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SUPPLEMENTARY MATERIAL

6. NOTATION
Let N(x;µ,Σ) be the normal density at x with mean

µ and variance Σ, and f̃n(s | θ) = N{s; s(θ), A(θ)/a2
n},

the asymptotic distribution of the summary statistic. We
define an,ε = an if limn→∞ anεn < ∞ and an,ε = ε−1

n

otherwise, and cε = limn→∞ anεn, both of which summa-
rize how εn decreases relative to the converging rate, an, of
Sn in Condition 2 below. Define the standardized random
variables Wn(Sn) = anA(θ)−1/2{Sn − s(θ)} and Wobs =
anA(θ)−1/2{sobs− s(θ0)} and β0 = I(θ0)−1Ds(θ0)TA(θ0)−1

according to Condition 2 below.
Let fWn

(w | θ) and f̃Wn
(w | θ) be the density for

Wn(Sn) when Sn ∼ fn(· | θ) and f̃n(· | θ) respectively.
Let Bδ = {θ | ‖θ−θ0‖ ≤ δ} for δ > 0. Define the initial den-
sity truncated in Bδ, i.e. rn(θ)Iθ∈Bδ/

∫
Bδ
rn(θ) dθ, by rδ(θ).

Let t(θ) = an,ε(θ − θ0) and v(s) = ε−1
n (s − sobs). For any

A ∈ Bp where Bp is the Borel sigma-field on Rp, let t(A) be
the set {φ : φ = t(θ) for some θ ∈ A}. For a non-negative
function h(x), integrable in Rl, denote the normalized func-
tion h(x)/

∫
Rl h(x) dx by h(x)(norm). For a function h(x), de-

note its gradient by Dxh(x), and for simplicity, omit θ from
Dθ. For a sequence xn, we use the notation xn = Θ(an) to
mean that there exist some constants m and M such that
0 < m <| xn/an |< M <∞.

7. ADDITIONAL CONDITIONS
Condition 7. The kernel satisfies

(i)
∫
vKε(v)dv = 0;

(ii)
∏l
k=1 vikKε(v)dv < ∞ for any coordinates

(vi1 , . . . , vil) of v and l ≤ p+ 6;
(iii)Kε(v) ∝ Kε(‖v‖2Λ) where ‖v‖2Λ = vTΛv and Λ is a

positive-definite matrix, and K(v) is a decreasing function
of ‖v‖Λ; (iv) Kε(v) = O(exp{−c1‖v‖α1}) for some α1 > 0
and c1 > 0 as ‖v‖ → ∞.

Condition 8. There exists αn satisfying αn/a
2/5
n →∞ and a

density rmax(w) satisfying Condition 7(ii)–(iii) where Kε(v)
is replaced with rmax(w), such that supθ∈Bδ αn | fWn(w |
θ)− f̃Wn(w | θ) |≤ c3rmax(w) for some positive constant c3.
Condition 9. The following statements hold:

(i) rmax(w) satisfies Condition 7(iv); and
(ii) supθ∈BCδ f̃Wn(w | θ) = O(e−c2‖w‖

α2
) as ‖w‖ → ∞ for

some positive constants c2 and α2, and A(θ) is bounded in
P.
Condition 10. The first two moments,

∫
Rd sf̃n(s | θ)ds and∫

Rd s
T sf̃n(s | θ)ds, exist.

8. PROOF FOR THEOREM 2
Let

Q̃(θ ∈ A | s) =
∫
A
rδ(θ)f̃n(s | θ) dθ/

∫
Rp rδ(θ)f̃n(s | θ) dθ.

Lemma 2. Assume Condition 3–8. If εn = O(a−1
n ), for any

fixed ν ∈ Rd and small enough δ,

sup
A∈Bp

∣∣Q̃{an(θ − θ0) ∈ A | sobs + εnν} −∫
A

N [t;β0{A(θ0)1/2Wobs + cεν}, I(θ0)−1]dt
∣∣→ 0,

in probability as n → ∞, where β0 =
I(θ0)−1Ds(θ0)TA(θ0)−1.

