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Abstract
In this paper, we propose a method for wavelet denoising of signals contaminated with Gaussian noise when prior

information about the L2-energy of the signal is available. Assuming the independence model, according to which the
wavelet coefficients are treated individually, we propose simple, level-dependent shrinkage rules that turn out to be Γ-
minimax for a suitable class of priors.

The proposed methodology is particularly well suited in denoising tasks when the signal-to-noise ratio is low, which
is illustrated by simulations on a battery of some standard test functions. Comparison to some commonly used wavelet
shrinkage methods is provided.
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Contamination Class, Low Signal-to-Noise Ratio.

1. INTRODUCTION
Function estimation by using shrinkage estimators in the

wavelet domain was initiated in the works of David Donoho
and Iain Johnstone in the early 1990’s. Since then vari-
ous shrinkage methods have been proposed. In this arti-
cle, we propose and investigate a novel approach for esti-
mation in the wavelet domain. This approach brings to-
gether the classic principle of Γ-minimaxity, Huber’s famous
ε-contamination class [23], mathematics of decision theory,
aspects of multiple branches of pure mathematics, and then,
also, detailed experimental and graphical analysis of the per-
formance of our proposal. In these ways, this article is a new
comprehensive analysis of the problem of estimation in the
wavelet domain.

For the rest of this introductory section, we review fun-
damentals of Γ-minimax estimation, wavelet shrinkage, and
Bayesian approaches to wavelet shrinkage. This section is
mostly expository and gives background and the needed mo-
tivation.

1.1 Γ-Minimax Theory
The Γ-minimax paradigm, originally proposed by Rob-

bins [29], deals with the problem of selecting decision rules in
tasks of statistical inference. The Γ-minimax approach falls
between the Bayes paradigm, which selects procedures that
work well “on average a posteriori” for a specific prior, and
the minimax paradigm, which guards against least favor-
able outcomes, however unlikely. This approach has evolved
from seminal papers in the fifties [29, 21] and early sixties,
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through an extensive research on foundations and paramet-
ric families in the seventies, to a branch of Bayesian robust-
ness theory, in the eighties and nineties. A comprehensive
discussion of the Γ-minimax approach can be found in [5, 6].
Also see [8], a fundamental contribution.

The Γ-minimax paradigm incorporates the prior infor-
mation about the statistical model by a family of plausible
priors, denoted by Γ, rather than by a single prior. Elici-
tation of “prior families” is often encountered in practice.
Given the family of priors, the decision maker selects a rule
that is optimal with respect to the least favorable prior in
the family.

We note that least favorable priors typically do not exist
in unbounded parameter spaces. For example, there is no
least favorable prior for estimation of unconstrained normal
or Poisson means. There is a least favorable prior for esti-
mating a binomial parameter, and this is a compact param-
eter space. But no amount of intuition can predict the least
favorable prior for the binomial. And, as soon as the loss is
changed to a normalized squared error, the least favorable
prior changes. There are no links or intuition regarding least
favorable priors that are portable. It is too delicate and prob-
lem specific. For example, in a quite general setup, Clarke
and Barron in [13] show that Jeffreys’ prior is asymptoti-
cally least favorable when the loss is Kullback-Leibler dis-
tance, thus providing theoretical justification for reference
priors.

Inference of this kind is often interpreted in terms of game
theory. Formally, if D is a set of all decision rules and Γ is
a family of prior distributions over the parameter space Θ,
then a rule δ∗ ∈ D is Γ-minimax if

inf
δ∈D

sup
π∈Γ

r(π, δ) = sup
π∈Γ

r(π, δ∗) = r(π∗, δ∗), (1.1)
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where r(π, δ) = Eθ
[
EX|θL(θ, δ)

]
= EθR(θ, δ) is the Bayes

risk under the loss L(θ, δ). Here R(θ, δ) = E
X|θ
θ L(θ, δ) de-

notes the frequentist risk of δ, π∗ is the least favorable prior,
and L(θ, δ) is the loss function, often the squared error loss,
(θ − δ)2. Note that when Γ is the set of all priors, the Γ-
minimax rule coincides with the minimax rule, if a mini-
max rule exists; when Γ contains a single prior, then the
Γ-minimax rule coincides with Bayes’ rule with respect to
that prior. When the decision problem, viewed as a sta-
tistical game, has a value, that is, when infδ∈D supπ∈Γ ≡
supπ∈Γ infδ∈D, then the Γ-minimax solution coincides with
the Bayes rule with respect to the least favorable prior.
For the interplay between the Γ-minimax and Bayesian
paradigms, see [6]. A review on Γ-minimax estimation can
be found in [32].

In a nutshell, the Γ-minimax is a philosophical compro-
mise between subjective Bayes with a single prior and the
conservative approach of not having a prior at all.

