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Abstract
The crossover models and interference models are frequently used in clinical trials, agriculture studies, social studies,

etc. While some theoretical optimality results are available, it is still challenging to apply these results in practice. The
available theoretical results, due to the complexity of exact optimal designs, typically require some specific combinations
of the number of treatments (t), periods (p), and subjects (n). A more flexible method is to build integer programming
based on theories in approximate design theory, which can handle general cases of (t, p, n). Nonetheless, those results are
generally derived for specific models or design problems and new efforts are needed for new problems. These obstacles make
the application of the theoretical results rather difficult. Here we propose a new algorithm, a revision of the optimal weight
exchange algorithm by [1]. It provides efficient crossover designs quickly under various situations, for different optimality
criteria, different parameters of interest, different configurations of (t, p, n), as well as arbitrary dropout scenarios. To
facilitate the usage of our algorithm, the corresponding R package and an R Shiny app as a more user-friendly interface
has been developed.
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1. INTRODUCTION
Experimental design plays a fundamental role in scientific

research. An optimal design thoughtfully organizes limited
experimental resources to ensure reproducible and trustwor-
thy outcomes. This paper focuses on searching for optimal
designs for crossover and interference models using a general
numerical algorithm proposed by [1].

In a typical experiment with a crossover design, there
are n subjects, t treatments, p periods, and m(≤ n) unique
sequences si of length p. Here, n, t, p, m are positive integers
and we defer the mathematical rigorous definition of the
experimental design to a later section. In the experiment,
each of the subjects is assigned to a sequence and will receive
treatments in a specific order defined in that sequence. Since
subjects receive multiple treatments and have data collected
throughout all periods, they serve as their own control and
typically yield more data compared to other designs with
the same number of subjects. Hence, crossover designs are
usually more statistically efficient.

However, the limitations are noteworthy as well. First,
it is usually unknown if the effects of previous treatments
still exist in the following periods. These effects are often re-
ferred to as “carryover effects”. It is sensible to use a model
that accounts for the carryover effects. There are variants of
crossover models, which differ in the way of modeling carry-
over effects. Section 2 provides details of two of them, and
we refer to [2] for an extended list of models. Second, the
∗Corresponding author.

competing advantage of crossover designs is contingent on
no or minimum dropouts. However in reality, as [3] pointed
out “Experience suggests that a dropout rate of between 5%
and 10% is not uncommon and, in some areas, can be as high
as 25%”. While remedies for missing values due to dropouts
have been established, the dropout issue is so common that
it has to be prudently considered at the design stage. Re-
lated work in this direction includes [3, 4, 5, 6, 7, 8], with a
focus on preserving the symmetric structure of the design in
the presence of subject dropout. Recently in [9], Kushner’s
type of linear equations (see [10]) are developed as necessary
and sufficient conditions for a design being universal φ1 op-
timal where φ1 is defined as a new surrogate objective func-
tion considering dropout. It was later extended to unified
results that apply to any configurations of the experiment.
Optimal or efficient designs are obtained by either solving
linear equations or integer optimization problems modified
from equation systems.

The interference model is commonly employed in agri-
cultural studies to mitigate the systematic bias caused by
neighbor effects within blocks. A design for interference
model consists of n subjects, t treatments, and m(≤ n) dis-
tinct blocks si of size k. Optimal designs can be found in
[11, 12, 13], and other sources.

The literature contains abundant theoretical work on op-
timal exact designs for crossover and interference models.
However, despite the elegance of the theorems, they are in
general not convenient for use. The optimal or efficient de-
signs are usually derived for a certain combination of (n, t, p)
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or (n, t, k). In most cases, experimenters need to search for
the theory and construct the design themselves. In addition,
the relevant theory may not even exist for certain experi-
ment configurations, and this presents a major obstacle to
utilizing optimal or efficient designs. Therefore, a general
and efficient algorithm easily implemented via a computer
program is necessary.

Numerical algorithms have been developed for decades,
and it aims at solving the optimal design problem from a
general perspective. Existing algorithms are typically mod-
ifications of either Fedorov-Wynn algorithm (FWA, [14],
[15]), or the multiplicative algorithm (MA, [16]). For more
information, refer to [17, 18, 19, 20, 21, 22]. [23] combined
multiple existing designs with modifications, named “cock-
tail algorithm”, and achieved dramatic speed improvement.
However, all the aforementioned algorithms only focus on
D-optimal designs whereas the different objective of ex-
periments requires properly chosen optimality criterion. [1]
proposed an optimal weights exchange algorithm (OWEA)
for nonlinear models. It updates the support points in the
same way as FWA and optimizes weights via the Newton’s
method. This is the algorithm we will use.

Nevertheless, the development of an efficient algorithm
for crossover designs is faced with two main obstacles.
Firstly, it is worth noting that unlike general statistical
models where the number of parameters is fixed, the num-
ber of parameters in a crossover design varies depending on
the number of subjects. This variability extends to the di-
mension of the information matrix, presenting a significant
challenge for algorithm-based optimization. Secondly, con-
structing optimal crossover designs in the presence of possi-
ble subject dropout mechanisms is challenging, considering
the variety of crossover design formats. In this paper, we
aim to address these challenges.

Specifically, through the Schur complement operation, we
derived a novel information matrix that is linear in the de-
sign points, with corresponding weights serving as linear co-
efficients, paving the way for the successful implementation
of the OWEA algorithm. Based on [1], we developed a gen-
eral and efficient algorithm framework for optimal designs
of crossover models and later extended it to interference
models. Our algorithm is capable of handling any config-
uration of designs for the two models, including possible
subject dropout mechanisms. The designs generated by our
approach are highly efficient compared to existing designs
in the literature. Additionally, to promote wider usage of
our algorithm, we have developed a corresponding R pack-
age and R Shiny app, which provides a more user-friendly
interface.

