APPENDIX A. CLAIM IN SECTION 2

Proof. First note that H,(t) =1— Q€(2é —t | Sn = Sops) is
a sample-dependent cumulative distribution function on the
parameter space. By equation (2.1), we denote both sides as
G(t), i.e. G(t) = pr*{6 — 0g <t | Sp = Sobs} = pr{és —0<
t |0 = 6} Now we can write H,(6y) = pr*(20s — 0 <
90 | SnA = Sobs) = Pr*(a - éSAZ éS - 00 | Sn = Sobs) =
1—G(0s — bp), for G(t) = pr(fs — 0 <t |0 =0y). The last
equality holds by equation (2.1). Since G(fs — ) | 6y ~
Unif(0,1) with respect to the sampling variability of fs,
H,(0p) = Hy, (6o, Sobs) ~ Unif(0,1). By definition, H,(-) is
a confidence distribution for 6. O

APPENDIX B. LEMMA 1

Proof. Following the notation established in the claim of
Section 2, first note that

’pr{@ ET1-a(S)0 =060} — (1 —a)
= [pr{W (0, 5,) € A1_al0 =60} — (1 — o)
S |pr*{v(97 Sn) S Al—a|Sn = Sobs} - (1 - Ol)‘
+ |pr{W (0, 5,) € A1_q|0 = 6o}
- pr*{V(Q, Sn) € A17Q|Sn = Sobs}’
and by the definition of A;_, in (4), | pr*{V (0, S,) € A1_, |
Sp = Sobs} —(1—a) |= 0(¢"), almost surely for a pre-selected
precision number, ¢’ > 0. Therefore, by Condition 1, we
have | pr{f € T1_4(Sn) | 0 = 6} — (1 — @) |= & where
§ = max{d., ¢’ }. Furthermore, if Condition 1 holds almost

surely, then | pr{d € T'1_4(Sn) | 0 = 6o} — (1 — a) |= 0o(9),
almost surely. O

APPENDIX C. THEOREM 1
Proof. f T =1T(0,S,) is an approximate pivot for S,, then

pr{T(0,5,) € A |0 =0} = / g(t)dt {1+ o(")}, (C.1)

teA

for any Borel set A C S. Given 6 and t, denote the solution of
t =T(0,s) by s¢9. The density functions g(t) and f,(s¢0]0)
are connected by a Jacobian matrix:

False0lO)ITD (0, 50.0) " = g(0){1 +0(5")}

where TM (6, S,,) = (0/95,)T (8, Sy).
For & ~ Q. (- | sobs) and corresponding summary S}, the
joint density of (¢,5),) conditional on the observed data, is

(C.2)

(0178;”571 = Sobs X rn(e)fn(sn | H)KE(S’H, - sobs)~
Let TV = T(¢#',5]). With a variable transformation from

(0',S.) to (¢',T"), the joint density of (¢’,T"), conditional
on the observed data, is

(0, 7" some 5 70 (0) [ fulsio | O)ITV (0, 500)| ] %

Ke(stﬂ - Sobs)

=1 (0) [9(){1 + 0(3")}| Ke(st.0 = 5o

where s, ¢ is the solution of t = T'(¢, S,,) and the equivalence
holds by (C.2). Integrating over the parameter space yields

T[S = sobs < [g(){1 +0(6")} /P
< g(t){1+0(0")},

provided (2.5) holds.
Now, consider W (60, S,) = T(0, S,) as a function of the
random sample given some fixed, unknown value of 6, by

(C.1)

Tn(a)Ks(Stﬂ — Sobs)do

pr{W(QvSn) €A | 0= 90} = /

teA

If we consider V(0,S,) = T(6,S,) and the joint density of
(0", S]) pairs then

g(t)dt{1 + o0(0)}.

g(t)dt{1 + o(8")}

tcA

pI‘*{V(e, Sn) e A | Sp = Sobs} =

thus satisfying Condition 1. Furthermore, by Lemma 1,
I'1—a(Sobs) in equation (2.3) is a (1 — «)100% confidence
region for 6. O

APPENDIX D. COROLLARY 1

Proof. By Theorem 1, it suffices to show that equation (2.4)
is free of ¢ in each case.

(a) Suppose S, ~ ¢g1(Sy, — ). Then Ty = T1(u, Sp,) = Sy —
p ~ gi1(t) is a pivot for S,. For any (¢, ) pair s, =t + p.
With a change of variables u = t+ p— sops and with 7, (u) o
1 we have

/ TH(N)KE(St,u - Sobs)d,u = / Kg(u)du7
7) — 00

which is free of ¢.

(b) Suppose S, ~ (1/0)g2(Sn/0). Then T = T(0,S,) =
Sp/o ~ g2(t) is a pivot. For any (¢,0) pair s;, = to. With
rn(0) < 1/0 and with a change of variables u = to — sops,
we have

1
/ T (0) Ke (81,6 — Sobs)do = / — K (to — sops)do
P

o 0
_ / = 1
o (u+sops)/t
which is free of ¢.

(c) Since we have already proven parts (a) and (b), part (c)
follows provided we select 1,(0) x 1/0 for 8 = (u, o).
Finally, to prove the last statement of the corollary first
note that the function Hy(Sn,z) = [*_ g1(Sn — u)du is a
CD for p when S, ~ ¢1(S, — u) because, for a given S,

1
Ks(u)gdu
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H,(S,x) is a distribution function on the parameter space
(—o00,00) and given z = po, H1(S,x) ~ U(0,1). Similarly,
the function Hy(S% 2) = 1 — [ g2(S/u)du is a CD for o2
when S, ~ (1/0)g2(Sn/0). O

APPENDIX E. REMARK ON DEGENERACY
OF ACCEPTANCE RATE

A natural question is whether Theorem 2 holds for a
larger €,,. We claim that the answer is negative, using the
following basic normal mean model as a counterexample.

Consider a univariate Gaussian model with mean 6 and
unit variance, and observations that are IID from the model
with 6 = 6y. Let r,(6) be a normal density with mean g,
and variance b2, where p,, and b, are constant sequences
satistying b, (un — 6p) = O(1) and b, = o(y/n) as n — oo,
and let S, be the sample mean. One can verify that r, and
S, satisfy the conditions of Theorem 2. The Gaussian kernel
with variance €2 is used for the acceptance/rejection. Then
the density of a linear transformation of 8 ~ Q. (0 | sobs) is
Gaussian with a closed form

V(o — és) | Sobs ~ N (0, nor?)

b 2A
where 02 = 2"

A and A, = b2 (n=1 +€?). Also,

V(fs —0) | 6y =

1 VnbtA,
1+ A, \/ﬁ(sobs - 9) + mbn(/«tn - 9)-

By algebra, the expectation of \/n(fg — 6) | 6o is o(1) only
when e, = o(b;1/2n_1/4), and the variance is no?+o(1) only
when e, = o(n~Y?) ore;;! = o(b2n~1/?). Since b, = o(/n),
both £, = o(by /*n=Y/4) and e;! = o(b2n"1/2) can not
hold simultaneously. Therefore Condition 1 is satisfied only
if £, = o(n=1/2).

APPENDIX F. THEOREMS 2 AND 3

The proof for Theorem 2 requires establishing Lemmas 1—
5 which are given in the Supplementary Material. Theorem
3 is proved after establishing Lemmas 6-7 given in the Sup-
plementary Material. The proofs of these technical lemmas
are contained in the Supplementary Material. It is helpful
to have a copy of both [2] and [1] (and their supplementary
material) on hand as these proofs rely on results from these
two publications.
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