Proof of Lemma 2: This result generalizes Lemma A1 in [1].
With Lemma A1 from [1], it is sufficient to show that

sup
A∈Bp

| Q̃{t(θ) ∈ A | sobs + εnν}− Π̃{t(θ) ∈ A | sobs + εnν} |

is oP (1) where Π̃ denotes the posterior distribution with
prior πδ(θ) and likelihood f̃n(s | θ). With the transforma-
tion t = t(θ) and v = v(s), the left hand side of the above
equation can be written as

sup
A∈Bp

|
∫
A
rδ(θ0 + a−1

n t)f̃n(sobs + εnν | θ0 + a−1
n t)dt∫

Rp rδ(θ0 + a−1
n t)f̃n(sobs + εnν | θ0 + a−1

n t)dt
−(8.1)∫

A
πδ(θ0 + a−1

n t)f̃n(sobs + εnν | θ0 + a−1
n t)dt∫

Rp πδ(θ0 + a−1
n t)f̃n(sobs + εnν | θ0 + a−1

n t)dt
| .

For a function τ : Rp → R, define the following auxiliary
functions,

φ1{τ(θ);n} =∫
t(Bδ)

|τ(θ0+a−1
n t)−τ(θ)|f̃n(sobs+εnν|θ0+a−1

n t) dt∫
t(Bδ)

τ(θ0+a−1
n t)f̃n(sobs+εnν|θ0+a−1

n t) dt
,

φ2{τ(θ);n} =

τ(θ)
∫
t(Bδ)

f̃n(sobs + εnν | θ0 + a−1
n t)dt∫

t(Bδ)
τ(θ0 + a−1

n t)f̃n(sobs + εnν | θ0 + a−1
n t)dt

.

Then by adding and subtracting φ2{τ−pn rδ(θ);n}φ2{π(θ);n}
in the absolute sign of (8.1), (8.1) can be bounded by

φ1{τ−pn rδ(θ);n}+ φ1{π(θ);n}φ2{τ−pn rδ(θ);n}
+φ1{τ−pn rδ(θ);n}φ2{π(θ);n}+ φ1{π(θ);n}.

Consider a class of function τ(θ) satisfying the following
conditions:
(1) There exists a series {kn}, such that
supθ∈P0

‖k−1
n Dτ(θ)‖ <∞ and kn = o(an);

(2) τ(θ0) > 0 and τ(θ) ∈ C1(Bδ).

By Conditions 3–6, τ−pn rδ(θ) and πδ(θ) belong to the
above class. Then if φ1{τ(θ);n} is op(1) and φ2{τ(θ);n}
is Op(1), (8.1) is op(1) and the lemma holds.

First, from the properties of τ(θ) mentioned above, there
exists an open set ω ⊂ Bδ such that infθ∈ω τ(θ) > c1, for a
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constant c1 > 0. Then for φ2{τ(θ);n}, it is bounded by

τ(θ)

c1
∫
t(ω)

f̃n(sobs + εnν | θ0 + a−1
n t)(norm)dt

,

where h(x)(norm) represents the normalized version of h(x).
From equation (7) in the supplementary material of [2],
f̃n(sobs + εnν | θ0 + a−1

n t) can be written in the following
form,

adnf̃n(sobs + εnν | θ0 + a−1
n t) =

1

‖Bn(t)‖1/2
N [Cn(t){An(t)t− bnν − c2}; θ0, Id], (8.2)

where An(t) is a series of d×pmatrix functions, {Bn(t)} and
{Cn(t)} are a series of d× d matrix functions, bn converges
to a non-negative constant and c2 is a constant, and the
minimum of absolute eigenvalues of An(t) and eigenvalues
of Bn(t) and Cn(t) are all bounded and away from 0. Then
for fixed ν, by continuous mapping, (8.2) is away from zero
with probability one. Therefore φ2{τ(θ);n} = OP (1).

