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Abstract
Variable selection is widely used in all application areas of data analytics, ranging from optimal selection of genes in

large scale micro-array studies, to optimal selection of biomarkers for targeted therapy in cancer genomics to selection
of optimal predictors in business analytics. A formal way to perform this selection under the Bayesian approach is to
select the model with highest posterior probability. The problem may be thought as an optimization problem over the
model space where the objective function is the posterior probability of model. We propose to carry out this optimization
using simulated annealing and we illustrate its feasibility in high dimensional problems. By means of various simulation
studies, this new approach has been shown to be efficient. Theoretical justifications are provided and applications to high
dimensional datasets are discussed. The proposed method is implemented in an R package sahpm for general use and is
made available on R CRAN.
keywords and phrases: Bayes factor, Highest posterior model, Simulated annealing, Variable selection.

1. INTRODUCTION
Variable selection and the broader problem of model se-

lection remains among the most theoretically and computa-
tionally challenging problems, and at the same time, some
of the most frequent questions encountered in practice. Jim
Berger’s contribution in this area are immense and multi-
faceted, ranging from median probability model [2, 1], g-
prior [30], criteria for model choice [4], multiplicity adjust-
ments [33], objective Bayesian methods [6] and many others.
In this article, we focus on criterion based Bayesian model
selection approaches which include marginal likelihood or
Bayes factor based model selection [28], Deviance informa-
tion criterion (DIC, [37]), log pseudo marginal likelihood
(LPML, [22]), or the widely applicable information criterion
(WAIC, [41]). The performances of these criteria in model
selection is recently compared in [31].

A known challenge to apply these criteria in variable se-
lection problem is the infeasibility to visit all the competing
models in the model space even with moderate number of
variables, p. [23] noted “for p > 30, enumerating all possi-
ble models is beyond the reach of modern capability”. To
emphasize on the difficulty, even with the ultra modern ma-
chinery, we refer to [21] where the authors pointed out that
a simple binary representation of the full model space with
p = 40 would occupy 5 terabytes of memory. A possible
remedy could be searching the best model over a subset of
models such as proposed by [13]. They divided the possi-
ble models into few important subsets and then enumerated
all the models in those subsets. Another competing variable
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selection is based on screening the important variables out
of all potential covariates the idea of which dates back to
[18]. In their work they preselected the significant features
according to their marginal correlations with the response
variable before applying an embedded method such as lasso
[38], which performs variable selection in the process of fit-
ting the model.

We note that any such model selection criterion attempts
to favor for a model with lower or the higher criterion values
(depending on the criterion). For instance, the highest pos-
terior model (HPM) is the model for which the value of inte-
grated likelihood multiplied by the prior probability, is maxi-
mum among competing models in the model space. The idea
of HPM is straightforward which makes it a widely accepted
criterion for model selection. In addition, as pointed out by
[25], HPM enjoys a solid theoretical foundation. Nonethe-
less, as will be illustrated in this article, the problem of vari-
able selection, using the above argument, may be thought as
an maximization problem over the model space, where the
objective function is the posterior probability of the mod-
els and the optimization is taken place with respect to the
models. The optimization approach chosen here is simulated
annealing [29].

In HPM based selection one needs to consider three as-
pects: (1) prior selection, (2) marginal likelihood calculation,
and (3) enumeration of model space M. Substantial liter-
ature have been devoted to the first two aspects, such as
Zellner’s g-prior [30] and Laplace approximation with non-
local priors [27]. The third aspect, namely enumeration of
the model space M, as pointed out above, can become in-
feasible for models with large dimension. Therefore sam-
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pling from model space or stochastic search of the model
space have been suggested in the literature. These include
stochastic search by [5], [11], shotgun stochastic search by
[24], evolutionary stochastic search by [8], particle stochas-
tic search [34]. On the other hand, recent work of [14] de-
velop Bayesian adaptive sampling (BAS) which is a variant
of without replacement sampling according to adaptively
updated marginal inclusion probabilities of the variables.
More recently, [36] develop a Markov chain Monte Carlo
(MCMC) algorithm extending the idea of shotgun stochas-
tic search and screening procedure.