1.2 Wavelet Shrinkage
We apply the Γ-minimax approach to the classical non-

parametric regression problem

yi = f(ti) + σεi, i = 1, . . . , n, (1.2)

where ti, i = 1, . . . , n, are deterministic equispaced design
points on [0, 1], the random errors εi are i.i.d. standard
normal random variables, and the noise level σ2 may, or
may not, be known. The interest is to recover the function
f from the observations yi. Additionally, we assume that
the unknown signal f has a bounded L2-energy, namely∫
[0,1]

f2(t)dt, and hence it assumes values from a bounded
interval. After applying a linear and orthogonal wavelet
transform, the model in (1.2) becomes (see, e.g., [16]),

cJ0,k = θJ0,k + σεJ0,k, k = 0, . . . , 2J0 − 1,

dj,k = θj,k + σεj,k, j = J0, . . . , J − 1,

k = 0, . . . , 2j − 1, (1.3)

where dj,k (cjk), θj,k and εj,k are the wavelet (scaling) coef-
ficients (at resolution level j and location k) corresponding
to y, f and ε, respectively; J0 and J−1 are the coarsest and
finest levels of detail in the wavelet decomposition. If ε’s are
i.i.d. standard normal, an arbitrary wavelet coefficient from
(1.3) can be modeled as

[d|θ] ∼ N (θ, σ2), (1.4)

where, due to (approximate) independence of the coeffi-
cients, we omitted the indices j, k. The prior information
on the energy bound of the signal energy implies that a
wavelet coefficient θ corresponding to the signal part in
(1.2) assumes its values in a bounded interval, say Θ =
[−m(j),m(j)], which depends on the level j.

Wavelet shrinkage rules have been extensively studied in
the literature, but mostly when no additional information on

the parameter space Θ is available. For the implementation
of wavelet methods in nonparametric regression problems,
we also refer to [4], where some methods are described and
numerically compared.

1.3 Bayesian Model in the Wavelet Domain
Bayesian shrinkage methods in wavelet domains have re-

ceived considerable attention in recent years. Depending on
a prior, Bayes’ rules are shrinkage rules. The shrinkage pro-
cess is defined as follows: A shrinkage rule is applied in the
wavelet domain and the observed wavelet coefficients d are
replaced by with their shrunken versions θ̂ = δ(d). In the
subsequent step, by the inverse wavelet transform, coeffi-
cients are transformed back to the domain of original data,
resulting in a data smoothing. The shape of the particular
rule δ(·) influences the denoising performance.

Bayesian models on the wavelet coefficients have proved
capable of incorporating some prior information about the
unknown signal, such as smoothness, periodicity, sparseness,
self-similarity and, for some particular bases (e.g., Haar),
monotonicity.

The shrinkage is usually achieved by eliciting a single
prior distribution π on the space of parameters Θ, and then
choosing an estimator θ̂ = δ(d) that minimizes the Bayes
risk with respect to the adopted prior.

It is well known that most of the noiseless signals en-
countered in practical applications have (for each resolution
level) empirical distributions of wavelet coefficients centered
around zero and peaked at zero. A realistic Bayesian model
that takes into account this prior knowledge should consider
a prior distribution for which the prior predictive distri-
bution produces a reasonable agreement with observations.
A realistic prior distribution on the wavelet coefficient θ is
given by

π = εδ0 + (1− ε)ξ, (1.5)

where δ0 is a point mass at zero, ξ is a symmetric distri-
bution on the parameter space Θ and ε is a fixed number
in [0, 1], usually level dependent, that regulates the amount
of shrinkage for values of d close to 0. Priors for wavelet
coefficients as in (1.5) have been considered by Vidakovic
and Ruggeri in [33]. Prior literature on wavelet shrink-
age by using Bayesian ideas includes important work by
[12, 14, 30, 19], among others. A review by Reményi and Vi-
dakovic in [28] overviews a range of Bayesian wavelet shrink-
age methods and provides numerous references on Bayesian
wavelet shrinkage strategies.

Our approach here is different from all the prior litera-
ture. Here is the motivation.

It is clear that specifying a single prior distribution π on
the parameter space Θ can never be done exactly. Indeed
the prior knowledge of real phenomena always contains un-
certainty and multitude of prior distributions can match the
prior belief, meaning that on the basis of the partial knowl-
edge about the signal, it is possible to elicit only a family of
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plausible priors, Γ. In a robust Bayesian point of view the
choice of a particular rule δ should not be influenced by the
choice of a particular prior, as long as it is in agreement with
our prior belief. Several approaches have been considered for
ensuring the robustness of a specific rule, Γ-minimax being
one compromise.