The remaining sections of this paper are organized as fol-
lows. Section 2 briefly introduces the necessary notations,
statistical models and the derivations of the information ma-
trices to fit into the framework of the algorithm. Section 3
gives details of the algorithm and the developed R-package.
Numerical results are presented in section 4, and a short
discussion is in section 5.

2. THE FRAMEWORK AND NOTATIONS
In this section, we will introduce the general framework

starting with basic concepts of optimal designs followed by
demonstrations of crossover models and interference models
as well as their information matrix. We will show how the
information matrices, utilizing Schur complement, fit into
the algorithmic framework in [1].

2.1 Optimal Designs and Objective Functions
Despite the various types of designs, generally, an exper-

imental design with n runs can be written as

d = {(si, ni)|si ∈ χ,

m∑
i=1

ni = n, ni > 0}, (2.1)

where (si, ni) is the pair of the design point and its asso-
ciated repetition. The si is a vector of length p(≥ 1). The
design space, which is a collection of the design points, is
represented by χ. The m is the number of distinct design
points. If all of the repetitions (n1, . . . , nm) are required to
be positive integers, then the design (2.1) is called exact
design and m ≤ n.

To derive an optimal design is to find a set of pairs (si, ni)
that optimize an objective function. Due to the discrete na-
ture of the exact design, integer solutions of ni are generally
intractable. In that case, one may drop the integer require-
ment and search for an approximate design:

ξ = {(si, wi)|si ∈ χ,

m∑
i=1

wi = 1, wi ∈ (0, 1]}. (2.2)

where wi is the weight associated to design point si and all
weights sum up to unity.

In after-experiment data analysis, usually a differentiable
function of θ, say g(θ), is of interest. Notice that g must be
an estimable function. In the rest of this paper, we always
have this assumption. The choice of g grants the flexibility
on parameter of interest. For example, when we target on all
parameters, g is an identity function, i.e. g(θ) = θ; and when
comparison is the goal, one of many options of g is g(θ) =
(θ1 − θν , θ2 − θν , . . . , θν−1 − θν)), where ν is the length of θ.
Denote by θ̂ the maximum likelihood estimator (MLE) of θ,
then it is well known that g(θ̂) is also the MLE of g(θ). Under
mild assumptions, the Delta method yields the asymptotic
covariance matrix of g(θ̂). With Iξ(θ) being the information
matrix of θ under design ξ, Cξ(g) is the asymptotic variance-
covariance matrix of g(θ̂) obtained using the Delta method
under mild conditions,

Cξ(g) =
∂g

∂θ′
I−ξ (θ)(

∂g

∂θ′
)′. (2.3)

With the notations of (2.1) and (2.2), we follow the defi-
nition in [24] of the objective function,

Φr(Cξ(g)) =

[
1

v
Tr(Cξ(g))

r

]1/r
, 0 ≤ r < ∞, (2.4)
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where r is a non-negative real number, v is the dimension of
g, g is a differentiable function of parameter vector θ, and
Tr(Cξ(g)) is the trace of the matrix Cξ(g).

Note that Φr(Cξ(g)) is equivalent to many prevailing
optimality criteria on various values of r. For example,
r = 0, Φr(Cξ(g)) is limr↓0

[
1
vTr(Cξ(g))

r
]1/r

= |Cξ(g)|1/v,
which is D-optimality; when r = 1, we have Φr(Cξ(g)) =
Tr(Cξ(g))/v, and it is A-optimality.

For the purpose of verifying a design is optimal, the fol-
lowing theorem, adapted from Theorem 1 of [1], provides
Kiefer’s type general equivalence theorem (GET) which
serves as a sufficient and necessary condition.

Theorem 1. Let g(θ) be an estimable function of θ. Suppose
an arbitrary design ξ has an information matrix Iξ. ξ is Φr

optimal for g(θ) if and only if the directional derivative of
Φr, denoted by dr(s, ξ) satisfies

dr(s, ξ) ≤ 0, (2.5)

for any s ∈ χ, with equality holds if s belongs to the support
of ξ.

In addition, the dr(s, ξ) can be calculated by:
when r = 0,

dr(s, ξ) = Tr[(Cξ(g))
−1(

∂g

∂θ′
)I−ξ (Is − Iξ)I

−
ξ (

∂g

∂θ′
)′]. (2.6)

when r > 1,

dr(s, ξ) =(
1

v
)1/rTr[(Cξ(g))]

1−r×

Tr[(Cξ(g))
r−1(

∂g

∂θ′
)I−ξ (Is − Iξ)I

−
ξ (

∂g

∂θ′
)′]. (2.7)

2.2 Models and Information Matrix
2.2.1 Crossover Model with Carryover Effect

Suppose a crossover design d is conducted with n sub-
jects, t treatments and p periods, the observation from sub-
ject i at period j is typically modeled by

yij = μ+ ζi + πj + τd(i,j) + γd(i,j−1) + εij ; (2.8)
i = 1, . . . , n; j = 1, . . . , p,

where μ is the grand mean, ζi is the effect from ith sub-
ject, πj stands for the effects from jth period, d(i, j) de-
notes the treatment assignment of jth period for ith subject
from design d, τd(i,j) is the treatment effect from d(i, j), and
γd(i,j−1) is the carryover effect due to treatment d(i, j − 1)
where γd(i,0) is set to 0 by convention. εij is the error term.

