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Abstract
The continuation-ratio (CR) model is frequently used in dose response studies to model a three-category outcome

as the dose levels vary. Design issues for a CR model defined on an unrestricted dose interval have been discussed for
estimating model parameters or a selected function of the model parameters. This paper uses metaheuristics to address
design issues for a CR model defined on any compact dose interval when there are one or more objectives in the study
and some are more important than others. Specifically, we use an exemplary nature-inspired metaheuristic algorithm
called particle swarm optimization (PSO) to find locally optimal designs for estimating a few interesting functions of the
model parameters, such as the most effective dose (MED), the maximum tolerated dose (MTD) and for estimating all
parameters in a CR model. We demonstrate that PSO can efficiently find locally multiple-objective optimal designs for a
CR model on various dose intervals and a small simulation study shows it tends to outperform the popular deterministic
cocktail algorithm (CA) and another competitive metaheuristic algorithm called differential evolutionary (DE). We also
discuss hybrid algorithms and their flexible applications to design early Phase 2 trials or tackle biomedical problems, such
as different strategies for handling the recent pandemic.

keywords and phrases: Dose response Models, Implicit function theorem, Maximin tolerated dose, Most effective dose,
Multiple-objective optimal design.

1. INTRODUCTION: THE
CONTINUATION-RATIO (CR) MODEL

In drug discovery, efficacy and toxicity of the drug are
the two of the most important endpoints in early phase
trials. In phase I clinical trials, a main goal is to describe
the dose-limiting toxicities (DLT ) and estimate the maxi-
mum tolerated dose (MTD). Phase II clinical trials focus
on ascertaining the efficacy of the drug and further evaluate
the safety of the drug. For example, the most effective dose
(MED) that produces the maximum efficacy is a common
quantity of interest. However, by itself it is not an adequate
assessment of its usefulness without knowing its toxicity ef-
fects. For both economical and ethical and safety reasons, it
is desirable to design a study that incorporates both efficacy
and toxicity considerations at the onset.

To model trinomial responses above, [41] proposed the
following constant slope proportional odds (PO) model for
a patient’s response given dose x.

log(π3(x)/(1− π3(x))) = a1 + bx

log((π2(x) + π3(x))/π1(x)) = a2 + bx,

where π1(x), π2(x) and π3(x) correspond to, respectively,
probabilities of observing “no reaction”, “efficacy with-
out toxicity” and “toxicity” at dose x. For any dose x,
∗Corresponding author.

∑3
i=1 πi(x) = 1. The model assumes a constant effect of

dose exists across the cumulative logits. Such assumption
may be violated for a trinomial model, and is unlikely to be
valid when there are more than three types of responses.

The continuation-ratio (CR) model is a more flexible al-
ternative because it does not have the restrictive assumption
as the PO model does as described in Chapter 9 in [2]. In
the CR model, slopes of the two equations b1 and b2 can be
constant or not. Assuming b1, b2 > 0, the CR model is given
by

log(π3(x)/(1− π3(x))) = a1 + b1x

log(π2(x)/π1(x)) = a2 + b2x. (1.1)

It is straightforward to show for this model, probability of
“no reaction” is

π1(x) =
1

(1 + ea1+b1x)(1 + ea2+b2x)
;

probability of “efficacy without toxicity” is

π2(x) =
ea2+b2x

(1 + ea1+b1x)(1 + ea2+b2x)
;

and probability of “toxicity” is

π3(x) =
ea1+b1x

1 + ea1+b1x
.
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[16] found optimal approximate designs for estimating all
parameters in the CR model and also selected function of
the model parameters. Approximate designs are large sam-
ple designs or simply probability measures on the given de-
sign space. They are characterized by the number of points
the design has, where the design points are and the pro-
portion of observations to take at each of the point. The
formal is called a locally D-optimal design and is found by
maximizing the logarithm of the determinant of the infor-
mation matrix. In contrast, a c-optimal design minimizes
the asymptotic variance of the estimated function of inter-
est obtained from the Delta’s method. In both cases, the
optimization is over all designs on the given design space
and the resulting design is termed locally optimal because
the information matrix for a nonlinear model depends on
the unknown model parameters. Hence to implement such
designs, prior estimates or nominal values of the model pa-
rameters are required and they may come from a pilot study
or from studies using a similar compound or drug. Clearly,
poor estimates or incorrect nominal values for the model pa-
rameters can result in a different locally optimal design that
is inefficient. To fix ideas, we focus on constructing locally
optimal designs using metaheuristics but the technique can
be easily amended to find other types of designs. The aim
of this paper is to show that nature-inspired metaheuris-
tic algorithms, which are already widely used in computer
science and engineering, are both flexible and effective tools
for finding multiple-objective optimal designs for clinical tri-
als and tackling general medical problems. There are many
appealing features of metaheuristics and the main ones are
they virtually do not require technical assumptions for them
to work well, they are generally fast, their codes are widely
available and they are general-purpose optimization tools.
Consequently, they are very flexible and can tackle very dif-
ferent types of optimization problems in increasingly many
disciplines. Their meteoric rise in popularity in optimiza-
tion, along with its reasons, are well documented; see for
example, [49, 50].

2. PARTICLE SWARM OPTIMIZATION
Recently a class of algorithms called nature-inspired

metaheuristic algorithms has proved very popular in the op-
timization literature. [49, 50] provided reasons for the rapid
rise and interest in these algorithms. Early users of such
algorithms to find exact optimal designs for linear models
include [22, 4] who used an annealing algorithm to search for
optimal designs for linear regression models, and [33] who
used a genetic algorithm to construct exact D-optimal de-
signs. Of particular note is the particle swarm optimization
(PSO) introduced by [14] for tackling optimization prob-
lems. PSO is increasingly used across disciplines to solve
hard optimization problems. PSO is essentially assumptions
free and it searches in a simply and effective way. For ex-
ample, unlike many algorithms, PSO does not require the

objective function to be differentiable or convex and can
solve non-convex high-dimensional optimization problems.

PSO is a metaheuristic optimization algorithm inspired
from the way animals, such as birds and fishes, search for
food. The birds fly continuously in the sky to look for food
on the ground. Each has its own perception where the food
is (local optimum) but it communicates with the rest and
collectively decide as a flock where the food is (global opti-
mum). Accordingly, each bird flies toward the global opti-
mum in the direction of the local optimum (not giving up
completely where it thinks the food is). Birds are referred
as particles and each bird represents a candidate solution to
the optimization problem. Velocities and locations of each
bird are adjusted at each iteration and if and when the flock
converges, the perceived global optimum is found. In order
to efficiently identify the optimal points, we initiate a flock
of birds in the pre-defined search space. Let X(k) be the
locations of particles at the k-th iteration. Define tL(k − 1)
to be the locations with the best objective function values
discovered by each particle before the k-th iteration, and
tG(k− 1) to be the locations of the best value found by the
whole swarm before the k-th iteration. At the k-th iteration,
the particles are updated by

X(k) = X(k − 1) + V (k), (2.1)

and

V (k) = wV (k − 1) + c1R1 ⊗ [tL(k − 1)−X(k − 1)]

+ c2R2 ⊗ [tG(k − 1)−X(k − 1)], (2.2)

where V (k) is the velocity of the particle. There are several
parameters in (2.2). The inertia weight represents how active
the birds are and is denoted by w. This parameter may be
chosen to be a positive constant but more typically its value
changes over iteration and eventually decrease to 0. The
parameters c1 and c2 are two positive constants which are
recommended to be 2, and R1 and R2 are two random vec-
tors whose components are independently drawn from the
uniform variate on [0, 1]. In practice, the number of itera-
tions and the swarm size are the most influential parameters
in PSO. Large swarm size gives a better vision on the search
area such that PSO could achieve the global optimum with
a higher chance, and the more iterations allows the particles
having search experience due to random perturbation. More
details on PSO and the related metaheuristic optimization
algorithms are available in [53]. Throughout, all computa-
tions were done on a PC with 3.50 GHz Intel(R) Core(TM)
i7-4770K CPU.