In this paper, we incorporate prior information on the
boundedness of the energy of the signal (the L2-norm of
the regression function). The prior information on the en-
ergy bound often exists in real-life problems, and it can be
modelled by the assumption that the parameter space Θ is
bounded. Estimation of a bounded normal mean has been
considered in numerous papers, e.g., [20, 7, 11, 15, 9, 17],
and in the classic text of Ibragimov and Hasminskii [24].

It is well known that estimating a bounded normal mean
represents a challenging problem. In our context, if the
structure of the prior (1.5) can be supported by the analysis
of the empirical distribution of the wavelet coefficients, even
then precise elicitation of the distribution ξ cannot be done
without some kind of approximation. Any symmetric distri-
bution supported on the bounded set, say [−m,m], can be
a possible candidate for ξ.

Let Γ denote the family

Γ = {π = εδ0 + (1− ε)ξ, ξ ∈ ΓS[−m,m]}, (1.6)

where ΓS[−m,m] is the class of all symmetric distributions
supported on [−m,m], δ0 is point mass at zero, and ε is a
fixed constant between 0 and 1. We also require that the
distribution ξ does not have an atom at 0.

We consider two models; both assume that wavelet co-
efficients follow normal distribution (which is a statement
about the distribution of the noise), d ∼ N (θ, σ2). In the
Model I, the variance of the noise is assumed to be known,
while in the Model II the variance is not known and is given
a prior distribution. We have kept treatment of Model II lim-
ited. Detailed treatment of Model II would take too much
additional space.

The rest of the paper is organized as follows. Section 2
contains mathematical aspects and results concerning the Γ-
minimax rules. An exact risk analysis of the rule is discussed
in Section 3. Section 4 proposes methods of elicitation of
hyper-parameters defining the model. For example, one can
imagine “estimating” ε and even m itself as hyperparameters
by using simulated data. But it is going to depend on the
run and none of the theoretical results of our paper would
then stand. It can be the topic of an entirely different paper.
Performance of the shrinkage rule in the wavelet domain and
application to a data set are given in Section 5. In Section
6 we provide the conclusions. Proofs are mostly deferred to
Appendix A and B.

2. CHARACTERIZING Γ-MINIMAX RULES
In this section, we discuss the existence and character-

ization of Γ-minimax shrinkage rules that are Bayes’ with

respect to least favorable priors on the interval [−m,m].
It will turn out that there exists a critical m∗ such that for
m ≤ m∗, the least favorable prior is a three point prior, that
is it assigns mass 1− ε at 0, and mass ε/2 at the two bound-
ary points ±m. It is in this way that three point priors enter
into our wavelet shrinkage analysis. We look at two scenar-
ios, when the variance of the noise is known (Model I), and
when it is not known (Model II). For reasons of space, we
limit our treatment of Model II to just a short exposition.

We emphasize that we treat the case of Γ-minimax esti-
mation in very general compact convex sets in general finite
dimensional Euclidean spaces below. By giving a complete
and self-contained derivation of the existence of a least fa-
vorable prior and the Γ-minimax estimator in such great
generality when the parameter space is sufficiently small, we
have given a useful unification of the Γ-minimax problem.

2.1 Model I
Theorem 1.
(a) Let S0 be a compact convex set in Rp containing the

origin 0 in its interior. Let a ∈ Rp and b > 0, define

Sa,b = bS0 + a,

and let ∂ Sa,b denote the boundary of Sa,b.
Let X ∼ f(x |θ), a density in the p-parameter exponen-
tial family, and consider estimation of θ using squared
error loss. Then, there exists a unique least favorable
prior on Sa,b as well as ∂ Sa,b.

(b) There exists b∗ > 0 such that for b ≤ b∗, the least fa-
vorable prior on ∂ Sa,b is also the least favorable prior
on Sa,b.

(c) If in particular, X ∼ Np(θ, I), and θ belongs to a p-
dimensional ball centered at 0 and of radius b, then for
b ≤ b∗, the least favorable prior in the ball is simply the
uniform distribution on the boundary of the ball.

(d) In the one-dimensional case, for the entire one param-
eter exponential family, if θ belongs to a compact inter-
val [u, v], the least favorable prior is necessarily finitely
supported.

(e) In the one dimensional case that X ∼ N(θ, 1), let

π ∈ Γ = {εδ0 + (1− ε)ξ}, (2.1)

where ε is fixed in [0, 1], and ξ is any distribution on
[−m,m] without atoms at 0, that is, with no point-
mass-at-zero. Then there exists m∗ > 0 such that for
0 < m ≤ m∗ the least favorable prior is

[θ] ∼ π = εδ0 +
1− ε

2
(δ−m + δm).