We propose to use simulated annealing for this purpose.
Simulated annealing is a stochastic optimization algorithm.
It is usually applied to ill-posed problem. The end product
of the algorithm is a model which is a collection of explana-
tory variables among all the variables available, which turns
the problem of maximization into a solution of a variable
selection problem. There are a number of instances where
simulated annealing search has been shown to be effective.
For example, [9] used simulated annealing in p-median clus-
tering problem, and [15] used simulated annealing for appro-
priate portfolio selection. Simulated annealing was also used
in feature selection problem, [26] whereas [10] used criteria
based on the multiple correlations to carry out the simulated
annealing chain.

The rest of the article is organized as follows. In Section
2 we introduce necessary notations, and describe the pro-
posed methodology which we refer to as SA-HPM in this
article. In Section 3 we compare the performance of our
proposed method with other variable selection techniques
in simulation examples. Section 4 illustrates the application
of SA-HPM algorithm in two real datasets, one with mod-
erate size of predictors, and the other data is consisted of
ultra large number of predictors. Finally we conclude with
remarks in Section 5.

2. PROPOSED APPROACH
2.1 Notion of Variable Selection

The focus of this article centers around the linear
model where the interest is to explore the linear associ-
ation between a response variable and the covariates via
Y ∼ N(Xβ, σ2I) where Y = (Y1, . . . , Yn)

T is the n× 1 re-
sponse variable, X = [x1, . . . ,xp], is the n×p design matrix,
and β = (β1, . . . , βp)

T, is p × 1 vector of coefficients. The
problem of variable selection can be treated as a model se-
lection problem letting M ⊆ {all subsets of 1, . . . , p} as the
model space under consideration. An additional notation of
γ ⊂ {0, 1}p is introduced to denote Mγ , an individual mem-
ber of M, indexed by the binary vector γ; while the null
model which has no independent variable in the model is
denoted by M0. The stochastic law of representation of Y
then depends on (x1, . . . ,xp) via Xγβγ where γ is working
as a subscript of X(β) such that xj(βj) is present in the
model whenever γj = 1, j = 1, . . . , p. It follows that there

are 2p models in the model space M, by virtue of which the
model space easily becomes large even for moderate p thus
precluding to visit all models in the model space.

2.2 Optimization on the Model Space
As discussed before, our focus in this article is on the

criterion based variable selection techniques as in any such
criteria one must visit all the models in M to compare and
conclude in the favor of a good model. Alternatively, one can
find the model having a good, lowest in particular, value of a
criterion by performing an optimization on the model space
where the optimization can be carried out with respect to
the criterion values of the candidate models. More generally,
we consider a real valued function C on M, where C is the
objective function which we want to minimize over M. We
recall that, in variable selection setting, any model in the
model space can be represented by the binary representa-
tion of γ. So when maximizing any objective function over
the model space, the solution must belong to the set of bi-
nary numbers 0, 1. This unique structure of the model space
severely limits the choice of optimization methods.

2.3 Simulated Annealing in the Model Space
Because of the special features of the maximization

problem, we propose to conduct the maximization process
stochastically using the widely known simulated annealing
(SA), a stochastic optimization method. In what follows,
we provide a brief review of an SA approach; for details, see
[7]. We consider the model space M and define M∗ ⊂ M
to be the set of global minima of the function C, assumed
to be a proper subset of M. For each i ∈ M, there ex-
ists a set M(i) ⊂ M \ {i}, called the set of neighbors of
i. In addition, for every i, there exists a collection of posi-
tive coefficients qij , j ∈ M(i), such that,

∑
j∈M(i) qij = 1;

so {qij} = Q form a transition matrix, elements of which
provide the transition probabilities of moving from i to j.
It is assumed that j ∈ M(i) if and only if i ∈ M(j). We
also define a nonincreasing function T : N → (0,∞) which
is called the cooling schedule. Here N is the set of positive
integers, and T (t) is called the temperature at time t.