3. DUAL-OBJECTIVE OPTIMAL DESIGNS
The current literature on optimal designs is replete with

single objective optimal designs. In practice, there are fre-
quently two or more objectives of interest in a study and
they may be of unequal interest to the researcher. There is
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some work on two and three-objective optimal design prob-
lems and we provide a brief review of them in this section.

When there are two objectives, the more important objec-
tive is the primary objective, and the other is the secondary
objective. The sought dual-objective optimal design is one
that optimizes the primary objective first, before optimizing
the second objective and ensuring that the obtained design
has a higher efficiency for the first objective. When there
are multiple objectives, a similar idea applies; the objec-
tives are first prioritized in terms of their importance and
the sought design is the one that delivers higher efficien-
cies for the more important objectives. For example, in a
model based dose response study, a researcher may wish to
find a three-objective optimal design and in order of impor-
tance, the goals are to estimate the maximum tolerated dose,
MTD, the most efficacious dose MED, and the third goal
is to maximize the precision for all model parameters’ es-
timates. The user-selected efficiencies for the sought design
may be 90% and 80% for the first two objectives and subject
to these constraints, the design should do as best possible
under the tertiary objective. Does such a design exist and if
it does, how do we find it?

For the simple case, when we have two-objective optimal
designs and we have two linear and quadratic polynomi-
als as competing regression models, [13] gave an analytical
solution of such optimal designs. The dual-objective opti-
mal design has to meet the user-specified efficiency require-
ment under the primary objective and is a constrained op-
timization problem. [13] showed that when the objectives
are formulated in terms of concave functional of the infor-
mation matrix, the constraint problem can be equivalently
found under a simpler setup by optimizing a convex combi-
nation of the two (or more) concave function. This approach
turns the dual-objective design problem into a single objec-
tive optimal design problem once the weights in the convex
combination are fixed. Standard algorithms can then be ap-
plied to find the single-objective optimal design for each con-
vex weight in the convex combination. The resulting designs
are called compound optimal designs and Cook and Wong
(1994) showed the class of compound optimal designs is the
same as the class of constrained optimal designs for a dual-
objective optimal design problem. To identify which com-
pound optimal design coincides with the sought constrained
optimal design with the user-specified efficiency under the
primary criterion, they proposed plotting the efficiencies of
each compound optimal design under the two criteria across
all possible values of the weights from 0 to 1. The resulting
plot is called an efficiency plot, which can then used to read
off which convex combination weight will yield the sought
constrained optimal design.

The simplicity of the above approach is valid for dual-
objective optimal design problems. When there are multiple-
objectives, the efficiency plot becomes high dimensional and
it becomes difficult to visually identify the correspondence
between which compound optimal design is the sought con-
strained optimal design. Unlike the two-objective optimal

design problems, there is no explicit easy analytical descrip-
tion of the multi-objective designs, especially when the mod-
els are nonlinear and complicated. Our experience is that
standard algorithms to find them also becomes problematic.

4. MULTI-OBJECTIVE OPTIMAL DESIGNS
FOR THE CR MODEL

We found a variety of optimal designs for the flexible
continuation-ratio (CR) model, which has great potential
for dose finding studies because it simultaneously models
both probabilities of observing efficacy and adverse effect
without having to assume the correlation between them.

There is work in the literature that simultaneously study
efficacy and toxicity by postulating bivariate parametric
models. For example, to model dose-response curves, [24]
proposed a bivariate logistic model which simultaneously
measures toxicity (yes/no), and efficacy (yes/no), assuming
these two outcomes are correlated. A similar idea was pre-
sented by [18] who proposed a dichotomized outcome pair
(y1, y2)T from a bivariate normal model, where y1 is the effi-
cacy response and y2 is the toxicity response. It follows that,
there are four possible outcomes and the utility function of
interest is π(x) = Pr(y1 = 1, y2 = 0|x). This model is com-
plicated and difficult to use in practice because it requires
user to specify the correlation structure between toxicity and
efficacy. Alternatively, we may combine the two outcomes
corresponding to the presence of toxicity together and re-
duce the four types of responses into three. Doing so greatly
simplifies the model by eliminating the correlation between
toxicity and efficacy. In the resulting trinomial models, the
responses of patients are now exclusively and exhaustively
classified into three categories: “no effect” (neither toxicity
or efficacy found); “efficacy” with no toxicity; and “adverse
reaction” for toxicity regardless of whether efficacy is pre-
sented or not.

The optimal designs that we are interested to construct
is a three-objective compound optimal design that provides
efficient estimates for the most effective dose (MED), the
maxim um tolerated dose (MTD) for a user specified toxi-
city rate, and for all parameters in the CR model. We show
that PSO can successfully find multi-objective compound
optimal designs for the CR model. Further, we investigate
the proper choice of weights for three optimal criteria in
multi-objective designs under different parameters settings.
By using efficiency plots, researchers and practitioners can
construct the desired compound optimal design through ap-
propriate weights combination of three optimal criteria in a
more flexible and informative way.

[16] focused on finding the dose x that maximizes proba-
bility of “efficacy without toxicity” π2(x), which is selected
as the most effective dose (MED). If b1 = b2 then MED
has a closed form given by

MED = −(a1 + a2)/2b1,
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but if b1 �= b2, there is no closed form solution of MED.
In their paper, we produce several locally c-optimal designs
for estimating the MED using different nominal parameter
settings on a user-specified dose interval. The latter is likely
more practically relevant than having an unrestricted dose
interval. This feature is helpful because some algorithms
work only on certain types of intervals only, especially when
there are many interacting factors involved and the dose
interval for each factor varies considerably citepxu.

In dose-response studies, side effects and drug toxicity
can be very serious and need to be well controlled. One of
the main targets in clinical trials is to find out the “dose
that is closest to an acceptable level of toxicity”. The target
dose is defined as Maximum Tolerated Dose (MTD), which
is the highest dose of a treatment agent that produces the
dose limiting toxicity (DLT ) in a proportion ρ of patients.
In the CR model, it follows that

π3(MTD, a1, b1) = ρ.