Second, by Taylor expansion, τ(θ0 + a−1
n t) = τ(θ0) +

a−1
n Dτ(θ0 + ett)t, where ‖et‖ ≤ a−1

n . Then φ1{τ(θ);n} is
equal to

knφ2{τ(θ);n}
anτ(θ)

∫
t(Bδ)

|k−1
n Dτ(θ0+ett)t|f̃n(sobs+εnν|θ0+a−1

n t) dt∫
t(Bδ)

f̃n(sobs+εnν|θ0+a−1
n t) dt

≤(
knφ2{τ(θ);n}

anτ(θ) supθ∈Bδ ‖k
−1
n Dτ(θ)‖

)
×( ∫

t(Bδ)
‖t‖adnf̃n(sobs+εnν|θ0+a−1

n t)dt∫
t(Bδ)

adnf̃n(sobs+εnν|θ0+a−1
n t) dt

)
, (8.3)

where the inequality holds by the triangle inequality. By the
expression (8.2) and Lemma 7 in the supplementary material
of [2], the right hand side of (8.3) is OP (1). Then together
with φ2{τ(θ);n} = ΘP (1), φ1{τ(θ);n} = oP (1). Therefore
the Lemma holds. �

Define the joint density of (θ, s) in Algorithm 1 and
its approximation, where the s-likelihood is replaced by its
Gaussian limit and rn(θ) by its truncation, by qε(θ, s) and
q̃ε(θ, s). Then

qε(θ, s) =
rn(θ)fn(s|θ)Kεn(s− sobs)∫

Rp×Rd rn(θ)fn(s|θ)Kεn(s− sobs) dθds
,

q̃ε(θ, s) =
rδ(θ)f̃n(s|θ)Kεn(s− sobs)∫

Rp×Rd rδ(θ)f̃n(s|θ)Kεn(s− sobs) dθds
.

Let Q̃ε(θ ∈ A | sobs) be the approximate confidence distri-
bution function equal to

∫
A

∫
Rd q̃ε(θ, s) dsdθ. With the trans-

formation t = t(θ) and v = v(s), let

q̃ε,tν(t, v) = τ−pn rδ(θ0 +a−1
n,εt)f̃n(sobs +εnν | θ0 +a−1

n,εt)Kε(ν)

be the transformed and unnormalized q̃ε(θ, s), and

q̃A,tv(h) =

∫
A

∫
Rd
h(t, v)q̃ε,tν(t, v) dvdt

for any function h(·, ·) in Rp × Rd. Denote the fac-
tor of q̃ε,tν(t, v), τ−pn rδ(θ0 + a−1

n,εt), by γn(t). Let γ =
limn→∞ τ−pn rδ(θ) and γ(t) = limn→∞ τ−pn rδ(θ0 + τ−1

n t), the
limits of γn(t) when an,ε = an and an,ε = τn respectively.
By Condition 4 and 5, γ(t) exists and γ is non-zero with
positive probability.

Next several functions of t and v defined in [1, proofs
for Section 3.1] and relate to the limit of q̃ε,tν(t, v) are used,
including g(v;A,B, c), gn(t, v), Gn(v) and g′n(t, v).

Furthermore, several functions defined by integration as
following are used: for any A ∈ Bp, let

gA,r(h) =

∫
Rd

∫
t(A)

h(t, v)γn(t)gn(t, v) dtdv,

Gn,r(v) =

∫
t(Bδ)

γn(t)gn(t, v) dt,

qA(h) =

∫
A

∫
Rd
h(θ, s)rn(θ)fn(s | θ)Kε(s− sobs)ε

−d
n dsdθ,

q̃A(h) =

∫
A

∫
Rd
h(θ, s)rδ(θ)f̃n(s | θ)Kε(s− sobs)ε

−d
n dsdθ,

which generalize those defined in [1, proofs for Section 3.1]
for the case rn(θ) = π(θ).

