
The New England Journal of Statistics in Data Science Volume 1, 126–137 (2023)
DOI: https://doi.org/10.51387/22-NEJSDS4

Four Types of Frequentism and Their Interplay with Bayesianism
James BERGER

1. INTRODUCTION
The majority of statisticians and data scientists declare

themselves to be frequentists, but they often mean very dif-
ferent things by this declaration. Indeed, while I.J. Good
identified 46,656 potential types of Bayesians [13], there may
be even more potential types of frequentists. This paper re-
stricts attention to the four most common types of frequen-
tism, discussed in Section 2.

The paper has several goals:

• Highlight and compare the major different types of fre-
quentistism.

• Relate the different types of frequentistism with
Bayesianism; some types are more compatible with
Bayesianism than others. The focus of these discussions
is in determining which types of frequentism are most
useful to Bayesians. These discussions are given at the
end of each subsection.

• Evaluate a number of common statistical scenarios from
the different frequentist perspectives. This results in
some (perhaps) surprising findings in common situa-
tions such as multiple hypothesis testing and sequential
endpoint testing (Section 3.2).

• Evaluate certain Bayesian procedures, such as the use
of odds in testing (Section 3.4), from these frequentist
perspectives.

The focus here is not on studying general approaches to
statistical analysis; we consider specific examples of statis-
tical analysis to illustrate the issues, but do not focus on
general theories. For instance, there has recently been great
interest (generated, in part, by the Bayesian, Fiducial &
Frequentist (BFF) series of meetings) in developing Confi-
dence Distribution analysis (cf. [26]) and Generalized Fidu-
cial analysis (cf. [14]), but application of these methods to
specific contexts could result in different types of frequen-
tism being utilized.
Caveat 1. Most of the concepts in the paper have been ex-
tensively discussed over hundreds of year. We do not at-
tempt to trace this history; instead we have only the ped-
agogical goal of trying to clarify the concepts that have
emerged. The clarification is most easily done with simple
examples; indeed, all examples in the paper only consider
one-dimensional parameters.

Caveat 2. The word frequentist is traditionally viewed as
referring to some type of long-run average (long-run fre-
quency), and we restrict consideration in this paper to only
that notion. Many people today also use the word frequen-
tist to refer to what are essentially Fisherian concepts [12]
that do not necessarily involve a long-run average. A recent
example is [18, 19] whose interesting statistical philosophy is
based on a mix of Fisherian and long-run average concepts.

2. FOUR TYPES OF FREQUENTISM
The four types of frequentism that we address are each de-

fined and illustrated (through numerous examples) in a sub-
section herein. Each subsection includes a discussion of the
relationship of the corresponding principle with Bayesian-
ism.

2.1 Type I. Empirical Frequentism
Empirical frequentist principle. In repeated practical
use of a statistical procedure, the long-run average actual ac-
curacy achieved should not be less than (and ideally should
equal) the long-run average reported accuracy, in the sense
that the difference of the two should go to zero.

We do not attempt a formal mathematical statement of
this principle, because many variants are possible. Instead
we illustrate this (and later principles) through a variety of
examples.

Assertion (to be justified as we proceed). While other fre-
quentist notions have value, this is the gold standard for
frequentist evaluation. (An improvement is conditional fre-
quentism – see Section 2.4 – but this is so much more com-
plex that we mainly focus on satisfying the empirical fre-
quentist principle in this paper.) Indeed, Neyman repeat-
edly pointed out – see, e.g., [20] – that the motivation for
the frequentist principle is in repeated use of a procedure on
differing real problems and not use on imaginary repetitions
of one problem, as is often taught in textbooks.

2.1.1 Confidence Intervals

Consider a sequence of real problems E1, E2, . . . , where
Ei is an experiment yielding data xi that arises probabilis-
tically from a distribution having unknown parameter θi,
both of which can vary from experiment to experiment; we
are not (here) considering the usual frequentist notion of
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studying repetitions of a fixed experiment with a given dis-
tribution and a fixed unknown θ.

The scenario considered, in this section, is that of pro-
ducing confidence intervals for the θi, so the result of each
analysis is a confidence interval Ci(xi), with stated confi-
dence (of containing θi) equal to 1 − αi(xi). We are not
defining ‘confidence’ here – it could be either frequentist or
Bayesian, for instance – and we allow the stated confidence
to depend on the data.

Suppose one eventually learns if Ci(xi) contains θi or not
(say we are targeting stock prices in the future, and eventu-
ally learn them). The empirical frequentist principle could
be formulated, in this context, as saying that

lim
N→∞

[ 1
N

N∑
i=1

(1− αi(xi))−

# times Ci contained θi
N

]
= 0 . (2.1)

Thus the difference between the average reported confidence
and the average attained coverage of the intervals should go
to zero. It is often viewed as being acceptable to be conser-
vative, which would happen, for instance, if the bracketed
term in (2.1) were less than zero for sufficiently large N .

What is random in (2.1) will depend on context; typi-
cally (x1, x2, . . . , xN ) will be random, with a joint distri-
bution specified by the distributions in {E1, . . . , EN}, given
(θ1, . . . , θN ). But sometimes the θi will also be random. (And
sometimes neither the xi nor θi are random; in finite popula-
tion settings, for instance, both are considered fixed and the
randomness comes from the random mechanism by which
subjects are selected to be in the sample.) Such considera-
tions arise when trying to prove that (2.1) holds, but the
condition itself does not depend on any notion of random-
ness.

The textbook notion of confidence is, however, one possi-
ble report and can satisfy the empirical frequentist principle.
Indeed, suppose that, in Ei,

P (Ci(xi) contains θi | θi) = 1− αi

for all θi (the probability is over the possible data xi), i.e.,
1 − αi is the usual frequentist coverage of the confidence
procedure in Ei. We will evaluate (2.1) when reporting 1−
αi(xi) = 1− αi as the error.