Here the probability ρ is user-specified and varies depend-
ing on what types of adverse effect is of interest. For life
threatening side effects, ρ should be a small value. To find
the MTD, practitioners usually start from a safe dose that
produces a small ρ and gradually increase the dose to its
highest acceptable level. The dose level at ρ is called lethal
dose LD100ρ ([57]). For example, a common choice is the
median lethal dose denoted by LD50. For both economical
and ethical reason, it is necessary to take both MED and
MTD (or LD100ρ) into consideration at the design stage.

5. INFORMATION MATRIX OF THE CR
MODEL WITH b1 �= b2

The worth of a design is measured of the quality of the
Fisher’s information matrix. This matrix is proportional to
the negative of the expectation of the second derivatives of
the total log likelihood function with respect to the model
parameters. This section derives the matrix for the CR
model and makes clear the explicit nature of the objective
functions.

The response from a subject assigned to dose x has one of
three possible outcomes: y = (y1, y2, y3)

T with
∑3

i=1 yi = 1.
Its expected value is E(y) = π(x)T = (π1(x), π2(x), π3(x))

T

as previously defined. Denote the parameters in the CR
model by θ = (a1, b1, a2, b2)

T and let δx be the design that
puts all its weight at dose x. To find the information matrix
I(δx, θ) of δx for the CR model, we use the method devel-
oped by [58] for multi-nomial logistic models. Denote the
left hand side of (1.1) by

η(x) =

⎡
⎣ log(π3(x)/(π1(x) + π2(x)))

log(π2(x)/π1(x))
log(π1(x) + π2(x) + π3(x))

⎤
⎦

and its right hand side by

Xθ =

⎡
⎣ 1 x 0 0

0 0 1 x
0 0 0 0

⎤
⎦
⎡
⎢⎢⎣

a1
b1
a2
b2

⎤
⎥⎥⎦ .

By the numerator-layout notation, we have

∂η(x)

∂π(x)
=

[
∂η(x)
∂π1(x)

∂η(x)
∂π2(x)

∂η(x)
∂π3(x)

]

=

⎡
⎣−(π1(x) + π2(x))

−1 −(π1(x) + π2(x))
−1 π3(x)

−1

−π1(x)
−1 π2(x)

−1 0
1 1 1

⎤
⎦ .

Therefore the derivative of π(x) with respect to θ is derived
by the chain rule

G(x) =
∂π(x)

∂θ
=

∂π(x)

∂η(x)

∂η(x)

∂θ
=

(
∂η(x)

∂π(x)

)−1

X

=

⎡
⎢⎣

−π1(x)π3(x) − π1(x)π2(x)
π1(x)+π2(x)

π1(x)

−π2(x)π3(x)
π1(x)π2(x)
π1(x)+π2(x)

π2(x)

(π1(x) + π2(x))π3(x) 0 π3(x)

⎤
⎥⎦

⎡
⎣ 1 x 0 0

0 0 1 x
0 0 0 0

⎤
⎦

Since yT ∼ Multinomial(1, π(x)T ), the likelihood func-
tion at dose x is

L(θ;x) =
3∏

j=1

π
yj

j (x),

and so the log-likelihood is l(θ;x) = yT logπ(x). By the chain
rule, the score vector at dose x is

∂l(θ;x)

∂θ
=

∂l(θ;x)

∂logπ(x)
∂logπ(x)
∂π(x)

∂π(x)

∂θ

= G(x)T

⎡
⎣ π−1

1 (x) 0 0
0 π−1

2 (x) 0
0 0 π−1

3 (x)

⎤
⎦ y,

and the unit information matrix I(δx, θ) for the observation
y at dose x is given by

I(δx, θ) = E
(
∂l(θ;x)

∂θ

)(
∂l(θ;x)

∂θT

)

= GT (x)

⎡
⎣ π−1

1 (x) 0 0
0 π−1

2 (x) 0
0 0 π−1

3 (x)

⎤
⎦ (EyyT )

⎡
⎣ π−1

1 (x) 0 0
0 π−1

2 (x) 0
0 0 π−1

3 (x)

⎤
⎦G(x).
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Since yT ∼ Multinomial(1, π(x)T ), we have

EyyT = EyEyT + V ar(y) =

⎡
⎣ π1(x) 0 0

0 π2(x) 0
0 0 π3(x)

⎤
⎦ ,

and so,

I(δx, θ) = GT (x)

⎡
⎣ π−1

1 (x) 0 0
0 π−1

2 (x) 0
0 0 π−1

3 (x)

⎤
⎦G(x)

=

⎡
⎣1 x 0 0
0 0 1 x
0 0 0 0

⎤
⎦

T ⎡
⎣(π1(x) + π2(x))π3(x) 0 0

0 π1(x)π2(x)
π1(x)+π2(x)

0

0 0 1

⎤
⎦

⎡
⎣1 x 0 0
0 0 1 x
0 0 0 0

⎤
⎦

= (π1(x) + π2(x))π3(x)

⎡
⎢⎢⎣
1 x 0 0
x x2 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

+
π1(x)π2(x)

π1(x) + π2(x)

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 x
0 0 x x2

⎤
⎥⎥⎦ .

Locally c-optimal designs for estimating the MED and MTD
of the CR model with b1 �= b2 can be similarly derived. Recall-
ing that MED is the dose which maximizes π2 the probability
of having efficacy without toxicity. We derive MED by solving
dπ2(x)

dx
= 0. After a few steps of simplification, we get MED as

the implicit solution of the following equation

g(x, θ) = b2(1 + exp(−a1 − b1x))− b1(1 + exp(a2 + b2x)) = 0.

To find the locally c-optimal design for estimating the MED, we
need to get its gradient ∇MED first. We follow [6]’s way to handle
such equation g(x, θ) without an explicit solution for MED as
follows.

By the implicit function theorem, if the function g(x, θ) has
continuous first derivatives, and MED(θ) is continuous, then

∂g(x, θ)

∂θ
|MED =

∂g(x, θ)

∂x
|MED

∂x

∂θ
|MED.

It follows that

∇T
MED =

∂x

∂θ
|MED

=

[
∂g(x, θ)

∂x
|MED

]−1
∂g(x, θ)

∂θ
|MED

where
∂g(x, θ)

∂x
|MED = −b1b2(exp(−a1−b1MED)+exp(a2+b2MED)),

and
∂g(x, θ)

∂θ
|MED =

⎡
⎢⎢⎣

−b2exp(−a1 − b1MED)
−b2MED exp(−a1 − b1MED)− (1 + exp(a2 + b2MED))

−b1exp(a2 + b2MED)
1 + exp(−a1 − b1MED)− b1MED exp(a2 + b2MED)

⎤
⎥⎥⎦

T

.

Thus, the locally c-optimal design for estimating the MED
maximizes

−∇T
MEDI−1(ξ, θ)∇MED.

In the CR model, since

log(π3(x)/(1− π3(x))) = a1 + b1x,

a simple calculation shows MTD = 1
b1

(logit(ρ) − a1). Similarly,
the locally c-optimal design for finding MTD is to maximize

−∇T
MTDI−1(ξ, θ)∇MTD,

where ∇T
MTD = ∂MTD

∂θ
= (− 1

b1
,
a1−logit(ρ)

b21
, 0, 0). In the tradi-

tional dose finding designs, MTD is usually estimated using a
3+3 design or set the MTD level as the dose level at which two
of six patients experienced toxicity, see [20] for example. There-
fore in what is to follow, we set ρ = 0.3, but other values can be
directly used as well.

