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Abstract
Tail probability plays an important part in the extreme value theory. Sometimes the conclusions from two approaches

for estimating the tail probability of extreme events, the Bayesian and the frequentist methods, can differ a lot. In 1999,
a rainfall that caused more than 30,000 deaths in Venezuela was not captured by the simple frequentist extreme value
techniques. However, this catastrophic rainfall was not surprising if the Bayesian inference was used to allow for parameter
uncertainty and the full available data was exploited [4].

In this paper, we investigate the reasons that the Bayesian estimator of the tail probability is always higher than the
frequentist estimator. Sufficient conditions for this phenomenon are established both by using Jensen’s Inequality and by
looking at Taylor series approximations, both of which point to the convexity of the distribution function.
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1. INTRODUCTION
Tragedies like the 9/11 attacks, earthquakes or volcanic

eruptions are rare events, but they are always followed by
catastrophic consequences. Estimating the probabilities of
extreme events has become more important and urgent in
recent decades [3]. Both large deviations theory [11] and ex-
treme value theory, which is widely used in disciplines like
actuarial science, environmental sciences and physics [8], in-
vestigate both the theoretical and practical problems arising
from rare events [12, 6].

With the popularization of Bayesian statistics, we now
have two approaches for evaluating the probability of the
tail: Bayesian and frequentist [13, 9, 1]. However, these two
methods sometimes give different conclusions. As the case
shows in [4], before 1999 simple frequentist extreme value
techniques were used to predict future levels of extreme
rainfall in Venezuela. In December 1999, daily precipita-
tion of more than 410 mm, almost three times the daily
rainfall measurements of the previously recorded maximum,
was not captured which caused an estimated 30,000 deaths.
Figure 1 in [4] shows that the precipitation of 1999 is ex-
ceptional even relative to the better fitting model under the
frequentist MLE method. However, Figure 2 gives that the
1999 event can be anticipated if we use Bayesian inferences
to fully account for the uncertainties due to parameter esti-
mation and exploit all available data. Table 1 which is taken
from [5] gives the return level estimates of 410.4 mm, the
1999 annual maximum, using different models. From the ta-
ble we can also see that the Bayesian method gives a way
∗Corresponding author.

Figure 1: Return level plots for models fitted to the annual
maximum Venezuelan rainfall data ( , GEV model,
maximum likelihood estimates; , GEV model, lim-
its of the 95% confidence intervals; , Gumbel
model, maximum likelihood estimates; , Gumbel
model, limits of the 95% confidence intervals; •, empirical
estimates based on the complete 49-year data set): (a) ex-
cluding the 1999 data; (b) including the 1999 data.

much smaller return period that the frequentist Maximum
Likelihood Estimation(MLE) under different models.

The lesson we learned from [5] and [4] is the motivation
for our research. Reasons why these two methods give huge
different results, especially why the Bayesian model usually
gives a larger probability of the tail than the classic fre-
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Figure 2: Predictive distributions for seasonal models fitted
to the Venezuelan rainfall data: , including the 1999
data; , excluding the 1999 data; •, empirical es-
timates based on the 49 available annual maxima.

Table 1. Return level estimates of 410.4 mm, the 1999
annual maximum, using different models and modes of

inference. For the MLE analysis the values correspond to the
maximum likelihood estimates of the return period. For the

Bayesian analysis the values are the predictive return periods.
From [5] (with permission).

Return period of 410.4 mm
Mode of
Inference

Model 1999 data
excluded

1999 data
included

MLE Gumbel 17,600,000 737,000
GEV 4280 302

Bayes Gumbel 2,170,000 233,000
GEV 660 177

quentist method need to be investigated here. The Bayesian
estimation of probability of tails is well founded on Proba-
bility Theory: It is a marginal computation that integrates
out the parameters of the tail. On the other hand, the “plug-
in” insertion a point estimate of the parameters is obviously
an “ad-hoc” procedure not based on probability calculus
but on an approximation, that may be close to the correct
calculation at the center of the range but that deteriorates
spectacularly as we move away to the interesting tails, where
extreme values occur.