Letting 1C(θ) be the indicator function on the set C (one
if θ ∈ C and zero otherwise), note that (2.1) can be rewritten

lim
N→∞

1

N

N∑
i=1

[(1− αi)− 1Ci(xi)(θi)] = 0 . (2.2)

Also, 1−αi = E[1Ci(xi)(θi) | θi] (the expectation being over
xi), so yi = [1 − αi − 1Ci(xi)(θi)] is a zero mean random
variable with variance bounded by 1. Since (2.2) is just the

average of the yi, the law of large numbers applies and con-
cludes that the limit is indeed zero. Thus the Ei do not have
to be problems of the same type, the αi do not have to be
the same, and the θi need have no relationships for (2.1) to
hold.
2.1.2 Unbiasedness

Consider a sequence of different experiments Ei, with dif-
ferent θi, to be estimated by unbiased estimates θ̂i (so that
E[θ̂i | θi] = θi). If the θi were to become known, the differ-
ences θ̂i − θi would then be mean 0 random variables and
one could observe that the average differences converge to
0, under mild conditions. Whether or not this is a useful
property can be debated, but it is an empirical frequentist
property.
2.1.3 Empirical Bayes

Empirical Bayes analysis [21] is defined in an empirical
frequentist way. The θi are assumed to arise from some un-
known distribution π(·); for instance they could be indepen-
dent draws from a N(θi | ξ, τ2) distribution, with ξ and τ2

unknown. Data xi are then observed from distributions with
parameters θi. Analysis is then typically done with respect
to the series of experiments corresponding to the (xi, θi),
and often in accordance with the empirical frequentist prin-
ciple, under the assumption that the θi do arise from π(·).
2.1.4 Discussion and Interfaces with Bayesianism

The empirical frequentist principle seems compelling to
most people. Imagine that a computer program to compute
confidence intervals has been developed. Many different peo-
ple use the program, specifying the 1 − αi they want and
the experiment Ei they conducted, and the program returns
Ci(xi). Suppose someone discovers that, over many uses,
the average reported confidence was 0.90, while only 70% of
the confidence intervals actually contained the true θi. This
would be a very misleading computer program.

We would argue that even Bayesians should accept the
empirical frequentist principle. Perhaps the computer pro-
gram above is a subjective Baysian program that guides
users through the prior elicitation process and ultimately
produces Bayesian confidence (credible) intervals. Some-
thing is very wrong if the reported confidence in repeated
use of the program is 0.90, with actual coverage of only 70%.
This could arise, for instance, if the subjective prior elicita-
tion part of the program is producing prior distributions
that are too concentrated (a well known issue with subjec-
tive elicitation, unless considerable care is taken), leading to
credible intervals that are too small.

2.2 Type II. Procedural Frequentistism
Procedural frequentist principle. Statistical procedures
should be evaluated according to their frequentist properties,
defined as properties of the procedure that would arise from
repeated imaginary application of the procedure to a specified
problem (model and unknown parameters given).
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2.2.1 Textbook Confidence Intervals
Confidence is often defined in a procedural frequentist

way, with the experiment E being fixed, the unknown θ
being fixed, and confidence 1 − α(θ) being defined as the
probability that the confidence set contains θ for imaginary
repetitions of the experiment.(We are overusing α in this pa-
per; α(θ) here is distinct from the earlier α(xi).) As observed
earlier, if one develops confidence sets in the procedural fre-
quentist way and the confidence 1 − α does not depend on
θ, the confidence procedures will also have the empirical fre-
quentist property. When the confidence does depend on θ,
it is not uncommon to report 1 − α = infθ(1 − α(θ)) and
such reports can be given a conservative empirical frequen-
tist interpretation, with ≤ replacing = in (2.1).

2.2.2 Consistency
A procedure is consistent if it converges to the truth as

the sample size n → ∞. (Note that this is distinct from the
earlier N , which referred to the sequence of experiments be-
ing conducted.) This is a procedural frequentist principle,
in that it involves an imaginary sequence of applications of
the procedure to a given problem (model), but with grow-
ing sample size. There is no natural sense in which this is
an empirical frequentist principle; one does not, in reality,
continue to repeat the same experiment, but with growing
sample sizes.

2.2.3 Type I Error
Consider testing H0 versus H1, with a rejection region

R having Type I error α = P (R | H0). This is clearly a
procedural frequentist quantity but we will see in Section 3.2
that it does not satisfy the empirical frequentist principle.

2.2.4 Sequential Endpoint Testing
Consider a sequence of null and alternative hypotheses

{H1
0 , H

1
1}, {H2

0 , H
2
1}, . . ., that are to be tested sequentially;

the ordering of the hypotheses is important, and must be
pre-specified. For instance H1

1 could be the hypothesis that
a new drug provides pain relief, H2

1 could be the hypothesis
that the same drug reduces blood pressure, and H3

1 could
be the hypothesis that the same drug promotes weight loss.
Indeed, this type of example motivated the name sequential
endpoint testing, with the three possible effects of the drug
being the particular endpoints being studied.

In the simplest version of sequential endpoint testing, the
same Type I error, α, is chosen for each hypothesis test.
The procedure is to conduct the first test, stopping if H1

0

is not rejected. If H1
0 is rejected, one is allowed to perform

the second test, stopping or continuing on depending on
whether the second test fails to reject or rejects. Continuing
on in this fashion, the end result is some sequence (possibly
empty) {H1

0 , H
2
0 , . . . , H

m
0 } of rejected null hypotheses, with

m+1 being the first time one fails to reject. The interesting
procedural frequentist fact [17] is that

P (one or more false rejections | H1
ii , H

2
i2 , . . .) ≤ α , (2.3)

no matter what sequence of hypotheses is true. So, in the
drug illustration and if all three tests are rejections, the drug
company could claim that the drug is effective for all three
purposes, with the probability that the procedure results in
one or more incorrect rejections being no more than α. This
is what now occurs in the world, with a drug often being
labeled as effective for several things, based on sequential
endpoint testing.

This at first seems odd to statisticians because it looks
similar to traditional multiple testing for which, to obtain
an overall level of α for the three tests, one would need to
do the individual tests at level α/3 (using Bonferonni, for
simplicity). In sequential endpoint testing, however, not all
tests are necessarily conducted; a test is conducted only if
all the preceding tests were rejections, the crucial reason
that no Type I error correction is needed. We show, how-
ever, in Section 3.2.3 that this procedure does not satisfy
the empirical frequentist principle.

2.2.5 Discussion and Interfaces with Bayesianism

The procedural frequentist principle is less compelling
than the empirical frequentist principle, in that it involves
an imaginary sequence of experiments. The consistency ex-
ample is one in which many (most) people would find the
principle compelling, even though it is only procedural; us-
ing a procedure that fails as the data becomes nearly infi-
nite provides a thought experiment that calls the procedure
into question. Even Bayesians routinely accept consistency
as necessary.

The procedural case for the Type I error, α, is not so
compelling: one considers an imaginary sequence of experi-
ments consisting of draws of data from H0, and notes that
the proportion of the time that the data is in R is α. Since
this sequence of experiments is all under the assumption
that H0 is true, it is not obvious that one has learned much
about the testing problem; this will be extensively discussed
in Section 3.2. Of course, Type I error is a useful quantity
for various other computations. In particular, when design-
ing an experiment, Type I error and power are key quantities
to consider, even for a Bayesian. (But, once the data are at
hand, a Bayesian would not tend to utilize Type I error or
power in making an error report.)