If the collection of observations from the design d is orga-
nized in a vector Yd = (y11, y12, . . . , y1p, y21, . . . , ynp)

′, then
model (2.8) can be written in matrices,

Yd = 1npμ+ Uζ + Zπ + Tτ +Rγ + ε, (2.9)

where ε is a vector of independent and identically distributed
errors with a mean vector 0 and a variance-covariance ma-
trix σ2Inp, which can be relaxed to a form of Kronecker’s
product, In⊗Σ, in most cases when the variance-covariance
matrix of (εi1, . . . , εip) is Σ for i = 1, . . . , n. Besides, we also
have π = (π1, . . . , πp)

′, ζ = (ζ1, . . . , ζn)
′, τ = (τ1, . . . , τt)

′,
γ = (γ1, . . . , γt)

′, U = In⊗1p = (U ′
1, . . . , U

′
n)

′, Z = 1n⊗Ip =
(Z ′

1, . . . , Z
′
n)

′, T = (T ′
1, . . . , T

′
n)

′ and R = (R′
1, . . . , R

′
n)

′.
Here Ui’s are p × n incidence matrices for subjects. Zi is
p×p subject-to-period incidence matrix, Ti and Ri are p× t
period-to-treatment incidence matrices for the ith subject.
The structure of matrices Zi, Ti, and Ri depend on the de-
sign d. In is an identity matrix of dimension n and 1p stands
for a p × 1 vector of 1’s. Then the information matrix for
full parameter vector Θ = (ζ ′, π′, τ ′, γ′)′ is

I(Θ) =
(
U Z T R

)′ (
U Z T R

)
(2.10)

=

n∑
i=1

(
Ui Zi Ti Ri

)′ (
Ui Zi Ti Ri

)
(2.11)

=

n∑
i=1

Ii =

m∑
i=1

niIi,

where the positive integer m(≤ n) represents the number of
unique design point (sequence of treatments) of the design,
and m = n holds when there is only one subject assigned
to each of the unique design points. Ii is the information
matrix for the ith unique design point, and ni is the number
of subjects assigned to that design point or alternatively the
“repetition” of a design point. Additionally,

∑
i ni = n. For

the remaining of this paper, unless otherwise specified, the
term “design point” refers to “unique design point” in an
experimental design.

An optimal exact design is then to choose a collection of
sequences so that it optimizes an objective function related
to (2.10). In this paper, we obtain optimal approximate de-
sign by a numerical algorithm and carefully round it to an
exact design which is either efficient or optimal. However
two issues regarding information matrix has to be settled
prior to the implementation of the algorithm. First, the di-
rect treatment is the target to estimate, and yet its infor-
mation matrix is not additive with respect to design points.
As a result, it does not fit for the prerequisite of the algo-
rithm. On the other hand, although information matrix for
full parameters is additive, its dimension is changing all the
time because of the inclusion of subject effects ζ as well as
the iterative nature of numerical algorithm. Optimizing on
an information matrix of varying dimensions is problematic.
Therefore, to fit the crossover design problem to our frame-
work, we exclude the subject effect from (2.10) through the
Schur complement operation. Excluding them and the gen-
eral mean (noticing that the unity vector 1np belongs to the
column space of U) and utilizing the Schur complement of a
matrix, we reach to the information matrix of the marginal
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parameter vector θ = (π′, τ ′, γ′)′ as

I(θ) =
(
Z T R

)′
pr⊥(U)

(
Z T R

)
=

(
Z T R

)′
[Inp −

1

p
In ⊗ 1p1

′
p]
(
Z T R

)

=
n∑

i=1

(
Zi Ti Ri

)′
[Ip −

1

p
1p1

′
p]
(
Zi Ti Ri

)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi, (2.12)

where, ni = nwi, for i = 1, 2, . . . ,m, and wi is called the
“weight” associated to a design point. pr⊥(·) is an orthog-
onal projection operator. Notice that Ii is the information
matrix associated with the ith design point. For any ma-
trix X, pr⊥(X) = I −X(X ′X)−1X ′. With such derivation,
the information matrix is linear in the design points with
corresponding weights as linear coefficients.

2.2.2 Crossover Model with Dropout
To account for the dropouts, following [3, 9], define the

dropout mechanism of a subject as � = (�1, . . . , �p), where
�i is the probability that the longest time of stay is i, and∑p

i=1 �i = 1 and assume

1. Subject’s dropout is independent of the choice of design
as well as the outcome of the design.

2. Once a subject is dropped, the chance of returning is
zero.

3. Subject’s dropout mechanisms are i.i.d.

Given a realization of �, the information matrix (2.12) be-
comes

I(θ, �) =

n∑
i=1

(
Zi Ti Ri

)′
[Mi−

Mi1p(1
′
pMi1p)

−11′pMi](Zi, Ti, Ri)

=

n∑
i=1

Ii(�) =

m∑
i=1

niIi(�) = n

m∑
i=1

wiIi(�), (2.13)

where Mi is an indicator matrix depending on the dropout
mechanism �,

Mi(�) =

(
I(ai×ai) O1

O′
1 O

)
p×p

, (2.14)

I(ai×ai) is the ai×ai identity matrix, ai is the longest period
of stay for subject i, and O and O1 are zero matrices with
proper dimensions.

