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APPENDIX A. CLAIM IN SECTION 2
Proof. First note that Hn(t) = 1−Qε(2θ̂− t | Sn = sobs) is
a sample-dependent cumulative distribution function on the
parameter space. By equation (2.1), we denote both sides as
G(t), i.e. G(t) = pr∗{θ − θ̂S ≤ t | Sn = sobs} = pr{θ̂S − θ ≤
t | θ = θ0}. Now we can write Hn(θ0) = pr∗(2θ̂S − θ ≤
θ0 | Sn = sobs) = pr∗(θ − θ̂S ≥ θ̂S − θ0 | Sn = sobs) =

1−G(θ̂S − θ0), for G(t) = pr(θ̂S − θ ≤ t | θ = θ0). The last
equality holds by equation (2.1). Since G(θ̂S − θ0) | θ0 ∼
Unif(0, 1) with respect to the sampling variability of θ̂S,
Hn(θ0) = Hn(θ0, sobs) ∼ Unif(0, 1). By definition, Hn(·) is
a confidence distribution for θ.

APPENDIX B. LEMMA 1
Proof. Following the notation established in the claim of
Section 2, first note that∣∣pr{θ ∈ Γ1−α(Sn)|θ = θ0} − (1− α)

∣∣
=
∣∣pr{W (θ, Sn) ∈ A1−α|θ = θ0} − (1− α)

∣∣
≤
∣∣pr∗{V (θ, Sn) ∈ A1−α|Sn = sobs} − (1− α)

∣∣
+
∣∣pr{W (θ, Sn) ∈ A1−α|θ = θ0}
− pr∗{V (θ, Sn) ∈ A1−α|Sn = sobs}

∣∣
and by the definition of A1−α in (4), | pr∗{V (θ, Sn) ∈ A1−α |
Sn = sobs}−(1−α) |= o(δ′), almost surely for a pre-selected
precision number, δ′ > 0. Therefore, by Condition 1, we
have | pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1 − α) |= δ where
δ = max{δε, δ′}. Furthermore, if Condition 1 holds almost
surely, then | pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1 − α) |= o(δ),
almost surely.

APPENDIX C. THEOREM 1
Proof. If T = T (θ, Sn) is an approximate pivot for Sn then

pr{T (θ, Sn) ∈ A | θ = θ0} =

∫
t∈A

g(t)dt {1 + o(δ
′′
)}, (C.1)

for any Borel set A ⊂ S. Given θ and t, denote the solution of
t = T (θ, s) by st,θ. The density functions g(t) and fn(st,θ|θ)
are connected by a Jacobian matrix:

fn(st,θ|θ)|T (1)(θ, st,θ)|−1 = g(t){1 + o(δ
′′
)} (C.2)

where T (1)(θ, Sn) = (∂/∂Sn)T (θ, Sn).
For θ′ ∼ Qε(· | sobs) and corresponding summary S′n, the

joint density of (θ′, S′n) conditional on the observed data, is

(θ′, S′n)|Sn = sobs ∝ rn(θ)fn(Sn | θ)Kε(Sn − sobs).

Let T ′ = T (θ′, S′n). With a variable transformation from
(θ′, S′n) to (θ′, T ′), the joint density of (θ′, T ′), conditional
on the observed data, is

(θ′, T ′)|sobs ∝ rn(θ)
[
fn(st,θ | θ)|T (1)(θ, st,θ)|−1

]
×

Kε(st,θ − sobs)

= rn(θ)
[
g(t){1 + o(δ

′′
)}
]
Kε(st,θ − sobs),

where st,θ is the solution of t = T (θ, Sn) and the equivalence
holds by (C.2). Integrating over the parameter space yields

T ′|Sn = sobs ∝
[
g(t){1 + o(δ

′′
)}
] ∫
P
rn(θ)Kε(st,θ − sobs)dθ

∝ g(t){1 + o(δ
′′
)},

provided (2.5) holds.
Now, consider W (θ, Sn) = T (θ, Sn) as a function of the

random sample given some fixed, unknown value of θ, by
(C.1)

pr{W (θ, Sn) ∈ A | θ = θ0} =

∫
t∈A

g(t)dt{1 + o(δ)}.