Procedural frequentist properties are often used by objec-
tive Bayesians to define objective priors. For instance, the
confidence set procedural principle is used to define what are
called matching priors, which are priors that yield posterior
credible sets for a real parameter θ that have good frequen-
tist behavior when viewed as a confidence procedure.

A surprising example. One of the earliest and most inter-
esting examples of the matching prior idea was [15], which
showed that the 100(1 − α)% equal-tailed credible interval
(i.e., the interval whose lower endpoint is the α/2-quantile of
the posterior distribution and whose upper endpoint is the
[1−α/2]-quantile) has the following rather astonishing pro-
cedural frequentist property: as the sample size n → ∞, the
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frequentist coverage of the Bayesian credible sets is 1 − α,
up to an error of order C/n for some constant C. This is
astonishing because achieving frequentist coverage up to an
error of C/n is noteworthy (achieving an error of C/

√
n

is easy), and yet Hartigan’s result holds for essentially any
prior distribution having full support.

The procedural frequentist procedure defined in sequen-
tial endpoint testing is incompatible with Bayesian reason-
ing. In particular, the Bayesian posterior probabilities of the
alternative hypotheses satisfy P (H1

1 | data) ≥ P (H1
1 , H

2
1 |

data) ≥ · · · ≥ P (H1
1 , H

2
1 , . . . H

m
1 | data) , so that increas-

ing numbers of rejections result in less probability being as-
signed to all the rejections being correct. Indeed, this seems
intuitively clear. If one managed to conduct 101 α = 0.05-
level tests via the sequential endpoint procedure, with each
of the endpoints being very different (as in the earlier drug
illustration), would anyone actually be willing to bet that all
100 rejections were correct? That seems scientifically ridicu-
lous. Of course, this outcome has a nearly negligible prob-
ability of occurring and, hence, can be compatible with an
overall α = 0.05. But the possibility of being in this situa-
tion sends a warning that the procedural frequentist prop-
erty here is difficult to interpret. Indeed, even assigning the
same error probability to one rejection as to two or three
rejections seems highly questionable.

We discussed four procedural frequentist examples in this
section. The first, that of textbook presentation of coverage
of confidence intervals, actually has an empirical frequentist
justification, so there can be no criticism of it at this point
(although see Section 2.4). The second example, that of con-
sistency, has no clear empirical frequentist justification, but
is almost universally agreed to be important.

The third example, that of Type I error in testing of a
single hypothesis, has no clear empirical frequentist justifi-
cation and is not as universally respected as consistency, but
can be an important quantity to know. But the final exam-
ple, that of sequential endpoint testing, is a highly suspect
procedural frequentist procedure.

2.3 Type III. Computationally Frequentist
Computationally frequentist principle. Statistical pro-
cedures should depend on quantities that involve frequentist
averages over the sample space.

2.3.1 P-values

In testing H0, based on data x, where large values of
T (x) discredit H0, the p-value P (T (x) ≥ T (xobs) | H0),
where xobs is the actual observation, is a probability on the
sample space, so it satisfies the computational frequentist
principle. Note, however, that it does not follow the proce-
dural frequentist principle, because one cannot embed it in
an imaginary sequence of problems where the p-value has a
long-run frequentist interpretation. For instance, one might
consider the imaginary experiments of repeatedly drawing

data xj from H0, computing the p-value p(xj), rejecting H0

if p(xj) < 0.05 and then reporting p(xj) as a frequentist
error probability. But the actual Type I frequentist error of
this procedure is clearly 0.05, so that reporting p-values will
always underestimate the procedural error. We will also see
that the p-value badly fails to satisfy the empirical frequen-
tist principle.

The p-value is often called the ‘attained significance level,’
in that it is the smallest α for which an α-level test would
have rejected. One could imagine then running a sequence
of imaginary experiments with this α, but this imaginary
sequence will have a long-run frequentist interpretation only
if α is used as the error probability, not if p-values are used
in the new imaginary experiments.

Note that computationally frequentist arguments can be
ridiculous. Here is an example, arising from an e-mail we re-
ceived that was inquiring about the validity of the analysis.
Example 1. Suppose one observes X ∼ Binomial(θ, 20)
and is testing H0 : θ = 0.5 versus H1 : θ > 0.5, so that
large values of x define the tail area for the p-value. The
actual observation was xobs = 4, the p-value P (x ≥ 4 |
H0) = 0.999 was calculated, and the purported conclusion
was that this was overwhelming evidence in favor of H0. Of
course, xobs = 4 is actually quite strong evidence against
either hypothesis, and the conclusion reached was based on
a completely incorrect interpretation of p-values. (A sensible
Bayesian analysis suggests that the evidence indeed favors
H0, but only by a factor of roughly 5 to 1.) One can do bad
things using any statistical methodology, so the point here
is just that a frequentist computation does not guarantee
any statistical validity of a conclusion.
2.3.2 Discussion and Interfaces with Bayesianism

Our perspective is that the computationally frequentist
principle lacks any force whatsoever. Just because one has
computed some kind of average over the data does not mean
that the resulting procedure has any value. We are not as-
serting that any procedure arising this way is useless, but
merely saying that the fact that there was some data aver-
aging going on provides no justification by itself.

p-values are interesting in this regard; they are valuable
statistics and have a number of important uses, especially
if they are properly calibrated; even Bayesians tend to use
(calibrated) p-values for model checking. But Bayesians do
not view their value as arising from the fact that they involve
an average over data but, rather, that they are just a useful
statistic.

Computationally frequentist procedures will generally
not have a Bayesian interpretation, although sometimes they
do through a mathematical quirk. For instance, in one-sided
testing, p-values can equal the posterior probability of the
null hypotheses for certain improper priors, but this is more
a mathematical curiosity than something fundamental (cf,
[4]). In two-sided testing, there is usually an extreme dif-
ference between p-values and posterior probabilities, a fact
first clearly demonstrated in [10].
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2.4 Type IV. Conditional Frequentistism
Bayesian analysis is typically phrased as being about

“what is to be concluded from the problem and data at
hand?” Frequentist analysis is about long-run performance
guarantees. These are not necessarily incompatible. Indeed,
conditional frequentists strive to achieve both long-run per-
formance and optimal conclusions for the problem and data
at hand. A general discussion of conditioning would take us
too far afield (see [3] for a review and history), so we content
ourselves here with an example.