The Bayes rule with respect to this prior,

δB(x) =
m sinh(mx)

cosh(mx) + ε
1−εe

m2/2
, (2.2)

is the Γ-minimax rule.
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Figure 1: Γ-Minimax Rule for Model I. Left: Rules for m = 3 and ε = 0.5, 0.7, and 0.9. Right: Rules for ε = 0.9 and
m = 3, 4, and 5.

Table 1. Values of m∗ for both models for different values
of ε.

ε m∗ (Model I) m∗ (Model II)
0.0 1.05674 0.81758
0.1 1.15020 0.91678
0.2 1.27739 1.05298
0.3 1.46988 1.25773
0.4 1.84922 1.52579
0.5 2.28384 1.74714
0.6 2.41918 1.91515
0.7 2.50918 2.05511
0.8 2.58807 2.19721
0.9 2.69942 2.40872
0.95 2.81605 2.63323
0.99 3.10039 3.24539

Remark. Figure 1 shows this shinkage rule in (2.2) for
selected values of the parameters ε and m. Note that the
rules heavily shrink small coefficients, but unlike traditional
shrinkage rules, remain bounded between −m and m. The
values of m∗ are given in Table 1.

2.2 Model II
In Model II, the variance σ2 is not known and is given

an exponential prior. It is well-known that the exponential
distribution is an entropy maximize in the class of all dis-
tributions supported on R+ with a fixed first moment. This
choice is non-informative, in a form of a maxent prior.

The model is:

[d|θ, σ2] ∼ N (θ, σ2),

[σ2] ∼ E(μ),
[
f(σ2) =

1

μ
exp

{
−σ2

μ

}]

The marginal likelihood is double exponential as an ex-
ponential scale mixture of normals,

[d|θ] ∼ DE
(
θ,

√
μ

2

)

[
g(d|θ, μ) =

√
1

2μ
exp

{
−
√

2

μ
|d− θ|

}]
.

Theorem 2. If in Model II the family of priors on the lo-
cation parameter is (2.1), the resulting Γ-minimax rule is:

δB(d) =
m

(
e−

√
2/μ |d−m| − e−

√
2/μ |d+m|

)

e−
√

2/μ |d−m| + 2ε
1−εe

−
√

2/μ |d| + e−
√

2/μ |d+m|
,

(2.3)
which is Bayes with respect to the least favorable prior

[θ] ∼ π(θ) = εδ0 +
1− ε

2
(δ−m + δm),

whenever m ≤ m∗. Figure 2 shows the rule in (2.3) for
selected values of parameters ε and m. The values of m∗

depend on ε and are given in Table 1 for both models. We
remark that the model in Theorem 2 is similar in spirit to
those in BAMS wavelet shrinkage [33] and Bayesian Lasso
[27]. Double exponential distributions in the marginal like-
lihood (for BAMS) and prior (for Bayesian Lasso) are ob-
tained as exponential scale mixtures of normals.

Sketches of proofs of Theorems 1 and 2 are deferred to
Appendix A and B.

3. RISK, BIAS, AND VARIANCE OF
Γ-MINIMAX RULES

Frequentist risk of a rule δ, as a function of θ, can be
decomposed as a sum of two functions, variance and bias-
squared,

R(δ, θ) = Ed|θ(δ(d)− θ)2

= Ed|θ(δ(d)− Ed|θ(δ(d)))2

+(θ − Ed|θ(δ(d)))2.

To explore the behavior of the two risk components in
the context of Models I and II, we selected the risk of Γ-
minimax rule for ε = 0.8 and m = 2.197. (Fig. 3). This
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Figure 2: Γ-Minimax Rule for Model II. Left: Rules for ε = 0.5, 0.7, and 0.9. Right: Rules for m = 3, 4, and 5.

Figure 3: Risk of Γ-Minimax rule for ε = 0.8 and m = 2.197.
Dashed plots for Model I and solid for Model II.

particular value of m ensures that the rules are Γ-minimax
and m = m∗ for model II. Note that δ in Model II shows a
smaller risk for values of θ in the neighborhood of m, while
for θ close to 0, the risk of the rule from Model I is smaller.

The most interesting finding is the behavior of the risk
function of the rule. The risk function has a wavy shape
with maxima at the locations depending on m. Typically
the risk is maximized at θ = −m,m. This is the most impor-
tant finding in that now general minimax theory takes over
and establishes that the proposed rule indeed is fully mini-

max and hence, also gamma-minimax. Similar, but less pro-
nounced behavior is present in bias-squared function (Fig. 4
Left Panel). Compared to Model I, the variance of δ in Model
II is significantly smaller for values of θ in the neighborhood
of ±m, and larger for θ in the neighborhood of zero. Pref-
erence in using either Model I or II depends on what size of
signal part we are more interested in. If there is more un-
certainty about signal bound m, the rule from Model II is
preferable. However, Model I has a lower risk and both com-
ponents of the risk are in the neighborhood of 0. This trans-
lates to a possibly more precise shrinkage of small wavelet
coefficients.