1.1 Definitions and Goal
Let X be the random variable. Suppose X indicate the

magnitude and intensity of an earthquake, then the tail
probability P (X > a) identifies the probability of an earth-
quake occurrence when a is some value much greater than
the mean. The Bayesian estimator of this probability is de-
fined as

PB(X > a) =

∫
Θ

[1− F (a|θ)]π(θ|a)dθ,

which is the expectation of the tail probability 1 − F (a|θ)
under the posterior distribution π(θ|x) given x = a, where
θ denotes the parameters in the distribution function and
could be one dimension or generalized to a high dimensional
vector. The frequentist estimator is also called the plug-in
estimator which is defined as

PF (X > a) = 1− F (a|θ̂),

where θ̂ is the Maximum Likelihood Estimator(MLE) of θ.
Numerical experimental results point to the fact that the

asymptotic behavior of the Bayesian estimator of the tail
probability is usually higher than the frequentist estimator.
We will use a very simple hierarchical model as an example
to illustrate this phenomenon. Suppose we have a sequence
of random variable x = x1, . . . , xn that follows the exponen-
tial distribution. The density of the exponential distribution
is given by

f(x|λ) = 1

λ
e−x/λ

where x ≥ 0 and λ > 0. So the tail probability is

ϕ(λ) = 1− F (a|λ) =
∫ ∞

a

f(x|λ)dx = e−
a
λ

The marginal distribution can be calculated as

m(x) =

∫ ∞

0

f(x|λ)πJ(λ)dλ = Γ(n)
( n∑

i=1

xi

)−n

,

where we use Jeffereys prior as πJ(λ) ∝ 1/λ. By which the
posterior distribution is obtained as

π(λ|x) = 1

λ(n+1)Γ(n)
exp

(
−
∑n

i=1 xi

λ

)(
n∑

i=1

xi

)n

Then the Bayesian estimator of the tail probability is

PB(X > a) = E[ϕ(λ)|x]

=

∫ ∞

0

ϕ(λ)π(λ|x)dλ =
(
1 +

a

nx̄

)−n

And the frequentist estimator of the tail probability is

PF (X > a) = ϕ(λ̂ = x̄) = e−
a
x̄

Note that PB goes to zero at a polynomial rate, whereas PF

goes to zero at an exponential rate. So, they are not even
asymptotically equivalent, and thus it should be the case
that:

PB(X > a)

PF (X > a)
→ ∞ as a → ∞

We conduct the numerical experiments and plot the ratio
of PB and PF . The results below show the ratio for differ-
ent range of a. We can see that when a is some moderate
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Figure 3: Plots of PB(X>a)
PF (X>a) for different a.

number between 50 and 100. The ratio is greater than 1
and increases slowly. However, when a varies from 500 to
1000, the ratio goes to extremely large number very quick.
In other words, PB(X>a)

PF (X>a) → ∞ as a → ∞ which implies that
the Bayesian estimate is higher than the frequentist estimate
asymptotically.

We investigate the reasons for this behavior and the con-
ditions under which it happens. We first use Jensen’s in-
equality [7, 2], which states that if ϕ(θ) = 1 − F (a|θ) is a
convex function of the random variable θ, then

ϕ (E[θ]) ≤ E [ϕ(θ)] .

We then verify that the convexity conditions are met for

certain distributions that are widely used in extreme value
analysis using a Taylor series approximation of the tail prob-
ability 1 − F (a|θ) around the MLE of θ, and plug it into
the difference between the Bayesian and the frequentist es-
timators which is defined as

D(a) = PB(X > a)− PF (X > a).

In conclusion, we can show that the convexity of ϕ(θ) =
1−F (a|θ) is a sufficient condition for PB > PF . We also ver-
ify this convexity condition for specific distributions which
are widely used in extreme value theory.

2. METHODOLOGY
We will investigate why the Bayesian estimator of the

tail probability is usually asymptotically higher than the
frequentist one in this section. The method is to prove that
if ϕ(θ) = 1 − F (a|θ) is convex then we can apply Jensen’s
inequality directly. Then we use the Taylor expansion of the
tail probability 1−F (a|θ) to verify the results we get which
leads to the same conditions on our distribution function
F (a|θ).

2.1 Convexity Investigation Using Jensen’s
Inequality

For tail probability estimations, Bayesian method gives
PB(X > a) = Eπ(θ|a)[1−F (a|θ)], while frequentist method
using PF (X > a) = 1 − F (a|θ̂). To investigate the relation
between PB and PF , Jensen’s inequality tells something sim-
ilar and I will state formally here as:

Theorem 1. Let (Ω, A, μ) be a probability space, such that
μ(Ω) = 1. If g : Ω → R

d is a real-valued function that is
μ-integrable, and if ϕ is a convex function on the real line,
then:

ϕ

(∫
Ω

g dμ

)
≤

∫
Ω

ϕ ◦ g dμ.

