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Abstract
Designing longitudinal studies is generally a very challenging problem because of the complex optimization problems.

We show the popular nature-inspired metaheuristic algorithm, Particle Swarm Optimization (PSO), can find different
types of optimal exact designs for longitudinal studies with different correlation structures for different types of models.
In particular, we demonstrate PSO-generated D-optimal longitudinal studies for the widely used Michaelis-Menten model
with various correlation structures agree with the reported analytically derived locally D-optimal designs in the literature
when there are only 2 observations per subject, and their numerical D-optimal designs when there are 3 and 4 observations
per subject. We further show the usefulness of PSO by applying it to generate new locally D-optimal designs to estimate
model parameters when there are 5 or more observations per subject. Additionally, we find various optimal longitudinal
designs for a growth curve model commonly used in animal studies and for a nonlinear HIV dynamic model for studying
T-cells in AIDS subjects. In particular, c-optimal exact designs for estimating one or more functions of model parameters
(c-optimality) were found, along with other types of multiple objectives optimal designs.

keywords and phrases: HIV-dynamic model, Locally D-optimal design, Maximin optimal design, Michaelis-Menten
model, Nature-inspired metaheuristic algorithm.

1. INTRODUCTION
Longitudinal studies are common in clinical studies and

involve multiple measurements of the subject over time. For
example, subjects in a clinical trial are recruited and ran-
domized into treatment groups and responses from each pa-
tient are observed multiple times over a user-selected period
of time. There is a huge literature on analyzing longitudinal
models using different methods but design issues for such
studies lagged. What seems to be generally known is that
having excessive time points does not necessarily improve
the quality of the statistical inference and having too few
observations per patient to facilitate calculation may not
meet the scientific requirements in the study.

Given a statistical model and a design criterion, design
issues for a longitudinal study concern the optimal num-
ber of time points to observe the outcomes, where the time
points are over the study period and the number of repli-
cates at each time point. For making statistical inference as
accurately as possible, these decisions have to be made ju-
diciously and at minimum cost. Analytical approaches are
difficult because they invariably involve number-theory to
solve the optimization problem. Even when it is possible to
derive the results mathematically, they can be limiting be-
cause they are valid to a single statistical model and does
not apply to even a slightly changed model. Software and
∗Corresponding author.

efficient computational methods are therefore useful for an-
swering such design questions.

We propose using nature-inspired metaheuristic algo-
rithms to tackle these challenging questions. This class of
algorithms is commonly used in engineering and computer
science to tackle hard to solve optimization problems but
surprisingly under-used in mainstream statistical research.
We focus on particle swarm optimization (PSO), which is
a popular member of this class of algorithms and apply
it to design longitudinal studies with different mean func-
tions and various correlation structures. Such algorithms
typically have variants, which are enhancements motivated
by different desires to improve certain aspects of its per-
formance. We also compare results from PSO with its vari-
ous enhancements and determine whether the latter provide
markedly superior results than the results from the original
PSO.

To fix the idea, we discuss the proposed methodology for
the 2-parameter nonlinear Michaelis-Menten model which
is widely used to study enzyme-substrate dose relationship
in kinetic biological systems. Its simplicity and usefulness
make it one of the most widely used models across many
disciplines, such as, in agriculture [37], biochemistry [19],
biology [4], environmental study [36]. [35] notes that the
Michaelis-Menten model is a special case of the 3-parameter
logistic model, which is more widely used in practice.

In its simplest form, the Michaelis-Menten model for a
chemical reaction is

299

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS45


300 P.-Y. Chen, R.-B. Chen, and W.K. Wong

E(υ) = η(θ, t) =
at

b+ t
, t ∈ T, θ = (a, b)�,

where υ is the observed velocity of the reaction when the
substrate concentration applied is t ∈ T , where S is the
user-selected range from which concentration is selected.
The mean response is a nonlinear function η(θ, t) with 2
parameters a and b. The parameter b is called the Michaelis-
Menten constant, which controls the rate of the reaction and
so between the two parameters, it is the more biologically
meaningful parameter. The maximum velocity attainable is
a, which is reached when the substrate concentration is in-
creased without bound. Errors in this model are assumed to
be independent with mean 0 and constant variance σ2.