The information matrix is random due to the modeling
of the dropout mechanism. The intuitively reasonable ob-
jective function, EΦp(Cξ(g)) (defined in (2.4)), is not easy
to deal with, and Φp(E(Cξ(g))) is chosen as a feasible re-
placement. Here the operator E means expectation with re-
spect to the dropout mechanism. Suppose we obtain an op-
timal approximate design ξ∗ by minimizing Φp(E(Cξ(g))),

and round it to exact design ξ1. The efficiency of ξ1 should
be defined as EΦp(Cξopt(g))/EΦp(Cξ1(g)), where ξopt =
argmin

ξ
EΦp(Cξ(g)). However, the efficiency is not accessi-

ble because ξopt is unknown. Nevertheless, one is still able
to obtain the lower bound.

Lemma 1 (Zheng (2013a)). For crossover designs under
subject dropout, define the following approximate designs

ξopt = argmin
ξ

EΦp(Cξ(g)), (2.15)

ξ∗ = argmin
ξ

Φp(E(Cξ(g))). (2.16)

For an arbitrary design ξ1,

EΦp(Cξopt(g))

EΦp(Cξ1(g))
≥

Φp(E(Cξopt(g)))

EΦp(Cξ1(g))
≥ Φp(E(Cξ∗(g)))

EΦp(Cξ1(g))
,

where the first ‘≥’ is due to the convexity of the function
Φp and Jensen’s inequality, and the second ‘≥’ is because of
(2.15). Note that the problem in (2.16) fits the framework of
(2.12) and hence could be solved by our algorithm. There-
fore, the rightmost term, Φp(E(Cξ∗ (g)))

EΦp(Cξ1
(g)) , becomes evaluable

for any given arbitrary design ξ1 and dropout mechanism
and will serve as the lower bound efficiency. Furthermore, [9]
proposed to convert the results of (2.16) to an exact design
and gauge its performance by the lower bound of efficiency.
We are using the same approach except that our algorithm
to derive the exact design is much faster.

2.2.3 Crossover Model with Proportional Carryover Effects

Another variant of the classical crossover design model is
the proportional model. For the design d with p periods and
t treatments, individual outcomes are modeled as

yij = μ+ ζi + πj + τd(i,j) + λτd(i,j−1) + εij ; (2.17)
i = 1, . . . , n; j = 1, . . . , p,

where the notations are exactly the same as in (2.8), except
that the additional real-valued λ, which is the proportion
that carryover effects accounting for direct effects. The pro-
portional model can also be written in matrices,

Yd = 1npμ+ Uζ + Zπ + Tτ + λRτ + ε, (2.18)

where ε is a vector of independent errors with mean 0 and
variance covariance matrix In⊗Σ, Σ is an p×p positive def-
inite matrix. Utilizing Schur complement operations, the in-
formation matrix for the parameter vector θ = (π′, τ ′, λ)′ is

I(θ, λ, τ) =
n∑

i=1

(Zi, Ti + λRi, Riτ)
′[Σ−1−

Σ−11p[1
′
pΣ

−11p]
−1′pΣ

−1](Zi, Ti + λRi, Riτ)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi. (2.19)
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Therefore, the design problem for the proportional model
fits into the framework of (2.12). Note that the proportional
model is nonlinear due to the term λτ , and its information
matrix depends on unknown parameters τ and λ.

2.3 Interference Model
The individual observations of the interference model

with t treatments, n blocks of size k are written as

yij = μ+ γi + τd(i,j) + λd(i,j−1) + ρd(i,j+1) + εij (2.20)
i = 1, . . . , n; j = 1, . . . , k,

where yij denotes the response from jth plot of ith block, μ
is general mean, d(i, j) stands for the treatment assignment
of ith block and jth plot according to design d, and τd(i,j),
λd(i,j−1), and ρd(i,j+1) are treatment effects from treatment
itself, its left plot and right plot. By convention, we set
λd(i,0) = ρd(i,p+1) = 0. Again, the responses can be gath-
ered in a vector and modeled in terms of matrices,

Yd = 1nkμ+ Uγ + Tdτ + Ldλ+Rdρ+ ε, (2.21)

where Yd = (y11, .., y1k, y21, . . . , ynp)
′, γ = (γ1, . . . , γn)

′, τ =
(τ1, . . . , τt)

′, λ = (λ1, . . . , λt)
′, ρ = (ρ1, . . . , ρt)

′, U = In⊗1k,
Td = (T ′

1, . . . , T
′
n)

′, Ld = (L′
1, . . . , L

′
n)

′, Rd = (R′
1, . . . , R

′
n)

′.
Here Ui’s are incidence matrices for block, Ti and Li and
Ri are k × t plot-to-treatment incidence matrices for ith
block that depends on the design d. The error vector ε is
assumed to follow N(0, In ⊗ Σ), where Σ is an arbitrary
positive definite matrix of order k. Let θ = (τ ′, λ′, ρ′)′ be
the vector of parameters of interest. Note that block effects
are excluded due to similar reasons to that of the subject
effect for the crossover model. The information matrix for
θ, after applying Schur complement, is

I(θ) =

n∑
i=1

(Ti, Li, Ri)
′[Σ−1−

Σ−11k(1
′
kΣ

−11k)
−11′kΣ

−1](Ti, Li, Ri)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi. (2.22)

At this point, we have fitted the design problem for the
crossover model with dropout, the proportional model and
the interference model into the framework of (2.12), to which
our algorithm would apply. In the next section, we shall
introduce the algorithm and the developed R-package.

3. THE ALGORITHM AND R-PACKAGE
Numerical algorithms are powerful and convenient tools

for finding optimal designs. [1] proposed an optimal weights
exchange algorithm (OWEA) for nonlinear models. It up-
dates the support points in the same way as Fedorov-Wynn
algorithm and optimizes weights via the Newton’s method.

