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Abstract
Approximate confidence distribution computing (ACDC) offers a new take on the rapidly developing field of likelihood-

free inference from within a frequentist framework. The appeal of this computational method for statistical inference
hinges upon the concept of a confidence distribution, a special type of estimator which is defined with respect to the
repeated sampling principle. An ACDC method provides frequentist validation for computational inference in problems
with unknown or intractable likelihoods. The main theoretical contribution of this work is the identification of a matching
condition necessary for frequentist validity of inference from this method. In addition to providing an example of how
a modern understanding of confidence distribution theory can be used to connect Bayesian and frequentist inferential
paradigms, we present a case to expand the current scope of so-called approximate Bayesian inference to include non-
Bayesian inference by targeting a confidence distribution rather than a posterior. The main practical contribution of this
work is the development of a data-driven approach to drive ACDC in both Bayesian or frequentist contexts. The ACDC
algorithm is data-driven by the selection of a data-dependent proposal function, the structure of which is quite general
and adaptable to many settings. We explore three numerical examples that both verify the theoretical arguments in
the development of ACDC and suggest instances in which ACDC outperform approximate Bayesian computing methods
computationally.
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1. INTRODUCTION

1.1 Approximate Confidence Distribution
Computing

Approximate confidence distribution computing (ACDC)
is a new take on likelihood-free inference within a frequentist
setting. The development of this computational method for
statistical inference hinges upon the modern notion of a con-
fidence distribution, a special type of estimator which will be
defined shortly. Through targeting this special distribution
estimator rather than a specific likelihood or posterior distri-
bution as in variational inference and approximate Bayesian
inference, respectively, ACDC provides frequentist valida-
tion for inference in complicated settings with an unknown
or intractable likelihood where dimension-reducing sufficient
summary statistics may not even exist. This work demon-
strates another example where confidence distribution esti-
mators connect Bayesian and frequent inference, in the sur-
prising context of computational methods for likelihood-free
inference [23, 21].

Let xobs = {x1, . . . , xn} be an observed sample origi-
nating from a data-generating model that belongs to some
complex parametric family Mθ. Suppose the likelihood func-
tion is intractable (either analytically or computationally),
but that this model is generative, i.e. given any θ ∈ P , we
∗Corresponding author.

can simulate artificial data from Mθ. Let Sn(·) be a sum-
mary statistic that maps the sample space into a smaller
dimensional space and rn(θ) be a data-dependent function
on the parameter space. The simplest version of ACDC is
the rejection algorithm labeled Algorithm 1 below, where
Kε(u) = ε−1K(u/ε) for a kernel density K(·) satisfying
maxK(u) = 1 [8] and ε is a small positive value, referred to
as the tolerance level.

Algorithm 1: Accept-reject approximate confidence
distribution computing (ACDC).
1. Simulate θ1, . . . , θN ∼ rn(θ);
For each i = 1, . . . , N ,

2. Simulate x(i) = {x(i)
1 , . . . , x

(i)
n } from Mθi ;

3. Accept θi with probability Kε(‖s(i) − sobs‖),
where sobs = Sn(xobs) and s(i) = Sn(x

(i)).

The output of many iterations of Algorithm 1 are poten-
tial parameter values, and these potential parameter values
are draws from the probability density

qε(θ | sobs) =
∫
S rn(θ)fn(s | θ)Kε(‖s− sobs‖) ds∫

P×S rn(θ)fn(s | θ)Kε(‖s− sobs‖) dsdθ
.

(1.1)
Here, fn(s | θ) denotes the likelihood of the summary statis-
tic, implied by the intractable likelihood of the data. There-
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fore fn(s | θ) is typically also intractable. We will refer to
fn(s | θ) as an s-likelihood to emphasize that this is distinct
from a traditional likelihood function fn(xobs | θ). We de-
note the cumulative distribution function corresponding to
qε(θ | sobs) by Qε(θ | sobs).

The main contribution of this paper is the establishment
of a matching condition under which Qε(θ | sobs) is an ap-
proximate confidence distribution for θ and can be used to
derive various types of frequentist inferences. These condi-
tions depend on the choice of rn(θ) but are rather general
and we present a strategy for choosing an appropriate data-
dependent function in Section 3. Practically, this new per-
spective allows the data to drive the algorithm in a way
that can make it more computationally effective than other
existing likelihood-free approaches. Theoretically, this per-
spective establishes frequentist validation for inference from
ACDC based upon general conditions that do not depend
on the sufficiency of sobs.

Our justification for these practical and theoretical ad-
vantages of ACDC relies on the frequentist notion of a con-
fidence distribution. Some background information on con-
fidence distributions is presented next. To motivate the con-
cept, let us consider parameter estimation within a frequen-
tist paradigm. We often desire that our estimators, whether
point estimators or interval estimators, have certain prop-
erties such as unbiasedness or similar performance under
repeated, randomly sampling. A confidence distribution is
an extension of this tradition in that it is a distribution es-
timator (i.e., it is a sample-dependent distribution function)
that satisfies certain desirable properties. Following [23] and
[18], we define a confidence distribution as follows:

A sample-dependent function on the parameter space is a
confidence distribution (CD) for a parameter θ if 1)
For each given sample, the function is a distribution func-
tion on the parameter space; 2) The function can provide
valid confidence sets of all levels for θ.

A confidence distribution has a similar appeal to a
Bayesian posterior in that it is a distribution function car-
rying much information about the parameter. A confidence
distribution however, is a frequentist notion which treats the
parameter as a fixed, unknown quantity and the sampling
of data as the random event. A confidence distribution is
a sample-dependent function that can be used to estimate
the parameter of interest to quantify the uncertainty of the
estimation. If Hn(·) is a CD for some parameter θ, then one
can simulate ξCD ∼ Hn(·), conditioned upon the observed
data. We will refer to the random estimator ξCD ∼ Hn(·) as
a CD-random variable.

From a Bayesian perspective, the function rn(θ) can be
viewed as if it is a data-dependent prior. From a frequentist
perspective, the data-dependent function rn(θ) acts as an
initial distribution estimate for θ and Algorithm 1 is a way
to update this estimate in search of a better-preforming dis-
tribution estimate. This is analogous to any updating algo-
rithm in point estimation requiring an initial estimate that

is updated in search for a better-performing one (e.g., say, a
Newton-Raphson algorithm or an expectation-maximization
algorithm). Of critical concern in this perspective is avoiding
double use of the data for inference. An appropriate choice
of the initial distribution estimate, rn(θ), addresses this con-
cern and a general strategy for choosing rn(θ) is proposed
later in Section 3. Therefore, we assert that Qε(θ | sobs) can
be used for valid frequentist inference on θ (e.g., deriving
confidence sets, p-values, etc.) even if it may (sometimes)
not be the most efficient estimator (i.e., may not produce
the tightest confidence sets for all α ∈ (0, 1) levels).