4. ELICITATION OF PARAMETERS
The proposed Bayesian shrinkage procedures with three-

point priors depend on three parameters, m, ε and μ, that
need to be specified. The criteria used for selecting these pa-
rameters are critical for effective signal denoising. We pro-
pose these hyper-parameters to be elicited in an empirical
Bayes fashion, that is, dependent on the observed wavelet
coefficients.

(1) Elicitation of m: The bound m in the domain of sig-
nal acquisition translates to level-dependent bounds on
the parameter θ in the wavelet domain. Given a data

Figure 4: Risk components of Γ-minimax rule for ε = 0.8 and m = 2.197. Dashed plots for Model I and solid for Model
II. Left: Bias-squared; Right: Variance.
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signal y = (y1, . . . , yn), the hyper-parameter m at the
jth multiresolution level is estimated as

m(j) = σ̂max(|yi|)
(√

2
)J−j

, (4.1)

where J = log2 n is the resolution level of the transfor-
mation, and σ̂ an estimator of the noise size. The noise
size is often estimated by a robust estimator of stan-
dard deviation that uses the wavelet coefficients at the
finest multiresolution level,

σ̂ =
median(|dJ−1,• − median(dJ−1,•)|)

0.6745
, (4.2)

where dJ−1,• represents all detail coefficients in the level
J − 1. The multiple

(√
2
)J−j in (4.1) reflects the in-

crease of the extrema of the absolute value of wavelet
coefficients within the decomposition level in j steps of
the transform.

(2) Elicitation of ε: This parameter controls the amount
of shrinkage in the neighborhood of zero and overall
shape of shrinkage rule. For the levels of fine details, this
parameter should be close to 1. Based on the proposal
for the ε given by Angelini and Vidakovic in [3] and
Sousa et al. in [31], we suggest a level-dependent ε0 as
follows:

ε0(j) = 1− 1

(j − J0 + l)k
, (4.3)

where J0 ≤ j ≤ J−1 and k and l are positive constants.
As we indicated, ε should be close to one at the mul-
tiresolution levels of fine details, and then be decreasing
gradually for levels approaching the coarsest level [3].
When k and l are large, ε remains close to one over all
levels. This results in an almost noise-free reconstruc-
tion, but could result in over-smoothing. On the other
hand, l > 1 guarantees a certain level of shrinkage even
at the coarsest level. Thus, the hyperparameters l and k
should be selected with a care in order to achieve good
performance for a wide range of signals. Numerical sim-
ulations guided us to suggest values l ≥ 6 and k = 2
as reasonable choices. However, it is important to note
that these parameters should depend on the smooth-
ness of data signals and their size. We further discuss
the selection of l and k for specific signals in Section 5.

(3) Elicitation of μ: This parameter is needed only for
Model II. Since the prior on the noise level σ2 is ex-
ponential and the prior mean is μ, by simple moment
matching we select μ as σ̂2. A possible choice for σ̂2 is
a robust estimator as in (4.2).

5. SIMULATION STUDY
In the simulation study, we assessed the perfor-

mance of the proposed shrinkage procedures on the

battery of standard test signals. We used nine dif-
ferent test signals (step, wave, blip, blocks, bumps,
heavisine, doppler, angles, and parabolas), which
are constructed to mimic a variety of signals encountered
in applications (Fig. 5). As standardly done in literature,
Haar and Daubechies six-tap (Daubechies 6) were used for
Blocks and Bumps and Symmlet 8-tap filter was used for the
remaining test signals. The shrinkage procedures are com-
pared using the average mean square error (AMSE), as in
(5.1). All simulations were performed using MATLAB soft-
ware and toolbox GaussianWaveDen [4] that can be found
at http://www.mas.ucy.ac.cy/~fanis/links/software.html.

We generated noisy data samples of the nine test sig-
nals by adding normal noise with zero mean and variance
σ2 = 1. The signals were rescaled so that σ2 = 1 leads to
a prescribed SNR. Each sample consisted of n = 1024 data
points equally spaced on the interval [0, 1]. Figure 6 shows a
noisy version of the nine test signals with SNR = 1/4. Each
noisy signal was transformed into the wavelet domain. Af-
ter the shrinkage was applied to the transformed signal, the
inverse wavelet transform was performed on the processed
coefficients to produce a smoothed version of a signal in the
original domain. The AMSE was computed as

AMSE(f(t)) =
1

nN

N∑
j=1

n∑
i=1

(
f(ti)− f̂j(ti)

)2

, (5.1)

where f denotes the original test signal and f̂j its estimator
in the j-th iteration. To calculate the average mean square
error this process was repeated N = 100 times.

