codes is then specified as the Euclidean distance between
their centroids. The proportion of zeros in the payments is
95.73%. From an insurer’s perspective, policy rate-making
is the problem of assigning policy-premium to a new cus-
tomer’s policy based on their covariate information (for in-

https://www.iihs.org/
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Table 3. Table showing results of synthetic experiments for model selection for models M2 and M4. Corresponding standard
deviations are shown in brackets below.

N True Overlap Prop. of 0s M2 M4
Overlap FPR TPR Overlap FPR TPR

5000

0.00

0.15 0.03 0.04 0.69 0.00 0.00 0.90
(0.06) (0.06) (0.07) (0.00) (0.00) (0.00)

0.30 0.05 0.05 0.89 0.00 0.00 1.00
(0.09) (0.09) (0.10) (0.00) (0.00) (0.00)

0.60 0.01 0.01 0.98 0.00 0.00 1.00
(0.04) (0.04) (0.04) (0.00) (0.00) (0.00)

0.80 0.04 0.04 0.99 0.00 0.00 1.00
(0.06) (0.06) (0.03) (0.00) (0.00) (0.00)

0.95 0.10 0.06 0.89 0.08 0.04 0.95
(0.20) (0.10) (0.20) (0.10) (0.11) (0.08)

0.50

0.15 0.24 0.01 0.67 0.50 0.00 0.90
(0.16) (0.05) (0.09) (0.00) (0.00) (0.03)

0.30 0.49 0.01 0.94 0.50 0.00 1.00
(0.08) (0.05) (0.06) (0.00) (0.00) (0.00)

0.60 0.51 0.00 0.93 0.50 0.00 1.00
(0.03) (0.00) (0.06) (0.00) (0.00) (0.00)

0.80 0.56 0.07 0.97 0.49 0.01 1.00
(0.09) (0.08) (0.04) (0.02) (0.05) (0.00)

0.95 0.65 0.20 0.85 0.48 0.04 0.92
(0.31) (0.17) (0.22) (0.10) (0.15) (0.18)

1.00

0.15 0.40 0.03 0.66 1.00 0.00 0.90
(0.25) (0.05) (0.07) (0.00) (0.00) (0.00)

0.30 0.90 0.04 0.86 1.00 0.00 1.00
(0.14) (0.08) (0.08) (0.00) (0.00) (0.00)

0.60 1.00 0.00 0.96 1.00 0.00 1.00
(0.00) (0.00) (0.05) (0.00) (0.00) (0.00)

0.80 1.00 0.00 1.00 1.00 0.00 1.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

0.95 0.35 0.15 0.85 0.89 0.10 0.89
(0.21) (0.16) (0.22) (0.21) (0.11) (0.10)

stance, individual level, policy and residence zip-code). We
achieve this via out-sample prediction. To that end, we con-
sider a 60-40 split for the data, the split is performed by us-
ing stratified sampling without replacement over zip-codes,
such that the same 281 zip-codes are also available in the
out-sample. The training data then contains Ntr = 908, 741
observations with Npr = 604, 914 observations kept in re-
serve for prediction constituting the out-sample data.

We denote payments towards a policy made by individ-
ual i, residing in zip-code j as yij with an exposure of tij .
We assume that the policy-premium defined as y∗ij =

yij

tij
∼

Tw (μij , φij , ξ), which implies yij ∼ Tw(tijμij , t
2−ξ
ij φij , ξ)

using the scale invariance property. The following hierarchi-
cal DGLM is then specified,

log μij(si) = − log tij + xT
ij(si)β + fij(si)