We return to the confidence set situation to illustrate the
issue. The best report would obviously be the oracle report
of the indicator function IC(xi)(θi): one if the confidence
interval contains θi and zero if it does not. It is thus natural
to compare the stated confidence with how close it is to this
oracle report, such as with use of the loss function

L(1− αi(xi), C(xi), θi) = (1− αi(xi)− IC(xi)(θi))
2 . (2.4)

One can consider a variety of ensuing expected losses but
we simply present a classical example where any perspective
makes the answer clear.
Example 2 (from [5]). Two observations, x1 and x2, are to
be taken, where

xj =

{
θ + 1 with probability 1

2

θ − 1 with probability 1
2

.

Consider the frequentist confidence set, for the unknown θ,
defined by

C(x1, x2) =

{
the point { 1

2 (x1 + x2)} if x1 	= x2

the point {x1 − 1} if x1 = x2.

The (unconditional) frequentist coverage of this confidence
procedure can easily be shown to be

1− αU = P (C(x1, x2) contains θ | θ) = 0.75.

This is not a sensible conclusion, once the data is at hand.
To see this, observe that, if x1 	= x2, then we know for sure
that the average of the observations equals θ, so that the
confidence set is then 100% accurate. On the other hand,
if x1 = x2, θ is either the data’s common value plus one or
their common value minus one and each of these possibilities
is equally likely to have occurred.

To obtain sensible frequentist answers here, one must de-
fine a conditioning statistic such as s = |x1−x2|, which can
be thought of as measuring the ‘strength of evidence’ in the
data (s = 2 indicating data with maximal evidential content
and s = 0 being data of minimal evidential content). Then
one defines frequentist coverage conditional on the strength
of evidence s. For the example, an easy computation shows
that this conditional confidence is, for the two distinct cases,

1− αC(s = 2) = P (C(x1, x2) contains θ | s = 2, θ)

= 1 ,

1− αC(s = 0) = P (C(x1, x2) contains θ | s = 0, θ)

=
1

2
.

Conditional frequentist measures are fully frequentist and
seem clearly better than unconditional frequentist measures.
They have the same unconditional property (e.g., in the ex-
ample, one will report 100% confidence half the time and
50% confidence half the time, resulting in an ‘average’ of
75% confidence, as must be the case to satisfy the empiri-
cal frequentist principle), yet give much better indications of
the accuracy for the data that one has actually encountered.

To see this formally, consider the loss function in (2.4)
and the corresponding frequentist risk (expected loss over
the data (x1, x2) given θ). The risk of the constant error
report, 1− αU = 0.75, is

E[(0.75− IC(x1,x2)(θi))
2 | θ ] =

1

2
(0.75− 1)2 +

1

4
(0.75− 1)2 +

1

4
(0.75− 0)2 =

3

16
.

In contrast, the risk of the conditional report, 1−αc(s), has
the smaller risk

E[(1− αC(s)− IC(x1,x2)(θi))
2 | θ ] =

1

2
(1− 1)2 +

1

4
(0.5− 1)2 +

1

4
(0.5− 0)2 =

2

16
.

2.4.1 Discussion and Interfaces with Bayesianism

Finding good conditioning statistics is, in general, very
difficult – so much so that the conditional frequentist the-
ory of statistics is quite underdeveloped. Thus the typical
approach today for developing conditional frequentist proce-
dures is to develop objective Bayesian procedures (which au-
tomatically condition correctly) and show that they have ex-
cellent long-run frequentist behavior. The generalized fidu-
cial approach mentioned in the introduction is another
promising approach for doing this.

To illustrate this on the two-observation example in the
previous section, the natural objective prior is π(θ) = 1. Ap-
plication of Bayes theorem trivially yields that, if x1 	= x2,
then the posterior distribution for the unknown θ gives prob-
ability one to the point (x1 + x2)/2 while, if x1 = x2, then
the posterior distribution gives probability 1/2 each to the
common value of the data plus 1 and the common value
minus 1. It is immediate that the objective Bayesian con-
fidence statements for C(x1, x2) are 1 and 0.5 for the two
cases, respectively, which is the optimal conditional frequen-
tist answer.

The example in this section showed that even satisfac-
tion of the empirical frequentist principle can be highly in-
adequate from the conditional frequentist perspective. (This
could be corrected within the empirical frequentist paradigm
by requiring some type of second empirical frequentist prop-
erty, involving losses such as (2.4), but we do not pursue
this.) This will be seen to be even more of a problem for
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procedures that satisfy only the procedural frequentist prin-
ciple, as will be extensively discussed in the next section.

3. HYPOTHESIS TESTING

3.1 Introduction
Hypothesis testing provides a more challenging illustra-

tion of the differences between the types of frequentists,
and also illustrates the merging of frequentist and objec-
tive Bayesian statistics. As this is a pedagogical article, we
do not attempt to study the empirical frequentist interpre-
tation of hypothesis testing in general, but rather focus on
the very special case in which the sequence of hypothesis
tests being conducted is exchangeable, in the sense of hav-
ing the same Type I error and power and having the same
prior probability π0 of the null hypothesis (when we are in-
corporating Bayesian concepts).

One situation in which this happens is daily quality con-
trol testing of an assembly line, where the repeated quality
control checks involve exchangeable tests. Another example
is Genome Wide Association Studies (GWAS) where, in each
test, the alternative hypothesis is that a particular gene is
associated with a particular disease and the null hypothesis
is that there is no association; often, little is known about
particular gene/disease associations so the tests are treated
as exchangeable. The developments in this chapter could
be done in much greater generality, with nonexchangeable
hypotheses, but the exchangeable situation is sufficient for
pedagogical understanding of the main issues.

It will be seen that involvement of π0 is usually un-
avoidable for satisfaction of empirical frequentist properties.
Sometimes π0 is known. The quality control testing of an
assembly line is one such example, where historical records
provide the probabilities that the assembly line is operat-
ing correctly or is out of alignment. The prior probability
of an association in GWAS is often considered known (cf.
[24]), but can also be estimated from the data and becomes
effectively known if the number of GWAS tests is huge (as
is typical). More generally, in exchangeable multiple testing
scenarios, one can learn π0 as the number of tests grows [11].

When π0 is not known, one could resort to the ‘objective
Bayesian’ approach of giving each hypothesis equal prior
probability, i.e., setting π0 = 0.5. This is obviously not com-
pletely compelling, but does provide a reasonable default
base for exploring the various frequentist principles.

3.2 Testing with Unconditional Error
Probabilities

We have already seen that Type I error in testing is a
procedural frequentist quantity. Can it also be given an em-
pirical frequentist interpretation? We study this question
here for standard hypothesis testing, multiple testing, and
sequential endpoint testing.