Note here the measurable function g is our parameter θ.
So Jensen’s inequality gives ϕ (E[θ]) ≤ E [ϕ(θ)] [2]. The in-
equality we want to prove, however, is that ϕ[θ̂] ≤ E[ϕ(θ)].
The following theorem and proof shows that as a → ∞ we
have ϕ[θ̂] and ϕ[E(θ)] are quite close to each other, which
implies that ϕ[θ̂] ≤ E[ϕ(θ)].

Theorem 2. Let X be a continuous random variable sup-
ported on semi-infinite intervals, usually [c,∞) for some c,
or supported on the whole real line, with F (a|θ) be the cu-
mulative distribution function (CDF) of X where a is some
extreme large number on the support, and ϕ(θ) = 1−F (a|θ)
is a convex function. Suppose θ̂ is the maximum likelihood
estimation of the parameter θ, then

ϕ[θ̂] ≤ E[ϕ(θ)]
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Proof.∣∣∣ϕ[E(θ)]− ϕ[θ̂]
∣∣∣ = ∣∣∣(1− F [a|E(θ)])−

(
1− F [a|θ̂]

)∣∣∣
=

∣∣∣∣
(
1−

∫ a

−∞
f(x|E(θ))dx

)
− · · ·

. . .

(
1−

∫ a

−∞
f(x|θ̂)dx

)∣∣∣∣
=

∣∣∣∣
∫ ∞

a

f(x|θ̂)dx−
∫ ∞

a

f(x|E(θ))dx

∣∣∣∣
≤

∫ ∞

a

∣∣∣f(x|θ̂)− f(x|E(θ))
∣∣∣ dx

Let’s define

g(x) = f(x|θ̂)− f(x|E(θ))

Then we can see that∫ ∞

−∞
|g(x)|dx ≤

∫ ∞

−∞

∣∣∣f(x|θ̂)∣∣∣ dx+

∫ ∞

−∞
|f(x|E(θ))| dx

=

∫ ∞

−∞
f(x|θ̂)dx+

∫ ∞

−∞
f(x|E(θ))dx

= 1 + 1 = 2 < ∞.

Which means that g(x) is a integrable function. Thus implies
lima→∞

∫∞
a

|g(x)|dx = 0, i.e

lim
a→∞

∫ ∞

a

∣∣∣f(x|θ̂)− f(x|E(θ))
∣∣∣ dx = 0

Thus, for ∀ε > 0, ∃a such that∫ ∞

a

∣∣∣f(x|θ̂)− f(x|E(θ))
∣∣∣ dx < ε.

Which implies ∃a such that

|ϕ[θ̂]− ϕ[E(θ)]| < ε.

Thus −ε < ϕ[θ̂]− ϕ[E(θ)] < ε or we could write

ϕ[E(θ)]− ε < ϕ[θ̂] < ϕ[E(θ)] + ε.

Equality in Jensen’s inequality holds only if our function
ϕ is essentially constant, and suppose our function ϕ(θ) is
strictly convex, which is true for most of the cases that we
encounter, then we know our Jensen’s inequality is strict
also, i.e. ϕ[E(θ)] < E[ϕ(θ)]. Which implies ∃ε > 0 such
that

E[ϕ(θ)] ≥ ϕ[E(θ)] + ε.

Hence for this ε, as a → ∞ we have

E[ϕ(θ)] ≥ ϕ[E(θ)] + ε > ϕ[θ̂].

2.2 Taylor Expansion Examination
In this section, we will use Taylor series for the tail prob-

ability to check the results we got in the previous section.
Let

D(a) = PB(X > a)− PF (X > a)

=

∫
Θ

[1− F (a|θ)]π(θ|a)dθ −
(
1− F (a|θ̂)

)

which is the difference of the tail probabilities between the
Bayesian and the frequentist estimators. The Taylor series
of 1− F (a|θ) at the MLE of θ, θ̂, is given as

ϕ(θ) = 1− F (a|θ)
= 1− F (a|θ̂)− ∇θF (a|θ)|θ=θ̂ (θ − θ̂)− · · ·

1

2
Hθ (F (a|θ))|θ=θ̂ (θ − θ̂)2 −R(θ)

R(θ) =
1

6
D3

θ (F (a|θ))
∣∣
θ=θL

(θ − θ̂)3

where θL is between θ and θ̂.
where ∇θF (a|θ) is the gradient of F (a|θ) such that