Let ψ(t) be a discrete time inhomogeneous Markov chain
on the model space M. The search process starts at an ini-
tial state ψ(0) ∈ M. Suppose at time t we arrive at the point
i. We then choose a neighbor j of i at random according to
probability qij . Once j is chosen, and if C(j) ≤ C(i), then
ψ(t+1) = j with probability 1; however if C(j) > C(i), then
ψ(t+1) = j with probability exp[−{C(j)−C(i)}/T (t)], oth-
erwise set ψ(t+1) = i; this gives raise to the so called Gibbs
acceptance probability function. In supplementary material,
we provide some technical clarity toward the performance of
the proposed method.

[16] established that under regularity conditions, repeat-
ing the above steps with gradually reducing the temperature
schedule guarantees that ψ(t) converges to the optimal set
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M∗, that is, for k ∈ N and all j ∈ S

lim
n→∞

Pr(ψ(n+ k) ∈ M∗|ψ(k) = i) = lim
n→∞

Pr(C(ψ(n+ k))

(2.1)
= C∗|ψ(k) = i) = 1

(2.2)

where C∗ = minj∈M C(j) and M∗ = {i : i ∈ M, C(i) = C∗}.
The conditions for this result to hold are: (i) the proba-

bility of moving to j th model from i th model in p steps
is positive, that is, q(p)ij > 0, qii > 0 for all i, and (iii) Q is
irreducible.

2.4 Highest Posterior Model
The Bayesian approach to the variable selection problem

is relatively straightforward. We express uncertainty about
models by putting a prior distribution on the model Mγ ,
The Bayesian linear model is thus defined as

Y ∼ Pr(y|θ,Mγ), θ ∼ π(θ|Mγ), Mγ ∼ Pr(Mγ),

where π(θ|M) is the prior distribution of parameter θ =
(β, σ2) under model Mγ and Pr(Mγ) is the prior on the
model Mγ . Then posterior distribution of θ is given by
π(θ|y,Mγ) = Pr(y|θ,Mγ)π(θ|Mγ)/Pr(y|Mγ), where

Pr(y|Mγ) =

∫
Pr(y|θ,Mγ)π(θ|Mγ)dθ (2.3)

is called the marginal likelihood or integrated likelihood of
data y under model Mγ . Then the posterior probability of
model Mγ can be expressed by

Pr(Mγ |y) =
Pr(y|Mγ) Pr(Mγ)∑

Mi∈M Pr(y|Mi) Pr(Mi)
. (2.4)

The Bayes factor [28, 3] for model Mγ1 against model
Mγ2 is the ratio of their marginal likelihoods, BF12 =
Pr(y|Mγ1)/Pr(y|Mγ2). [28] stated that the Bayes factor is
a summary of evidence for model Mγ1 against model Mγ2

and provided a table of cutoffs for interpreting logBF12.
In general, the model with higher log-marginal likelihood is
preferable in this model selection criterion.

In modern era, Bayesian inference is typically done by
Markov Chain sampling. The computation of Bayes factor
from Markov Chain sampling, however, is generally difficult
since the Markov Chain methods avoid the computation of
the normalizing constant of the posterior and it is precisely
this constant that is needed for the marginal likelihood.

The HPM has the highest posterior model probability
among all models in the model space, that is, HPM =
argmaxγ∈M Pr(Mγ |y). Under the notion of a data generat-
ing model (or the so-called true model) in the model space
it can be shown that the data generating model is often
asymptotically equivalent to the highest posterior model.