1.2 Related Work on Approximate Bayesian
Computing (ABC)

Approximate Bayesian computation (ABC) refers to a
family of computing algorithms to approximate posterior
densities of θ by bypassing direct likelihood evaluations [cf.
6, 4, 17]. The target of an ABC algorithm is the posterior
distribution rather than a confidence distribution. A simple
rejection sampling ABC method proceeds in the same man-
ner as Algorithm 1, but it replaces θ1, . . . , θN ∼ rn(θ) with
θ1, . . . , θN ∼ π(θ), a pre-specified prior distribution for θ,
in Step 1. In this article, we view ABC as a special case of
ACDC where rn(θ) = π(θ). The simple rejection sampling
ABC is computationally inefficient. Some advanced comput-
ing techniques have been used to improve upon the simple
ABC approach. One such improvement is the importance
sampling version of ABC detailed in Algorithm 2 below.
This algorithm can be thought of as a version of ACDC
where rn(θ) is treated as a proposal distribution. However,
as in the rejection sampling version of ABC, IS-ABC still
requires a choice of prior which can result in a loss of com-
putational efficiency as we will see in a later section.

Algorithm 2: Importance sampling ABC (IS-
ABC).
1. Simulate θ1, . . . , θN ∼ rn(θ).
For each i = 1, . . . , N ,

2. Simulate x(i) = {x(i)
1 , . . . , x

(i)
n } from Mθ.

3. Accept θi with probability Kε(‖s(i) − sobs‖),
where sobs = Sn(xobs) and s(i) = Sn(x

(i)), and assign
importance weights w(θi) = π(θi)/rn(θi).

The theoretical argument behind an approximate
Bayesian inference (either using the simple rejection
sampling ABC or IS-ABC) depends upon qε(θ |
sobs) converging to the posterior, p(θ | xobs) =
π(θ)fn(xobs | θ)

/∫
π(θ)fn(xobs | θ)dθ, as the tolerance level

approaches zero; c.f., e.g. [13] and [2]. However, it is well-
known that the quality of this approximation depends not
only on the size of ε (and choice of prior) but, also impor-
tantly, upon the choice of summary statistic. The choice of
K(·) is not essential and does not have significant effect on
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Figure 1: The gray curves below represent the target pos-
terior distribution (gray lines), p(θ | x), for an n = 100
IID sample from Cauchy(θ = 10, 0.55). The curves in black
represent qε(θ | sobs) for two different summary statistics,
Sn1 = Median(x) (left) and Sn2 = x̄ (right). In each case
ε = 0.005 and rn(θ) ∝ 1.

the accuracy of ABC estimators when the tolerance level
is reasonably small [8, 11]. Common choices of K(·) include
normal and uniform kernels. If sobs is not sufficient (as is ger-
enally the case in applications of ABC), then the s-likelihood
fn(sobs | θ) can be very different from the likelihood of the
data fn(xobs | θ) and thus qε(θ | sobs) can be a very poor
approximation to p(θ | xobs), even as ε approaches zero and
n → ∞.

For example, consider using Algorithm 1 with two differ-
ent choices of summary statistic, the sample mean or me-
dian, for estimating the location parameter of a random
sample (n = 100) from Cauchy(10, 0.55). If we suppose
rn(θ) ∝ 1, then our algorithm is not data-driven and rn(θ)
instead acts as an uninformative prior. Hence this example
corresponds to an accept-reject version of ABC algorithm.
Figure 1 shows qε(θ | sobs) for each choice of summary statis-
tic (black lines) where ε = 0.005. The posterior distribution
(gray lines) does not match well with either approximate
ABC posterior distribution qε(θ | sobs) because only the en-
tire data vector itself is sufficient in this example. This ex-
ample demonstrates how a strictly Bayesian approach that
targets p(θ | xobs) can produce inconsistent results and even
misleading inferential conclusions.

To quote [15]: “the choice of the summary statistic is es-
sential to ensure ABC produces a reliable approximation to
the true posterior distribution.” Much of the current litera-
ture on ABC methods is appropriately oriented towards the
selection and evaluation of the summary statistic. The the-
oretical justification for inference from ACDC on the other
hand, does not require an optimal selection of Sn. Although
less informative summary statistics may lead to less efficient
CDs, the validity of the inferential conclusions can remain
intact even for less informative (and non-sufficient) sum-
mary statistics. (See Sections 2.1 and 4.)

The large sample theoretical results presented in Sec-
tion 3 specify conditions under which Algorithm 1 produces

an asymptotically normal confidence distribution. These re-
sults are similar to those in [10] but our work is distinct
because we do not target an approximation to a posterior
distribution. Instead, the theoretical results in this section
focus on the properties and performance of ACDC inherited
through its connection to CDs. Additionally, in Section 3 we
propose a regression-adjustment technique based on that of
[10] and [3]. This post-processing step for ACDC is applied
to Algorithms 1 and 2 in Section 4 to improve the accuracy
of the CDs.

Computationally, the numerical studies in Section 4 also
suggest that ACDC can be more stable than IS-ABC even
when both approaches utilize the same data-driven function
rn(θ). This difference in performance is due to the fact that
the importance weights, w(θ) = π(θ)/rn(θ), in IS-ABC can
fluctuate greatly, depending on the prior, resulting in nu-
merical instability of the generated parameter values. The
steep computing cost associated with the generative model
is an expansive area of current research on likelihood-free
methods including adaptations that decrease the comput-
ing cost of ABC methods such as MCMC methods [14] and
sequential Monte Carlo techniques[20]. Although an explo-
ration of these adaptations is beyond the scope of this paper,
we expect that many of these approaches can be readily ap-
plied to improve the computational performance of ACDC
as well. The numerical examples in Section 4 demonstrate
how accept-reject ACDC accepts more simulations than IS-
ABC suggesting that merely incorporating rn(θ) as a data-
dependent proposal function is not always computationally
preferable.

1.3 Notation and Outline of Topics
In addition to the notation from the introduction,

throughout the remainder of paper we will use the following
notation. The observed data is xobs ∈ X ⊂ R

n, the summary
statistic is a mapping Sn : X → S ⊂ R

d and the observed
summary statistic is sobs = Sn(xobs). The parameter of in-
terest is θ ∈ P ⊂ R

p with p ≤ d < n; i.e. the number of
unknown parameters is no greater than the number of sum-
mary statistics and the dimension of the summary statistic
is smaller than the dimension of the data. If some function
of Sn is an estimator for θ, we will denote this function by
θ̂S .

