Highest Posterior Model Computation and Variable Selection via the Simulated Annealing – Supplementary Material

1. MATHEMATICAL RESULT

Below are the conditions which are the basis of the convergence of the SA-HPM method.

Condition 1. The probability of moving to j th model from i th model in p steps is positive, that is, $q_{ij}^{(p)} > 0$.

Condition 2. $q_{ii} > 0$.

Condition 3. Q is irreducible.

[?] showed that if the above conditions are met, then the simulated annealing method converges. Hence, the SA-HPM algorithm in Figure 1 in the paper, converges. The following lemmas together with the following proposition establish that the conditions are satisfied for our proposed SA-HPM algorithm.

Proposition 1. The model space \mathcal{M} is finite.

Lemma 1. In the SA-HPM algorithm, the probability of moving to j th model from i th model in p steps is positive, that is, $q_{ij}^{(p)} > 0$.

Lemma 2. In the SA-HPM algorithm $q_{ii} > 0$.

Proof. Suppose at time t the i th model gets selected. Since the i th model itself belongs to the neighborhood of i th

model according to our neighborhood region selection, we have,

$$q_{ii} = \frac{\text{posterior probability of } i\text{th model}}{\text{sum of posterior probabilities of neighbors of } i \text{ th model}} \\ = \frac{P(\mathcal{M}_i)P(y|\mathcal{M}_i)}{\sum_{\gamma \in nbd(i)} P(\mathcal{M}_{\gamma})P(y|\mathcal{M}_{\gamma})},$$

By definition prior probability of any model is strictly greater than 0 and posterior probabilities are never 0 in practice for any given proper prior. This completes the proof. \Box

Lemma 3. In the SA-HPM algorithm, the transition matrix Q is irreducible.

Proof. We note that, each model has its own binary representation using γ . Given two binary sequences, they are neighbors within a finite number of transformations of the coordinates which is given by either $0 \rightarrow 1$ or $1 \rightarrow 0$. Hence, $\Pr(\mathcal{M}_j | \mathcal{M}_i) > 0$ for all $i, j \in \mathcal{M}$, trivially completing the proof.

Arnab Kumar Maity. Pfizer, Inc., USA

Sanjib Basu. University of Illinois at Chicago, USA