6. EQUIVALENCE THEOREMS FOR
LOCALLY SINGLE-OBJECTIVE OPTIMAL

DESIGNS FOR THE CR MODEL
In what is to follow, we treat a design ξ as an approximate

design, i.e. a probability measure on a given dose space. If N
is the total number of subjects in the study and ξ has support
at x1, . . . , xk with corresponding weights w1, . . . , wk and w1 +
· · · + wk = 1, then the implemented design is to take Nwi at
xi, i = 1, . . . , k after rounding each Nwi to a positive integer
[Nwi] and subject to [Nw1] + · · · + [Nwk] = N . In particular,
this means that for a K-point approximate design with weights
wi at dose xi, i = 1, 2, . . . ,K, the normalized information matrix
for the design ξ is

I(ξ, θ) =
K∑
i=1

wiI(δxi , θ)

[26] proposed working with approximate designs after not-
ing that if the criteria are all formulated as convex or con-
cave functional of the design information matrix, they are eas-
ier to construct, study and check for their optimality. The lat-
ter is accomplished via an equivalence theorem for each convex
or concave functional. They all have the form but are differ-
ent for different criteria. Recalling the directional derivative of
Ψ(I(ξ, θ)) = log|I(ξ, θ)| at ξ in the direction of δx is

ψ(x, ξ, θ) = trace[I(δx, θ)I−1(ξ, θ)]− P

and P is the number of parameters in the mean function. For
example, if b1 �= b2 in the CR model, P = 4. Applying stan-
dard convex analysis results for the D-optimality criterion, we
conclude the following statements are equivalent ([26]):

1. The design ξ∗ maximizes Ψ(I(ξ, θ));
2. The design ξ∗ minimizes max

x∈χ
ψ(x, ξ, θ);

3. max
x∈χ

ψ(x, ξ∗, θ) = 0, and it achieves its maximum at the
support points of the design.

This is the equivalence theorem for D-optimality that allows
us to use (3) to check optimality of any design ξ in practice. Each
convex or concave functional has a unique equivalence theorem
but they all have the same form.
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In the same paper, [26] also showed the equivalence the-
orem to verify the optimality of a locally c-optimal designs
for estimating MED or MTD. Both can be subsumed un-
der the criterion Ψ(I(ξ, θ)) = trace[AI−1(ξ, θ)] when A is
chosen appropriately. For estimating the former, the direc-
tional derivative of Ψ(I(ξ, θ)) = −∇T

MEDI−1(ξ, θ)∇MED =
-trace[∇MED∇T

MEDI−1(ξ, θ)] at ξ in the direction of δx is

ψ(x, ξ, θ) = trace[I(δx, θ)I−1(ξ, θ)(∇MED∇T
MED)I−1(ξ, θ)]

− trace[(∇MED∇T
MED)I−1(ξ, θ)].

When ξ is optimal, ψ(x, ξ, θ) is bounded above by 0 with equal-
ity at the support points. Similarly we can derive the equivalence
theorem for locally c-optimal design to estimate other quantities
such as MTD. Because equivalence theorems confirm the opti-
mality or non-optimality of the design, these theorems are gen-
erally referred to also as checking conditions and the function
ψ(x, ξ, θ) is referred as the sensitivity function of the design ξ.

6.1 Equivalence of Compound and
Constrained Optimal Designs

In practice, there are usually not one, but a couple of objec-
tives of interest and it is desirable to incorporate them at the
design stage. There are two typical approaches to construct a
multiple-objective design: the compound and constrained opti-
mal design ([13]). Because different objectives Ψi(I(ξ, θ)) (i =
1, . . . ,m) may have different magnitude in their values, we de-
fine each Ψi(I(ξ, θ)) in terms of the design efficiency ei(ξ) as
did in [13]. For example, the D-efficiency for an arbitrary de-
sign ξ is defined by e1(ξ) = ( |I(ξ,θ)|

|I(ξD,θ)| )
1/P , and its c-efficiency is

e2(ξ) =
∇T

c I−1(ξc,θ)∇c

∇T
c I−1(ξ,θ)∇c

, where ξD is the locally D-optimal design
and ξc is the locally c-optimal design, ∇c is the gradient of c(θ)
with respect to θ. To find a multiple-objective compound optimal
designs, we consider a concave functional of these efficiencies and
maximize each of them.

Suppose there are two competing objectives Ψ1 and Ψ2 of
interest. Denote Δs the set of designs ξ that maximize Ψ2(I(ξ, θ))
subject to the constraint that Ψ1(I(ξ, θ)) ≥ s, where s is a user-
selected constant. The constrained optimal design is defined by

ξs = arg max
ξ∈Δs

Ψ1(I(ξ, θ)),

where the maximum is taken over the entire Δs.
For any user-selected constant λ ∈ [0, 1], a two-objective

compound optimal design finds a design ξλ that maximizes the
weighted average of two concave functionals

Ψ(ξ|λ) = λΨ1(I(ξ, θ)) + (1− λ)Ψ2(I(ξ, θ)).

The constrained optimal design is harder to find than the com-
pound optimal design. The latter is easier to determine because a
concave combination of concave functionals is still concave for a
fixed λ, and the equivalence theorem is just a weighted means of
the checking conditions for the optimal design for each objective.
However, the weighting parameter λ may be hard to interpret in
practice. For example, if we set λ = 0.5, does it mean we put are
equally interested in the two objectives Ψ1(ξ) and Ψ2(ξ)?

For linear models, [13] pointed out that for a two-objective
compound optimal design ξλ that maximizes λΨ1(I(ξ, θ))+ (1−

λ)Ψ2(I(ξ, θ)), it is equivalent that ξλ maximizes Ψ2(I(ξ, θ)) sub-
ject to Ψ1(I(ξ, θ)) ≥ Ψ1(I(ξλ, θ)) which is the primary objective.
To find a multiple-objective optimal design, we first formulate
the optimal design problem as a constrained design ξs, and then
determine the value of λ such that the compound optimal design
ξλ is equivalent to the constrained optimal design ξs.

Extensions to constructing optimal designs for nonlinear mod-
els under 3 or more objective criteria using the Lagrange’s mul-
tiplier method were considered in [11]. For instance, if we have
a 3 design criteria, we set λ = (λ1, λ2, λ3)

T , each λi is in [0, 1]
and

∑3
i=1 λi = 1. The 3 objective compound optimal design ξλ

is then found by maximizing

Ψ(ξ|λ) = λ1Ψ1(I(ξ, θ)) + λ2Ψ2(I(ξ, θ)) + λ3Ψ3(I(ξ, θ)).

This problem is equivalent that ξλ maximizes Ψ3(I(ξ, θ)) subject
to Ψ1(I(ξ, θ)) ≥ Ψ1(I(ξλ, θ)) and Ψ2(I(ξ, θ)) ≥ Ψ2(I(ξλ, θ)).