Tw(si),

log φij = −(2− ξ) log tij + zTijγ,
(5.1)

when considered with a spatial specification, where the
terms − log tij and −(2 − ξ) log tij act as offsets for the

respective mean and dispersion models. Given the covari-
ates described at the beginning p = q = 29, producing
a Ntr × (p − 1) design matrix for the mean model and a
Ntr × q design matrix for the dispersion model. The model
in (5.1) specifies model M3 from Table 1, M4 is obtained
by specifying π(θvs) from (2.5) on θm. M1 is obtained by
setting fij(si) = 0 and M2 is obtained by specifying π(θvs)
on θm for the resulting model. For M1 and M2 we include
an intercept in the mean model. We fit models M1–4 on
the training data. Model selection is performed using FDR
based variable selection on the posterior MCMC samples
obtained from fitting models M2 and M4, controlling for
FDR at 1%. The performance of M1–4 is assessed using
the Akaike Information Criteria (AIC) [3]. While specify-
ing (2.4) and (2.5) the hyper-parameter settings used are,
σ2
β = σ2

γ = 106, aσβ
= aσ = aσγ = 2 and bσβ

= bσ = bσγ = 1
(generating inverse-gamma priors with mean 1 and infinite
variance), aφs = 0, bφs = 60. We maintain aξ = 1 and bξ = 2
for all models. For ease of implementation, the fractal pa-
rameter, ν is fixed at 0.5, producing the exponential covari-
ance kernel. We consider 1×105 MCMC iterations for gener-
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Table 4. Estimated coefficients for fixed effects corresponding to model M2. We show the MAP, median, mean, standard
deviation and HPD intervals. The variables listed are a result of FDR-based variable selection at 1%.

Parameters Levels MAP Median Mean SD Lower HPD Upper HPD

β

(Intercept) – 5.815 5.965 5.955 0.151 5.706 6.227

age.car
1 0.113 0.112 0.110 0.033 0.044 0.173
2 0.234 0.239 0.240 0.030 0.186 0.304
5 0.124 0.122 0.121 0.033 0.062 0.189

risk S −0.213 −0.217 −0.217 0.023 −0.258 −0.168

agec
3 −0.399 −0.399 −0.400 0.030 −0.454 −0.341
4 −0.518 −0.515 −0.515 0.035 −0.580 −0.444
5 −0.712 −0.710 −0.708 0.065 −0.832 −0.575

gender F 0.493 0.502 0.513 0.067 0.400 0.648
M 0.608 0.614 0.619 0.053 0.521 0.731

marital M −0.376 −0.392 −0.403 0.067 −0.577 −0.302

deductible

B 0.898 1.051 1.104 0.244 0.740 1.525
E 0.616 0.482 0.478 0.158 0.192 0.741
F 0.580 0.428 0.435 0.154 0.135 0.656
G 0.287 0.348 0.358 0.159 0.073 0.633

γ

(Intercept) – 7.354 7.346 7.345 0.048 7.249 7.435

age.car

0 −0.820 −0.811 −0.811 0.053 −0.911 −0.714
1 −1.024 −1.017 −1.016 0.051 −1.115 −0.922
2 −0.888 −0.874 −0.873 0.052 −0.969 −0.776
3 −0.864 −0.854 −0.851 0.052 −0.953 −0.760
4 −0.843 −0.838 −0.838 0.052 −0.936 −0.743
5 −0.788 −0.781 −0.780 0.052 −0.877 −0.682
6 −0.770 −0.765 −0.765 0.053 −0.862 −0.665
7 −0.730 −0.723 −0.723 0.053 −0.829 −0.627

risk S 0.114 0.114 0.114 0.011 0.093 0.135
agec 5 −0.289 −0.293 −0.293 0.029 −0.345 −0.234

deductible

B −0.971 −0.963 −0.951 0.099 −1.136 −0.759
C −0.519 −0.522 −0.517 0.049 −0.614 −0.414
D −0.565 −0.568 −0.564 0.044 −0.657 −0.470
E −0.506 −0.501 −0.495 0.042 −0.568 −0.394
F −0.348 −0.346 −0.340 0.039 −0.410 −0.242
H 0.411 0.419 0.426 0.097 0.251 0.618

genderMarital A −0.113 −0.106 −0.097 0.043 −0.168 −0.001
ξ – – 1.673 1.673 1.673 0.001 1.671 1.676