Lemma 3. Assume Condition 3–7. If εn = o(a
−1/2
n ), then

(i)
∫
Rd
∫
t(Bδ)

|q̃ε,tν(t, ν)− γn(t)gn(t, ν)| dtdν = op(1);
(ii) gBδ,r(1) = ΘP (1);
(iii) q̃Bδ,tv(tk1vk2)/q̃Bδ,tv(1) = gBδ,r(t

k1vk2)/gBδ,r(1) +
OP (a−1

n,ε) + OP (a2
nε

4
n) for pairs (k1, k2) =

(0, 0), (1, 0), (1, 1), (0, 1), and (0, 2);
(iv) q̃Bδ(1) =

τpna
d−p
n,ε

{∫
t(Bδ)

∫
Rd γn(t)gn(t, ν)dτdν +OP (a−1

n,ε) +OP (a2
nε

4
n)
}
.

Proof of Lemma 3: These results generalize parts of Lemma
A2 in [1] (corresponding to items (i) and (ii) above) and
Lemma 5 in [2] (corresponding to items (iii) and (iv)
above).

To prove part (i), note that in Lemma A2 of [1]
γn(t) = π(θ0 + a−1

n,εt), and (i) holds by expanding
q̃ε,tν(t, v) according to the proof of Lemma 5 of [2]. For
γn(t) = τ−pn rδ(θ0 + a−1

n,εt) this can be similarly proved by
changing the terms involving π(θ) in equations (10) and
(11) in the supplements of [2]. Equation (10) is replaced by

γn(t)

|A(θ+a−1
n,εt)|1/2

= γn(t)
|A(θ)|1/2 + a−1

n,εγn(t)D 1
|A(θ+et)|1/2

t,

where ‖eτ‖ ≤ δ, and this leads to replacing
π(θ0)

∫
τ(Bδ)×Rd gn(t, ν)dtdν in equation (11) by



3∫
τ(Bδ)×Rd γn(t)gn(t, ν)dtdν. These changes have no effect
on the arguments therein since supt∈t(Bδ) γn(t) = OP (1) by
Condition 4. Therefore (i) holds.

For (ii), By Condition 5 and Lemma A2 of [1], there
exists a δ′ < δ such that inft∈t(Bδ′ ) γn(t) = Θp(1) and∫
Rd
∫
t(Bδ′ )

gn(t, ν) dtdv = Θp(1). Then since gBδ,r(1) ≥
inft∈t(Bδ′ ) γn(t)

∫
Rd
∫
t(Bδ′ )

gn(t, ν) dtdν, (ii) holds.
For (iii), if (k1, k2) = (1, 0) then q̃Bδ,tv(t)/q̃Bδ,tv(1)

can be expanded by following the arguments in the proof
of Lemma 5 of [2]. For the other pairs of (k1, k2),
q̃Bδ,tv(t

k1vk2)/q̃Bδ,tv(1), can be expanded similarly as in the
proof of Lemma 4 from [1].

For (iv), γn(t) plays the same role as π(θ) in the proof of
Lemma 5 in [2], and the arguments therein can be followed
exactly. The term τpn is from the definition of γn(t) that
rn(θ0 + a−1

n,εt) = τpnγn(t). �
Recall the definition of the estimator θε =

∫
θdQε(θ |

sobs)dθ. Define the expectation of θ with distribution
Q̃ε(θ ∈ A | sobs) as θ̃ε and the expectation of the regres-
sion adjusted values, θ∗ with density q̃ε(θ, s) as θ̃∗ε . Let
EG,r(·) be the expectation with the density Gn(v)(norm),
and EG,r{h(v)} can be written as gBδ,r{h(v)}/gBδ,r(1). Let
ψ(ν) = k−1

n β0{A(θ0)1/2Wobs + anεnν}, where kn = 1, if
cε <∞, and anεn, if cε =∞.
Lemma 4. Assume Condition 3–6 and 7. Then if εn =
o(a
−1/2
n ),