7. THREE-OBJECTIVE LOCALLY OPTIMAL
DESIGN FOR THE CR MODEL VIA PSO

In [16], only MED was of interest and the authors focused on
finding locally c-optimal design for estimating the MED. This
study extends their work to construct a design that efficiently es-
timates MED and MTD simultaneously. Other parameters such
as b1 and b2 determine the slopes of three possible curves and so it
is important to make sure the generated optimal design provides
good estimates for all parameters in the CR model. Accordingly,
in addition to estimating MED and MTD, we incorporate D-
optimality as well. For a given λ, we construct a three-objective
compound optimal design by maximizing the weighted sum of
three concave functionals

Ψ(ξ|λ) = λ1Ψ1(I(ξ, θ)) + λ2Ψ2(I(ξ, θ)) + λ2Ψ3(I(ξ, θ))

where λ = (λ1, λ2, λ3)
T , λi’s ∈ [0, 1] and

∑3
i=1 λi = 1. Here

Ψ1(I(ξ, θ)) is the log c-efficiency of the design ξ for estimating
the MTD

Ψ1(I(ξ, θ)) = log(∇
T
MTDI−1(ξMTD, θ)∇MTD

∇T
MTDI−1(ξ, θ)∇MTD

)

= log(e1),

Ψ2(I(ξ, θ)) is log c-efficiency of the design ξ for estimating the
MED

Ψ2(I(ξ, θ)) = log(∇
T
MEDI−1(ξMED, θ)∇MED

∇T
MEDI−1(ξ, θ)∇MED

)

= log(e2),

and Ψ3(I(ξ, θ)) is log D-efficiency of the design ξ for estimating
all parameters in the model

Ψ3(I(ξ, θ)) = log( |I(ξ, θ)|
|I(ξD, θ)| )

1
P

= log(e3).

The checking condition for a three-objective compound opti-
mal design is just a weighted sum of the checking conditions for
the optimal design for each objective, i.e. we have ξ is optimal
for the three-objective problem if and only if for all x ∈ χ

λ1
trace[I(δx, θ)I−1(ξ, θ)(∇MTD∇T

MTD)I−1(ξ, θ)]

trace[(∇MTD∇T
MTD)I−1(ξ, θ)]
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(a) CR model with nominal values: (a1 = −3.3, b1 = 0.5, a2 = 3.4, b2 = 1).

(b) CR model with nominal values: (a1 = −1, b1 = 0.5, a2 = 2, b2 = 1).

(c) CR model with nominal values: (a1 = 0.4, b1 = 0.2, a2 = 2, b2 = 1).

Figure 1: Mean Responses from the CR model with corresponding nominal values; directional derivatives of the com-
pound criterion evaluated at the PSO-generated multiple-objective design on the unrestricted design space (middle); and
directional derivatives of the compound criterion evaluated at the PSO-generated multiple-objective design on the design
space [-2,7] (right).

+ λ2
trace[I(δx, θ)I−1(ξ, θ)(∇MED∇T

MED)I−1(ξ, θ)]

trace[(∇MED∇T
MED)I−1(ξ, θ)]

+ λ3
trace[I(δx, θ)I−1(ξ, θ)]

P
≤ 1,

with equality at the support points.
We apply standard PSO to find the locally c-optimal design

for estimating the LD30 in the CR model with nominal values
a1 = −3.3 and b1 = 0.5. Here and elsewhere, we use 100 particles
and 1000 iterations to find the locally optimal design. The PSO-

generated design is supported at a single dose at 4.905, which can
be directly verified by checking LD30 = 1

0.5
(logit(0.3) + 3.3) =

4.9054. Similarly, we use PSO to find different types of locally
compound optimal designs using various nominal values for the
CR model and note that all generated designs have four or fewer
points. The three sets of nominal values we have are selected to
generate mean response curves that we expect, i.e. the maximum
efficacy varies from 0.3 to 0.9, see Figures 1(a), (b) and (c). In
each figure, probability curves are shown in the left plot, and the
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Table 1. Three-objective compound optimal designs for estimating the MTD, MED and all parameters with ρ = 0.3, λ1 =
and λ2 = 1/3 on the unrestricted designs interval.

(a1, b1, a2, b2) x1(w1) x2(w2) x3(w3) x4(w4)

(−3.3, 0.5, 3.4, 1) −4.875 (0.102) −1.139 (0.464) 5.016 (0.322) 7.874 (0.112)
(−1, 0.5, 2, 1) −2.790 (0.202) −0.637 (0.513) 3.683 (0.284) -
(0.4, 0.2, 2, 1) −12.610 (0.366) −3.918 (0.158) −0.942 (0.470) 8.727 (0.006)

Table 2. Three-objective compound optimal designs for estimating the MTD, MED and all parameters with ρ = 0.3,
λ1 =λ2 = 1/3 on χ = [−2, 7].

(a1, b1, a2, b2) x1(w1) x2(w2) x3(w3)

(−3.3, 0.5, 3.4, 1) −2.000 (0.152) 0.1045 (0.502) 6.328 (0.345)
(−1, 0.5, 2, 1) −2.000 (0.330) −0.156 (0.403) 3.820 (0.267)
(0.4, 0.2, 2, 1) −2.000 (0.356) −0.438 (0.319) 7.000 (0.325)

middle one is the equivalence plot for compound optimal designs
in the unrestricted dose space. Table 1 shows selected compound
optimal designs with equal weights λi’s=1/3 for all 3 criteria
on the unrestricted designs space. We observe that generated
optimal designs are supported at three or four points, and the
weights at these support points are unequal.

Invariance of the optimal designs to linear transformation of
the design is a desirable property for an optimal design. D-
optimal designs for linear models are examples of optimal designs
with such a property, but A-optimal designs, that minimize the
average variance of all the estimated parameters, do not have
such a property, i.e. an A-optimal design on a new interval can-
not be deduced from the A-optimal design on the origin interval.
Interestingly, some algorithm may work on a design space but
not on another design space, especially when the latter has are
many interacting factors and each factor is defined on intervals
with very different widths; see [52] for details and examples when
they found locally D-optimal designs for a logistic model with
many factors and all pairwise interactions are included.

To further investigate the influence of dose space on the com-
pound optimal design, we verified the algorithm was still able
to find compound optimal designs on an unrestricted space that
may not be symmetric about 0 for the 3 sets of nominal values for
the model parameters. For example, Table 2 displays the PSO-
generated compound optimal designs on the asymmetric dose
interval [−2,7] for all the three cases. Interestingly, the previous
four point optimal designs become three points, with one or two
points located on the boundaries of the restricted design space.
We also observe that the middle support point is not the same
as the ones in optimal designs on unrestricted dose space. The
plots on the right hand side of Figures 1(a), (b) and (c) display
the corresponding sensitivity functions and visually confirm that
all the PSO-generated three-objective designs are optimal among
all designs on [−2,7].