The shrinkage procedure was applied to each test signal
and the AMSE was computed for a range of parameter val-
ues of l and k. For example, Fig. 8 shows the average MSE
obtained on the heavisine test signal when SNR = 1/5,
and l and k vary in the range l ∈ [2, 15] and k ∈ [1.0, 3.5].
As evident from Fig. 8, the estimator achieves its best per-
formance for values k ≈ 2.4 and l ≈ 5.8. With these selected
values of l and k, Fig. 7 shows that the estimator is suffi-
ciently close to the original test signal, even though the SNR
is quite small.

Based on our simulations, the optimal hyper-parameter
values of l and k varied depending on the nature (e.g.,
smoothness) of the test signal. For larger values of k and
l, the estimator performs better for smooth signals. This is
because the corresponding wavelet coefficients rapidly de-
cay with the increase in resolution. However, larger val-
ues of l and k may not detect localized features in signals
(e.g., cusps, discontinuities, sharp peaks), resulting in over-
smoothing. For low values of SNR, the three-point priors
estimator is more sensitive to hyper-parameter values of l
and k. When SNR increases, the estimation method shows
better performance for most of the test signals with rela-
tively small values of l and k. Moreover, higher values of
parameters l and k are preferred when the sample size is
large.

http://www.mas.ucy.ac.cy/~fanis/links/software.html
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Figure 5: The nine test signals used in the simulation study.

In general, we suggest k = 2.5 and l ≥ 6 as the most
universal choice. The suggested values could, however, be
adjusted depending on available information about the na-
ture of signals.

5.1 Performance Comparison with Some
Existing Methods

We compared the performance of the proposed three-
point prior estimator with eight existing estimation tech-
niques. The selected existing estimation techniques include:
Bayesian adaptive multiresolution shrinker [33] (BAMS),
Decompsh [22], block-median and block-mean [1], hybrid
version of the block-median procedure [1], blockJS [10], visu-
shrink [16], and generalized cross validation [2]. The first
five techniques are relying on a Bayesian procedure and
they are based on level-dependent shrinkage. The blockJS
method uses a level-dependent thresholding, while the visu-
shrink and generalized cross-validation techniques use a
global thresholding method. Readers can find more details
about these techniques in [4].

In the simulation study, we computed the AMSE us-
ing the parameter values of l = 6 and k = 2.5 and com-
pared with the AMSE computed for the selected estimation
techniques. As can be seen in Fig. 9, the proposed estima-
tor shows comparable and for some signals better perfor-
mance when compared to the selected estimation methods.

In particular, for smooth signals (e.g., wave, heavisine),
the three-point prior estimator shows better performance
compared to non-smooth signals, such as blip, for in-
stance. Moreover, when comparing the performance of the
level-dependent estimation methods, the BAMS estimation
method shows competitive (or better) performance for most
of the cases. We also investigated the influence of SNR level
and the sample size on the performance of proposed esti-
mators, compared to the methods considered. For exam-
ple, for higher SNR (Fig. 10), the three-point priors-based
shrinkage procedure does not provide better performance
except for wave, angels, and time shifted sine. In gen-
eral, the Γ-minimax shrinkage shows comparable or better
performance compared to other methods considered, when
the SNR is low. Also, for larger sample sizes, the three-point
prior shrinkage shows improved performance.

6. CONCLUSIONS
We proposed a method for wavelet denoising of signals

when prior information about the size of the signal is avail-
able. Simple, level-dependent shrinkage rules that are Bayes
with respect to a prior supported on three discrete points
are at the same time Gamma-minimax, for a set of all pri-
ors with a bounded support symmetric about zero with a
fixed point mass at zero. This statement is true when the
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Figure 6: Noisy versions of the nine signals from Fig. 5.

Figure 7: Change in average MSE(AMSE) as a function of hyper-parameters k (left) and l (right) exemplified on the
heavisine test signal, SNR = 1/5, and n = 1024.

signal is bounded on [−m,m], for small values of m, which
in denoising applications translates to estimation of a sig-
nal with a low signal-to-noise ratio. For larger values of m
the least favorable prior is still discrete with support on a
finite number of points symmetrically distributed about 0,
but finding exact locations and prior weights of these points

presents a challenging optimization problem. Thus, using
the three point priors for high signal-to-noise ratio noisy sig-
nals is suboptimal from the standpoint of minimaxity and
numerical experiments show that in this case, the three point
prior shrinkage rules are underperforming compared to other
standard shrinkage methods. We considered two estimation
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Figure 8: Estimation of heavisine test signal: Estimations obtained by three-point priors with n = 1024, k = 2.4, l = 5.8
and SNR = 1/5.