This model can also be used to study the growth curves of
animals or subjects by taking repeated measurements on the
subjects [17]. Suppose that there are n subjects, and for each
subject, m repeated observations are allowed over a period
of time. [7] addressed design issues when the responses are
correlated using the following model

υ = η(θ, ti,j) + εi,j

=
ati,j

b+ ti,j
+ εi,j , j = 1, . . . ,m, i = 1, . . . , n, (1.1)

where the error terms εi,j are normally distributed, each
with mean 0 and constant variance and εi,j and εi′,j′ are
independent if i �= i′, and each pair of εi,j and εi,j′ has
the correlation coefficient λ|ti,j−ti,j′ |, j, j′ = 1, . . . ,m. Here
λ ∈ (0, 1) and ti,j′ ∈ S. Given n and an optimality crite-
rion, design issues for the model concern how to optimally
select m, the number of time points and the values of the
s to observe outcomes so that the criterion is optimized. A
typical criterion is to estimate the parameters a and b or
some function thereof as accurately as possible.

Throughout, we assume the following setup. We are given
a total of N observations for the study and a regression
model defined on a given design space S. Given an optimal-
ity criterion, finding an optimal exact design means finding
the optimal value of the criterion by choosing the optimal
number of points k to observe the response, where the time
points and the number of replicates ni at each time point ti
so that n1+n2+· · ·+nk = N . A complicating feature of such
an optimization problem is that there is neither a general
theory for finding an optimal exact design nor a theoret-
ical tool for confirming the optimality of an exact design.
Consequently, optimal exact designs are rarely studied in
the literature, especially for nonlinear models. As an early
example, [3] found D-optimal exact designs numerically for
homoscedastic polynomial models of low degrees.

Our goal is to investigate the effectiveness of using a
nature-inspired metaheuristic algorithms, such as particle
swarm optimization (PSO), for finding D-optimal exact de-
signs for the Michaelis-Menten model and related models
with correlated errors, c-optimal designs for estimating a
function of the parameters in a growth curve model, and a

maximin optimal exact design for optimizing efficiencies in
a HIV dynamic model. We show our results agree with the
theoretical designs in [7], which are only available for small
values of m and n and able to find the optimum in all prob-
lems quite quickly. However, there is no general theory for
finding optimal exact designs or confirming optimality of an
exact design, which may, in part, explain why exact designs
are much less studied than approximate designs, where there
is a general framework and general methods for finding and
conforming optimality of an approximate design when the
criterion is convex functional.

The rest of the article is organized as follows. Section 2
briefly reviews particle swarm optimization. Section 3 ap-
plies PSO to search for locally D-optimal exact designs for
the Michaelis-Menten model with various correlation struc-
tures. The Michaelis-Menten model is a nonlinear model,
and, as we explain below, its information matrix and hence
the design criterion depends on unknown model parameters
that we wish to estimate. The simplest design strategy is
to use results from a pilot study or similar studies to have
a good guess of the true parameters that we wish to esti-
mate. These nominal values, which may be also available
from experts, are then substituted into the design criterion
and the problem then involves optimizing the design pa-
rameters only. We next discuss a few PSO enhancements
in Section 3.2 and compare their performance for finding
locally D-optimal designs for the Michaelis-Menten model
with various error structures. Additionally, we apply PSO
to find locally c-optimal designs for estimating one or more
functions for a generalized version of the Michaelis-Menten
model for studying growth rates in Section 4. Section 5 con-
siders an alternative to locally optimal design and constructs
maximin locally exact designs for a longitudinal study to
estimate parameters for a HIV dynamic model. Section 6
concludes with a short discussion.

2. PARTICLE SWARM OPTIMIZATION
Recently a class of algorithms called nature-inspired

metaheuristic algorithms has proved very popular in the op-
timization literature. [31, 32] provided reasons for the rapid
rise and interest in these algorithms. Early users of such al-
gorithms to find optimal exact designs for linear models in-
clude [12] who used an annealing algorithm to search for op-
timal designs for linear regression models, and [20] who used
a genetic algorithm to construct exact D-optimal designs. Of
particular note is the particle swarm optimization (PSO) in-
troduced by [8] for tackling optimization problems. PSO is
increasingly used across disciplines to solve hard optimiza-
tion problems. PSO is essentially assumptions free and it
searches in a simple and effective way. For example, unlike
many algorithms, PSO does not require the objective func-
tion to be differentiable or convex and can solve non-convex
high-dimensional optimization problems.