The next section presents the core theoretical result of
this paper which establishes a necessary condition for ACDC
methods to produce a valid CD, thereby establishing ACDC
as a likelihood-free method that provides valid frequentist
inference. Section 3 presents general large sample condi-
tions for ACDC that produce asymptotic CDs and estab-
lishes precise conditions for an appropriate choice of the
data-dependent function rn(θ). Section 4 contains three nu-
merical examples that verify the inferential conclusions of
ACDC and illustrate the computational advantages of this
data-driven algorithm. Section 5 concludes with a brief dis-
cussion. All proofs for Sections 2 and 3 are contained in the
Supplementary Material and the Appendix.



Approximate Confidence Distribution Computing 273

2. ESTABLISHING FREQUENTIST
GUARANTEES

2.1 General Conditions
In this section, we formally establish conditions under

which ACDC can be used to produce confidence regions with
guaranteed frequentist coverage for any significance level. To
motivate our main theoretical result, first consider the sim-
ple case of a scalar parameter and a function θ̂S = θ̂(Sn)
which maps the summary statistic, Sn ∈ S, into the param-
eter space P .

Claim. If

pr∗(θ − θ̂S ≤ t | Sn = sobs) = pr(θ̂S − θ ≤ t | θ = θ0), (2.1)

then Hn(t)
def
= 1−Qε(2θ̂S − t | sobs) is a CD for θ.

In the claim, pr∗(· | Sn = sobs) refers to the probability
measure on the simulation, conditional on the observed sum-
mary statistic, and pr(· | θ = θ0) is the probability measure
on the data before it is observed. The proof of this claim
(provided in Appendix A) involves showing that Hn(θ0) fol-
lows a uniform distribution. Once this is established, any
(1− α)100% level confidence interval for θ can be found by
inverting the confidence distribution, Hn(t).

This claim is conceptually similar to the bootstrap cen-
tral limit theorem which states conditions under which the
variability of the bootstrap estimator matches the variabil-
ity induced by the random sampling procedure. Equation
(2.1) instead matches the variability induced by the Monte-
Carlo sampling to the random sampling variability. On the
left hand side, θ̂S is fixed given sobs and the (conditional)
probability measure is defined with respect to the Monte-
Carlo copies of θ. Thus θ on the left hand side of this
equation plays the role of a CD random variable. On the
right hand side, the probability measure is defined with re-
spect to the sampling variability where θ is the true pa-
rameter value. See also [21] for more discussions of simi-
lar matching that link Monte-Carlo randomness with sam-
ple randomness across Bayesian, fiducial and frequentist
paradigms.

The main condition necessary for valid frequentist infer-
ence from ACDC methods is a generalization of the claim
above for vector θ.

Condition 1. For B a Borel set on R
k,

sup
A∈B

∥∥pr∗{V (θ, Sn) ∈ A | Sn = sobs}

−pr{W (θ, Sn) ∈ A | θ = θ0}
∥∥ = op(δn,ε),

where pr∗(· | Sn = sobs) refers to the probability measure on
the simulation, conditional on the observed summary statis-
tic, pr(· | θ = θ0) is the probability measure on the data
before it is observed, and δn,ε is a positive rate of conver-
gence that depends on n and ε.

Rather than consider only the linear functions (θ−θ̂S) and
(θ̂S − θ), Condition 1 considers any functions V (θ, Sn) and
W (θ, Sn). (For example, the claim above is a special case of
Condition 1 where V (t1, t2) = −W (t1, t2) = t1− θ̂S(t2).) We
use the notation pr∗{· | Sn = sobs} because this probability
measure is defined over a transformation of the θ ∼ Qε(· |
sobs).

Furthermore, Condition 1 permits the parameter space
and the sample space of the summary statistic to be differ-
ent from each other. In short, a matching condition on the
relationship between two general, multi-dimensional map-
pings, V , W : P × S → R

k is the key to establishing
when ACDC can be used to produce a confidence distri-
bution.

For a given sobs and α ∈ (0, 1), we can define a set A1−α ⊂
R

k such that,

pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} = (1− α) + o(δ′), (2.2)

where δ′ > 0 is a pre-selected small, positive precision num-
ber, designed to control the Monte-Carlo approximation er-
ror. If Condition 1 holds, then

Γ1−α(sobs)
def
= {θ : W (θ, sobs) ∈ A1−α} ⊂ P (2.3)

is a level (1− α)100% confidence set for θ0. We summarize
this in the following lemma which is proved in Appendix B.

Lemma 1. Suppose there exist mappings V and W :
P × S → R

k such that Condition 1 holds. Then, pr{θ0 ∈
Γ1−α(Sn) | θ = θ0} = (1 − α) + op(δ), where δ =
max{δn,ε, δ′}. If Condition 1 holds almost surely, then
pr{θ0 ∈ Γ1−α(Sn) | θ = θ0} a.s.

= (1− α) + o(δ).

Nowhere in Lemma 1 is the sufficiency (or near suffi-
ciency) of Sn required. Of course, if the selected summary
statistic happens to be sufficient, then inference from the
CD with be equivalent to maximum likelihood inference.
Remarkably, Lemma 1 may hold for finite n provided Con-
dition 1 does not require n → ∞, i.e. provided δn,ε only
depends on ε. Later in this section we will consider a spe-
cial case of Lemma 1 that may be independent of sample-
size.

In the next sections we explore some specific situations
in which Condition 1 holds. First however, we relate equa-
tion (2.2) to a random sample from Qε(· | sobs) for vec-
tor θ. Suppose θ′i, i = 1, . . . ,m, are m draws from Qε(· |
sobs) and let vi = V (θ′i, sobs). The set A1−α may be a
(1 − α)100% contour set of {v1, . . . , vm} such that o(δ′) =
o(m−1/2). For example, we can directly use {v1, . . . , vm} to
construct a 100(1 − α)% depth contour as A1−α = {θ :
(1/m)

∑m
i=1 I{D̂(vi) < D̂(θ)} ≥ α}, where D̂(·) is an em-

pirical depth function on P computed from the empirical
distribution of {v1, . . . , vm}. See, e.g., [19] and [12] for more
on the development of data depth and depth contours in
nonparametric multivariate analysis.
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2.2 Finite Sample Size Case
We now explore a special case of Lemma 1 where the map-

pings V and W correspond an approximate pivot statistic.
We call a mapping T = T (θ, Sn) from P × S → R

d an
approximate pivot statistic, if

pr{T (θ, Sn) ∈ A | θ = θ0} =

∫
t∈A

g(t)dt {1 + o(δ′′)}, (2.4)

where g(t) is a density free of θ, A ⊂ R
d is any Borel

set, and δ′′ is either zero or a small number (tending to
zero) that may or may not depend on the sample size
n. For example, suppose Sn|θ = λ ∼ Poisson(λ). Then,
T (λ, Sn) = (Sn − λ)/

√
λ is an approximate pivot when λ

is large, and the density function is φ(t){1+ o(λ−1)}, where
φ(t) the density function of the standard normal distribu-
tion [5]. The usual pivotal cases are special examples of ap-
proximate pivots that may not rely on large sample theory.
Examples of approximate pivots where δ′′ is a function of n
are discussed later in Section 3.

