SUPPLEMENTARY MATERIAL

6. NOTATION

Let N(z;u,>) be the normal density at z with mean
1 and variance ¥, and f,(s | 6) = N{s;s(0), A(0)/a2},
the asymptotic distribution of the summary statistic. We
define a, . = a, if lim,,o ane, < 00 and ap. = el
otherwise, and ¢, = lim,,_.o a,&,, both of which summa-
rize how g,, decreases relative to the converging rate, a,,, of
S, in Condition 2 below. Define the standardized random
variables W,,(S,) = a,A(0)~/2{S, — s(0)} and Wops =
an A(0) 1 ?{so1s — 5(60)} and By = I(00) ' Ds(6)" A(6p) !
according to Condition 2 below.

Let fw, (w | ) and fw, (w | 0) be the density for
Wo(S,) when S, ~ fo(- | 6) and f,(- | ) respectively.
Let Bs = {6 | || —00|| < 0} for § > 0. Define the initial den-
sity truncated in Bs, i.e. 7,(0)loen;/ [, 7n(0) dO, by 5(0).
Let t(0) = an.-(0 — 0y) and v(s) = €, (s — Sops). For any
A € B? where B? is the Borel sigma-field on RP, let t(A) be
the set {¢ : ¢ = t(#) for some § € A}. For a non-negative
function h(z), integrable in R!, denote the normalized func-
tion h(z)/ [p h(z) dz by h(z)°™). For a function h(z), de-
note its gradient by D, h(z), and for simplicity, omit 6 from
Dy. For a sequence x,,, we use the notation x,, = ©(a,) to
mean that there exist some constants m and M such that
0<m<|an/a, |< M < 0.

7. ADDITIONAL CONDITIONS

Condition 7. The kernel satisfies
(i) [vK.(v)dv = 0;
GD[They v K-(v)do < o0
(Viyy...,v;) of vand I < p+ 6;
(iii) K. (v) o< K.(||v]|3) where |[v]|3 = vTAv and A is a
positive-definite matrix, and K(v) is a decreasing function
of ||v|la; (iv) K:(v) = O(exp{—ci1]|jv]|**}) for some a; > 0
and ¢; > 0 as |[v|| = oo.

for any coordinates

Condition 8. There exists «, satisfying Ozn/a?/5 — oo and a
density 4, (w) satisfying Condition 7(ii)—(iii) where K. (v)
is replaced with 7,42 (w), such that supyep, an | fw, (w |
0) — fw,, (w | 0) |< csTmaz(w) for some positive constant cs.
Condition 9. The following statements hold:

(1) rmax(w) satisfies Condition 7(iv); and

(ii) supge pe fw, (w | 0) = O(e==*17?Y as |lw|| — oo for
some positive constants ¢ and @z, and A(#) is bounded in
P.
Condition 10. The first two moments, [p, sfu(s | 8)ds and
Joa 8T Fn(s | 0)ds, exist.

8. PROOF FOR THEOREM 2
Let

QO e Als)=[,rs5(0)fu(s|0)db/ [, m5(0)Fu(s | 6) .

1

Lemma 2. Assume Condition 3-8. If ¢,, = O(a,!), for any
fixed v € R% and small enough 4,

sup |Q{an(9 —0p) € A| Sobs + EnV} —
AeBr

/ N[t; ﬁo{A(90)1/2Wobs + Cgl/}, 1(6‘0)_1}dt| — 0,
A

in probability as n — where [y =

1(90)71DS(90)TA(90)71.

Proof of Lemma 2: This result generalizes Lemma Al in [1].
With Lemma Al from [1], it is sufficient to show that

o,

sup | Q{t(0) € A | Sops +env} —TI{t(0) € A | Sobs +Env} |
AeBr

is 0p(1) where II denotes the posterior distribution with
prior 7s(#) and likelihood f,(s | #). With the transforma-
tion t = ¢(f) and v = v(s), the left hand side of the above
equation can be written as

Ja75(00 + ay't) fulSobs + env | 00 + ay, ' t)dt B

Jon 7560 + an ) fu(Sobs + ens | 6o + az 't)dt
[4 7500 + ay ') fu(sobs + env | 0 + ay 't)dt
Jro 75 (00 + am ') fu(Sobs + €nv | 00 + an 't)dt

sup |
AeBr

(8.1)