PSO is a metaheuristic optimization algorithm inspired
from the way animals, such as birds and fishes, search for
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food. The birds fly continuously in the sky to look for food
on the ground. Each has its own perception where the food
is (local optimum) but it communicates with the rest and
collectively the flock decides where the food is (global opti-
mum). Accordingly, each bird flies toward the global opti-
mum in the direction of the local optimum (not giving up
completely where it thinks the food is). Birds are referred
as particles and each bird represents a candidate solution to
the optimization problem. Velocities and locations of each
bird are adjusted at each iteration and if and when the flock
converges, the perceived global optimum is found. In order
to efficiently identify the optimal points, we initiate a flock
of birds in the pre-defined search space. Let X(k) be the
locations of particles at the k-th iteration. Define tL(k − 1)
to be the locations with the best objective function values
discovered by each particle before the k-th iteration, and
tG(k− 1) to be the locations of the best value found by the
whole swarm before the k-th iteration. At the k-th iteration,
the particles are updated by

X(k) = X(k − 1) + V (k), (2.1)

and

V (k) = wV (k − 1) + c1R1 ⊗ [tL(k − 1)−X(k − 1)]

+ c2R2 ⊗ [tG(k − 1)−X(k − 1)], (2.2)

where V (k) is the velocity of the particle. There are several
parameters in (2.2). The inertia weight represents how active
the birds are and is denoted by w. This parameter may be
chosen to be a positive constant but more typically its value
changes over iteration and eventually decrease to 0. The
parameters c1 and c2 are two positive constants which are
recommended to be 2, and R1 and R2 are two random vec-
tors whose components are independently drawn from the
uniform variate on [0, 1]. In practice, the number of itera-
tions and the swarm size are the most influential parameters
in PSO. Large swarm size gives a better vision on the search
area such that PSO could achieve the global optimum with
a higher chance, and the more iterations allows the particles
having search experience due to random perturbation. More
details on PSO and the related metaheuristic optimization
algorithms are available in [34].

For an individual patient with n = 1 and N = m, we de-
termine the optimal N time points to observe responses from
the patient. We allow replications, i.e. the N time points
need not be distinct. To search for a N -point optimal exact
design, we search for an optimal N×1 vector, (t1, t2, . . . , tN )
and allow some of the ti’s may be the same. Here N is user-
specified and the objective function is the design criterion
Φ(·), which may not be convex function. A key challenge is
the dimension of the problem when N is large. When there
are multiple optimal solutions, and we only report one of
them. Hence at the beginning of the PSO, we randomly gen-
erate initial particles (designs) on the design space. Then at
each iteration, we update the particles (designs) based on

the (2.1) and (2.2). We also watch out for those that flew
outside the search boundaries and when this happens, we
need to adjust those particles to make sure they are in the
design space properly. The hope is that after a number of
iterations, the particles will converge to a point and this
point is supposedly the global best solution or the optimal
design we are after. Algorithm 1 below is a pseudo code of
the PSO algorithm for finding an optimal design.

Algorithm 1 PSO for optimal design search problem.
1: Initialize particles

(1.1) Choose initial particle (design) ξi and velocity
Vi, for i = 1, . . . ,m.

(1.2) Calculate fitness values Φ(ξ, θ0)

(1.3) Determine local and global best positions ξL,i and ξG

2: Repeat until stopping criteria are satisfied
(2.1) Calculate particle moving velocity by (2.2)
(2.2) Update particle position by (2.1)
(2.3) Calculate fitness values Φ(ξ, θ0)

(2.4) Update the best minimal (or best maximal) position
ξL,i and the corresponding best values Φ(ξL,i, θ0) and
Φ(ξG, θ0)

3: Output ξG and Φ(ξG, θ0)

In the next section and beyond, we apply PSO-based
algorithms to find various types of optimal exact designs
for models with uncorrelated errors and errors with various
correlation structures and compare the designs. Through-
out, the hardware we used is a PC with 3.50 GHz Intel(R)
Core(TM) i7-4770K CPU.

3. LOCALLY D-OPTIMAL EXACT DESIGNS
FOR THE MICHAELIS-MENTEN MODEL

Suppose in a longitudinal study, we have n subjects and
each is observed at m time points tij , j = 1, . . . ,m from
a time interval T . We assume T , m and n are given. The
normalized information matrix is proportional to

M(ξ, θ0) =
1

N

n∑
i=1

f�
i Σ−1

i fi,

where N = nm, θ�0 = (a, b, σ2, λ) and fi is the m×2 matrix
with the j-th row containing the derivative of fi, which is(

ti,j
b+ti,j

− ati,j
b+ti,j2

)
, j = 1, . . . ,m.