Theorem 1. Suppose T = T (θ, Sn) is an approximate pivot
statistic that is differentiable with respect to the summary
statistic and, for given t and θ, let st,θ denote a solution to
the equation t = T (θ, s). If

∫
P
rn(θ)Kε (st,θ − sobs) dθ = C, (2.5)

where C is a constant free of t, then, Condition 1 holds
almost surely, for V (θ, Sn) = W (θ, Sn) = T (θ, Sn). (Proof
in Appendix C.)

A direct implication of Theorem 1 is that Γ1−α(sobs), as
defined in (2.3), is a level (1 − α)100% confidence region
where pr{θ ∈ Γ1−α(Sn) | θ0} a.s.

= (1− α) + o(δ).
The assumption in equation (2.5) needs to be verified

on a case-by-case basis. Location and scale families contain
natural pivot statistics and satisfy these conditions. This is
formally stated in the following corollary.

Corollary 1. (a) Suppose Sn is a point estimator for μ
such that Sn ∼ g1(Sn − μ) and suppose rn(μ) ∝ 1. Then,
for any u, |pr∗(μ − Sn ≤ u | Sn = sobs) − pr(Sn − μ ≤
u | μ = μ0)| a.s.

= o(1).
(b) Suppose Sn is a point estimator for σ such that Sn ∼

g2(Sn/σ)/σ and suppose rn(σ) ∝ 1/σ. then, for any v > 0,∣∣∣pr∗ ( σ
Sn

≤ v
∣∣Sn = sobs

)
− pr

(
Sn

σ ≤ v
∣∣σ = σ0

)∣∣∣ a.s.
= o(1).

(c) If Sn,1 and Sn,2 are point estimators for μ and σ,
respectively, where Sn,1 ∼ g1{(Sn,1 − μ)/σ}/σ and Sn,2 ∼
g2 (Sn,2/σ) /σ are independent and if rn(μ, σ) ∝ 1/σ, then,
for any u and any v > 0,

∣∣∣pr∗
[(

μ− Sn,1 ≤ u
σ

Sn,2
≤ v

) ∣∣∣
(
Sn,1

Sn,2

)
=

(
s1,obs
s2,obs

)]

−pr
[(

Sn,1 − μ ≤ u
Sn,2

σ ≤ v

) ∣∣∣
(
μ
σ

)
=

(
μ0

σ0

)] ∣∣∣ a.s.
= o(1).

Consequently, H1(Sn,1, x) =
∫ x

−∞ g1(Sn,1 − u)du is a CD
for μ and H2(S

2
n,2, x) = 1−

∫ x

0
g2(σ̂S/u)du, is a CD for σ.

Note that Theorem 1 and Corollary 1 cover some fi-
nite sample size scenarios, including the Cauchy exam-
ple discussed in Section 1. For this example, Corollary 1
(part (a)) asserts that the different posterior approximations
obtained by approximate Bayesian computing with either
Sn = Median(x) or Sn = x̄ are both CDs. That is, both
densities in black in Figure 2 are densities for confidence
distributions of θ, obtained by Algorithm 2. These distri-
bution estimators lead to valid frequentist inference even
though neither summary statistic is sufficient. This devel-
opment represents a departure from the typical asymptotic
arguments for likelihood-free computational inference. Note,
a practical issue with applying Corollary 1 to Algorithm
1 is that the user can not actually simulate from the re-
quired rn ∝ 1. In such cases, we suggest using the minibatch
scheme, introduced in Section 3.2, to approximate rn as we
did for the Cauchy example in Section 4.1. The comparison
of this approach with Algorithm 2 is given in Table 1.

This section has considered the case in which the toler-
ance level, ε, does not necessarily depend on the sample size
n. In the next section, the tolerance may depend on the
sample size so we adopt the notation εn to reflect this.

3. LARGE SAMPLE THEORY
3.1 A Bernstein-von Mises Theorem for ACDC

In the Bayesian ABC framework, Condition 1 holds as
n → ∞ by selecting a εn that decreases to zero at a cer-
tain rate. [11]. We now verify Condition 1 holds more gen-
erally for ACDC methods that use a data-dependent rn(θ),
in a large sample setting. The results presented here are
generalizations of results in [10] and [11] and extend them
from the Bayesian framework to the confidence distribu-
tion framework. We give sufficient conditions with which
allowing rn(θ) to depend on the data does not lead to the
overestimation of statistical efficiency, ie. the ‘double use’ of
data which is of concern for calibrated inferential methods.
Roughly speaking, the next theorem establishes that the
distribution of a centered random draw from Qε(θ | sobs)
and the distribution of its centered expectation (before the
data is observed), i.e.

∫
θ dQε(θ | Sn), are asymptotically

the same.
The next condition concerning the asymptotic behavior

of the summary statistic is crucial for the proofs of the the-
orems in this section (see Appendix F).
Condition 2. There exists a sequence {an}, satisfying
an → ∞ as n → ∞, a d-dimensional vector s(θ), a d × d
matrix A(θ), and some δ0 > 0 such that for Sn ∼ fn(· | θ)
and all θ ∈ P0

def
= {θ : ‖θ − θ0‖ < δ0} ⊂ P,

an{Sn − s(θ)} d→ N{0, A(θ)}, as n → ∞,

and sobs
P→ s(θ0). Furthermore, assume that
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(i) s(θ), A(θ) ∈ C1(P0), A(θ) is positive definite for all θ;
(ii) for any δ > 0 there exists a δ′ > 0 such that ‖s(θ)−

s(θ0)‖ > δ′ for all θ such that ‖θ − θ0‖ > δ; and
(iii) I(θ)

def
=

{
∂
∂θ s(θ)

}T
A(θ)−1

{
∂
∂θ s(θ)

}
has full rank at

θ = θ0.

This is a standard condition but, notably, does not de-
pend on the sufficiency of this statistic. Because of this, we
refrain from discussing this condition further so we may in-
stead focus on our main contribution, the development of
the following regulatory conditions on rn(θ).

Condition 3. For all θ ∈ P0, rn(θ) ∈ C2(P0) and rn(θ0) >
0.

Condition 4. There exists a sequence {τn} such that τn =
o(an) and supθ∈P0

τ−p
n rn(θ) = Op(1).

Condition 5. There exists constants m, M such that 0 <
m <| τ−p

n rn(θ0) |< M < ∞.

Condition 6. It holds that supθ∈Rp τ−1
n D{τ−p

n rn(θ)} =
Op(1).