ating samples from respective posteriors with burn-in diag-
nosed at 5×104 and include every 20-th sample to compute
posterior estimates as our thinning strategy. Convergence is
assessed through inspecting trace plots. Proposal variances
were scaled in an adaptive fashion to provide optimal ac-
ceptance rates of 58% (MALA) and 33% (MH). Predictive
performance for models M1–4 is judged based on square root
deviance on the out-sample data. The results are shown in
Table 6. Optimal values are marked in bold. We show the
results for estimated model coefficients featuring Bayesian
variable selection (models M2 and M4) in Tables 4 and 5.
Results for M1 and M3 are postponed to Tables S5, S6, S7
and S8 in the Supplementary Materials. Posterior estimates
for the spatial effects in models M3 and M4 are showed in

Figure 4. Zip-codes with significant effects are color coded
appropriately.

Comparing the models we observe that M4 produces the
most optimal model fit criteria among the models consid-
ered. This extends to out-sample performance when pre-
dicting policy premiums. Plots produced for spatial effects
in models M3 and M4 are mean adjusted. Since specification
of M3 and M4 differ only in presence/absence of the hierar-
chical Bayesian variable selection component, the produced
spatial effects mimic each other after adjusting for the mean.
Comparing results in Tables 4 and 5 we observe that includ-
ing the spatial effect results in more categories for vehicle
age, driver age and deductible being selected. Overall, we
observe that the findings remain consistent with our earlier
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Table 5. Estimated coefficients for fixed effects corresponding to model M4. We show the MAP, median, mean, standard
deviation and HPDs. The variables listed are a result of FDR-based variable selection at 1%.

Parameters Levels MAP Median Mean SD Lower HPD Upper HPD

β

(Intercept) – 5.215 5.213 5.216 0.135 5.165 5.327

age.car

0 0.252 0.251 0.251 0.063 0.123 0.377
1 0.329 0.317 0.318 0.058 0.217 0.431
2 0.424 0.423 0.425 0.061 0.318 0.549
3 0.209 0.193 0.195 0.060 0.084 0.318
4 0.236 0.252 0.255 0.062 0.149 0.387
5 0.297 0.302 0.307 0.059 0.191 0.428
6 0.182 0.209 0.214 0.061 0.113 0.343
7 0.155 0.154 0.157 0.063 0.049 0.286

risk S −0.190 −0.184 −0.183 0.023 −0.226 −0.137

agec

2 −0.121 −0.126 −0.128 0.030 −0.186 −0.068
3 −0.461 −0.467 −0.470 0.031 −0.531 −0.412
4 −0.608 −0.617 −0.619 0.034 −0.685 −0.554
5 −0.721 −0.699 −0.696 0.065 −0.808 −0.561

gender F 0.535 0.540 0.541 0.066 0.407 0.679
M 0.670 0.705 0.720 0.100 0.535 0.919

deductible

B 1.337 1.383 1.408 0.216 1.036 1.866
C 0.209 0.256 0.303 0.152 0.073 0.624
D 0.603 0.627 0.672 0.161 0.397 0.982
E 0.800 0.825 0.864 0.157 0.625 1.189
F 0.753 0.774 0.819 0.155 0.592 1.154
G 0.756 0.786 0.825 0.158 0.580 1.169
H 0.820 0.829 0.824 0.190 0.463 1.149

genderMarital B −0.368 −0.236 −0.169 0.233 −0.457 0.311

γ

(Intercept) – 6.423 6.429 6.415 0.073 6.310 6.504

age.car

0 −0.790 −0.809 −0.811 0.040 −0.891 −0.731
1 −1.006 −1.025 −1.028 0.039 −1.099 −0.954
2 −0.875 −0.885 −0.889 0.039 −0.972 −0.819
3 −0.842 −0.861 −0.863 0.039 −0.950 −0.799
4 −0.831 −0.844 −0.848 0.039 −0.923 −0.777
5 −0.781 −0.792 −0.795 0.039 −0.879 −0.728
6 −0.762 −0.766 −0.769 0.039 −0.849 −0.703
7 −0.725 −0.732 −0.735 0.039 −0.814 −0.662