For instance, this can be examined via consistency of poste-
rior model probabilities [20] or via the Bayes factors [32]. [20]
examined model consistency for g priors when g is fixed. [30]
extended this for mixture of g priors and hyper g priors. [17]
proved model consistency for spike and slab type priors. [12]
and [32] proved consistency of objective Bayes procedures.
On the other hand, [39] and [40] showed Bayes factor con-
sistency for unbalanced ANOVA models and nested designs
respectively. Moreover, [27] proved consistency for the true
model when non local priors were specified on the parame-
ters. However, they distinguished the true model consistency
and pairwise Bayes factor consistency and argued that for
large dimensional space pairwise consistency is misleading
and hence not much useful.

2.5 The SA-HPM Method
We set C = negative posterior probability of model Mγ

for maximizing the posterior probabilities over the model
space applying simulated annealing algorithm. In the SA
approach, an appropriately chosen cooling schedule acceler-
ates convergence. When T is very small, the time it takes
for the Markov chain ψ(t) to reach equilibrium can be ex-
cessive. The main significance of cooling schedule is that,
during the beginning of the search process it helps the al-
gorithm to escape from the local modes and then when the
search is actually in the neighborhood of the global opti-
mum the algorithm tries to focus in that region by reducing
the value of cooling schedule and thereby finding the actual
optimum. There is a number of suggestions available in the
literature to choose a functional form for cooling schedule.

A transition matrix definition is equally important in an
SA algorithm. We define the (i, j) th element of the transi-
tion matrix Q as

qij=
posterior probability of jth model

sum of posterior probabilities of neighbors of ith model

where j th model ∈ neighborhood of i th model.
For a given model Mγ we define its neighborhood as

{Mγ0 ,Mγ00}, where γ0 is such that if |γ0 − γ| = 1, that is,
the model Mγ0 can be obtained from model Mγ by either
adding or deleting one predictor; γ00′1 = γ′1 and |γ00−γ| =
2, that is, model Mγ00 can be obtained from model Mγ by
swapping one predictor with another.

It is interesting to note that, our selection provides the
advantage for getting different region of neighborhood at
every step and thus eliminates the possibility of keeping old
models in the search region which is the case in [5] and [24].
In this way our approach is different in the sense that the
search procedure does not require a complicated and long
Markov chain to converge. These ingredients give raise to
our proposed stochastic search algorithm called SA-HPM
the steps of which are described below. The approach is
implemented in R package sahpm and is made available on
R CRAN.
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Step 1: At time t, suppose i = current state of γ(t), and set
cooling temperature T (t).

Step 2: Choose a neighbor j of i at random according to
probability qij .

Step 3: Once j is chosen, the next state γ(t + 1) is deter-
mined as follows

If C(j) ≤ C(i), then γ(t+ 1) = j

If C(j) > C(i), then γ(t+ 1) = j with probability
exp[−{J(j)− J(i)}/T (t)]
γ(t+ 1) = i otherwise

If j 	= i and j /∈ S(i), then Pr[x(t + 1) = j|x(t) =
i] = 0.

Step 4: Repeat above steps until convergence.

In practice, to make the computation stable, we suggest
to calculate the log of posterior probabilities instead of pos-
terior probabilities and use that as estimates of proposal
distributions.

3. OPERATING CHARACTERISTICS IN
EMPIRICAL STUDIES

Example 1. In this example we investigate the repeated
sampling operating characteristics of complete enumeration
based HPM and our proposed SA-HPM method using a
cooling temperature T (t) = 0.9T (t − 1). Our aim in this
example is to see and compare the empirical proprieties of
the proposed SA-HPM with those of complete enumeration
HPM. As discussed before, the computation for complete
enumeration of the model space is feasible only for small
p. Hence we focus on those situations whenever complete
enumeration HPM computation is feasible. To this end we
consider the following simulation models:

1. (pDatagen = 5, uncorrelated x’s): We simulate data
according to the Gaussian linear model Y ∼ N(2 ·
1 +Xβ(D), σ2I) where 1 is a column of 1’s. We take
the data generating model M(D) to be {1, 2, 3, 4, 5},
β(D) = (1.5,−1.5, 1.5,−1.5, 1.5) and σ = (1.5). Each
row of X is independently generated from Np(0,ΣX)
where ΣX = I is taken to be isotropic.