3.2.1 Standard Hypothesis Testing
Consider the case of exchangeable simple hypothesis test-

ing, with each of the Ei (recall that {E1, E2, . . . , EN} is the
sequence of experiments being considered) being a test of
Hi

0 : θi = θ0i versus Hi
1 : θi = θ1i, with rejection regions

Ri having the same Type I error α and the same power
β = P (Ri | Hi

1). There are various empirical frequentist
properties that can be discussed in testing. For simplicity,
we will focus on what could be called the empirical frequen-
tist error probability under rejection, namely

lim
N→∞

[
# times Hi

0 is true when rejecting
# rejections

]

= lim
N→∞

[
# times Hi

0 is true when rejecting/N
# rejections/N

]
= P (Hi

0,Ri)/P (Ri)

=
π0α

π0α+ (1− π0)β
≡ P (Hi

0 | Ri) , (3.1)

which is the posterior probability that Hi
0 is true if one only

knows that the test was a rejection. This is the actual error
rate achieved in the sequence of experiments and so is the
target for our reported error probabilities.

If π0 is known, simply reporting error probability αU =
P (Hi

0 | Ri) clearly satisfies the empirical frequentist prin-
ciple. Furthermore, this would be the correct error report
corresponding to the experiment, before seeing the data. In
[23], this was shown to be equal to what he defined as the
pFDR. Thus stating pFDR (if π0 is known) has an empirical
frequentist justification. Note that the expected value of the
first bracketed quantity above is essentially the regular FDR
[2], which has a procedural frequentist justification but not
an empirical frequentist interpretation.

If π0 is not known and one makes the default assumption
that π0 = 0.5, note that P (Hi

0 | Ri) = α/[α + β], which
is nearly α when α is small and β is near one. Thus, for a
highly powered test and if the hypotheses have equal prior
probabilities, reporting α as the error probability does have
approximate empirical frequentist justification.

The dependence of empirical frequentist error on prior
probabilities is circumvented in Neyman-Pearson testing by
only evaluating procedural properties of the test, namely
α and β individually. The problem with this is that it is
not unusual for people to interpret α as a surrogate for the
empirical frequentist quantity P (Hi

0 | Ri), but the two can
obviously be very different, even if π0 = 1/2, as shown in
Table 1, where α = 0.05 is chosen to define the rejection re-
gion. Thus, if the power is only 0.5 (as is common in GWAS),
the actual error that will arise in rejecting over a series of
real experiments is almost twice α and, as the power drops
lower, the actual error rises dramatically. This important
role of power in achieving empirical frequentist performance
is often neglected, in part because it is not usually explained
how to utilize power to understand empirical frequentist re-
jection error. We return to this issue in Section 3.4.
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Table 1. Empirical frequentist error, when the prior
probabilities of the hypotheses are equal, when α = 0.05, and

for various values of the power β.

β 1 0.95 0.8 0.5 0.05 0
P (Hi

0 | Ri) .0476 0.05 0.0588 0.0909 0.5 1

3.2.2 Multiple Testing

Consider the multiple testing scenario in which Ei con-
sists of performing m independent tests of hypotheses at
nominal Type I error α/m (the Bonferroni correction) and
power β(m). The Type I error (a procedural frequentist
quantity) for each Ei is then α, and we again study the
extent to which this report has empirical frequentist justifi-
cation. One could allow the m to vary over the Ei and the β’s
to vary – between both the Ei and the tests within each Ei

– but the answers remain essentially the same. Also, assume
for simplicity that each null hypothesis has prior probability
π0 < 1 of being true.

Consider the situation in which an error is made in Ei

if any of the m tests results in an incorrect rejection (of-
ten called family-wide error in rejection). Then one natural
empirical frequentist quantity to study is

lim
N → ∞

# Ei that have at least one incorrect rejection
# Ei that have at least one rejection

=
P (an Ei has at least one incorrect rejection)

P (an Ei has at least one rejection) , (3.2)

the false positive rate for family-wide error in rejection.
There are other possibilities here, such as looking at all the
tests within each Ei and studying the overall number of tests
being incorrectly rejected, but utilizing family-wide error is
standard.

Lemma 1. For the multiple testing problem,

P (an Ei has at least one incorrect rejection)
P (an Ei has at least one rejection)

=
1−

[
1− π0α

m

]m
1−

[
1− π0α

m − (1− π0)β(m)
]m . (3.3)

Proof. Note first that, for a single test in Ei,
P (not being an incorrect rejection) = π0(1 − α/m) +
(1 − π0). Since Ei consists of m independent such tests, it
follows that

P (an Ei has at least one incorrect rejection)
= 1− P (an Ei has no incorrect rejections)

= 1−
[
π0

(
1− α

m

)
+ (1− π0)

]m
= 1−

[
1− π0α

m

]m
.

Similarly,

P (an Ei has at least one rejection)
= 1− P (an Ei has no rejections)

= 1−
[
π0

(
1− α

m

)
+ (1− π0)(1− β(m))

]m
= 1−

[
1− π0α

m
− (1− π0)β(m)

]m
.

The conclusion follows.

For large m, the numerator in (3.3) is approximately 1−
e−π0α ≈ π0α for small α. Typically, β(m) goes to 1 as m
grows, in which case an approximation to the denominator
(and always a lower bound) can be shown to be [1−πm

0 (1−
α)]. Thus

P (an Ei has at least one incorrect rejection)
P (an Ei has at least one rejection)

≈ π0α

1− πm
0 (1− α)

. (3.4)

To study this, it is important to realize that π0 is often
near 1 when m is large. For instance, in [24], m was huge
and π0 = 1− 10−5. It is thus useful to consider three types
of behavior of π0, with regards to increasing m.

Case 1. πm
0 → 0 as m grows (e.g., π0 = 0.5). Then (3.4)

clearly converges to π0α as m grows, so that the multiple
testing procedure does satisfy the empirical frequentist prin-
ciple. Indeed, if one knows π0, one can report the smaller
error π0α with complete empirical frequentist validity.

Case 2. πm
0 → c (0 < c < 1) as m grows (e.g., π0 =

1+ log(c)
m ). Then (3.4) clearly converges to α/[1−c(1−α)] > α

as m grows (since π0 → 1 in this situation), so that empirical
frequentist validity is lacking.

Case 3. πm
0 → 1 as m grows (e.g., π0 = 1− c

m2 ). Then (3.4)
clearly converges to 1 as m grows (since, again π0 → 1), so
that the empirical frequentist performance is as bad as it
can be.

3.2.3 Sequential Endpoint Testing

We return to the sequential endpoint testing example,
and evaluate it from the empirical frequentist perspective.
To keep matters simple, the only case that will be considered
is that in which each endpoint test is conducted with the
same Type I error α and power β, and the prior probability
of each null hypotheses is π0. Note that Ei is again a possible
sequence of individual tests; thus E99 could be a sequence in
which H1

0 is rejected, H2
0 is rejected, and H3

0 is not rejected.
(Recall that the only possible outcomes are of this type: a
sequence of rejections followed by an acceptance.)