In our PSO implementation, for each fixed λ in [0,1], we use
the default parameter settings in the standard PSO to find the
three-objective compound optimal design ξλ for the CR model.
Particles that wander outside of the dose space are pulled back

to its nearest boundary [lb, ub]:

z
(t)
i =

⎧⎪⎨
⎪⎩
ub if z(t)i, > ub

lb if z(t)i < lb

z
(t)
i otherwise

where z
(t)
i is the particle i’s position at time t. The rationale

for our strategy is that optimal designs frequently have support
points at the boundary of the dose space, see [29] for example.
Results from a small numerical experiment not included here sug-
gest that generally, PSO with boundary repair outperforms PSO
with random repair in searching for locally D- and c-optimal
designs. Using equivalence theorems, we were also able to ver-
ify that PSO-generated locally designs under the D-optimal and
c-optimality criteria for the CR model were optimal for the dif-
ferent sets of nominal values in [16].

8. DIFFERENT EFFICIENCIES OF THE
COMPOUND OPTIMAL DESIGN ξλ

Can we find a three-objective optimal design ξ for the CR
model such that its D-efficiency e3(ξ) is maximized subject to
both its c-efficiencies e1(ξ), e2(ξ) for MTD and MED are equal
to or greater than 0.9? Such a design may or may not exist de-
pending on how competitive the criteria are and also the effi-
ciency requirements in the constraints. If such a design exists,
what values for the λi’s should be chosen in the compound opti-
mal design?

To answer the question we need to investigate the impact of
different combinations of λ1 and λ2 on the efficiencies of the
compound optimal design ξλ relative to the three criteria. We
first discretize λ1 and λ2 using a grid size of 0.05, and find the
corresponding compound optimal design ξλ for each pair of λ1

and λ2 combination subject to λ1+λ2 ≤ 1. The efficiencies ei(ξλ)
under the ith criterion are displayed in Figure 2, 3 and 4 for
different nominal values sets. In these figures, the upper left plot
shows the c-efficiencies of e1(ξλ) as measured by the locally c-
optimal design ξMTD for MTD; the upper right plot shows c-
efficiencies of e2(ξλ) relative to the locally c-optimal design ξMED

for MED; the bottom left plot shows D-efficiencies of e3(ξλ);
bottom right shows minimal efficiencies of all three efficiencies.
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Figure 2: Different efficiency plots of compound optimal designs for the CR model with nominal values a1 = −3.3, b1 = 0.5,
a2 = 3.4 and b2 = 1.

Figure 3: Different efficiency plots of compound optimal designs for the CR model with nominal values: a1 = −1, b1 = 0.5,
a2 = 2 and b2 = 1.
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Figure 4: Different efficiency plots of compound optimal designs for the CR model with nominal values: a1 = 0.4, b1 = 0.2,
a2 = 2 and b2 = 1).

These efficiency plots provide an answer to the question posed
at the beginning of the section. The answer is no, at least for the
three sets of nominal values we show here; there is no compound
optimal design ξλ that maximizes D-optimality with subject to
e1(ξλ) ≥ 0.9 and e2(ξλ) ≥ 0.9 no matter what combination of
λi’s we choose. By observing the efficiency plots of the three
criteria under different nominal values sets, we find e1(ξλ) and
e2(ξλ) seem to be very competitive with each other; see Figures 2,
3 and 4). As expected, when one criterion gains in value, the
other loses, and vice versa. Competitive criteria will result in a
substantial loss for a small gain in the other, and vice versa.

For each set of the nominal values, Table 3 displays the com-
bination of λi’s that produces the maximum of the minimum
efficiencies. For example, λ1 = 0.55, λ2 = 0.35, λ3 = 0.1 is the
weights combination that produces the maximum of the mini-
mum efficiency as 0.63 for all three criteria. That means with
this choice for λ, we can find a compound optimal design ξλ that
maximizes the precision for estimating all parameters and at the
same time has at least 63% efficiency for estimating the MED
and MTD.

In addition, we observe that for all the three nominal values
sets, the compound optimal designs maintain high D-efficiency
for most of the combinations of λi’s. This indicates for those nom-
inal values that consistently produce high D-efficiency for differ-
ent criteria weight λ′

is, we may reduce the three-objective com-
pound optimal design to two-objective for estimating the MTD
and MED only so that the optimal design problem is simplified.

We close this section by noting that the above approach of
finding locally optimal designs can be directly extended to finding
Bayesian optimal designs with one or multiple objectives. Other
methods for finding Bayesian optimal designs for Phase I trials
and do not require that each objective be a convex function of the
information matrix are available. Some seminal work and notable
work in this direction are [42, 40, 56], among many others.

As an application, we revisit the clinical trial in [56] to iden-
tify the biologically optimal dose for a biologic agent to boost
haemoglobin (HbL) levels for patients whose HbL were below the
normal range. After the drug administration, the outcomes of pa-
tients could be categorized as ‘no response’, implying the drug
had no effect, ‘success’, implying that the HbL levels were back to

Table 3. ξD, ξMTD and ξMED-efficiencies of ξλ for selected λ vectors.
(a1, b1, a2, b2) λ1 λ2 λ3 e1(ξλ) e2(ξλ) e3(ξλ)

(−3.3, 0.5, 3.4, 1) 0.55 0.35 0.1 0.63 0.63 0.87
(−1, 0.5, 2, 1) 0.7 0.3 0 0.82 0.85 0.88
(0.4, 0.2, 2, 1) 0.6 0.4 0 0.75 0.75 0.81
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the normal range or ‘toxicity’, meaning that patients were over-
stimulated and their HbL were raised beyond the normal range.
The probabilities of these event sum to unity and the authors also
chose the continuation ration model because of its flexibility and
particular usefulness for modelling the three probabilities realis-
tically. The probabilities have unknown parameters and so the
information matrix of a design also has unknown parameters in
them. Consequently, the design criterion which is formulated as a
convex function of the information matrix also contains unknown
parameters. Like, [42, 40], [56] also used a Bayesian approach and
so they specified prior densities for the unknown parameters and
averaged them out in the design criterion before finding a design
to optimize the criterion. Locally optimal designs used in this
paper can be viewed the same except that the prior densities are
all one point priors. Thus depending on the situation, the practi-
tioner may prefer a Bayesian optimal design or a locally optimal
design. In the latter case, a single best guess for each parameter
is needed and the prior elicitation process may be easier for the
practitioner to do so. Frequently best guesses come from prior
experience with a similar drug or from a pilot study to estimate
the model parameters; see [10] for implementation details of a
locally optimal design.

9. COMPARISONS OF ALGORITHMS
When tackling design or any optimization problems, especially

high dimensional ones, where the solution is unknown, it is always
not clear which metaheuristic algorithm to use. Solely relying on
results from a single metaheuristic algorithms is risky since they
do not guarantee convergence to the global optimum. It is thus
important to run several metaheuristic algorithms and observe
whether they all produce similar solution. If it is the case, the
confidence in our solution is increased.

We now briefly compare performance of PSO with two other
algorithms. We choose to compare CPU time required by PSO
to find optimal designs with two of its competitors: Differential
evolution (DE) and Cocktail algorithm (CA). Some of the mod-
els we used in the comparisons are listed in Tables 4 and 5. The
compartment model is taken from [5] and it has 3 parameters and
some of the interesting features to estimate were area under the

Table 4. CPU time required to find PSO and DE-generated
locally D-optimal designs. The numbers in parentheses are
flocks size and the maximum number of iterations allowed.