Figure 9: The box plots of MSE for the ten estimation methods: (1) Rule-I, (2) Rule-II, (3) Bayesian adaptive multireso-
lution shrinker (BAMS), (4) Decompsh, (5) Block-median, (6) Block-mean, (7) Hybrid version of the block-median proce-
dure, (8) BlockJS, (9) Visu-Shrink, and (10) Generalized cross-validation. The MSE was computed by using SNR = 1/5,
k = 2.5, l = 6, and n = 1024 data points.

scenarios: when the variance of the noise is known and when
it is not known. In the first case a plug-in robust estimator
of noise variance is used, while in the second the variance
is given an exponential prior, and subsequently integrated
out. The main theoretical result is given in Theorem 1, that
describes the form of Gamma-minimax rules when parame-
ter belongs to a very general convex set in finite dimensional

Euclidean space. The two estimation scenarios proposed in
this paper are special cases of Theorem 1.

As demonstrated by simulations on a battery of standard
test functions, the performance of the proposed shrinkage
rules in terms of AMSE is comparable, and for some signals
superior, to the state-of-art methods when SNR is low and
the signals are smooth.
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Figure 10: The same plot as in Fig. 8 with SNR = 3.

APPENDIX A. PROOF OF THEOREM 1
(a) Let S0 be a fixed convex compact set in Rp, 1 ≤ p <

∞ symmetric about 0 and containing 0 in its interior.
Define

Sa,b = bS0 + a,

where a ∈ Rp, and b > 0.
Define the family of prior distributions

Γ = Γε = {π : π = ε δa + (1− ε) ξ},

where ξ is a symmetric measure on Sa,b with ξ({a}) =
0. Then, for any decision rule δ,

sup
π∈Γ

r(π, δ) = εR(a, δ) + (1− ε) sup
ξ

r(ξ, δ).

Consider the classes G of all probability measures and
Gs of all symmetric probability measures on Sa,b. Let
Gs,0 be a class of all symmetric probability measures ξ
on Sa,b with ξ({a}) = 0. By Prokhorov’s theorem, G is
sequentially weakly compact, and since the weak topol-
ogy on any finite dimensional linear space is metrizable,
G and therefore Gs are also compact. Now we use the
fact that the Bayes risk r(π) considered as a functional
of the prior π is a strictly concave functional due to the
squared error loss being strictly convex [18, 26]. It also

being the case that r(π) is upper semicontinuous [34],
supπ∈G is attained.
This shows that a least favorable prior distribution ex-
ists for general Sa,b, and also ∂Sa,b, the boundary of
Sa,b.

(b) Denote the least favorable prior on ∂Sa,b by Ua,b. Let
δa,b denote the Bayes estimator against this least fa-
vorable prior on ∂Sa,b. The multivariate normal distri-
bution being in the multiparameter exponential family,
it follows in [15] that for sufficiently small b > 0, the
function R(μ, δa,b), as the risk function of δa,b, is sub-
harmonic on the whole of Sa,b, and so, by the maxi-
mum modulus theorem, the maximum of R(μ, δa,b) is
attained on the boundary ∂Sa,b of Sa,b, and δa,b is
the unique minimax estimator of μ when μ belongs to
Sa,b. The main consequence is that when the parameter
space Sa,b is sufficiently small, we have the sequence of
equalities

sup
π∈G

r(π) = sup
π∈Gs

r(π) = sup
π∈Gs,0

r(π) = r(Ua,b).

(c) Now consider the special case that Sa,b is a ball cen-
tered at a with radius b. Without loss of generality,
we may assume a to be 0. Note now that our prob-
lem is invariant under the orthogonal group X → PX,
μ → Pμ, where P is an orthogonal matrix. The invari-
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Figure 11: Model I: Frequentist risks of W-, VVV-, and V-shape, R(θ, δ∗), for ε = 0.3 (left), 0.5 (middle), and 0.9 (right).

ance property is true because the covariance matrix of
X is proportional to the identity, and Sa,b is a ball. By
[25], U0,b is spherically symmetric, and hence just the
uniform distribution on the boundary of the ball S0,b.
So, finally, for b > 0 sufficiently small, the estimator
that is Bayes against the uniform prior on the bound-
ary of the ball S0,b is the unique minimax estimator of
μ when μ belongs to S0,b, and U0,b is the solution to
the Γ-minimax problem of finding arg maxπ∈Γ r(π).