Condition 3 is a general assumption regarding the dif-
ferentiability of rn(θ) within an open neighborhood of the
true parameter value. Condition 4 and 5 essentially require
rn(θ) to be more dispersed than the s-likelihood within a
compact set containing θ0. They require rn(θ) converge to
a point mass more slowly than fn(θ | sobs). Condition 6 re-
quires the gradient of the standardized version of rn(θ) to
converge with rate τn. Condition 3–6 are relatively weak con-
ditions and can be satisfied with locally asymptotic rn(θ),
for example. They are also satisfied by the data-independent
prior used in approximate Bayesian computation.

The proofs of the theorems in this section also require ad-
ditional conditions (Conditions 7–10 of the supplementary
material) that are typical of BvM-type theorems. These ad-
ditional conditions are not presented here for readability
reasons and because they do not directly relate to rn(θ)
which is our emphasis.

Theorem 2. Let θ̂S = θ̂(Sn) =
∫
θ dQε(θ | Sn). Assume

Condition 2. Assume rn(θ) satisfies Condition 3–6 above
and also Conditions 7–10 in the supplementary material. If
εn = o(a−1

n ) as n → ∞, then Condition 1 is satisfied with
V (θ, Sn) = an

(
θ − θ̂sobs

)
and W (θ, Sn) = an

(
θ̂S − θ

)
.

(Proof in Appendix 8.)

Theorem 2 says when εn = o(a−1
n ), the coverage of

Γ1−α(sobs) is asymptotically correct as n and the number
of accepted parameter values increase to infinity. In prac-
tice, θ̂S typically will not have a closed form. To construct
Γ1−α(sobs), the value of θ̂ at Sn = sobs can be estimated us-
ing the accepted parameter values from ACDC. Here Con-
dition 1 is satisfied by generalizing the limit distributions
of the approximate posterior in [10] so they hold also for
Qε(θ | sobs), when εn = o(a−1

n ). Specifically, for A defined

as in equation (2.2),

supA∈Bp

∣∣∣ ∫{θ: an(θ−θ̂)∈A} dQε(θ | sobs)−
∫
A
N{t; 0, I(θ0)−1} dt

∣∣∣ P→ 0 (3.1)

and

an(θ̂ − θ0)
d→ N{0, I(θ0)−1}, (3.2)

as n → ∞, where I(θ0) is a non-singular matrix defined in
Condition 2. Thus inference based on Qε(θ | sobs) is valid for
n → ∞ regardless of whether or not rn(θ) depends on the
data. For the same tolerance level, Theorem 2 asserts that
the limiting distribution of Qε(θ | Sn) matches the limiting
distribution of the approximate posterior from [10] which is
the output distribution of the accept-reject version of ABC.
In comparison however, ACDC has a better acceptance rate
since the data-dependent rn(θ) concentrates more probabil-
ity mass around θ0 than a typical prior.

Although inference from ACDC is validated with εn =
o(a−1

n ), a well-known issue in approximate Bayesian liter-
ature is that this tolerance level is too small in practice,
causing the degeneration of the acceptance rate as n → ∞
for any proposal distribution [11]. Obviously ACDC meth-
ods will suffer from this same issue. (For an example with
Normal data, see Appendix E.)

One remedy that relaxes the restriction on εn is to post-
process the sample from Qε(θ | sobs) with a regression ad-
justment[1]. When the data-generating model is correctly
specified, the regression adjusted sample correctly quantifies
the CD uncertainty and yields an accurate point estimate
with εn decaying at a rate of o(a−3/5

n ) [10].
Let θ∗ = θ − βε(s − sobs) be the post-processed sample

from Qε(θ | sobs), where βε is the minimizer from
(
αε

βε

)
= argmin

α∈Rp,β∈Rd×p

Eε

{
‖θ − α− β(s− sobs)‖2 | sobs

}

for expectation under the joint distribution of accepted θ
values and corresponding summary statistics.

Theorem 3. Under the conditions of Theorem 2, if εn =

o
(
a
−3/5
n

)
as n → ∞, Condition 1 holds with V (θ, Sn) =

an(θ
∗ − θ̂∗sobs) and W (θ, Sn) = an(θ̂

∗
S − θ), where θ̂∗S is the

expectation of the post-processed observations of the CD ran-
dom variable. (Proof in Appendix F.)

Here, Condition 1 is implied by the following convergence
results (where A defined as in equation (2.2)),

supA∈Bp

∣∣∣ ∫{θ: an(θ−θ̂∗)∈A} dQ
∗
ε(θ | sobs)−

∫
A
N{t; 0, I(θ0)−1} dt

∣∣∣ P→ 0,

and

an(θ̂
∗
S − θ0)

d→ N{0, I(θ0)−1},
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as n → ∞. The limiting distributions above are the same
as those in (3.1) and (3.2), therefore Γ1−α(sobs) constructed
using the post-processed sample achieves the same efficiency
as that constructed with the original ACDC sample of θ
values. The benefit of permitting larger tolerance levels is a
huge improvement in the computing costs associated with
ACDC.

3.2 Designing rn

Condition 4 implies that in practice, one must take care to
choose rn(θ) so that its growth with respect to the sample
size is slower than the growth of the s-likelihood. In this
section we propose a generic algorithm to construct such
rn(θ) based on subsets of the observed data.

Notably, there is a trade-off in ACDC inference between
faster computations and guaranteed coverage of the approx-
imate CD-based confidence sets. When rn(θ) grows at a sim-
ilar rate as the s-likelihood for n → ∞, the computing time
for ACDC methods may be reduced but this risks violating
Conditions 4–6. If these assumptions are violated, the dis-
tribution of the resulting simulations is not necessarily a CD
and consequently, inference may not be valid in terms of pro-
ducing confidence sets with guaranteed coverage. Therefore,
rn(θ) should be designed such that its convergence rate is
bounded away from that of the s-likelihood. The minibatch
scheme presented below is one way to ensure rn(θ) is appro-
priately bounded.

Assume that a point estimator θ̂S(z) of θ can be computed
for a dataset, z, of any size.

Minibatch scheme

1. Choose k subsets of the observations, each with size nν

for some 0 < ν < 1.
2. For each subset zi of xobs, compute the point estimate

θ̂S,i = θ̂S(zi), for i = 1, . . . , k.
3. Let rn(θ) = (1/kh)

∑k
i=1 K

{
h−1‖θ − θ̂S,i‖

}
, where

h > 0 is the bandwidth of the kernel density estimate
using {θ̂S,1, . . . , θ̂S,k} and kernel function K.