Model Algorithm CPU time
a) Compartmental model PSO(20,200) 0.4

DE(20,200) 2.9
b) Logistic quadratic model PSO(100,200) 1.4

DE(80,400) 57.4
c) Hill model PSO(20,200) 0.3

DE(20,200) 1.4
d) Bivariable linear model PSO(80,300) 1.2

DE(60,200) 11.0
e) CR model (b1 = b2) PSO(20,200) 0.1

DE(20,200) 1.4
e) CR model (b1 �= b2) PSO(100,300) 2.5

DE(40,300) 6.5

Table 5. CPU time required by PSO and DE to find locally
c-optimal designs. The numbers in parentheses are flocks size

and the maximum number of iterations allowed.
Model Algorithm CPU time
f) tmax PSO(60,100) 4.5

DE(20,200) 2.3
g) AUC PSO(40,1000) 2.8

DE(40,200) 4.6
h) MED in CR(b1 �= b2) PSO(80,200) 1.2

DE(40,200) 7.4

curve (AUC), the time to maximum (tmax) and the model param-
eters. The Hill model is the 4-parameter logistic model and the bi-
variable linear model has two additive factors. All have normally
and independently distributed errors with constant variance. In
the following tables, the numbers in parentheses are flocks size
and the maximum number of iterations allowed for PSO and the
single number in parentheses represents the number of points in
the discretized dose interval

DE is a metaheuristic algorithm like PSO, which is a gen-
eral purpose optimization algorithm. We use it to find locally
D-optimal design for models (a) to (e) in Table 4, and locally c-
optimal designs for estimating the three quantities (f) to (h) in
Table 5. In this section, we worked with known optimal designs
and the generated designs by PSO, DE and CA are considered
to be optimal when all their design points and their weights are
the same as the known optimal designs rounded to the 4 decimal
places.

CA is a deterministic algorithm, which means that the same
input results in the same answer, which in our case, results in
the same optimal design. CA requires the design space to be
discretized into a finite number of dose levels to approximate the
continuous space. This approach can limit the ability of CA to
find the optimal design because the discretized points may not
correspond to a design point of the optimal design. However,
our experience is that the CA-generated designs can usually still
be highly D-efficient (with D-efficiency greater than 90%). In
addition, we observe from Table 6 that the number of support
points in the PSO-generated designs tend to be smaller that those
generated by CA. Thus the simpler PSO-generated designs are
attractive and also likely less costly to implement because of the
fewer design points.

Cocktail algorithm (CA) is a deterministic algorithm which
always produces the same output given one input. For PSO, we
still use the same tuning parameters in section 5.2.1 such that
the algorithm produces the locally D-optimal at 90% chance.
Our empirical experience with CA is that although its gener-
ated designs can be very efficient even when the grid size n is as
small as 10, they may have many more support points than the
true optimal design does. For example, we compare the locally
D-optimal designs for bivariable linear model d) generated by
PSO and CA in Table 6. The numbers in the parenthesis after
PSO are flock size and maximum iteration number; the numbers
in the parenthesis after CA are the grid size used in different
optimization problems. PSO is able to find the true optimal de-
sign supported at 6 points with D-efficiency 1. Both of the CA
generated designs have D-efficiency greater than 0.99, but they
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Table 6. PSO and CA generated locally D-optimal designs for bivariable linear model in (d).

Algorithm CPU time Deff x1 x2 x3 x4 x5 x6 x7 x8

PSO(80,300) 1.2 1 −1 −1 0 0 1 1
0 1 0 1 0 1

weight 0.1875 0.1875 0.1275 0.1275 0.1875 0.1875

CA (10) 0.1 0.997 −1 −1 −0.1111 −0.1111 0.1111 0.1111 1 1
0 1 0 1 0 1 0 1

weight 0.1870 0.1870 0.6300 0.6300 0.6300 0.6300 0.1870 0.1870

CA (1000) 94.6 1 −1 −1 −0.0101 −0.0101 0.0101 0.0101 1 1
0 1 0 1 0 1 0 1

weight 0.1875 0.1875 0.6250 0.6250 0.6250 0.6250 0.1875 0.1875

Table 7. Comparisons of the locally D-optimal design of the CR model with constant or non-constant slopes on χ = [−10, 10]
between PSO and CA. The numbers in parentheses are flocks size and the maximum number of iterations allowed for PSO

and the single number in parentheses represents the number of points in the discretized dose interval.
Model Algorithm # of support points CPU time

CR model with b1 = b2 = 1 PSO(20,200) 3 0.1
CA(100) 5 1.7
CA(1000) 5 20.8
CA(10000) 4 71.3

CR model with b1 = 0.5, b2 = 1 PSO(100,500) 4 1.5
CA(100) 5 2.9
CA(1000) 6 14.3
CA(10000) 5 122.7

have two more support points near (0, 0)T and (0, 1)T due to the
discretized dose space. In biomedical researches such as a dose
response study, practitioners usually prefer a simple design with
fewer support points to a complicated design with a lot of points
on the condition that both designs provide almost the same ef-
ficiency. Therefore in addition to the average CPU time,we use
the number of support points in the generated design as another
comparison criterion to measure the accuracy of CA generated
design.

We observe from Tables 4-7, that generally CPU times re-
quired by PSO are shorter than that required by DE or CA. In
a couple of cases, we observe that the opposite results are true
but when PSO outperforms the two algorithms, the shorter CPU
times are substantially shorter than either of the two algorithms.

10. CONCLUSIONS
Our work generalizes the work of [16] and [57] to find the

three-objective design for the CR model.We show PSO is a pow-
erful and flexible tool to find a three-objective compound opti-
mal design for simultaneously estimating MED that produces
maximal efficacy, the maximum tolerated dose (MTD) and all
parameters in the CR model with non-constant slope b1 �= b2. We
were able to find the compound optimal designs under different
combinations of weights λ, and investigate the impact of λ on
efficiencies relative to different criteria. Such technique enables
researchers and practitioners to construct the desired compound
optimal design through appropriate weights combination of three
optimal criteria in a more flexible and informative way.

We used simulation studies and investigated efficiencies of the
PSO-generated designs when we applied two repair mechanisms

to bring out of area points back to the dose space: one employs
a random repair mechanism and brings outlying points back to
the dose space and the other exploits a common property of op-
timal designs and bring them back to the boundary of the dose
space. The latter option greatly expedites PSO in searching for
locally D- and c-optimal designs for a variety models, including
the continuation-ratio model. Additionally, we compared perfor-
mance of PSO with boundary repair to two other popular algo-
rithms: the Cocktail algorithm (CA) in the statistics literature
[55] and Differential Evolution (DE) algorithm in the engineering
literature [38]. In the simulations using the same set of models,
we find PSO outperforms DE in terms of faster speed to converge
to locally D- and c-optimal designs. In comparisons between PSO
and CA, we find CA usually has difficulty in allocating weights
for adjacent points when the grid size is increased, and CA gen-
erated designs do not maintain a consistent structure when the
grid size or dose space changes. In contrast, PSO consistently
finds the locally D-optimal designs regardless what design space
is chosen. Since we set PSO to round all the design points and
weights to 4 decimal places, such precision enables us explore the
structure of optimal designs at a microscopic level.