Of interest is again the actual empirical frequentist re-
jection error rate among the sequences that contain at least
one rejection, namely the quantity (3.2).
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Lemma 2. For the sequential endpoint testing problem and
if an infinite sequence of tests is available,

P (an Ei has at least one incorrect rejection)
P (an Ei has at least one rejection)

=
π0α

[π0α+ (1− π0)β][1− (1− π0)β]
. (3.5)

Proof. Here, P (an Ei has at least one rejection) = π0α +
(1− π0)β, namely the probability that the first test in a se-
quence is a rejection; what happens subsequently does not
change the fact that it is a sequence with a rejection. Recog-
nizing that the possible ways of having an incorrect rejection
are to have an incorrect rejection at the first test, which has
probability π0α; or to have a correct rejection at the first
test and an incorrect rejection at the second test, which has
probability (1−π0)β×π0α; or to have two correct rejections
followed by an incorrect rejection, etc., it follows that

P (an Ei has at least one incorrect rejection)
= π0α+ (1− π0)β × π0α+ (1− π0)

2β2 × π0α+ · · ·
= π0α[1 + (1− π0)β + (1− π0)

2β2 + · · · ]
=

π0α

1− (1− π0)β
.

The conclusion follows.

Calculus allows computation of the minimum of (3.5) over
β, resulting in the inequality

P (an Ei has at least one incorrect rejection)
P (an Ei has at least one rejection)

≥ 4π0α

(1 + π0α)2
. (3.6)

This lower bound can be shown to always exceed α, for small
α, when π0 > 1

4 + α
8 , so that anytime the null hypotheses

have even modest probability of being true, sequential end-
point testing will not satisfy the empirical frequentist prin-
ciple when measured by (3.5).

For the objective choice π0 = 1/2 and α small, the above
bound is approximately 2α and so stating that the error is
α understates the error by a factor of 2. Even reporting 2α
as the error does not satisfy the empirical frequentist princi-
ple because the inequality above is in the anti-conservative
direction.

Similar analysis for sequential endpoint testing consisting
of just m steps can be performed and yields lower bounds
for the empirical frequentist rejection error (when π0 = 1/2
and α is small) of 2(1− 2−m)α. For instance, if m = 2, this
is (1.5)α, which is 50% larger than α. The clear indication
is that, even though sequential endpoint testing does not
get penalized in terms of Type I error for using α as the
rejection level for each test, there is a penalty in terms of
empirical frequentist rejection error.

3.3 Testing with Data Dependent Error
Probabilities

3.3.1 Introduction

Again, we only consider the case of exchangeable sim-
ple hypothesis testing, with each of the Ei being a test of
Hi

0 : θi = θ0i versus Hi
1 : θi = θ1i, with rejection regions Ri

having Type I error α and power β = P (Ri | Hi
1), and π0

being the prior probability of Hi
0. There are various possible

choices for data-dependent error probabilities αi. Instead of
working with the data, it is convenient to work with the
p-values pi (against the null hypotheses), and write αi(pi)
as the reported error probability upon rejecting in Ei. (The
pi are only being used as convenient statistics here.) Recall
that the target is the actual empirical frequentist error prob-
ability P (Hi

0 | Ri) in (3.1), so the ideal is for the αi(pi) to
satisfy

lim
N∗→∞

1

N∗

N∗∑
i=1

αi(pi) = P (Hi
0 | Ri)

=
π0α

π0α+ (1− π0)β
,

where N∗ is the number of rejections and the average is over
the αi(pi) in the rejections.

3.3.2 The Basic Empirical Frequentist Identity

Under the null hypotheses, the pi have a uniform den-
sity on (0, 1) (assuming they are proper p-values). Let f1(p)
denote the density of the pi under the alternative hypothe-
ses, the density being common across the Ei because of the
exchangeability assumption. The following lemma follows
directly.

Lemma 3. If αi(pi) = α(pi) for some function α(·) and
recalling that we are only considering the series of, say, N∗

rejections (i.e., 0 ≤ pi ≤ α),

lim
N∗→∞

1

N∗

N∗∑
i=1

αi(pi) = E[α(p) | 0 ≤ p ≤ α]

=
1

[π0α+ (1− π0)β]

∫ α

0

α(p)[π0 + (1− π0)f1(p)]dp . (3.7)

This suggests an obvious data-dependent error probabil-
ity report when π0 is known, namely

αB(pi) =
π0

π0 + (1− π0)f1(pi)
. (3.8)

For this choice, the right hand side of (3.7) clearly equals
P (Hi

0 | Ri), achieving exact empirical frequentist justifi-
cation. In addition to this justification, these reported er-
ror probabilities have the highly desirable property of being
data-dependent, with the reported error probability decreas-
ing as the p-value decreases. As discussed in the conditional
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Table 2. Table entries give the right hand side of (3.11) for the three discussed choices of reported errors, so that the
indicated reported error satisfies the (conservative) empirical frequentist principle if π0 is smaller than this bound.

n α Bound on π0 for Bound on π0 for Bound on π0 for
αC(pi) =

1
1+f1(pi)

αO(pi) =
−epi log pi
1−epi log pi

αP (pi) = pi

1 0.159 0.5 0.566 0.155
2 0.0787 0.5 0.523 0.0987
4 0.0228 0.5 0.369 0.0388
9 0.0013 0.5 0.0737 0.0034

Table 3. Values of R, from (3.10), when π0 = 1/2, for the three discussed choices of reported errors.

n α R, when π0 = 0.5, for R, when π0 = 0.5, for R, when π0 = 0.5, for
αC(pi) =

1
1+f1(pi)

αO(pi) =
−epi log pi
1−epi log pi

αP (pi) = pi

1 0.159 1 1.21 0.248
2 0.0787 1 1.07 0.144
4 0.0228 1 0.635 0.0513
9 0.0013 1 0.091 0.00403

frequentist section, this is thus a much better frequentist
report than P (Hi

0 | Ri).
When π0 is known, there is thus no frequentist contro-

versy: report P (Hi
0 | Ri) as the pre-experimental error prob-

ability under rejection but, upon observing the data, report
αB(pi). Note that αB(pi) = P (Hi

0 | pi), i.e., is the poste-
rior probability of the null hypothesis, given the data. The
fact that the Bayesian error probability here is also the op-
timal empirical frequentist error probability was noted and
discussed in [8].

When the alternative hypothesis is not simple (as as-
sumed here), then f1(p) will also not be known. A method
for dealing with this is discussed in the next section.