The choice of K(·) follows that of the standard multi-
variate kernel density estimation. If θ̂S is consistent, then
for ν < 3/5, rn(θ) as obtained by this minibatch procedure
will satisfy Conditions 4–6. Based on our experience, if n is
large one may simply choose ν = 1/2 to partition the data.
For small n, say n < 100, it is better to select ν > 1/2 and
to overlap the subsets (or “mini” batches of the observed
data) so that each subset contains a reasonable number of
observations. For a given summary statistic, there are many
methods to construct this type of point estimator including:
a minimum distance-based optimizer [9, 16], the synthetic
likelihood method and its variants [22, 7], or accept-reject
ACDC with θ̂S = E{θ | Sn(zi)}, the s-likelihood-based ex-
pectation over a subset of the observed data. The choice of
θ̂S does not need to be an accurate estimator since it is only
used to construct the initial rough distribution estimator

for θ. But, a heavily biased θ̂S causes bias in confidence sets
derived from the CD, since rn(θ) does not cover parame-
ter values resulting in high values of fn(s | θ) very well. In
practice, the computing cost will depend on which partic-
ular optimization scheme is followed. However, a full study
on the selection of θ̂S is beyond the scope of this paper.

The computational cost associated with implementing
the minibatch scheme is comparable to the cost of construct-
ing a proposal distribution for IS-ABC methods. Multiple
runs to compute θ̂S,i values can be parallelized easily and
any procedure to obtain a proposal distribution for IS-ABC
can be applied on the mini batches of data to yield a point
estimate for θ. For example, for each subset zi, the condi-
tional mean E{θ | Sn(zi)} can be estimated by population
Monte Carlo ABC on Sn(zi). This is not any more compu-
tationally expensive than computing the same estimate on
the full data. This, together with the fact that accept-reject
ACDC accepts more simulations than IS-ABC, make ACDC
the favorable choice in terms of overall computational per-
formance. The numerical examples in Section 4 support this
conclusion.

At this point, our reader may wonder if θ̂S, can be com-
puted, why not simply use a bootstrap method to construct
confidence sets? Although it requires no likelihood evalua-
tion, this method has two significant drawbacks. First, the
bootstrap method is heavily affected by the quality of θ̂S. For
example, a bootstrapped confidence interval for θ is based
on quantiles of θ̂S from simulated data. A poor estimator
typically leads to poor performing confidence sets. In con-
trast, in ACDC methods, θ̂S is only used to construct the
initial distribution estimate which is then updated by the
data. Second, when it is more computationally expensive
to obtain θ̂S than the summary statistic, the bootstrap will
be much more costly than ACDC methods since θ̂S must be
calculated for each pseudo data set. Example 4.3 in the next
section illustrates such an example.

4. NUMERICAL EXAMPLES
4.1 Location and Scale Parameters for Cauchy

Data
In the Cauchy example presented in Figure 1 we saw how

the lack of a sufficient summary statistic can change the
validity of inferential conclusions from an ABC approach.
Through a CD perspective however, the inferential conclu-
sions from ACDC are valid under the frequentist criterion
even if the summary statistic is not sufficient. Provided Con-
dition 1 is satisfied, different summary statistics produce dif-
ferent CDs. Here we present a continuation of this Cauchy
example where random data (n = 400) is drawn from a
Cauchy(θ, τ) distribution with data-generating parameter
values (θ0, τ0) = (10, 0.55). We investigate the performance
of 500 independent 95% confidence intervals for θ alone (set-
tings one and two) and τ alone (setting three) and 500 inde-
pendent 95% confidence regions when both parameters are
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unknown (settings four and five). For settings two and four,
the summary statistics are less informative than those in the
other settings. Here the information of summary statistic is
measured by a sandwich-type of information matrix, I(θ0),
defined in Condition 2. They are chosen in order to demon-
strate the performance in the scenario of Section 2.2 and
show that ACDC can provide valid confidence regions when
it is difficult to construct a valid confidence region with the
summary-based posterior distribution.

In each setting, the confidence intervals (regions) are gen-
erated for both ACDC and IS-ABC utilizing the same mini-
batch scheme to construct rn with the median and/or the
median absolute deviation (MAD) as point estimators and
v = 1/2. The main difference in the two algorithms is the
use of rn. In ACDC rn is a data-driven initial CD estimate
whereas the rn in IS-ABC represents a Bayesian approach
that assumes the uninformative prior in Corollary 1 and em-
ploys rn(θ) as the proposal distribution for the importance
sampling updates. Both algorithms are improved by adapt-
ing the regression adjustments mentioned in Section 3.1, so
the output for every run of each algorithm is post-processed
in this manner. The Monte Carlo sample size is chosen so
that the tolerance level ε is small enough and the number of
accepted simulations is reasonable. Therefore, the reported
results show the effect of the importance sampling weights.

Table 1 compares frequentist coverage proportions of con-
fidence regions from both algorithms. The acceptance pro-
portion determines how many simulated parameter values
are kept and thus is directly related to the tolerance level.
Most coverage rates are close to the nominal levels when the
acceptance proportion is small, which is expected from the
asymptotic theory in Section 3. Overall the coverage perfor-
mance is similar for both algorithms. For settings one, three,
and five with the more informative summary statistic(s),
both algorithms give similar confidence regions which un-
dercover a bit in the finite-sample regime. For settings two
and four with less informative summary statistics, ACDC
is preferable because it produces tighter confidence bounds
while still attaining at least the nominal 95% coverage level).

The main reason for the favorable performance of ACDC
is related to the skewed importance weights for IS-ABC.
This can be seen in the sizes of the confidence sets of the two
algorithms in Table 1 but is even more clear when compar-
ing the CD densities of each method as in Figure 2. Figure
2 shows the impact of importance weights in IS-ABC on the
variances of point estimators and CDs. For settings 1, 3 and
5 where an informative summary statistic is used, the impor-
tance weights do not much affect either the point estimator
or resulting CDs. In these cases, rn(θ) is a good proposal
distribution according to the criteria in [11]. For settings 2
and 4 however, where the summary statistic is less informa-
tive, Figure 2 shows how the importance weights inflate both
point estimate and CD variances with Monte Carlo varia-
tion in IS-ABC. One reason for the severe skewedness in the
importance weights π(θ)/rn(θ) is that the high variance of

Sn means more parameter simulations are accepted in the
tails of rn(θ). This results in broader confidence regions for
IS-ABC than ACDC. An experiment with a smaller sam-
ple size (n = 100) was also carried out and we found that
the performance of both algorithms and their comparison is
similar to that of the case were n = 400. The only difference
is that for setting 1, the coverage of ACDC is 0.9 and that of
IS-ABC is 0.92, reflecting slight undercoverage likely due to
the smaller sample size shifting away from the asymptotic
regime.

This numerical study validates inference for both ACDC
and IS-ABC even in the case where typical asymptotic ar-
guments do not apply (settings 2 and 4). Furthermore, this
example demonstrates two valid but distinct uses of the
minibatch scheme for constructing a data driven distribution
estimator. In Algorithm 1, rn drives the search for a distri-
bution estimator or acts as a data-dependent prior within
a Bayesian context. In Algorithm 2, rn acts as a proposal
distribution for ABC with a flat prior. The computational
differences in the performance of confidence regions in this
example suggest that the former application of rn is prefer-
able to the latter if the summary statistic is not very in-
formative. Interestingly, even though the IS-ABC algorithm
fails to produce Bayesian posterior distributions, it can still
provide us with valid frequentist inference.