For a function 7 :
functions,

RP — R, define the following auxiliary

¢1{7(0);n} =
ft(B5) |T(60+a;1t)_7—(9)|fn(50bs+€n7j|90+a;1t) dt
ft(Bs) 7'(90"‘“;115))?71(Sobs+€n1/|00+a;1t) dt ’
¢2{7(0);n} =
7(0) [y, fn(Soms + €nv | 0 + ag t)dt
Jripay T(00 + @i t) Fu(sons + env | 60 + an ' t)dt

Then by adding and subtracting ¢2{7,, ?rs(0); n}d2{m(0);n}
in the absolute sign of (8.1), (8.1) can be bounded by

o1{r, Prs(0);n} + @1 {m(0);n}do{r, Prs(0);n}
+¢1{7,, Prs(0);n}do{m(0);n} + ¢p1{m(0);n}.

Consider a class of function 7(0) satisfying the following
conditions:

(1) There exists a series {ky},
supgep, [[kn ' DT(0)| < oo and ky, = o(an);
(2) 7(6p) > 0 and 7(0) € C1(Bs).

By Conditions 3-6, 7,,Prs(f) and 7s(6) belong to the
above class. Then if ¢1{7(0);n} is o0,(1) and ¢o{7(0);n}
is Op(1), (8.1) is 0p(1) and the lemma holds.

First, from the properties of 7(#) mentioned above, there
exists an open set w C By such that infge,, 7(0) > ¢4, for a

such  that
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constant ¢; > 0. Then for ¢o{7(0);n}, it is bounded by

7(0)
€1 iy fn(Sobs +env | 60 + ap 't)(morm) g’

where h(z)™"™) represents the normalized version of h(z).
From equation (7) in the supplementary material of [2],
fn(sobs + env | B0 + a,'t) can be written in the following
form,

aﬁfn(sobs +env | 6o+ a;lt) =

WN[Cn(ﬁ{An(t)t —byv — c2}; 00, 14], (8.2)

where A, (t) is a series of d x p matrix functions, {B, (¢)} and
{Cy(t)} are a series of d x d matrix functions, b,, converges
to a non-negative constant and c; is a constant, and the
minimum of absolute eigenvalues of A, (t) and eigenvalues
of B,(t) and C,(t) are all bounded and away from 0. Then
for fixed v, by continuous mapping, (8.2) is away from zero
with probability one. Therefore ¢p2{7(8);n} = Op(1).

Second, by Taylor expansion, 7(6y + a,'t) = 7(6) +
a, 'D7(0 + eit)t, where |le;]| < a,!. Then ¢1{7(0);n} is
equal to

knd2{T(0);n} ft(Bé) |k;1DT(GB"‘@tt)t‘fn(Sobs+€nV|‘90+a;1t) dt
ant(6) ft<55) fn(sobs+€nV|00+a;1t) dt
<

n 7(0);n _
o2z suppe s, [ Dr(6)]) %

ft(Ba) Ht”a:}{fn(Sobs+5nl"60+a;1t)dt
ft(Bé)aiﬁL(sostrenV\aoJrath) dat )’

(8.3)

where the inequality holds by the triangle inequality. By the
expression (8.2) and Lemma 7 in the supplementary material
of [2], the right hand side of (8.3) is Op(1). Then together
with ¢o{7(0);n} = ©p(1), p1{7(0);n} = op(1). Therefore
the Lemma holds. (|

Define the joint density of (6,s) in Algorithm 1 and
its approximation, where the s-likelihood is replaced by its
Gaussian limit and r,(6) by its truncation, by ¢.(6, s) and
G=(0,s). Then

s) = rn(e)fn(s‘a)Ksn (S - Sobs)
qs(g’ ) f]RPx]Rd Tn(g)fn(SW)Ksn (5 - Sobs) d@ds’
G(0.5) = r5(0)Fn(510) K-, (5 — Sobs) .
flR{Pde T5(9)fn(5|9)Kan (5 - Sobs) dOds

Let QE(G € A | sobs) be the approximate confidence distri-
bution function equal to [, [¢4 ¢=(0, s) dsdf. With the trans-
formation t = ¢(f) and v = v(s), let

et (t,0) = Tn_pm(Go—l-a;)lst)fn(sobs+€nu | 90+a;71€t)K5(1/)

be the transformed and unnormalized ¢. (8, s), and
Ga(h) = / Bt v)e. (2, 0) dodt
A JRd

for any function A(-,-) in R? x RZ Denote the fac-
tor of Geu(t,v), 7,7r5(60 + ayLlt), by vu(t). Let v =
limy, 00 7, Pr5(0) and y(t) = lim, o0 7, Pr5(00 + 7, 1t), the
limits of v, (t) when a,. = a, and a,. = 7, respectively.
By Condition 4 and 5, v(t) exists and 7 is non-zero with
positive probability.