3.3.3 The Empirical Frequentist Performance of Common Er-
ror Reports

When π0 is unknown, the following are commonly con-
sidered ‘objective’ conditional error reports.
Option 1. αC(pi) = 1/[1 + f1(pi)], the conditional frequen-
tist Type I error considered in [8] (also the posterior prob-
ability of H0 when π0 = 1/2). This would be the optimal
conditional error probability to report (from the empirical
frequentist perspective) if π0 = 1/2, but is not optimal oth-
erwise (nor is it available if one does not know f1(p), as is
common when the alternative hypothesis is composite).
Option 2. αO(pi) = −epi log pi/[1− epi log pi] (e is the nat-
ural number), proposed in [25] and further motivated in [22]
as a bound on the objective Bayes error probability, in the
sense that

1

1 + f1(p)
>

−ep log p

1− ep log p
(3.9)

for almost any reasonable f1(p). The reason for developing
this bound was to avoid the need to determine f1(p) for
composite alternative hypotheses.

Option 3. αP (pi) = pi, i.e., report the p-value as the error
probability.

The empirical frequentist performance of these data-
dependent error probabilities will be studied by considering
the ratio

R =
average reported error
average actual error

=

∫ α

0
α(p)[π0 + (1− π0)f1(p)]dp/[π0α+ (1− π0)β]

π0α/[π0α+ (1− π0)β]

=
1

α

[∫ α

0

α(p) dp+

(
1

π0
− 1

)∫ α

0

α(p)f1(p)]dp

]
.

(3.10)

The (conservative) empirical frequentist principle is satisfied
if R ≥ 1 (the average reported error is not less than the
average actual error), which will be true if

π0 ≤
(

α−
∫ α

0
α(p) dp∫ α

0
α(p)f1(p)]dp

+ 1

)−1

. (3.11)

Example 3. Suppose the data is i.i.d. normal with mean θ
and variance 1 and the tests are of H0 : θ = −1 versus H1 :
θ = 1, with rejection region x̄ > 0. For various sample sizes
n, Table 2 gives the right hand side of (3.11) for the three
choices of α(pi), while Table 3 gives the corresponding ratios
R for the objective π0 = 0.5. Note that, here, α = Φ(−√

n),
β = 1 − α, p = 1 − Φ(

√
n[x̄ + 1]), and 1/[1 + f1(p)] =

1/[1 + e2nx̄], where Φ is the standard normal cdf.

From Tables 2 and 3, it is clear that reporting the p-
value as the error probability is terrible according to the
empirical frequentist principle; it is reasonable only when
the (unknown) π0 is very small. And the underreporting of
error for the ‘objective’ π0 = 0.5 is dramatic.
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The conditional frequentist (objective Bayesian) report
αC(pi) = 1

1+f1(pi)
is clearly very reasonable, needing only

π0 ≤ 0.5 to have (conservative) empirical frequentist justifi-
cation. As argued in [1], it is often the case that π0 > 0.5,
but then one should be performing a subjective Bayesian
analysis.

Reporting αO(pi) = −epi log pi/[1 − epi log pi] is clearly
considerably better than reporting the p-value in terms of
the empirical frequentist principle, becoming much too small
only for very small p-values. It can be shown that p is a fac-
tor of at least 3.85 smaller than αO(p) when p < 0.1, so
reporting p is almost 4 times worse than reporting αO(pi).
For the case of simple hypothesis testing considered here,
one could use the superior αC(pi) = 1/[1 + f1(pi)] with no
additional computational cost but, for more general hypoth-
esis testing problems, it can be difficult to compute the ob-
jective Bayesian error probability, while computing αO(pi)
is as easy as computing the p-value.

It is surprising that αO(pi) has R > 1 when n = 1 and
n = 2, implying that the inequality in (3.9) can fail for
larger p-values. The inequality was established under a cer-
tain condition on the hazard rate corresponding to f1(p),
and this condition is apparently violated for the simple hy-
pothesis example considered here, when n = 1 and n = 2. In
more general composite hypothesis testing problems arising
in practice, the inequality does seem to hold and, interest-
ingly, αO(pi) seems to often be quite close to αC(pi), as
shown in empirical studies from [16] (see also [1]). Thus,
general use of αO(pi) seems justified, even if it does not
always strictly satisfy the empirical frequentist principle.

3.3.4 Data Dependent Procedural Frequentism

One might consider a data dependent version of proce-
dural frequentism. For instance, one could propose evaluat-
ing data dependent Type I errors αi(pi) = α(pi) (for some
function α(·)) by looking at an imaginary sequence of N∗∗

rejections under the null hypothesis, and ask that

lim
N∗∗→∞

1

N∗∗

N∗∗∑
i=1

α(pi) = E[α(p) | H0, rejection]

=
1

α

∫ α

0

α(p)dp = α . (3.12)

One might then claim that reporting α(pi) is as frequentist
as reporting α. As an example, choosing α(pi) = 2pi yields
1
α

∫ α

0
2pdp = α, so one might assert that reporting twice

the p-value is as much a procedural frequentist procedure as
reporting α.

This is not, however, a logical conclusion. α is the pro-
cedural frequentist property of the test, and the α(pi) have
no real meaning in terms of procedural frequentism.

It is, however, possible to develop data dependent proce-
dural tests through conditioning. Indeed, [8] considers test-
ing conditional on the statistic S = max{p0, p1}, where p0 is

the p-value under H0 and p1 is the p-value under H1. They
show that the conditional Type I error, given S, is, for appro-
priate rejection regions R, given by α(S) = P (R | H0, S) =

1
1+f1(p0)

. This is a real procedural frequentist quantity, hav-
ing the interpretation as the Type I error arising in a long
series of experiments under H0, where the data is compat-
ible with the specified S. Noting that α(S) is always much
bigger than 2pi further reinforces the notion that satisfac-
tion of (3.12) does not provide any procedural frequentist
validity.

3.4 Testing with Odds
3.4.1 Pre-experimental odds

Recalling that π0 is the prior probability of Hi
0, Bayes

theorem gives

P (Hi
0 | Ri) =

π0α

π0α+ (1− π0)β
=

π0

π0 + (1− π0)
β
α

, (3.13)

which is commonly rewritten in terms of odds as

P (Hi
1|Ri)

P (Hi
0|Ri)

= (1−π0)
π0

× β
α or (3.14)

pre-experimental odds =
prior odds × experimental odds ,

using the terminology in [1]. The pre-experimental odds
have the very nice interpretation as the odds that a re-
jection, arising from the experiment, is correct to incorrect
(often also called the odds of a true positive to a false pos-
itive). The big advantage of expressing things in terms of
odds is that the prior odds separate out, so that those who
do not wish to involve prior probabilities can focus on the
experimental odds.