The m × m correlation matrix of the m responses from
the ith subject is Σi and its (j, k)-th element is

σ2
(
λ|ti,j−ti,k|

)
, j, k = 1, . . . ,m.
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Thus, given a fixed parameters θ0 = (a, b, σ2, λ)�, the locally
D-optimal design for estimating the model parameters as
accurately as possible is the one that maximizes

Φ(ξ, θ0) = log |M(ξ, θ0)|

over all designs ξ on T . Following the argument in [7],
we may, without loss of generality, set T = [0, 1]. For the
Michaelis-Menten model, locally D-optimal designs do not
depend on a and σ2 and so, we choose a = σ2 = 1. We also
assume that the experimental conditions for each subject
are the same and each subject is observed at the same set of
time points, t1j = t2j = · · · = tnj , for j = 1, . . . ,m. Thus, to
search for the locally D-optimal exact design via PSO, we
can set n = 1, i.e. N = 1×m = m, and the target design is
represented as an m× 1 vector.

We first consider the case when we have 2 observations
from a single subject and the design questions are which two
time points to take observations and how the spread out the
observations between the two points. [7] theoretically iden-
tified that the locally D-optimal exact design is supported
at two points, u and 1, when b ≥ 1

3 , and the design point u
solves the equation

b− (2b+ 1)u

u(1− u)(b+ u)
=

log(λ)λ2(1−u)

1− λ2(1−u)
. (3.1)

The solution has no closed form when b < 1/3. When there
are 3 or 4 observations to be taken from each subject, locally
D-optimal exact designs cannot be described analytically
and only numerical results were provided. The numerical
approach they used is to check all possible designs using a
pre-specified grid.

We next use Algorithm 1 to systematically find the lo-
cally D-optimal exact designs. We used 256 particles and
set the maximum number of iterations equals to 500. The
PSO parameters c1 and c2 were set to their default val-
ues with both equal to 2. For the inertia weight, w, we
started from 0.95 and linearly decreased it to 0.4 in the
first 350 iterations and then fixed w as 0.4 for the remaining
iterations. We implemented the algorithm and found PSO-
generated D-optimal designs for several values of b and λ,
i.e. b = 0.2, 0.7, 1.2, 1.7, 2.2, 2.7 and λ = 0.1, 0.5, 0.9. We
first consider the cases when the numbers of observations
per subject were m = 2, 3, 4 and a direct application of PSO
shows the generated designs coincided with the analytical
designs in [7] when m = 2 and b ≥ 1/3. The PSO-generated
designs when we have 3 or 4 observations per subject also
agree with those numerically found optimal designs from [7].
For space consideration, we do not display them. We next
use Algorithm 1 to search for D-optimal designs when there
are more observations per subject. Table 1 displays the PSO-
generated optimal exact designs for 5 and 6 observations
per subject. Unlike the global numerical search approach
in [7], we are not constrained by the grid size imposed on
the experimental region, S, and PSO can still identify the

best designs efficiently. The CPU time required by our Al-
gorithm 1 to find the optimal design is short. On average,
our MATLAB codes take around 4.11, 5.54, 6.72, 7.83 and
8.71 seconds to find the optimal designs when there are 2,
3, 4, 5 and 6 observations, respectively.

In summary, Algorithm 1 seems efficient for finding lo-
cally D-optimal exact designs for the Micahelis-Menten
model. Tables 2 to 4 show PSO-generated designs have more
design points as the value of m is increased. To conserve
space, we consider particular cases of (λ, b)� when λ is fixed
at 0.1, 0.5 and 0.9, and b = 0.5, 1.0, 1.5, 2.0 and 2.5.

3.1 PSO-Generated Locally D-Optimal Exact
Designs for Other Correlation Structures

In this section, we use PSO to find the 2-, 3- and 4-
point D-optimal designs for the nonlinear Michaelis-Menten
model on the domain x ∈ [0, 1] under various correlation
structures. Following [38], we find optimal exact designs
when observations have one of the following correlation
structures:

Exponential function:

C(ti, tj , λ) = exp {−λ|ti − tj |}, λ > 0,

Triangular function:

C(ti, tj , λ) = max {0, 1− λ|ti − tj |}, λ > 0,

Gaussian function:

C(ti, tj , λ) = exp
{
−λ(ti − tj)

2
}
, λ > 0,

Rational function:

C(ti, tj , λ) = (1 + λ|ti − tj |)−1/2
, λ > 0.