Next several functions of ¢ and v defined in [1, proofs
for Section 3.1] and relate to the limit of §. 4, (¢, v) are used,
including g(v; A, B, ¢), gn(t,v), G, (v) and g, (¢,v).

Furthermore, several functions defined by integration as
following are used: for any A € BP, let

sar = [ [ 00000 i,

Gan: nt nt,’Udt,
() /Wv ()gn(t,v)
qa(h) = /A/Rd h(0,8)7(0) fnls | 0)Ke(s — Sobs)e, @ dsdh,

Ga(h) = /A /R B8, 5)7s(6) (s | OV (s — o) ddb,

which generalize those defined in [1, proofs for Section 3.1]
for the case r,(0) = 7(6).

Lemma 3. Assume Condition 3-7. If ¢, = o(a;1/2), then

(i) f]Rd ft(Bg) |q‘s,tv(t7 V) - 'Yn(t)gn(tv V)| dtdv = Op(l)S

(1) 93 (1) = Op(1):

(i) Gop o (10) G5, 00(1) = gy (057) g3, (1) +
Op(a,t) + Op(aler) for vpairs (ki ko) =
(0,0),(1,0),(1,1),(0,1), and (0, 2);

(iv) gps(1) =

72082 { [y ) Joa (O gn(t,v)drdv + Op(azh) + Op(aZel) }

Proof of Lemma 3: These results generalize parts of Lemma
A2 in [1] (corresponding to items (i) and (i) above) and
Lemma 5 in [2] (corresponding to items (i) and (iv)
above).

To prove part (i), note that in Lemma A2 of [I]
() = w0 + a,lt), and (i) holds by expanding
Ge 1 (t,v) according to the proof of Lemma 5 of [2]. For
Yn(t) = 7, 7r5(00 + a, -t) this can be similarly proved by
changing the terms involving 7() in equations (10) and
(11) in the supplements of [2]. Equation (10) is replaced by

200 = = +a;,ls’Yn(t)D\A(aJrlet)llntv

[A(0+az )| /2~ A®0)]'/2
where |le-||] < 6, and this leads to replacing
7(0o) fT(B{s)X]Rd gn(t,v)dtdv  in  equation (11) by



fT(Bé)de Yn(t)gn(t,v)dtdv. These changes have no effect
on the arguments therein since sup,¢,(g,) 7 (t) = Op(1) b
Condition 4. Therefore (i) holds.

For (i), By Condition 5 and Lemma A2 of [1], there
exists a 0’ < 0 such that infycp,,)Vn(t) = O,(1) and
Jza ft(Bél)gn(t,Z/) dtdv = ©,(1). Then since gp;,(1) >
infico(B,) Yn(t) fpa ft(Bél) gn(t,v)dtdv, (ii) holds.

For (i), if (k1,k2) = (1,0) then §p; 1v(t)/dBst0(1)
can be expanded by following the arguments in the proof
of Lemma 5 of [2]. For the other pairs of (ki,k2),
dB;s .10 (t*19%2) /G5, 1»(1), can be expanded similarly as in the
proof of Lemma 4 from [1].

For (iv), v, (t) plays the same role as 7(6) in the proof of
Lemma 5 in [2], and the arguments therein can be followed
exactly. The term 7P is from the definition of ~,(¢) that
(0o + ay Lt) = T2, (). O

Recall the definition of the estimator 6. = [6dQ.(0 |
Sobs)df. Define the expectation of 6 with distribution
Q-(0 € A | s50ps) as . and the expectation of the Tegres-
sion adjusted values, 6* with density ¢.(0,s) as 6%. Let
Eg.(-) be the expectation with the density G, (v)®o™),
and Eg ,{h(v)} can be written as gg, -{h(v)}/gB;, T(l). Let
Y(v) = k' Bo{A(60)*Wops + anenv}, where k, = 1, if
Ce < 00, and ApEn, if cc = oco.

Lemma 4. Assume Condition 3-6 and 7. Then if &, =

o(an'"?),

(i) 6= = 00 + ay ' BoA(00) *Wops + enBoEc, »(v) + 11,
where 1 = 0p( —1);

(i) 67 =6o+ay ﬂoA(ao) Y2Wobs +en(Bo—Be)Ec, . (V) +72,
where ro = op(a;?t).