(i) θ̃ε = θ0 + a−1
n β0A(θ0)1/2Wobs + εnβ0EGn,r(ν) + r1,

where r1 = oP (a−1
n );

(ii) θ̃∗ε = θ0+a−1
n β0A(θ0)1/2wobs+εn(β0−βε)EGn,r(ν)+r2,

where r2 = oP (a−1
n ).

Proof of Lemma 4: These results generalize Lemma A3(c)
and Lemma A5(c) in [1] in the sense of permitting use of a
data-dependent rn(θ), however here we are only considering
εn = o(a

−1/2
n ) in contrast to Lemma A5(c) in [1] which

assumes the less stringent condition that εn = o(a
−3/5
n ).

With the transformation t = t(θ), by Lemma 2, if εn =

o(a
−1/2
n ),
θ̃ε = θ0 + a−1

n,εq̃Bδ,tν(t)/q̃Bδ,tν(1)

= θ0 + a−1
n,εgBδ,r(t)/gBδ,r(1) + op(a

−1
n ),

θ̃∗ε = θ0 + a−1
n,εq̃Bδ,tν(t)/q̃Bδ,tν(1)− εnβεq̃Bδ,tν(ν)/q̃Bδ,tν(1)

= θ0 + a−1
n,εgBδ,r(t)/gBδ,r(1)− εnβεEan,r(ν) + op(a

−1
n ),

(8.4)

where the remainder term comes from the fact that (a−1
n,ε +

εn)
{
Op(a

−1
n,ε) +Op(a

2
nε

4
n)
}

= op(a
−1
n ).

First the leading term of gBδ,r(tνk) is derived for k = 0
or 1. The case of k = 1 will be used later. Let t′ = t−ψ(ν),
then

gBδ,r(tν
k2) =

∫
Rd

∫
t(Bδ)

{t′ + ψ(ν)}νk2γn(t)gn(t, ν) dtdν

=

∫
Rd
ψ(ν)νk2Gn,r(ν) dν

+

∫
Rd

∫
t(Bδ)

t′νk2γn(t)gn(t, ν) dtdν.

By matrix algebra, it is straightforward to show that
gn(t, v) = N{t;ψ(v), k−2

n I(θ0)−1}Gn(v). Then with the
transformation t′, we have

gBδ,r(tν
k2)−

∫
Rd
ψ(ν)νk2Gn,r(ν) dν =

∫
Rd
∫
t(Bδ)−ψ(ν)

t′νk2γn{ψ(ν) + t′}N
{
t′; 0, k−2

n I(θ0)−1
}
Gn(ν) dt′dν.

By applying the Taylor expansion on γn{ψ(ν)+t′}, the right
hand side of the above equation is equal to
∫
Rd
∫
t(Bδ)−ψ(ν)

t′N{t′; 0, k−2
n I(θ0)−1} dt′ · γn{ψ(ν)}νk2Gn(ν) dν

+
∫
Rd
∫
t(Bδ)−ψ(ν)

t′2Dtγn{ψ(ν) + et}N{t′; 0, k−2
n I(θ0)−1} dt′ · νk2Gn(ν)dν =

k−1
n

∫
Rd
∫
Qv
t′′N{t′′; 0, I(θ0)−1} dt′′ · γn{ψ(ν)}νk2Gn(ν) dν (8.5)