4.2 Linear Regression with Cauchy Errors
To study the impact of dimensionality on ACDC, we con-

sider the linear model yi =
∑d

j=1 xjβj + ei, where xj and
βj are scalars, i = 1, . . . , n and ei are identically and in-
dependently distributed from Cauchy(0, 1), and the param-
eter of interest is β = (β1, . . . , βd). We examine synthetic
data generated from the model with covariates identically
and independently following the standard normal distribu-
tion and the true coefficients βj = j. For a data set Y , the
least squares estimator is chosen as the summary statistic,
denoted by β̂Y . Similar to setting 2 in Example 4.1, it is un-
biased but does not have finite variance. The least squares
estimator is also used as the point estimator to construct
rn in the minibatch scheme. When constructing rn, we use
v = 3/5, e.g. subsets of size 24 which is a reasonable data
size for estimating the 5-dimensional linear coefficients. To
ensure that the proposed parameter values cover the pa-
rameter space with high likelihood values reasonable well,
we bootstrap the data to obtain a total of 60 subsets. Since
θ̂ys follows the multivariate Cauchy distribution with the
mean vector β and the scale matrix (XT

s Xs)
−1/2, where Xs

is the design matrix of the subset ys, rn is chosen to be
the equally weighted mixture of the 60 Cauchy distributions
centred at β̂y1:n and has the scale matrix (XT

s Xs)
−1/2. To

obtain a confidence region for β, since β̂y1:n follows a loca-
tion family, the confidence region can be obtained via the
pivot (XT

1:nX1:n)
−1/2(β− β̂y1:n). More specifically, the func-

tion (β− β̂y1:n)
T (XT

1:nX1:n)
−1(β− β̂y1:n) is used as the data

depth function.
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Table 1. Coverage proportions of confidence sets from ACDC applied to Cauchy data under five different settings. Coverage is
calculated over 500 independent runs that draw a n = 400 IID sample from a Cauchy(θ = 10, τ = 0.55) distribution. The

Monte Carlo sample size for both algorithms is 50,000 and the nominal coverage level in every setting is 95%. The last column
displays the median and standard deviation (in bracket) of size ratios of confidence sets from ACDC divided by those from

IS-ABC.
Acceptance
proportion

ACDC
Coverage

IS-ABC
Coverage

Ratio of
Widths/Volumes

Setting 1: θ unknown

Sn = Median(x)
0.005 0.93 0.94 0.94(0.042)
0.05 0.94 0.94 0.94(0.03)
0.10 0.93 0.94 0.94(0.029)

Setting 2: θ unknown

Sn = x̄
0.005 0.97 0.98 0.65(0.28)
0.05 0.97 0.98 0.60(0.20)
0.10 0.97 0.98 0.56(0.19)

Setting 3: τ unknown

Sn = MAD(x)
0.005 0.93 0.94 1.00(0.075)
0.05 0.92 0.94 1.00(0.044)
0.10 0.93 0.94 1.00(0.038)

Setting 4: (θ, τ)′ both unknown

Sn =

(
x̄

SD(x)

) 0.005 0.96 0.96 0.58(0.41)
0.05 0.99 0.98 0.48(0.59)
0.10 0.99 0.98 0.47(0.58)

Setting 5: (θ, τ)′ both unknown

Sn =

(
Median(x)
MAD(x)

) 0.005 0.91 0.93 0.98(0.060)
0.05 0.94 0.96 1.00(0.052)
0.10 0.94 0.97 1.00(0.048)

In Table 2, we see that ACDC has coverage closer to
the nominal level than IS-ABC and produces significantly
smaller confidence regions in all settings, up to more than
an order of magnitude. This is because the skewness of the
importance weights of IS-ABC is more severe when more
simulations are accepted in the tails of the proposal distri-
bution, which is the case when the tolerance level is larger.
In ACDC, a larger tolerance level corresponds to a greater
reduction in the Monte Carlo variance because it avoids
these importance weights. The coverage of ACDC is bet-
ter because of the smaller Monte Carlo variance. Since the
ratio of the volumes of the confidence regions is an expo-
nential function of the number of unknown parameters, the
improvement is more significant in higher-dimensions. This
example shows the practical benefit of Corollary 1 in a mod-
erately high dimensional setting.

4.3 Inference for a Ricker Model
A Ricker map is a non-linear dynamical system, often

used in Ecology, that describes how a population changes
over time. The population, Nt, is noisily observed and is
described by the following model,

yt ∼ Pois(φNt),

Nt = rNt−1e
−Nt−1+et , et ∼ N(0, σ2),

where t = 1, . . . , T and parameters r, φ and σ are posi-
tive constants, interpreted as the intrinsic growth rate of
the population, a scale parameter, and the environmental
noise, respectively. This model is computationally challeng-
ing since its likelihood function is intractable for σ > 0
and is highly irregular in certain regions of the parameter
space.

We investigate the performance of confidence sets for each
parameter marginally and two pairs of parameters jointly.
We adopt the setting and choice of summary statistic from
[22]. In [22], the summary statistic is crafted based on do-
main knowledge to provides accurate inference. It satisfies
a central limit theorem, so according to Section 3.1, both
the ABC posterior distribution and the CD produced by
ACDC have the same limit distributions. This means that
without considering the Monte Carlo error, the inference of
both achieves the nominal coverage. The experiments here
illustrates the effect of additional Monte Carlo variance from
the importance weights using by Algorithm 2. The output
of both algorithms are post-processed using the regression
adjustment.

In the minibatch scheme, for the point estimator we use
E{θ | Sn(zi)} estimated by the population Monte Carlo
version of IS-ABC. The maximum synthetic likelihood es-
timator proposed in [22] was also tried, but the estimates
obtained this way over-concentrated in a certain area of the
parameter space. The corresponding rn(θ) did not cover the
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Figure 2: These are densities of point estimators from ACDC (red) and IS-ABC (black) for the 500 independent data sets
for each of the five settings in Table 1. Additionally, this figure shows a box plot of the relative sizes of the 500 confidence
sets, that is, the length (or volume) of regions produced by ACDC divided by those of IS-ABC.

target mass very well biasing the coverage levels. Instead,
rn(θ) is used to initialise the population Monte Carlo it-
erations. Since the sample size is small in this example,
overlapping minibatches are chosen with a total number
of 40 where each minibatch contains an observed series of
length 10. In this example, the bootstrap method is not
feasible because it is too computationally expensive to use
the simulation-based methods in obtaining the point esti-
mates.