2. (pDatagen = 5, correlated x’s) The rows of X are gen-
erated so that cor(xi, xj) = ρ for all i 	= j. We take
ρ = 0.5.

3. (pDatagen = 5, autoregressive correlated X’s): The
rows of X are generated so that var(xi) = 1, and
cor(xi, xj) = ρ|i−j| for i 	= j. We take ρ = 0.5.

For each setting we consider p = 15 and p = 20, two sample
sizes n = 100, and n = 1000, and 100 replicated datasets for
each combination. We use g = max(n, p2) in the g prior [19].
Table 1 summarizes the simulation result. We notice that
both methods report low false discovery rate and false non-
discovery rate. Furthermore, both HPM and SA-HPM per-
form satisfactorily in terms of recovering the data generating

model. For instance, when n = 100, p = 15, and the variance
covariance matrix of the design matrix is isotropic, the pro-
portions of time the data generating model got identified by
SA-HPM and HPM are 0.84 and 0.86 respectively. Similar
performance is evident for other settings however is slightly
worse when p = 20. Nevertheless, the important finding to
note here is that the performance of the SA-HPM method
is comparable to that of the complete enumeration HPM.

Table 1. M(D) is the proportion of times the data
generating model is selected. FDR is the false discovery rate
(= FP/(TP+FP)) and FNDR is the false nondiscovery rate

(= FN/(TP+FN)), both averaged over replications. Here TP,
FP and FN are “True Positive”, “False Positive” and “False

Negative” counts respectively. Results are based on 100
replications.

SA-HPM HPM
M(D) FDR FNDR M(D) FDR FNDR
n = 100, p = 15, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.84 0.02 0.00 0.86 0.02 0.00
ρ = 0.5 0.82 0.02 0.00 0.86 0.02 0.00

AR 0.87 0.01 0.00 0.89 0.01 0.00
n = 1000, p = 15, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.84 0.02 0.00 0.94 0.01 0.00
ρ = 0.5 0.83 0.02 0.00 0.86 0.02 0.00

AR 0.85 0.02 0.00 0.96 0.00 0.00
n = 100, p = 20, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.74 0.02 0.00 0.77 0.02 0.00
ρ = 0.5 0.83 0.01 0.00 0.83 0.01 0.00

AR 0.77 0.02 0.00 0.87 0.01 0.00
n = 1000, p = 20, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.75 0.02 0.00 0.88 0.01 0.00
ρ = 0.5 0.84 0.01 0.00 0.83 0.01 0.00

AR 0.78 0.02 0.00 0.83 0.01 0.00

Example 2. In this example we investigate and compare
the performance of SA-HPM method to the nonlocal prior
based selection [27] whose theoretical and numerical perfor-
mances are recently considered in [36] and we use its stochas-
tic search implementation is in the R package BayesS5 [35]
in its default setting. We consider similar settings of uncor-
related, equi-correlated, and auto-correlated design matri-
ces from covariate space as in the previous example. We set
n = 100 and vary p = 30, 200, and 1000. In addition, we
consider a special correlated design matrix where rows of X
are generated so that var(xj) = 1, cor(x4,xj) = ρ1/2, j 	= 4,
and cor(xi,xj) = ρ for all other i 	= j, ρ = 0.5. We take
the data generating model M(D) to be 1, 2, 3, 4, and
β(D) = (5, 5, 5,−15). We note that, in this way, x4 is un-
correlated with the response Y [18].