The techniques developed here are broadly applicable to find
types of optimal designs for other nonlinear models. For exam-
ple, standardized maximin optimal designs were found for esti-
mating parameters in Michaelis-types of models that study how
substrate concentration affects reaction with the enzyme in [9].
Maximin optimal designs maximizes the minimal efficiency un-
der an uncertain situation; in [9], it was over mis-specification of
values for the nominal parameters in the nonlinear model. When
the estimated parameters vary substantially in values, a more
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appriate criterion is to use a standardized maximin optimality
criterion and the standardized maximin optimal design is found
by solving a multi-nested optimization problem.

The PSO codes to find designs reported in the paper can be
directly amended to find different types of multiple-objective op-
timal designs for other models. For example, the codes were re-
cently amended to find dual-objective Bayesian optimal designs
for estimating a percentile and model parameters simultaneously
in a Beta regression for modeling proportion of malformed purple
sea urchins in the embryo after they were treated with a toxic
agent [12]. The Beta regression has 4 parameters and the imple-
mented code allows a discrete prior distribution be specified up to
5 plausible sets of nominal values. More information is available
at the interactive website at https://elviscuihan.shinyapps.io/
Dc_optimal_design/, where references, input instructions and
explanations are available. Readers who are interested in the PSO
codes can send their request to the second author.

10.1 Hybrid Metaheuristic Algorithms
When a metaheuristic algorithm does not produce a solution

near to the optimum, it is common to use one of its variants.
A variant is just one of many modifications of the algorithm
that improves the original version in various ways. The variant
can have improved convergence property, for a more targeted
application, have better self-finding tuning parameters or the
like. Popular metaheuristic algorithms, like PSO, probably have
a couple of dozens of variants now. Examples of PSO variants
are [14, 48, 8, 39] and [51], to name a few.

Another option is to hybridize the algorithm with one or more
carefully selected metaheuristic algorithms so that the hybridized
version combines the strengths of each algorithm. A common
guiding principle is that the hybridized algorithm performs better
than each of the individual algorithm, see [7, 17, 32] for details, an
overview of hybridization methods and their varied applications.

As an example, a hybridized metaheuristic algorithm was used
to extend the capabilities of the celebrated Simon 2-stage design
for a Phase II trial [35]. Instead of a single paired set of the null
and alternative hypotheses, [27] proposed a framework to allow
for a single null hypothesis and 3 possible alternative hypothe-
ses where only one will be tested in the second stage and the
choice depends on results in the first stage Earlier papers had
noted, see for example [30], that it is relatively easy to specify
the null hypothesis in practice, but not so for specifying a single
alternative in an informed way. This is because in an early phase
trial, it can be problematic to specify the effectiveness of the
drug being tested for the particular medical condition. An over
or under specification of its efficacy rate can affect the power of
the test and in the decision making process. To this end, [30] al-
lowed two alternative hypotheses and depending on results from
Phase I, one of the alternative hypotheses will be tested. They
noted that the optimization problem searches for 5 integers, ap-
propriately ordered, to solve the complicated nonlinear problem
with three different error constraints. They used a greedy search
(i.e. searched over all possibilities) and they remarked that they
exhausted the computing power at that time.

Expanding on this framework and to further reduce the dif-
ficulty or uncertainty of specifying the alternative hypothesis,
[27] allows for 3 alternative hypotheses, and only will be tested
based on results from the Phase I results. The greedy approach

did not work after weeks of computing time and metaheuristics
was used for the search. PSO was first used to solve the discrete
optimization problem, and it did not work even after changing
the flock size and values of the tuning parameters multiple times.
Omitting details, [27] was able to hybridize PSO with appropri-
ate algorithms and found a solution to a 10 integer optimization
problem, appropriately ordered, that met the 5 nonlinear error
constraints and optimized the two criteria in Simon’s original pa-
per. While there is no theory to verify its optimality, it was veri-
fied that the numerical results agreed with those of [35, 30] when
one or two alternative hypotheses were omitted in our framework.

Hybridized metaheuristics was also used to find an optimal
discriminiation design to ascertain the most plausible nonlinear
model among several nonlinear models [9]. There were 5 possible
models postulated by [37] with an uni-varite continuous outcome
that may have various error distributional assumptions. They
considered different types of discrimination criteria and applied
a hybrid metaheuristic algorithm to generate an optimal design
in a toxicology experiment.

Not surprisingly, nature-inspired algorithms have been
promptly applied to better understand various aspects of
COVID-19. Various such algorithms, such as PSO, DE and Im-
perialist Competitive Algorithm (ICA) have been used to tackle
the control and spread of COVID-19. ICA is based on human
behavior and proposed by [3]. For example, [34] implemented
ICA to predict trends in the COVID-19 pandemic in Hungary,
[15] used DE to monitor spread of the COVID-19 virus in Italy,
[23] applied PSO to estimate model parameters in SEIR models
commonly used in epidemiology to track an epidemic, [31] ap-
plied PSO and used real time data to estimate and predict death
rates caused by COVID-19. Additionally, [36] used DE to classify
COVID-19 patients from chest CT images and most recently, [25]
proposed a COVID-19 optimizer algorithm specifically for mod-
eling and controlling the coronavirus distribution process and one
its objectives is to minimize the number of infected countries to
slow down the spread. The authors also showed their algorithm
outperformed PSO and GA by 53% and 59%, respectively, and
newer created metaheuristic algorithms, like the Volcano Erup-
tion Algorithm and the Gray Wolf optimizer, by 15% and 37%,
respectively.

Pareto Optimization (PO) is a common approach to solve op-
timization problems with multiple objectives. [1] applied PO to
tackle problems posed by COVID-19, which can infect many peo-
ple quickly resulting in huge requests of medical care at varying
levels. Coping with how, when and where to admit COVID-19
patients to various hospitals is a complex multi-objective op-
timization problem. For instance, to decrease the in-bed time,
save lives and resources, the choice of the most suitable hospital
for the patient to be admitted has to be balanced by expected
admission time, hospital readiness and severity of the COVID-
19 patient. These are multi-objective optimization problems and
the author showed their strategy using data from 254 patients in
Saudi Arabia outperformed the lexicographic multi-objective op-
timization method. Recently, evolutionary algorithms have made
remarkable progress in tackling many types of multi-objective op-
timization problems [44, 46, 43, 45] and we expect metaheuristic
algorithms will make important contributions to solve COVID-
19 multi-objective optimization problems and beyond. Likewise,
machine learning has made many advances in tackling COVID-19
problems [21]. Research in metaheuristic algorithms is very active

https://elviscuihan.shinyapps.io/Dc_optimal_design/
https://elviscuihan.shinyapps.io/Dc_optimal_design/
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[51] in various ways, including from the mathematical front, see
for example, [28, 47]. Further integration of metaheuristics and
machine learning techniques should enable us to tackle pandemic
and complicated optimization problems more effectively.
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