Proof of Lemma 4: These results generalize Lemma A3(c)
and Lemma A5(c) in [1] in the sense of permitting use of a
data-dependent 7,,(0), however here we are only considering

En = o(agl/z) in contrast to Lemma A5(c) in [1] which
assumes the less stringent condition that e, = o(a, 3/ 5)
With the transformation ¢ = ¢(#), by Lemma 2, if ¢,, =

o(an'’?),

0. =0y + p L3Bs .10 (t) /4By 10 (1)
=00+ a;, L9B;.r(t)/9B5.r (1) + 0p(ay ),

07 = 60 + ay LBy .00(t) /38500 (1) = €nBey v (V) /GBy .10 (1)
=0+ a:z,lsng,r (t)/9B5,r(1) — enBeba, »(v) + Op(agl)v

(8.4)

where the remamder term comes from the fact that (a, L +
e) {Oplanl) + Opla2el)} = oy(azl).

First the leadmg term of gp, ,(tv*) is derived for k = 0
or 1. The case of k = 1 will be used later. Let ' =t — ¢(v),
then

/ / {t/ + w( )}VkQ'Yn( )gn(t 1/) dtdv
Re J4(Bs)

9357

- /Rd Y)W G (V) dy

/ / t'v*2, () gn(t, v) dtdy.
R¢ Jt(Bs)

By matrix algebra, it is straightforward to show that
gn(t,v) = N{t;9(v),k,21(0p) 1 }Gpn(v). Then with the
transformation t’, we have

7,[1(1/)1/’“2Gn,r(1/) dv =

Jpa 'L(Bé)ﬂ/) w t/l/kz"m{i/)(ll )+ N {150,k 21(60) '} Gu(v) dt'du.

gBéaT'(thZ) -

By applying the Taylor expansion on 7y, {1 (v)+t'}, the right
hand side of the above equation is equal to

Jpa j;(Bé)_w(V) YN{t';0,k;21(00) 1} dt’' - v {9 (V) W2 G (v) dv
St iy V2D {00) + eI N {0,k 21 (00) a2 G () =
kit Jga Jo, U'N{E"30,1(00) 1} dt" - 7 {p ()W Gr(v) dv - (8.5)
k2 [ra va 2Dy {h(v) + e }N{t":0,1(0p) "L} dt” - v*2 Gy (v) dv,

where Q. = {an(0 — 00) — kn(v) | 0 € Bs}
and ¢’ = k,t’. Since @, can be written as
{an (0 — 0 — Boenv) — BoA(60)/*Wops | 0 € Bs}, it
converges to RP for any fixed v with probability

one using the dominated convergence theorem. Then
Jo, t"N{t";0,7(60) "'} dt"” = op(1) for fixed v, and by the
continuous mapping theorem and Condition 4, the first
term in the right hand side of (8.5) is of the order o, (k).
The second term is bounded by

b2 e [ D (Ol o [N 50,1070} 0 g 142G v),
which is of the order O,(k~ Tn/amg) by Condition 6.
Therefore

985 () = [ WG (v)dv + op(k, ). (8.6)
d
By algebra, k,, = a,, La,, and
fRd sz (v)dv =
anvsﬁo{anlA(Hg)l/zVVobs fRd vk G, (V) dy + &y, fRd vk HG, L (v) du}(87)

Then (i) and (7¢) in the Lemma holds by plugging the ex-
pansion of gp, ,(t) into (8.4).
0

Lemma 5. Assume Condition 3, 4, 2-9. Then as n — oo,
(i) For any 0 < do, rpe(1) and gpe(1) are o,(7}). More
specifically, they are of the order O, (Tffe—“:fsic5 ) for

some positive constants ¢s and ag depending on 9.
(ii) g5,(1) = G, ({1 + Op(a;")} and sup,cp, qa(l) —

Ga(Dl/ds,(1) = Oplazh);

(iii) if e, = o(an'’?), then §p,(1) and rp,(1) are
Op(tPal ), and thus ¢p,(1) and g¢p,(1) are
@P(Tﬁagsp)v

(iv) if e, = o(a 71/2) 0. = 0. + o,(a; ). If e = o(an 3/5),

05:95—1-0}9( a,, )



Proof of Lemma 5: This generalizes Lemma 2 in the supple-
ments of [1]. The arguments therein can be followed exactly,
by Condition 4 and the fact that regarding = (@), only the
condition supgepy m(6) < 0o is used.