(∇θF (a|θ))i =
∂

∂θi
F (a|θ)

and Hθ is the Hessian matrix of dimension |θ| × |θ| such
that

Hml =
∂2

∂θm∂θl
F (a|θ)

And D3
θ (F (a|θ)) is the third partial derivative of F (a|θ)

w.r.t. θ in a similar manner. Then D(a) could be rewritten
as

D(a) =

∫
Θ

[1− F (a|θ)]π(θ|a)dθ −
(
1− F (a|θ̂)

)

= − ∇θF (a|θ)|θ̂
∫
Θ

π(θ|a)(θ − θ̂)dθ − · · ·

1

2
Hθ (F (a|θ))|θ̂

∫ ∞

−∞
π(θ|a)(θ − θ̂)2dθ −R∗(θ)

= − ∇θF (a|θ)|θ̂ E
π(θ|a)(θ − θ̂)− · · ·

1

2
Hθ (F (a|θ))|θ̂ E

π(θ|a)(θ − θ̂)2 −R∗(θ)

Here we simplify the notation by writing dF (a|θ)/dθ |θ=θ̂ =

F ′(a|θ̂), d2F (a|θ)/dθ2 |θ=θ̂ = F ′′(a|θ̂), and

R∗(θ) =
1

6
D3

θ (F (a|θ))
∣∣
θL

∫ ∞

−∞
π(θ|x)(θ − θ̂)3dθ

=
1

6
D3

θ (F (a|θ))
∣∣
θL

Eπ(θ|x)(θ − θ̂)3

In order for ϕ(θ) to be convex, and D(a) to be negative
we would need the first term ∇θF (a|θ)|θ̂ Eπ(θ|a)(θ − θ̂)
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and the third term R∗(θ) to go to zero asymptotically, and
the second term Hθ (F (a|θ))|θ̂ Eπ(θ|a)(θ − θ̂)2 to be neg-
ative as a → ∞. In what follows, we will show some ex-
amples with specific distributions that are widely used in
extreme value analysis where this happens. We conjecture
that this is true for a broad set of cumulative distribution
functions, since it worked in all the examples we tried. This
would be an interesting open problem to solve in the fu-
ture.

Example 1 (Exponential distribution). The density of
the exponential distribution is given by

f(x|λ) = 1

λ
e−x/λ

where x ≥ 0 and λ > 0. So the tail probability is

1− F (a|λ) =
∫ ∞

a

f(x|λ)dx = e−
a
λ

Taking derivative with respect to λ at both sides we have

− d

dλ
F (a|λ) = a

λ2
e−

a
λ

− d2

dλ2
F (a|λ) =

(
−2a

λ3
+

a2

λ4

)
e−

a
λ

− d3

dλ3
F (a|λ) =

(
6a

λ4
− 6a2

λ5
+

a3

λ6

)
e−

a
λ

Suppose we have i.i.d sample x = (x1, . . . , xn) from f(x|λ),
then the marginal distribution can be calculated as

m(x) =

∫ ∞

0

f(x|λ)πJ (λ)dλ = Γ(n)
( n∑

i=1

xi

)−n

,

where we use Jeffereys prior as πJ (λ) ∝ 1/λ. By which the
posterior distribution is obtained as

π(λ|x) = 1

λ(n+1)Γ(n)
exp

(
−
∑n

i=1 xi

λ

)(
n∑

i=1

xi

)n

After some arithmetic manipulation and using λ̂ = x̄ we
obtain

Eπ(λ|x)(λ− λ̂) =

∫ ∞

0

(λ− λ̂)π(λ|x)dλ =
x̄

(n− 1)
,

Eπ(λ|x)(λ− λ̂)2 =

∫ ∞

0

(λ− λ̂)2π(λ|x)dλ

= x̄2 n+ 2

(n− 1)(n− 2)
,

Eπ(λ|x)(λ− λ̂)3 =

∫ ∞

0

(λ− λ̂)3π(λ|x)dλ

= x̄3 7n+ 6

(n− 1)(n− 2)(n− 3)
.

Plug these terms into D(a) we have

D(a)= − d

dλ
F (a|λ)

∣∣∣∣
λ̂

Eπ(λ|x)(λ− λ̂)− · · ·

1

2

d2

dλ2
F (a|λ)

∣∣∣∣
λ̂

Eπ(λ|x)(λ− λ̂)2 − · · ·

1

6

d3

dλ3
F (a|λ)

∣∣∣∣
λL

Eπ(λ|x)(λ− λ̂)3

= e−
a
x̄

[
a

x̄

−4

(n− 1)(n− 2)
+

a2

2x̄2

n+ 2

(n− 1)(n− 2)

]
+ · · ·

e
− a

λL

(
a3 − 6λLa

2 +6λ2
La

6λ6
L

)
x̄3(7n+6)

(n− 1)(n− 2)(n− 3)

Here we have that a >> 0, and x̄ ≥ 0; λL is some number
between x and x̄ so λL ≥ 0. All of which implies D(a) ≥ 0.