As in the previous example, we consider a g prior on the
regression coefficients for our proposed SA-HPM method.
Additionally, motivated by the beautiful properties of nonlo-
cal prior [27], we specify piMOM prior as a representative of
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Table 2. M(D) is the proportion of times the data generating model is selected. FDR is the false discovery rate
(= FP/(TP+FP)) and FNDR is the false nondiscovery rate (= FN/(TP+FN)), both averaged over replications. Here TP, FP
and FN are “True Positive”, “False Positive” and “False Negative” counts respectively. Results are based on 100 replications.

SA-HPM-g SA-HPM-piMOM BayesS5
M(D) FDR FNDR M(D) FDR FNDR M(D) FDR FNDR

n = 100, p = 30, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.87 0.02 0.00 0.99 0.00 0.00 0.92 0.01 0.00
ρ = 0.5 0.78 0.04 0.00 0.95 0.01 0.00 0.95 0.01 0.00

AR 0.82 0.03 0.00 1.00 0.00 0.00 0.97 0.00 0.00
n = 100, p = 200, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.87 0.02 0.00 0.99 0.00 0.00 0.92 0.01 0.00
ρ = 0.5 0.81 0.02 0.00 0.94 0.00 0.00 0.95 0.01 0.00

AR 0.80 0.03 0.00 0.99 0.00 0.00 0.99 0.00 0.00
n = 100, p = 1000, β(D) = (1.5,−1.5, 1.5,−1.5, 1.5)

ρ = 0 0.87 0.03 0.00 1.00 0.00 0.00 0.99 0.00 0.00
ρ = 0.5 0.71 0.02 0.00 0.70 0.06 0.00 1.00 0.00 0.00

AR 0.80 0.03 0.00 0.94 0.00 0.00 1.00 0.00 0.00
n = 100, β(D) = (5, 5, 5,−15), cor(x4, xj) = ρ1/2, ρ = 0.5, j �= 4

p = 30 0.79 0.04 0.00 0.98 0.02 0.00 0.97 0.01 0.00
p = 200 0.70 0.18 0.00 0.89 0.09 0.00 0.75 0.18 0.00
p = 1000 0.52 0.36 0.00 0.65 0.31 0.00 0.39 0.58 0.00

the class of nonlocal priors and use Laplace approximation
to obtain marginal likelihood. We refer to these two pro-
cedures as SA-HPM-g and SA-HPM-piMOM respectively.
We present the simulation result in Table 2 and notice that
SA-HPM with piMOM prior outperforms the SA-HPM with
g prior, particularly in high dimensional settings. Further-
more, we observe similar performances of SA-HPM-piMOM
prior and BayesS5 method; however, when x4 is uncorre-
lated with the response then the performance of BayesS5
deteriorates.

4. APPLICATION IN HIGH-DIMENSIONAL
SELECTION SETTINGS

4.1 Ozone35 Data, Moderate p

The ozone dataset has been considered in the literature
frequently [5, 11] and consists of daily measurements of
atmospheric ozone concentration (maximum one hour av-
erage) and eight meteorological quantities for 330 days of
1976 in the Los Angeles Basin. Among them one temper-
ature predictor was dropped from the analysis due to the
potential multicollinearity with another temperature vari-
able. The Ozone35 data was then curated by considering
the main effects, the second order effects, their first order
interactions [21], which gives raise to a total of p = 35 co-
variates. Mainly for comparison purpose we make use of the
n = 178 observations which were used in the analysis of
[21]. The description of the predictor variables and the re-
sponse variable is provided in Table 3. [21] illustrated that
the posterior probability of the median probability model
(MPM [2]) is 23 times lower than that of the highest poste-
rior model. We considered a g-prior as in [21].

[21] considered a complete enumeration of this large
model space using distributed computing over an extended
time and reported the complete enumeration HPM to be
the model (7, 10, 23, 26, 29). The Bayes factor of HPM
and MPM, against M0 are reported in Table 4. Our main
contribution is that, the proposed SA-HPM method is able
to recover the HPM 95 times out of 100 repetitions after a
burn-in of 50 iterations in the stochastic chain. In particu-
lar, we note that, the SA-HPM method is extremely useful
even for large model spaces.