This is the algorithm we are going to use. The procedures
of OWEA’s implementation is briefly introduced as follows.

Phase I: Finding optimal approximate designs
Start with initial support S(1) with ν + 1 randomly picked
sequences and equal weights w(1), at iteration t,

1. Input support S(t), w(t), and update weights using the
Newton’s method. Note that support points with zero
weights will be deleted in optimizing process.
Newton’s Method:
Input: Start with the initial input by setting S

(t)
1 =

S(t), and w
(t)
1 = w(t). After j−1 iterations, with the S(t)

j

and w
(t)
j , updating the weight by the following steps:

(a) update the weights by the equation w
(t)
j+1 = w

(t)
j −

α( ∂2Φ
∂w∂w′ )

−1 ∂Φ
∂w |

w
(t)
j

.

(b) If w
(t)
j+1 has negative component, go to step (c),

otherwise proceed to step (d).
(c) Set α to α/2 and go back to step (a). If α < εα,

remove the point with smallest weight and go back
to step (a).

(d) Check if ∂Φ
∂w |

w
(t)
j+1

< ε0, if true, w̃(t) = w
(t)
j+1 is the

optimal weights otherwise go to next iteration.
Output: Support S̃(t) and optimal weights w̃(t), where
S̃(t) = S(t) if no points are removed.

2. Derive s∗t = argmax
s∈χ

dr(s, ξ
(t)), where ξ(t) =

{(si, wi)|si ∈ S̃(t), wi ∈ w̃(t),
∑
i

wi = 1}

3. Check dr(s
∗
t , ξ

(t)) < εd, where εd is a pre-selected small
positive value. If true, ξ(t) is the desired design. Other-
wise, let S(t+1) = S̃(t)

⋃
{s∗t }, w(t+1) = w̃(t)

⋃
{0}, and

go to step 1.

Phase II: Rounding
Suppose optimal design from Phase I is ξ∗ = {(si, w∗

i )|si ∈

S∗, wi ∈ (0, 1),

m∑
i

wi = 1}, for a given number of total runs,

say N ,

1. Compute Nwi for i = 1, . . ., and round them to their
nearest integers. This results in a tentative exact design
d = {(si, ni)|si ∈ S∗,

∑m
i ni = N}

2. For every sj ∈ Ω/S∗,
(a) For every unique si ∈ S∗, subtract ni by 1 and ap-

pend sj to the design with repetition 1, this results
in a new design, say d(−i,j).

(b) Calculate two values V 1 = Φ(d) and V 2 =
Φ(d(−i,j)), if V 1 > V 2, keep d(−i,j) as the current
tentative design, otherwise, keep the tentative de-
sign unchanged.

(c) Repeat these two steps for i = 1, . . . ,m;
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Table 1. t = p = 4, n = 16, a = (0,0,1/2,1/2).

Optimality Rel-Eff
(to Gurobi)

Rel-Eff
(rounding)

Efficiency
(Lower Bound)

Rel-Eff
(to d2 in [25])

Time
(sec)

Gurobi Time
(sec)

A 0.9994 0.9917 0.9366 0.9844 2.18 20.84
D 0.9979 0.9757 0.9519 0.9538 2.63 20.84

3. After traversing all possible j’s, output the current de-
sign as efficient design d∗.

Note that tuning parameters εd, εα and ε0 may affect the
time for convergence. In all examples tested in this paper,
the combination of εd = 10−15, εα = 10−6 and ε0 = 10−10

work well and optimal or highly efficient designs can be
found within a relatively short period of time. Besides, it is
known that the Newton’s method is sensitive to the choice
of initial points and sometimes has overshooting issue. How-
ever, based on our experience, efficient designs are always
found.

We have developed an R Package called OWEA to apply
the algorithm to the three models as mentioned in the earlier
section, namely (i) crossover design accounting for subject
dropouts; (ii) proportional model; (iii) interference model.
It can be readily applicable to all these three optimal design
problems. To implement it, a user only needs to input very
basic information such as numbers of periods, treatments,
and subject, and of course the dropout probability for the
model in (i). The detailed implementation is available at
https://cran.r-project.org/package=OWEA.

4. EXAMPLES
In this section, utilizing the information matrices derived

in section 2 and the OWEA algorithm in Section 3, exact
designs are presented for three scenarios: crossover model
with dropouts, crossover model with proportional carryover
effects, and interference models. For convenience, we call the
design obtained from OWEA algorithm the OWEA design,
optimal design available from the literature the literature
design. For example, the A- optimal design obtained from
OWEA is “A-optimal OWEA design”. Moreover, for all the
three scenarios, [9, 13, 25] developed linear equation systems
as necessary and sufficient conditions for universally optimal
designs and suggested searching for optimal designs using
integer optimizer, like [26]. More specifically, the conditions
are in the form of linear equations regarding the replication
numbers of each treatment sequence. Since there is no guar-
antee of integer solutions, we transform the problem into a
quadratic programming which minimizes the total square of
loss for any equation that does not hold. In this section, we
call designs derived such way as the Gurobi design.

Relative efficiency, shown as “Rel-Eff (to xx)”, is pro-
vided when the intention is to compare the OWEA designs
to existing designs. In addition, the relative efficiency due to
rounding from the approximate design to the exact design,
shown as “Rel-Eff (rounding)”, is also presented.

All the algorithms and examples are programmed in R
(R Core Team, 2022) [27] and are executed on an Apple
Desktop with 8GB RAM. Computing times are recorded
and provided.