Then, we want to show that lima→∞ R∗(λ) = 0, it is
sufficient to show that

lim
a→∞

d3F (a|λ)
dλ3

∣∣∣∣
λL

= 0.

And we could obtain this simply by using L’Hospital’s rule.
In conclusion, the second derivatives for exponential distri-
bution exp(λ) w.r.t. λ is

d2

dλ2
F (a|λ) =

(
2− a

λ

) a

λ3
e−

a
λ

Since a is assumed to be some extreme number, which im-
plies d2F (a|λ)/dλ2 ≤ 0, i.e. the tail probability ϕ(λ) =
1− F (a|λ) is convex.

Example 2 (Pareto Distribution). Given the scale pa-
rameter β = 1 and the shape parameter α as unknown, the
pdf of the Pareto distribution is given by

f(x|α) = αx−α−1

where x ≥ 1 and 0 < α < 1, and the cumulative distribution
function is

F (x|α) =
∫ x

1

f(t|α)dt = 1− x−α, x ≥ 1

By setting the derivative of the log-likelihood equal to zero we
get the MLE of α as α̂ = n/

∑n
i=1 log xi. We are interested

in calculating the tail probability when b is extremely large.
Note that

ϕ(α) = 1− F (b|α) = b−α

Taking derivatives of ϕ(α) with respect to α we obtain

− d

dα
F (b|α) = −b−α ln b;

− d2

dα2
F (b|α) = b−α(ln b)2;
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− d3

dα3
F (b|α) = −b−α(ln b)3.

Using Jeffreys’s prior πJ(α) ∝ 1/α, we have

m(x) =

∫ 1

0

f(x|α)πJ(α)dα =
Γ(n, 0)− Γ(n,

∑n
i=1 lnxi)∏n

i=1 xi [
∑n

i=1 lnxi]
n ,

where the upper incomplete gamma function is defined as
Γ(s, x) =

∫∞
x

ts−1e−tdt. Then the posterior distribution is
given by

π(α|x) = L(α|x)πJ (α)

m(x)

=
αn−1 (

∏n
i=1 xi)

−α
[
∑n

i=1 lnxi]
n

Γ(n, 0)− Γ(n,
∑n

i=1 lnxi)

Using the properties of the incomplete gamma function, and
integration by parts we find the recurrence relation Γ(s +
1, x) = sΓ(s, x) + xse−x. We obtain

Eπ(α|x)(α− α̂) =

∫ 1

0

(α− α̂)π(α|x)dα

= − [
∑n

i=1 lnxi]
n−1∏n

i=1 xi[Γ(n, 0)− Γ(n,
∑n

i=1 lnxi)]
,

Eπ(α|x)(α− α̂)2 =
n

[
∑n

i=1 lnxi]
2 + · · ·

(n− 1)(
∑n

i=1 lnxi)
n−2 − (

∑n
i=1 lnxi)

n−1∏n
i=1 xi[Γ(n, 0)− Γ(n,

∑n
i=1 lnxi)]

,

Eπ(α|x)(α− α̂)3 =
2n

(
∑n

i=1 lnxi)3
− · · ·

(
n∑

i=1

lnxi)
n−3[n2 + 2 + (2− 2n)(

n∑
i=1

lnxi) + (
n∑

i=1

lnxi)
2]

(
∏n

i=1 xi)[Γ(n, 0)− Γ(n,
∑n

i=1 lnxi)]
.

To show D(b) ≥ 0, is equivalent to show that the first term
in the expression of D(b) after plugging in the Taylor ex-
pansion of 1 − F (b|α) goes to zero as b → ∞, which could
be obtain by using the L’Hospital’s rule. And we also need
to show the second term d2/dα2F (b|α)

∣∣
α̂
Eπ(α|x)(α− α̂)2 is

asymptotically negative. We can see this from the fact that
d2/dα2F (b|α)

∣∣
α̂
= −b−α(ln b)2 ≤ 0 and Eπ(α|x)(α − α̂)2 ≥

0.
Then, We want to show that limb→∞ R∗(α) = 0, it is

sufficient to show that

lim
b→∞

d3

dα3
F (b|α)

∣∣∣∣
αL

= 0.