4.2 Polymerase Chain Reaction Data, Ultra
Large p

In this example we consider gene expression data on 31
female mice and 29 male mice. A number of psychological
phenotypes, including numbers of stearoyl-CoA desaturase
1 (SCD1), glycerol-3-phosphate acyltransferase (GPAT) and
phos- phoenopyruvate carboxykinase (PEPCK), were mea-
sured by quantitative real-time RT-PCR, along with 22,575
gene expression values. The resulting data set is pub-
licly available at http://www.ncbi.nlm.nih.gov/geo (acces-
sion number GSE3330). Following [35] we restrict ourselves
into the consideration of the SCD1 response only.

Due to ultra large high-dimensional nature of this dataset
it is beyond the reach of the ultra modern machinery to enu-
merate all the models in the model space. Hence, in order
to find the highest posterior model it is necessary to make
use of a model space search technique such as the SA-HPM
method developed here. We employ our algorithm in this
dataset to find the HPM model. When utilizing SA-HPM
we omit the swapping step to minimize exploring the model

http://www.ncbi.nlm.nih.gov/geo
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Table 3. Description of the Ozone35 dataset variables.
Variable Description
y Response = Daily maximum 1-hour-average ozone reading (ppm) at Upland, CA
x1 500-millibar pressure height (m) measured at Vandenberg AFB
x2 Wind speed (mph) at Los Angeles International Airport (LAX)
x3 Humidity (%) at LAX
x4 Temperature (F) measured at Sandburg, CA
x5 Inversion base height (feet) at LAX
x6 Pressure gradient (mm Hg) from LAX to Daggett, CA
x7 Visibility (miles) measured at LAX

Table 4. Table with two rows indicating HPM and MPM
respectively. The last two columns provide Bayes factor

against the null model and log of that respectively.
Serial No Model Bayes Factor log(Bayes Factor)

HPM 7 10 23 26 29 1.02E+47 108.2364944
MPM 21 22 23 29 4.34E+45 105.0834851

space due to the ultra large size of that. We report our find-
ings in Table 5 from which it can be noted that the resulting
HPM is a sparse model with three variables when SA-HPM
with g prior is fitted. Similarly, SA-HPM with piMOM prior
discovers another sparse model with two predictors. It is in-
teresting to note that one of them coincides with the model
projected by the maximum aposteriori (MAP) estimate of
the BayesS5 method. We notice that BayesS5 also results in
a parsimonious model with two predictor variables.

Table 5. Resulting models in Polymerase Chain Reaction
Data.

Method Model
SA-HPM-g 5905 8422 12999
SA-HPM-piMOM 296 5510
BayesS5 296 7351

5. CONCLUSION
We note that, our approach is distinguishable from the

many traditional approaches in this area in terms of the
fact that the methodology developed in this work does not
aim to recover the data generating model rather our effort
focuses on finding the highest posterior model which is of-
ten perceived to have good properties. If highest posterior
model does not coincide with the data-generating model, our
proposed SA-HPM method is still able to recover the HPM
without finding the data-generating one. In a real world data
analysis the data generating model or the so called “true
model” is not known and hence our approach is useful to
consider.

As a summary, our research strengthens the classical idea
of assessing a model by its posterior probability. According

to [21], a large volume of near future research in Bayesian
literature of variable selection will involve sampling and
stochastic search. Furthermore, [23] noted that good models
can be obtained by exploring the posterior summary of the
models. Nonetheless, the highest posterior model, a poste-
rior summary, is widely known to have excellent properties.
Our research, thus, provides a simple, efficient, quick, and
feasible way toward this direction of variable selection.

SUPPLEMENTARY MATERIAL
The R package sahpm for the method SA-HPM is avail-

able on R CRAN. Further mathematical discussion on the
convergence of this method is given in a separate supple-
mentary material.
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