If we consider V (θ, Sn) = T (θ, Sn) and the joint density of
(θ′, S′n) pairs then

pr∗{V (θ, Sn) ∈ A | Sn = sobs} =

∫
t∈A

g(t)dt{1 + o(δ
′′
)}

thus satisfying Condition 1. Furthermore, by Lemma 1,
Γ1−α(sobs) in equation (2.3) is a (1 − α)100% confidence
region for θ.

APPENDIX D. COROLLARY 1
Proof. By Theorem 1, it suffices to show that equation (2.4)
is free of t in each case.
(a) Suppose Sn ∼ g1(Sn − µ). Then T1 = T1(µ, Sn) = Sn −
µ ∼ g1(t) is a pivot for Sn. For any (t, µ) pair st,µ = t + µ.
With a change of variables u = t+µ−sobs and with rn(µ) ∝
1 we have∫

P
rn(µ)Kε(st,µ − sobs)dµ =

∫ ∞
−∞

Kε(u)du,

which is free of t.
(b) Suppose Sn ∼ (1/σ)g2(Sn/σ). Then T = T (σ, Sn) =
Sn/σ ∼ g2(t) is a pivot. For any (t, σ) pair st,σ = tσ. With
rn(σ) ∝ 1/σ and with a change of variables u = tσ − sobs,
we have∫
P
rn(σ)Kε(st,σ − sobs)dσ =

∫ ∞
0

1

σ
Kε(tσ − sobs)dσ

=

∫ ∞
0

1

(u+ sobs)/t
Kε(u)

1

t
du

which is free of t.
(c) Since we have already proven parts (a) and (b), part (c)
follows provided we select rn(θ) ∝ 1/σ for θ = (µ, σ).

Finally, to prove the last statement of the corollary first
note that the function H1(Sn, x) =

∫ x
−∞ g1(Sn − u)du is a

CD for µ when Sn ∼ g1(Sn − µ) because, for a given S,
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H1(S, x) is a distribution function on the parameter space
(−∞,∞) and given x = µ0, H1(S, x) ∼ U(0, 1). Similarly,
the function H2(S2, x) = 1 −

∫ x
0
g2(S/u)du is a CD for σ2

when Sn ∼ (1/σ)g2(Sn/σ).

APPENDIX E. REMARK ON DEGENERACY
OF ACCEPTANCE RATE

A natural question is whether Theorem 2 holds for a
larger εn. We claim that the answer is negative, using the
following basic normal mean model as a counterexample.

Consider a univariate Gaussian model with mean θ and
unit variance, and observations that are IID from the model
with θ = θ0. Let rn(θ) be a normal density with mean µn
and variance b−2

n , where µn and bn are constant sequences
satisfying bn(µn − θ0) = O(1) and bn = o(

√
n) as n → ∞,

and let Sn be the sample mean. One can verify that rn and
Sn satisfy the conditions of Theorem 2. The Gaussian kernel
with variance ε2

n is used for the acceptance/rejection. Then
the density of a linear transformation of θ ∼ Qε(θ | sobs) is
Gaussian with a closed form

√
n(θ − θ̂S) | sobs ∼ N(0, nσ2

ε)

where σ2
ε =

b−2
n ∆n

1+∆n
and ∆n = b2n(n−1 + ε2). Also,

√
n(θ̂S − θ) | θ0 =

1

1 + ∆n

√
n(sobs − θ) +

√
nb−1
n ∆n

1 + ∆n
bn(µn − θ).

By algebra, the expectation of
√
n(θ̂S − θ) | θ0 is o(1) only

when εn = o(b
−1/2
n n−1/4), and the variance is nσ2

ε+o(1) only
when εn = o(n−1/2) or ε−1

n = o(b2nn
−1/2). Since bn = o(

√
n),

both εn = o(b
−1/2
n n−1/4) and ε−1

n = o(b2nn
−1/2) can not

hold simultaneously. Therefore Condition 1 is satisfied only
if εn = o(n−1/2).

APPENDIX F. THEOREMS 2 AND 3
The proof for Theorem 2 requires establishing Lemmas 1–

5 which are given in the Supplementary Material. Theorem
3 is proved after establishing Lemmas 6–7 given in the Sup-
plementary Material. The proofs of these technical lemmas
are contained in the Supplementary Material. It is helpful
to have a copy of both [2] and [1] (and their supplementary
material) on hand as these proofs rely on results from these
two publications.
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