4.1 Crossover with Subject Dropout
Example 1. (t, p) = (4, 4), n = 16, � = (0, 0, 1/2, 1/2). Ex-
act designs and their performance under A- and D- optimal-
ity are summarized in Table 1. It is evident that there is only
a tiny loss in efficiency when rounding from approximate de-
sign to exact design, though the lower bound efficiencies are
only 0.9366 and 0.9519 for the A- and D- criteria. Compared
to d2 from [9] which is proved to be highly efficient, the rel-
ative efficiency of the OWEA designs are 0.9844 and 0.9538
respectively. They are not very high but still satisfactory.
The design obtained utilizing the integer programming from
[9] is also available and it is almost identical to the OWEA
designs in efficiency, but the OWEA framework only takes
a small fraction of computing time.

A− opt =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 3 4 4 1 1 3 4 1 2 2 4 1 2 2 3
3 4 3 3 3 4 1 1 2 4 4 2 2 1 3 1
4 2 2 2 4 3 4 3 4 1 1 1 3 3 1 2

(4.1)

D − opt =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 3 4 4 1 1 3 4 1 2 2 4 1 2 2 3
3 4 3 3 3 4 1 1 2 4 4 2 2 1 3 1
4 2 2 2 4 3 4 3 4 1 1 1 3 3 1 2

(4.2)

d2 =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 2 3 4 1 3 4 4 1 1 2 4 1 2 3 3
3 3 4 2 4 1 1 3 2 4 4 1 3 1 2 2
4 4 2 2 4 1 3 3 2 2 4 1 3 3 1 1

(4.3)

Gurobi Design =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 2 3 4 1 3 4 4 1 2 4 4 1 2 3 3
3 3 2 2 4 1 1 3 2 4 1 2 3 1 1 2
4 4 4 2 4 4 3 3 2 4 1 1 3 3 1 1

(4.4)

Example 2. (t, p) = (4, 4), n = 19, � = (0, 0, 1/2, 1/2).
This is a case where n is not a multiple of either t or p,
and the optimal designs in literature are not available. Ex-
act OWEA designs and the Gurobi designs are summarized
in Table 2. Still, the lower bound efficiency is around 0.95,
but the efficiency loss due to rounding is less than 0.015.
In addition, the OWEA designs outperform the Gurobi de-
signs with improved efficiency of 1.0261 and 1.0785 under

https://cran.r-project.org/package=OWEA
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Table 2. t = p = 4, n = 19, a = (0,0,1/2,1/2).

Optimality Rel-Eff (to Gurobi) Rel-Eff (Rounding) Efficiency (Lower Bound) Time (sec) Gurobi Time (sec)
A 1.0261 0.9944 0.9489 2.28 100.41
D 1.0785 0.9855 0.9576 2.71 100.41

A- and D- optimal criteria but with only no more than 3%
of computing time.

A− opt =

1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4
3 3 4 4 4 1 1 3 3 4 1 2 2 4 1 1 2 2 3
2 4 3 3 3 3 4 1 4 1 2 4 4 2 2 2 1 3 1
4 2 2 2 2 4 3 4 1 3 4 1 1 1 3 3 3 1 2

(4.5)

D − opt =

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4
2 3 3 4 4 1 1 3 3 4 1 2 2 4 4 1 1 2 3
3 2 4 3 3 3 4 1 1 1 4 4 4 2 2 2 2 1 1
4 4 2 2 2 4 3 4 4 3 2 1 1 1 1 3 3 3 2

(4.6)

Gurobi Design =

1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4
2 3 4 4 4 1 3 3 4 4 1 2 2 4 1 1 3 2 2
4 4 2 2 3 3 1 1 1 3 2 1 4 1 2 2 2 1 1
3 4 3 3 3 4 1 4 3 3 2 4 4 1 3 3 2 3 3

(4.7)

Example 3. (t, p) = (4, 4), n = 250. This is a real world
application based on [28]. The Best African American Re-
sponse to Asthma Drugs (BARD) Trial, contained two four-
treatment, four-period, four-sequence crossover trials, one
involving 294 adolescents and adults, and the other one in-
volving 280 children. For the purpose of illustration, we fo-
cus on the BARD trial for the children. The four treatment
regimens were represented by letters Q, R, S, and T. A to-
tal of 280 participants were evenly randomized to one of
the four sequences, QRST, RTQS, SQTR and TSRQ. The
study design was uniform and balanced. Out of the 280 chil-
dren: 30 dropped out before period 1, 16 dropped out after
period 1, 17 dropped out after period 2, 19 dropped out af-
ter period 3, and the remaining 198 completed the study.
Since the subjects who drop out before period 1 provides
no information at all, for the illustration of our method,
we shall study the optimal design of crossover design with
(280 − 30 =)250 subjects, 4 periods, 4 treatments, and the
adjusted dropout mechanism as � = (16, 17, 19, 198)/250 =
(0.064, 0.068, 0.076, 0.792). The resultant OWEA designs as
well as their performances are available in Table 3.

The OWEA exact design under A- and D- optimality
happened to be exactly the same. Their relative efficiency
due to rounding are almost 1, with lower bound efficiencies
being all above 0.99. The relative efficiencies as compared to
designs in [28] are 1.0023 for A-criterion and 1.0063 for D-
criterion. This means that the OWEA framework improves
the design efficiency after incorporating the dropout mech-
anism. Finally, the computing time is around 2.20 seconds
under both criteria.