+k−2
n

∫
Rd
∫
Qv
t′′2Dtγn{ψ(ν) + et}N{t′′; 0, I(θ0)−1} dt′′ · νk2Gn(ν) dν,

where Qv = {an(θ − θ0)− knψ(ν) | θ ∈ Bδ}
and t′′ = knt

′. Since Qv can be written as{
an(θ − θ0 − β0εnν)− β0A(θ0)1/2Wobs | θ ∈ Bδ

}
, it

converges to Rp for any fixed v with probability
one using the dominated convergence theorem. Then∫
Qv
t′′N{t′′; 0, τ(θ0)−1} dt′′ = oP (1) for fixed v, and by the

continuous mapping theorem and Condition 4, the first
term in the right hand side of (8.5) is of the order op(k−1

n ).
The second term is bounded by

k−2
n supt∈R ‖Dtγn(t)‖

∫
Rp ‖t

′′‖2N{t′′; 0, I(θ−1
0 )} dt′′

∫
Rd ν

k2Gn(ν), dν,

which is of the order Op(k
−2τn/an,ε) by Condition 6.

Therefore

gBδ,r(tν
k2) =

∫
Rd
ψ(ν)νk2Gn(ν)dν + oP (k−1

n ). (8.6)

By algebra, kn = a−1
n,εan, and∫

Rd ψ(ν)νk2Gn(ν)dν =

an,εβ0{a−1
n A(θ0)1/2Wobs

∫
Rd ν

k2Gn,r(ν) dν + εn
∫
Rd ν

k2+1Gn,r(ν) dν}.(8.7)

Then (i) and (ii) in the Lemma holds by plugging the ex-
pansion of gBδ,r(t) into (8.4).

�

Lemma 5. Assume Condition 3, 4, 2–9. Then as n→∞,

(i) For any δ < δ0, rBcδ (1) and q̃Bcδ (1) are op(τpn). More

specifically, they are of the order Op
(
τpne
−aαδn,εcδ

)
for

some positive constants cδ and αδ depending on δ.
(ii) qBδ(1) = q̃Bδ(1){1 + Op(α

−1
n )} and supA⊂Bδ |qA(1) −

q̃A(1)|/q̃Bδ(1) = Op(α
−1
n );

(iii) if εn = o(a
−1/2
n ), then q̃Bδ(1) and rBδ(1) are

ΘP (τpna
d−p
n,ε ), and thus q̃P0

(1) and qP0
(1) are

ΘP (τpna
d−p
n,ε );

(iv) if εn = o(a
−1/2
n ), θε = θ̃ε + op(a

−1
n,ε). If εn = o(a

−3/5
n ),

θε = θ̃ε + oP (a−1
n ).
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Proof of Lemma 5: This generalizes Lemma 2 in the supple-
ments of [1]. The arguments therein can be followed exactly,
by Condition 4 and the fact that regarding π(θ), only the
condition supθ∈Rp π(θ) <∞ is used.

�

Lemma 6. Assume Condition 3, 4, 2–9.

(i) For any δ < δ0, Qε(θ ∈ Bcδ | sobs) and Q̃ε(θ ∈ Bcδ | sobs)
are op(1);

(ii) There exists some δ < δ0 such that

sup
A∈Bp

|Qε(θ∈A∩Bδ | sobs)−Q̃ε(θ∈A∩Bδ | sobs)| = op(1);

(iii) an,ε(θε − θ̃ε) = op(1) .

Proof of Lemma 6: This lemma generalizes Lemma A3 of [1].
The proof of Lemma A3 of [1] only needs Lemma 3 and 5
from [2] to hold. The result that qBcδ{h(θ)} = Op(τ

p
ne
−aαδn,εcδ)

for some positive constants αδ and cδ, which generalizes the
case of rn(θ) = π(θ) in Lemma 3 of [2], holds by Condition
4, since the latter only uses the fact that supθ∈Bcδ π(θ) <∞.
Then the arguments in the proof of Lemma 3 in [2] can be
followed exactly, despite the term τpn that is not included in
the order of πBcδ{h(θ)}, since Qε(θ ∈ A | sobs) is the ratio
qA(1)/qRp(1). Since Lemma 5 in [2] has been generalized by
Lemma (3) above, the arguments of the proof of Lemma
A3 in [1] can be followed exactly. �

With the above lemmas holding for εn = o(a
−1/2
n ), lines

for proving Proposition 1 in [1] can be followed exactly to
finish the proof of Theorem 2.