O

Lemma 6. Assume Condition 3, 4, 2-9.

(i) For any § < 8y, Q-(0 € B | sobs) and Q. (0 € BS | sobs)

are o,(1);
(ii) There exists some § < dp such that

ASU.£ |Q:(0€ANB;s | sobs)—QE(GeAﬂBg | Sobs)| = 0p(1);
e P

(iii) anc(fe — 0.) = 0p(1) .

Proof of Lemma 6: This lemma generalizes Lemma A3 of [1].
The proof of Lemma A3 of [1] only needs Lemma 3 and 5
from [2] to hold. The result that gpe{h(0)} = Op(T}L’e_azfsscé)
for some positive constants as and cg5, which generalizes the
case of 1,(0) = 7(0) in Lemma 3 of [2], holds by Condition
4, since the latter only uses the fact that supye ge m(0) < .
Then the arguments in the proof of Lemma 3 in [2] can be
followed exactly, despite the term 72 that is not included in
the order of mp<{h(f)}, since Q-(0 € A | sobs) is the ratio
qa(1)/qre (1). Since Lemma 5 in [2] has been generalized by
Lemma (3) above, the arguments of the proof of Lemma
A3 in [1] can be followed exactly. O

With the above lemmas holding for e, = o(an 1 2), lines
for proving Proposition 1 in [1] can be followed exactly to
finish the proof of Theorem 2.

9. PROOF OF THEOREM 3
-3/5

Lemma 7. Assume Condition 3-10. If €, = op(an
ansn(ﬂs - BO) = 0(1)
Proof of Lemma 7: This generalizes Lemma A4 in [1] by
replacing 7(6y + a,, Lt) therein with v, (t). By Condition 4
and the arguments in the proof of Lemma A4 in [1], it can
be shown that o

=t be { Pt

(IB;ZD{(f}*(‘)OyCl (S*Sobs)h}
qrr (1)

Then by Lemma 2 (4ii), the right hand side of the above is

equal to

ey - o (tF1k2) - _
atie e {26000 10, (0, L) + Oy (a2eh) + Opla ) |-

Since B. = Cov.(0, S, )Var.(S,)"!,

), then

_ 9Bs.r(t)gBs.r(v)
gB4s.r(1)?

anen(Be — o) = ko |28 + oy (k)] x

+0p(a;1)} -

-1

+ Op(krtl) - angnﬁm

|:QB5,T(VVT) _ ng,r(V)gB(;,T(V)T
gBé,'r(l) 935,7*(1)2

where the equations that a,, Lk, = o(1), aZepkn = o(p), and

a;tk, = o(aﬁz/‘r’kn) = o(1) are used. By algebra, the right

hand side of the equation above can be rewritten as

98s.r{(knt—anenfor)v}  gBs.r(knt—anenfor)gss r(v)
{ 9pg,r(1 9B;,r(1)2 +OP(})

{EG,)r(WT) - EG,r(V)EcT;,r(V)T +op(ky )il :

By plugging (8.6) and (8.7) in the above, ane,(8: — Bo) is
equal to

{EG,'I'(V)BOA(GO)I/QWobs - EG,7'(V)6OA(‘90)1/2Wobs + Op(l)} X
{Varg»(v) + op(k; 1)}
= op(1){Varg,(v) + Op(krjl)}_l'

Since
infies oy "/n(t) d d
Varg,(v) > f];fii()l) de jt(Bw){u — Eg.(v)}2gn(t,v) dtdy,

where ¢’ is defined in the proof of Lemma 3(ii), we have
Varg () ™! = ©,(1). Therefore ane, (8 — Bo) = 0,(1). O

Lemma 8. Results generalizing Lemma A5 in [1], i.e. re-
placing II. and II. therein with Q). and Q., hold.

Proof of Lemma 8:In [1], the proof of Lemma A5 in [1] re-
quires Lemma A4 and Lemma 2 in the supplements therein
to hold. Since we have show that their generalized results
hold for ¢, = op(aﬁl/z), (see Lemma 7 and Lemma 5 above),
the proof of this lemma for €, = 0,(an 8/ %) follows the same
arguments in [1], replacing 7(0) with a r, () that satisfies
conditions 3 — 6.
(|
With all above lemmas, the proof of Theorem 3 holds
by following the same arguments as those in the proof of
Theorem 1 in [1].
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