(d) In the entire one parameter exponential family, the risk
function R(θ, δ) of any decision rule δ is a real ana-
lytic function of θ and hence has an analytic continu-
ation to the complex plane C. The Bayes rule against
the least favorable prior has the constant risk equal to
the minimax value on each point in the support of the
least favorable prior. If the support is infinitely sup-
ported, then by the Bolzano-Weierstrass’s theorem, the
support has an accumulation point, and hence, by the
analytic function theorem on the complex plane C, the
risk function of the minimax rule has a constant risk
throughout the entire parameter space, which is a con-
tradiction. This proves that the least favorable prior
is finitely supported throughout the one parameter ex-
ponential family, whenever the parameter belongs to a
compact interval.

(e) In the setup of Model I, the point mass at 0 is a part of
every prior; the second component ξ(θ) is as in Casella
and Strawderman (1981), but non-atomic at 0, and for
m < m∗ the least favorable prior is a three-point mass
prior, with masses concentrated at −m, 0, and m, with
weights (1− ε)/2, ε, and (1− ε)/2. The threshold value
m∗ must be found numerically.

The corresponding Bayes rule δ∗ is readily found by sim-
plifying

δ∗(d) =

∫
θf(d|θ)π(θ)dθ∫
f(d|θ)π(θ)dθ

=
(1− ε)m/2 [φ(d|m)− φ(d| −m)]

εφ(d|0) + (1− ε)/2 [φ(d|m) + φ(d| −m)]
,

where φ(d|μ) is the pdf of normal N (μ, 1) distribution. A
simplified expression is given in (2.2).

To find values of m∗ so that for m ≤ m∗ the three
point prior is least favorable, we analyze the frequentist risk,
R(θ, δ∗) = Ed|θ(θ − δ∗)2, for a fixed ε, by varying m∗. De-
pending on ε, there are three possible shapes of the frequen-
tist risk, which we denote as W, VVV, and V. Numerical
work shows that values of ε that separate these three shapes
are ε1 ≈ 0.45 and ε2 ≈ 0.65.

For small values of ε, (< ε1) the risk R(θ, δ∗) is of W-
shape, as in the left panel of Fig. 11.

This is a typical shape for a risk of the least favorable
distribution in a class of all bounded on [−m,m] distri-
butions, for m small. The value m∗ in this case is found
frpm R(0, δ∗) = R(−m∗, δ∗) = R(−m∗, δ∗). If m > m∗,
the risk local maximum at 0 will exceed values at ±m,
and one could select a prior from Γ for which the payoff
r(δ∗, π) > r(δ∗, πm∗). Note that in increasing m in the
search of this limiting m∗, the rule δ∗ is simultaneously
changing, since it depends on m, so the numerical work to
find m∗ is nontrivial.

For values of ε between ε1 and ε2, the shape of frequentist
risk is of VVV-type, as it is shown in middle panel of Fig. 11.
In this case two local maxima for the frequentist risk appear
at a pair of θ = ±m1, m1 ≤ m∗. In the critical case that
defines the m∗, R(−m∗, δ∗) = R(−m1, δ

∗) = R(m1, δ
∗) =

R(m∗, δ∗), and increasing m above such m∗ will result in
R(±m∗, δB) < R(±m1, δB). Placing more mass at ±m1 will
result in higher payoff r and the three point prior is not the
least favorable any longer.

The case when ε > ε2 is most interesting since in the
wavelet shrinkage, values of ε closer to 1 produce shrinkage
rules of desirable shape. In this case, the frequentist risk is
V-shaped, which flattens at the endpoints for m = m∗, that
is, ∂R/∂θ|θ=m∗ = 0 (the right panel in Fig. 11). In this case
if we let m = m∗∗ > m∗ the frequentist risk will start to
decrease, so a prior with point masses that remain in points
m∗, which are now inner to [−m∗∗,m∗∗], will increase the
payoff function r, and the three point prior with masses at
0, ±m∗∗ will not be the least favorable any longer.

APPENDIX B. MODEL II
If in Model II the normal likelihood is replaced by the

marginal likelihood, after σ2 is integrated out, then we get
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Figure 12: Model II: Frequentist risk of the Γ-minimax rule, R(θ, δ∗), for ε = 0.2 (Left), 0.4 (Middle), and 0.9 (Right).

a double exponential density. In Model II, there are two risk
shapes, W and V V V , for ε ≤ ε1 and ε > ε1 respectively,
where ε1 is between 0.3 and 0.4. We show some plots below.

The argument is similar as in Model I, for the W-shape
(Left panel in Fig.12), a slight increase of m over m∗ will
make R(δ∗, 0) > R(δ∗,±m) and one can choose ±m1 in
the neighborhood of 0, so that transferring some point mass
from endpoints to ±m1 would increase the payoff. The ar-
gument for VVV-shaped risk (Middle and Right Panels in
Fig. 12) is the same as in the Model I.
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