A & D optimal
Sequence Repetition
QRST 9
QRTS 12
QSTR 15
QTRS 26
QTSR 1
RQTS 8
RSTQ 28
RTQS 5
RTSQ 22
SQRT 24
SRQT 29
STRQ 9
TQSR 30
TRQS 12
TSQR 16
TSRQ 4

4.2 Crossover Model with Proportional
Carryover Effects

Example 4. (t, p) = (3, 3), n = 36. The proportional model
is nonlinear. All OWEA designs in this paper are locally
optimal. For this particular example, we assume all direct
treatment effects to be 2 and λ = 0.2, and the covariance
structure is taken to be the identity matrix. According to
Table 4, the OWEA designs have identical efficiency under
A- and D- optimal criteria compared to the optimal designs
in the literature. In fact, the OWEA design is equivalent to
the symmetric block 〈123〉 defined in [25] and it is shown to
have unity efficiency for A- D- T- criteria and 0.9931 under
E-optimality. Besides, the Gurobi design is also calculated,
and comparably it is less efficient. Trivially, the difference
between computing times is negligible as both algorithms
take less than 0.1 seconds.

A− opt =
1 2 3
2 3 1
3 1 2

× 12 (4.8)

D − opt =
1 2 3
2 3 1
3 1 2

× 12 (4.9)

Gurobi Design =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 1
2 3 3 3 3 3 2 2 2 2 2 3 1 3 3 3 3 3

2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 3 1 2 2 2 2 2 1 1 1 1 1 2

(4.10)
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Table 3. t = p = 4, n = 250, a = (0.064, 0.068, 0.076, 0.792).

Optimality Rel-Eff (rounding) Efficiency (Lower Bound) Rel-Eff (to [28] with n = 250) Time (sec)
A 0.9999 0.9977 1.0023 2.24
D 0.9999 0.9916 1.0063 2.15

Table 4. t = p = 3, n = 36.
Optimality Rel-Eff (to Gurobi) Rel-Eff (to d2 in [25]) Time (sec) Gurobi Time (sec)

A 1.0390 1 0.01 0.06
D 1.0794 1 0.01 0.06

Table 5. t = 4, p = 3, n = 12.
Optimality Rel-Eff (to Gurobi) Rel-Eff (to d1 in [29]) Time (sec) Gurobi Time (sec)

A 1.009 0.9980 0.17 0.03
D 1.027 0.9997 0.22 0.03

Table 6. t = k = 4, n = 10.
Optimality Rel-Eff (to Gurobi) Rel-Eff (rounding) Time (sec) Gurobi Time (sec)

A 0.9807 0.9756 1.21 2.86
D 0.9265 0.9116 5.34 2.86

Example 5. (t, p) = (4, 4), n = 12. Similarly, we assumed
all direct treatment effects to be 1.732 and λ = 0.1, and the
covariance structure is taken to be the identity matrix. As
shown in Table 5, the efficiency of the OWEA designs rela-
tive to the Gurobi designs is 1.009 and 1.027 under A- and D-
optimal criteria. There are minor differences in computing
time, but all the computing times are below 0.3 seconds. In
addition, design 1 (shown as d1 in Table 5) in [29] is a set of
3 mutually orthogonal Latin square, which is balanced and
neighbor-balanced. Comparably, the OWEA design is al-
most identical in efficiency under A- and D- optimal criteria.

A− opt =

1 1 1 2 2 2 3 3 3 4 4 4
2 3 3 1 3 4 2 4 4 1 1 2
4 2 4 3 4 3 1 1 1 2 2 3
3 4 2 4 1 1 4 2 2 3 3 1

(4.11)

D − opt =

1 1 1 2 2 2 3 3 3 4 4 4
2 2 3 3 3 4 1 4 4 1 1 2
4 4 2 1 1 3 4 1 2 2 3 3
3 3 4 4 4 1 2 2 1 3 2 1

(4.12)

Gurobi Design =

1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 2
4 2 3 3 4 3 4 1 1 2 1 3
3 4 2 4 1 1 2 4 2 3 3 1

(4.13)

4.3 Interference Model
Example 6. (t, k) = (4, 4), n = 10. As it is shown in [11],
the optimal weights of universally optimal design are not
integers, and hence the Gurobi designs proposed therein are

used as benchmarks. As it is indicated in Table 6, the rela-
tive efficiency of A- and D- optimal designs are 0.9807 and
0.9265 compared to the Gurobi designs. Note that the rel-
atively lower D- efficiency is the limitation of the OWEA
framework, especially when n is small. There is no obvious
winner in computing times, as OWEA framework is faster
searching for A-optimal designs but slower in D-optimal de-
signs compared to those using Gurobi.

A− opt =

1 1 1 2 2 3 3 4 4 4
2 3 4 1 2 1 3 1 2 3
4 2 3 3 3 4 4 2 1 2
4 4 3 4 1 2 1 3 1 2

(4.14)

D − opt =

1 1 1 2 2 3 3 4 4 4
2 3 4 2 4 2 3 2 3 4
3 4 2 4 1 1 1 3 2 1
3 4 2 3 3 1 4 1 1 2

(4.15)

Gurobi Design =

1 1 2 2 2 3 3 4 4 4
1 2 1 2 3 1 3 1 3 4
4 4 3 4 1 4 2 3 2 2
4 3 4 1 1 2 1 3 2 3

(4.16)

Example 7. (t, k) = (4, 5), n = 24. Based on Theorem 6
(ii) of [13], the universally optimal design is a symmetric
design comprising equal weights to sequences and their dual
sequences, where the dual sequence has the same elements
as its original sequence but in reversed order. The design
referred as “Universal” in Table 7 is a design consists of
symmetric blocks 〈11234〉, 〈12344〉. From the summary in
Table 7, the OWEA designs are as efficient as universally
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Table 7. t = 4, k = 5, n = 24.
Optimality Rel-Eff (to Universal) Rel-Eff (to Gurobi) Time (sec) Gurobi Time (sec)

A 0.9970 0.9970 14.17 0.20
D 0.9981 0.9981 7.89 0.20

optimal designs from [13] and the Gurobi design, with the
relative efficiency being 0.9970 and 0.9981 under A- and
D- optimality. The computing times, in this case, are 14.17
and 7.89 seconds. Interestingly, integer programming for the
Gurobi design only takes 0.20 seconds. This is because of the
existence of universally optimal designs and solving for a
linear equation systems is straightforward and fast utilizing
integer programming.