And we could obtain this simply by using L’Hospital’s rule.
In conclusion, the second derivatives for Pareto distribution
is

d2

dα2
F (b|α) = −b−α(ln b)2

Since b is assumed to be some extreme number, which im-
plies d2/dα2F (b|α) ≤ 0, i.e. the tail probability ϕ(α) =
1− F (b|α) is convex.

Example 3 (Normal Distribution). Normal distribution
with unknown standard deviation σ and expectation μ is a
case where the parameter is a two dimensional vector, i.e.
θ = (μ, σ). Since x|μ, σ ∼ N(μ, σ2), then the CDF when
x = a is

F (a|μ, σ) = 1

2

[
1 + erf

(
a− μ

σ
√
2

)]
=

1

2
+

1√
π

∫ a−μ

σ
√

2

0

e−t2dt

where erf(x) is the related error function defined as erf(x) =
2/

√
π
∫ x

0
e−t2dt. Looking at the Hessian matrix, we have

H =

[
∂2

∂μ2F (a|μ, σ) ∂2

∂σ∂μF (a|μ, σ)
∂2

∂μ∂σF (a|μ, σ) ∂2

∂σ2F (a|μ, σ)

]

=

⎡
⎢⎣ − a−μ√

2πσ3
e
−
(

a−μ

σ
√

2

)2

− 1√
2πσ2

e
−
(

a−μ

σ
√

2

)2 [
(a−μ)2

σ2 − 1
]

− 1√
2πσ2

e
−
(

a−μ

σ
√

2

)2 [
(a−μ)2

σ2 − 1
]

− a−μ√
2πσ3

e
−
(

a−μ

σ
√

2

)2 [
(a−μ)2

σ2 − 2
]
⎤
⎥⎦

To show H is negative definite for large a, we need to
show for ∀vT = (v1, v2) = 0, we have

vTHv < 0.

By tedious calculation we have

vTHv = − 1√
2πσ2

e
−
(

a−μ

σ
√

2

)2
[
(v21 − 2v22)

(
a− μ

σ

)
+ . . .

2v1v2

(
a− μ

σ

)2

+ v22

(
a− μ

σ

)3

− 2v1v2

]

Since a is assumed to be some extreme large number, so
a− μ > 0, then the leading term in the bracket is

v22

(
a− μ

σ

)3

which is positive. Hence, vTHv < 0, i.e. H is negative def-
inite for large a as we expected. In other words, ϕ(μ, σ) =
1− F (a|μ, σ) is a convex function.

3. CONCLUSIONS
Bayesian and frequentist estimations of the tail probabil-

ity sometimes give conclusions of huge differences which can
cause serious consequences. Thus in practice, we will have
to take both of the results into consideration. To be spe-
cific, Bayesian method always estimate the tail probability
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Figure 4: Plots of distribution functions when parameters
are variables. Note in (a), the parameter θ is the mean of
the normal distribution, i.e. in this case σ is given and we
can see that F (a|θ) is concave down when a > θ.

higher than the frequentist model. The Bayesian estimation
of probability of tails is well founded on Probability The-
ory: It is a marginal computation that integrates out the
parameters of the tail. On the other hand, the frequentist
estimation is an approximation.

By looking at the Taylor expansion of the tail and investi-
gate the convexity of the distribution function, we claim that
the Bayesian estimator for tail probability being higher than
the frequentist estimator depends on how ϕ(θ) = 1−F (a|θ)

is shaped. The condition that ϕ(θ) is a strictly convex func-
tion is equivalent to HθF (a|θ) < 0. Other examples (only
continuous cases with infinite support) like the Cauchy Dis-
tribution, Logistic Distribution, Log-normal Distribution,
Double Exponential Distribution, Weibull Distribution, etc.,
also satisfy our convexity conditions here.

However, in general convexity is a much stronger argu-
ment than Jensen’s inequality, i.e. ϕ(θ) = 1 − F (a|θ) is
a convex function, or equivalently HθF (a|θ) < 0 is only
a sufficient condition for Jensen’s inequality to hold but
not a necessary condition. There are distributions with
HθF (a|θ) ≥ 0 but we still have the Bayesian estimator for
the tail probability is higher than the frequentist approxima-
tion. In [10], they found conditions on the random variable
to make the other direction work which will be discussed in
our future work.
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