risk S 0.110 0.110 0.110 0.012 0.087 0.132
agec 5 −0.262 −0.262 −0.261 0.030 −0.316 −0.201

deductible

B −1.023 −1.026 −1.029 0.158 −1.328 −0.721
C −0.534 −0.553 −0.571 0.069 −0.700 −0.461
D −0.591 −0.611 −0.634 0.067 −0.760 −0.534
E −0.533 −0.552 −0.575 0.066 −0.702 −0.478
F −0.377 −0.390 −0.416 0.065 −0.543 −0.335
H 0.352 0.361 0.369 0.107 0.170 0.591

ξ – 1.667 1.667 1.667 0.001 1.665 1.670

research [see, 29] but within a more robust proposed model
choice framework. This is evident when comparing model
estimates between Table 5 and Table S7 and S8 in the Sup-
plement. The marital status and interaction between gender
and marital status is not selected. We conclude by observ-
ing that the spatial effects are significantly positive in major
cities in Connecticut, indicating a higher spatial risk, as op-

posed to sparsely populated regions showing significantly
lower risk.

6. DISCUSSION
Double generalized linear models have not seen much

use after their inception by [40]. Hindrances presented by
ambiguities existing around model specification/choice have
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Figure 4: Spatial plot showing the posterior estimates for
281 zipcodes from (left) M3, and (right) M4 in Connecticut.
The locations are color coded based on significance, with
white indicating a location with 0 in its HPD interval, blue
(red) indicating HPD interval with both endpoints negative
(positive).

Table 6. Table showing AIC and out-sample square root
deviance for models M1–M4.

M1 M2 M3 M4
AIC 1340060 1117733 1117114 1115363√

Deviance 5565.209 5509.549 5507.926 5441.230

been addressed in this paper. We propose Bayesian modeling
frameworks that perform model selection using continuous
spike and slab priors for hierarchical double generalized lin-
ear Tweedie spatial process models. Leveraging Langevin dy-
namics we are able to successfully produce practical imple-
mentations for the proposed frameworks which would other-
wise remain unachievable with standard MCMC techniques.
The proposed algorithms are available as a publicly acces-
sible package for the R–statistical environment. Although
the formulation considers the CP-g densities, evidently such
modeling could be effected under any probabilistic frame-
work that allows for varying dispersion. The application of-
fers some key insights into the actuarial domain. It is gen-
erally believed that marital status and gender play a key
role. However, the model inference suggests otherwise, with
marital status not being selected as a significant feature.

Future work is aimed at extending this framework in mul-
tiple directions. Firstly, with the advent of modern Bayesian
variable selection priors—for example, the Bayesian Lasso,
the Horseshoe prior etc., a comparative model selection per-
formance remains to be seen when considered within hi-
erarchical DGLM formulations. Secondly, with the emerg-
ing techniques for handling large spatial and spatiotempo-
ral data [see, for e.g., 31] the DGLM framework could be
extended to model spatially or, spatio-temporally indexed
observations over massive geographical domains. With re-
spect to our application, this would allow us to investigate
properties of the premium surface over much larger domains,
for instance a country-wide study. Finally, extending these
models to a spatiotemporal setting could be achieved using
spatiotemporal covariance kernels that are commonly used.

Depending on the nature of spatial and temporal interac-
tion, we can have separable and non-separable kernels at
our disposal [see, 15, and references therein]. Bayesian vari-
able selection could then be effected to examine resulting
changes in model specification upon inclusion of random ef-
fects that address spatiotemporal variation in the data.

SUPPLEMENTARY MATERIAL
Supplementary Material containing further details as de-

scribed in Section 4 is available online. The R–package is
available for installation and deployment at: https://github.
com/arh926/sptwdglm.
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