In Table 3, when the acceptance proportion is small, most
coverage rates of ACDC are close to the nominal level. In
contrast, the confidence bounds from IS-ABC display more
over-coverage, indicating an even smaller ε is needed to re-
duce the variance inflation. Furthermore, all ACDC confi-
dence regions are tighter with a size reduction up to 51%.
The box plots in Figure 3 show that the CD variances
from IS-ABC are inflated substantially by the importance

weights, resulting in broader confidence regions as observed
in the last column of Table 3.

As in Section 4.1, this numerical example validates the
inferential conclusions from both algorithms but here we
see ACDC consistently producing tighter confidence regions
than IS-ABC. The summary statistics in this example were
carefully selected to be informative based on domain knowl-
edge. Nevertheless, ACDC still avoids the excessive Monte
Carlo variation that impedes IS-ABC.

5. DISCUSSION
In this article, we propose ACDC as a new inference-

based approach to likelihood-free methods. ACDC can pro-
vide valid frequentist inference for target parameters from
data without a tractable likelihood. Although ACDC can
be viewed as an extension of ABC, a crucial difference is
that ACDC does not require any prior assumptions nor does
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Table 2. Coverage proportions of confidence sets from ACDC
applied to Cauchy regression to estimate the linear coefficients

under different data size n and number of covariates d.
Coverage is calculated over 200 independent runs. The Monte

Carlo sample size is 106 and the nominal coverage level in
every setting is 95%. The last column displays the median
and median absolute deviation (in bracket) of size ratios of
confidence sets from ACDC divided by those from IS-ABC.

Acceptance
proportion

ACDC
Coverage

IS-ABC
Coverage

Ratio of
Widths/Volumes

Setting 1: n = 100, d = 2
0.005 0.95 0.96 0.23(0.13)
0.05 0.94 0.92 0.13(0.064)
0.1 0.94 0.88 0.11(0.06)

Setting 2: n = 100, d = 5
0.005 0.96 0.88 0.13(0.11)
0.05 0.88 0.75 0.047(0.031)
0.1 0.84 0.73 0.04(0.027)

Setting 3: n = 200, d = 2
0.005 0.94 0.98 0.23(0.14)
0.05 0.95 0.94 0.15(0.075)
0.1 0.94 0.90 0.12(0.063)

Setting 4: n = 200, d = 5
0.005 0.96 0.89 0.15(0.13)
0.05 0.88 0.74 0.056(0.046)
0.1 0.86 0.74 0.048(0.037)

the validity of inferential conclusions depend upon the near-
sufficiency of the summary statistic. Computationally, an
ACDC approach is preferable when compared to the corre-
sponding IS-ABC method which suffers from skewed impor-
tance weights. The most costly step of likelihood-free meth-
ods in general is typically the generation of artificial data
(i.e. Step 2 in Algorithm 1 and 2). The ACDC approach
with the minibatch scheme is more efficient than other
likelihood-free approaches that are not able to orient the
data-generating step around a data-driven choice of parame-
ter value. However, the main advantage of ACDC over other
likelihood-free approaches, is the ability to draw proper, cal-
ibrated inferential conclusions about the unknown parame-
ter.

The main theoretical contribution of this work is the iden-
tification of a matching condition (Condition 1) necessary
for valid frequentist inference from ACDC methods. This
condition is similar to the theoretical support for bootstrap
estimation and is met in cases that rely on typical asymp-
totic arguments (e.g. reference citations in Section 3) but
also applies to certain small-sample cases. Additionally, a
key practical contribution of this work is the general mini-
batch method for initializing ACDC estimators. This ap-
proach guides the search for a well-behaved distribution es-
timator using a data-dependent distribution rn(θ). This can
result in improved computational performance even com-
pared to an IS-ABC method that is similarly data-driven.
In cases where rn(θ) does not yield reasonable acceptance

Table 3. Coverage proportions of marginal confidence
intervals (or joint confidence regions) for ACDC and IS-ABC

applied to Ricker data. Coverage is calculated over 150
independent runs that produce observations from t = 51 to

100 for data generated by a Ricker model with
(r, σ, φ) = (e3.8, 0.3, 10). The Monte Carlo sample size for

both algorithms is 50, 000 and the nominal coverage level in
every setting is 95%. The last column displays the median
ratio of the sizes of confidence sets from ACDC divided by

those from IS-ABC.
Acceptance
proportion

ACDC
Coverage

IS-ABC
Coverage

Ratio of
Widths/Volumes

Setting 1: log(r) unknown
0.005 0.953 0.980 0.793
0.05 0.960 0.987 0.734
0.10 0.967 0.987 0.707

Setting 2: log(σ) unknown
0.005 0.967 0.987 0.782
0.05 0.987 0.993 0.732
0.10 0.987 0.993 0.717

Setting 3: log(φ) unknown
0.005 0.953 0.967 0.828
0.05 0.947 0.993 0.762
0.10 0.960 0.987 0.734

Setting 4: (log(r), log(σ))′ unknown
0.005 0.960 0.947 0.611
0.05 0.960 0.973 0.519
0.10 0.960 0.947 0.484

Setting 5: (log(r), log(φ))′ unknown
0.005 0.973 0.987 0.749
0.05 1.0 1.0 0.619
0.10 1.0 1.0 0.557

probabilities we expect that many of the established tech-
niques used in ABC can be readily adapted to ACDC to
further improve its computational performance without sac-
rificing the frequentist inferential guarantees.

An ACDC approach quantifies the uncertainty in esti-
mation by drawing upon a direct connection to confidence
distribution estimators. Different choices of summary statis-
tic yield different approximate CDs, some producing tighter
confidence sets than others. However, inference from ACDC
is validated, regardless of the sufficiency of Sn, provided
Condition 1 can be established. Within a Bayesian frame-
work, there is no clear way to choose among different pos-
terior approximations associated with different summary
statistics. By pivoting to a frequentist perspective, differ-
ent summary statistics produce different (CD) estimators
but all of these estimators are well-behaved in the long run,
yielding valid inferential statements about θ. Supported by
the theoretical developments and examples in this paper, it
appears as though ACDC provides a more parsimonious so-
lution to validating likelihood-free inference than attempts
to reconcile differences among posteriors and their various
approximations.
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Figure 3: These are densities of point estimators from ACDC (red) and IS-ABC (black) for the 150 independent data sets
produced by the Ricker model. Additionally, this figure shows a box plot of the ratio of the sizes of the 150 confidence
sets, that is, the length (or volume) of regions produced by ACDC divided by those of IS-ABC.

SUPPLEMENTARY MATERIAL
The Appendices and Supplementary Material are avail-

able online. Besides detailed proofs, this material contains
additional conditions and provides a few additional remarks
as noted earlier in this paper.
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