A− opt =

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4
1 1 1 1 3 2 2 2 2 4 4 4 2 2 2 2 3 3 4 1 3 4 4 4
2 3 3 3 4 4 1 3 3 1 1 3 1 1 1 2 1 1 1 3 2 2 2 3
3 4 4 4 2 3 4 4 4 3 3 3 4 4 4 1 2 2 2 2 1 3 3 1
4 2 2 2 3 3 3 1 1 3 3 1 4 4 4 4 4 4 2 2 1 1 1 2

(4.17)

D − opt =

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 3 3 3 2 2 2 4 4 4 2 2 2 3 3 3 1 1 1 4 4 4
4 4 4 4 4 4 3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 2 2 2 4 4 4 1 1 1 4 4 4 2 2 2 3 3 3 1 1 1
2 2 2 2 2 2 1 1 1 1 1 1 4 4 4 4 4 4 3 3 3 3 3 3

(4.18)

Gurobi Design =

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 2 2 4 2 2 2 3 3 4 1 2 3 3 3 4 1 1 3 4 4 4
2 2 3 3 4 3 3 4 4 1 4 1 4 1 1 1 4 2 2 3 2 1 2 3
3 4 4 4 3 2 1 1 3 4 1 3 2 4 2 4 2 1 3 2 1 2 1 2
4 3 2 4 3 2 4 3 1 4 1 3 2 4 4 2 1 1 3 2 1 3 3 1

(4.19)

5. DISCUSSION
In this paper, we provide an algorithm framework for op-

timal or efficient crossover designs, and later extend it to
the interference model. Information matrices are derived in
order to apply the optimal weight exchange algorithm. The
OWEA exact designs in the numerical examples are shown
to be efficient or identical to the optimal exact designs. The
most noteworthy advantages of the OWEA algorithm are
the generality and convenience. It works on a myriad of
models, as long as the information matrix is linear with
respect to the design point. Although the requirement on
the information matrix is regarded as a limitation of the al-
gorithm, in practice, it is typically met when using linear
models or some non-linear model. From one model to an-
other, the OWEA algorithm is applicable with only minor
modifications to the information matrix. Within the same
model, one only needs to adjust the values of case configura-
tions, such as t, p, and n in those examples. Note that these
configurations can be arbitrary, including the inclusion of a
dropout mechanism. To facilitate the usage of our algorithm,
we have prepared an R package and provided an online R
Shiny app as a more user-friendly interface (https://cran.
r-project.org/package=OWEA).

Although the theoretical result indicates optimal designs
within a subclass of pseudo-symmetric designs are automat-
ically global optimal, the OWEA algorithm does not guar-
antee symmetry in its output. However, based on our expe-
rience, OWEA exact designs are close to symmetric optimal
designs and always have relatively high efficiency or satis-
factory lower bound. In addition, we also observed the lim-
itation of the framework when n is a small integer, where
the efficiency is not very high. In our opinion, one of the
reasons is that approximate optimal design usually consists
of many distinct sequences with small weights, and round-
ing them into a small n exact design would result in losing
many sequences that significantly contributes to the infor-
mation matrix. Furthermore, the OWEA algorithm offers
flexibility in the choice of parameter vectors. Note that all
the designs in this paper focus on direct treatment effects. In
other cases, for example, [25] derived corresponding results
for estimating λ in the proportional model, whereas using
OWEA algorithm, one only needs to change the function g.

Speed is also an important aspect of numerical algo-
rithms. In the numerical examples, the OWEA algorithm
only takes a reasonable amount of time to complete the
tasks. However, there is still space for improvement. The
current search spaces that we implemented in the numerical
examples comprise almost all possible sequences or blocks.
According to theory of Kushner’s approximate design the-
ory, for example, [11, 13, 25], one can narrow the search
space down to a much smaller one depending on combina-
tions of (t, p, n) or (t, k, n). However, there is a trade-off
between convenience and computing time. Another possible
improvement lies in the Newton’s method. In some of the
cases, we do encounter overshooting problems, but the resul-
tant design after reaching maximum iterations is still highly
efficient. If this issue could be resolved, the computing time
would be faster than the reported time.

Finally, although we compared examples and algorithms
in [9, 13, 25], one has to point out those papers are aim-
ing at developing powerful theoretical tools while this paper
is prone to be more practical oriented. Often, practitioners
even statisticians cannot easily understand and use good
theoretical results in design studies. This inability to use re-
sults greatly hinders the application of excellent theoretical
work. The developed R package R Shiny app not only of-
fers a user-friendly interface but also generates optimal and
efficient designs that are not available in existing publica-
tions. Deriving such designs theoretically is often challeng-
ing or impossible, but our user-friendly package simplifies
the process. This development is essential for making the-
oretical results more accessible to practitioners, and it will

https://cran.r-project.org/package=OWEA
https://cran.r-project.org/package=OWEA
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undoubtedly contribute to the continued advancement of
this important field.
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