In classical statistics, it is left unstated as to how one
should combine α and β to make inferences. Combining
them through error probabilities, as in Section 3.2, is one
possibility, but this mixes α and β up with the prior prob-
abilities of hypotheses; (3.14) makes the sharper statement
that inferences should depend on α and β only through the
ratio β/α.

Consider (possibly data-dependent) reports Oi(pi) of the
odds of having a correct rejection to an incorrect rejection
in experiment Ei. A natural empirical frequentist principle
would then be to satisfy, averaging over all N∗ rejections,

lim
N∗→∞

1

N∗

N∗∑
i=1

Oi(pi)

= lim
N∗→∞

# true rejections
# false rejections

=
(1− π0)

π0
× β

α
. (3.15)

With error probabilities it was natural to evaluate their long
run performance by arithmetic averaging, but this is not so
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natural with reported odds. Indeed, using either geometric
averaging or arithmetic averaging of log odds in (3.15) may
be more reasonable.

Note that, if the prior odds are known, the unconditional
choice Oi = (1− π0)β/(π0α) trivially satisfies (3.15), which
is strong empirical frequentist justification for the choice.
(This would also be trivially true under geometric averag-
ing.) If the prior odds are unknown, one can, at least, provide
a procedural frequentist justification for β/α by considering
an imaginary sequence of tests in which the prior odds are
fixed at some specified value O∗ (e.g., the objective choice
O∗ = 1), and then saying that Oi = O∗β/α will satisfy
(3.15) for this imaginary sequence.

3.4.2 Data Dependent odds

(3.13) is a version of Bayes theorem applied pre-
experimentally, depending only on Ri. The post-
experimental odds version of Bayes theorem is

P (Hi
1|pi)

P (Hi
0|pi)

= (1−π0)
π0

×B10(pi) or (3.16)

posterior odds of Hi
1 to Hi

0 =

prior odds × Bayes factor of Hi
1 to Hi

0 ,

where, for our testing problem, B10(pi) = f1(pi)/1 (the den-
sity of the statistic pi under the alternative hypothesis di-
vided by the density under the null hypothesis).

Turning to the empirical frequentist performance of re-
porting B10(pi), computation yields

lim
N∗→∞

1

N∗

N∗∑
i=1

B10(pi)

=

∫ α

0

f1(p)
[π0 + (1− π0)f1(p)]

(π0α+ (1− π0)β)
dp

=
π0β +

∫ α

0
(1− π0)f

2
1 (p)dp

(π0α+ (1− π0)β)
≥ β

α
, (3.17)

the last step following from Jensen’s inequality, since
∫ α

0

f2
1 (p)

1

α
dp ≥

[∫ α

0

f1(p)
1

α
dp

]2
=

β2

α2
.

If the prior odds Oi are known, the conditional report
would be OiB10(pi). Thus (3.17) implies that these reports
do not have an empirical frequentist justification (the target
being Oiβ/α). This is still useful as a bound, however: the
odds in favor of Hi

1 cannot be larger than OiB10(pi).
Algebra shows that (see (3.8)) P (Hi

0 | pi) = αB(pi) =
1/(1+OiB10(pi)), and we saw in Section 3.3.2 that this is the
optimal empirical frequentist error probability. Thus, if we
had defined empirical frequentist performance of posterior
odds by averaging the 1/(1+OiB10(pi)), the posterior odds
approach would also be optimal. This would be a rather
strange way to average odds, however.

One could have, instead, stated the odds of Hi
0 to Hi

1. The
relevant overall frequentist quantity would then have been
α/β, while the Bayes factor would be B01(pi) = 1/f1(pi).
Now the empirical frequentist property would be

lim
N∗→∞

1

N∗

N∗∑
i=1

B01(pi)

=

∫ α

0

1

f1(p)

[π0 + (1− π0)f1(p)]

(π0α+ (1− π0)β)
dp

=
(1− π0)α+

∫ α

0
[π0/f1(p)]dp

(π0α+ (1− π0)β)
≥ α

β
, (3.18)

the last step again following from Jensen’s inequality, since∫ α

0

1

f1(p)

1

α
dp ≥ 1∫ α

0
f1(p)

1
αdp

=
α

β
.

So, from an empirical frequentist perspective, one is now
overstating the evidence in favor of Hi

0, which could be
viewed as being conservative.

Finally, we consider an argument given in [1] concerning
the data dependent reports B10(pi). Averaging these over
an imaginary sequence N∗∗ of rejected true hypotheses Hi

0

yields

lim
N∗∗→∞

1

N∗∗

N∗∗∑
i=1

B10(pi) = E[B01(pi) | Ri, H
i
0]

= E[f1(p) | Ri, H
i
0] =

∫ α

0

f1(p)
1

α
dp =

β

α
. (3.19)

Thus it was claimed, in [1], that reporting the B10(pi) un-
der the Hi

0 has the same long run procedural frequentist
justification as reporting β/α. But β/α is the procedural
frequentist quantity here and it is not clear that the B10(pi)
have any such justification (as was the case for the related
interpretation of (3.12)). Recall, however, that B10(pi) did
have partial empirical frequentist justification.

3.4.3 Discussion and Interfaces with Bayesianism

Our conclusion about hypothesis testing is that, if the
prior probabilities of the hypotheses are known, estimable or
given (as in the objective choice of 1/2 each), then reporting
αB(pi) is the optimal empirical frequentist error probability
(also the optimal Bayesian error probability), because it ex-
actly satisfies the empirical frequentist property, while being
fully data-dependent. If prior probabilities are unknown and
one is not willing to make the objectivity assumption, the
situation is less clear, with the only compelling conclusion
being that reporting the p-value as the error probability is
terrible from the empirical frequentist perspective.

This lack of clarity, when prior probabilities are unknown,
seems to argue for focusing on odds, rather than error prob-
abilities, because one can then clearly separate prior odds
and experimental odds. Unfortunately, β/α only has a nice
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empirical frequentist interpretation when the prior odds are
known, although it always has a procedural frequentist inter-
pretation. The Bayes factor B10(pi) does not exactly satisfy
the empirical frequentist principle, even when the prior odds
are known. So, based on frequentist reasoning alone, the sit-
uation with odds is murky. However, we could have, instead,
averaged the 1/(1+OiB10(pi)), and then the posterior odds
would have been the optimal empirical frequentist report.

This section only considered testing of simple hypotheses.
References where these issues are discussed in more compli-
cated testing scenarios, from a conditional frequentist per-
spective, include [6, 7], [9], and [1].
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