9. PROOF OF THEOREM 3
Lemma 7. Assume Condition 3–10. If εn = op(a

−3/5
n ), then

anεn(βε − β0) = o(1).
Proof of Lemma 7: This generalizes Lemma A4 in [1] by
replacing π(θ0 + a−1

n,εt) therein with γn(t). By Condition 4
and the arguments in the proof of Lemma A4 in [1], it can
be shown that

qRp{(θ−θ0)k1 (s−sobs)
k2}

qRp (1) = a−k1n,ε ε
−k2
n

{
q̃Bδ,tv(tk1νk2 )

q̃Bδ,tv(1) +Op(α
−1
n )
}
.

Then by Lemma 2 (iii), the right hand side of the above is
equal to

a−k1n,ε ε
−k2
n

{
gBδ,r(tk1νk2 )

gBδ,r(1) +Op(a
−1
n,ε) +Op(a

2
nε

4
n) +Op(α

−1
n )
}
.

Since βε = Covε(θ, Sn)Varε(Sn)−1,

anεn(βε − β0) = kn

[
gBδ,r(tν)

gBδ,r(1) −
gBδ,r(t)gBδ,r(ν)

gBδ,r(1)2 + op(k
−1
n )
]
×

[
gBδ,r(ννT )

gBδ,r(1) −
gBδ,r(ν)gBδ,r(ν)T

gBδ,r(1)2 + op(k
−1
n )
]−1

− anεnβ0,

where the equations that a−1
n,εkn = o(1), a2

nε
4
nkn = o(p), and

α−1
n kn = o(a

−2/5
n kn) = o(1) are used. By algebra, the right

hand side of the equation above can be rewritten as{
gBδ,r{(knt−anεnβ0ν)ν}

gBδ,r(1) − gBδ,r(knt−anεnβ0ν)gBδ,r(ν)

gBδ,r(1)2 + op(1)
}
×{

EG,r(νν
T )− EG,r(ν)EG,r(ν)T + op(k

−1
n )
}−1

.

By plugging (8.6) and (8.7) in the above, anεn(βε − β0) is
equal to

{
EG,r(ν)β0A(θ0)1/2Wobs − EG,r(ν)β0A(θ0)1/2Wobs + op(1)

}
×

{VarG,r(ν) + op(k
−1
n )}−1

= oP (1){VarG,r(ν) + op(k
−1
n )}−1.

Since
VarG,r(ν) ≥

inft∈t(B
δ′ )

γn(t)

gBδ,r(1)

∫
Rd
∫
t(Bδ′ )

{ν − EG,r(ν)}2gn(t, ν) dtdν,

where δ′ is defined in the proof of Lemma 3(ii), we have
VarG,r(ν)−1 = Θp(1). Therefore anεn(βε − β0) = op(1). �

Lemma 8. Results generalizing Lemma A5 in [1], i.e. re-
placing Πε and Π̃ε therein with Qε and Q̃ε, hold.

Proof of Lemma 8: In [1], the proof of Lemma A5 in [1] re-
quires Lemma A4 and Lemma 2 in the supplements therein
to hold. Since we have show that their generalized results
hold for εn = op(a

−1/2
n ), (see Lemma 7 and Lemma 5 above),

the proof of this lemma for εn = op(a
−3/5
n ) follows the same

arguments in [1], replacing π(θ) with a rn(θ) that satisfies
conditions 3 – 6.

�
With all above lemmas, the proof of Theorem 3 holds

by following the same arguments as those in the proof of
Theorem 1 in [1].
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