Table 5 shows the resulting D-optimal exact designs
under the Exponential correlation structure with λ ∈
{1, 2, 5}. For all cases, the upper limit of the design space is a
support point of the D-optimal design. When λ is small and
we are looking for a 3- and 4-point D optimal exact design,
we observe that the minimal support point is at the lower
limit of design space, and, it becomes larger when λ = 5. In
addition, we notice that for each value of λ, the values of
the support points in the middle increase as b increases.

Table 6 displays the resulting D-optimal exact designs
when errors have a Triangular correlation structure and
the values of λ are 1, 2 and 5. For all cases, the upper limit
of the design space is a support point of the D-optimal exact
design. When λ is small,i.e. λ = 1 or 2 and a 3- or 4-point
D-optimal design is sought using PSO, we found that its
smallest support point is at the lower limit of the design
space. When λ = 5, the D-optimal exact design is no longer
supported at the lower limit of the design space, and for the
4-point design, the larger of the two middle points, interest-
ingly, appears to be unaffected by the b values.
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Table 1. PSO-generated 5 and 6-point locally D-optimal exact designs for the Michaelis-Menten model with autocorrelated
errors on the design interval [0, 1].

Parameters ξ∗5 ξ∗6
λ = 0.1 b = 0.2 0 0.0361 0.1085 0.5361 1 0 0.0274 0.0724 0.1761 0.5813 1

0.7 0 0.0968 0.2493 0.5397 1 0 0.0764 0.1848 0.3546 0.6593 1
1.2 0 0.1322 0.3113 0.5761 1 0 0.1047 0.2375 0.4134 0.6649 1
1.7 0 0.1565 0.3506 0.6089 1 0 0.1242 0.2708 0.4499 0.6838 1
2.2 0 0.1738 0.3768 0.6316 1 0 0.1382 0.2937 0.4747 0.6996 1
2.7 0 0.1866 0.3955 0.6475 1 0 0.1488 0.3103 0.4924 0.7117 1

λ = 0.5 b = 0.2 0 0.0323 0.0935 0.4020 1 0 0.0235 0.0595 0.1303 0.4399 1
0.7 0 0.0719 0.1774 0.3646 1 0 0.0563 0.1318 0.2424 0.4410 1
1.2 0 0.1042 0.2482 0.4752 1 0 0.0810 0.1843 0.3252 0.5423 1
1.7 0 0.1278 0.2965 0.5422 1 0 0.0996 0.2227 0.3824 0.6085 1
2.2 0 0.1452 0.3302 0.5845 1 0 0.1135 0.2500 0.4209 0.6493 1
2.7 0 0.1585 0.3549 0.6131 1 0 0.1242 0.2707 0.4487 0.6764 1

λ = 0.9 b = 0.2 0 0.0317 0.0918 0.3778 1 0 0.0235 0.0598 0.1330 0.4156 1
0.7 0 0.0700 0.1720 0.3523 1 0 0.0547 0.1274 0.2332 0.4211 1
1.2 0 0.1010 0.2409 0.4624 1 0 0.0784 0.1784 0.3146 0.5260 1
1.7 0 0.1241 0.2893 0.5329 1 0 0.0968 0.2168 0.3733 0.5983 1
2.2 0 0.1418 0.3241 0.5781 1 0 0.1108 0.2447 0.4140 0.6426 1
2.7 0 0.1549 0.3492 0.6086 1 0 0.1216 0.2655 0.4429 0.6729 1

Table 2. PSO-generated 8-point locally D-optimal exact designs for the Michaelis-Menten model with autocorrelated errors
on the design interval [0, 1].

Parameters ξ∗8
λ = 0.1; b = 0.5 0.0000 0.0416 0.0963 0.1728 0.2910 0.4961 0.7608 1.0000

1.0 0.0000 0.0662 0.1463 0.2454 0.3720 0.5412 0.7683 1.0000
1.5 0.0000 0.0826 0.1770 0.2862 0.4152 0.5729 0.7732 1.0000
2.0 0.0000 0.0942 0.1976 0.3124 0.4425 0.5946 0.7807 1.0000
2.5 0.0000 0.1030 0.2126 0.3311 0.4617 0.6106 0.7881 1.0000

λ = 0.5; b = 0.5 0.0000 0.0322 0.0725 0.1255 0.2013 0.3288 0.6296 1.0000
1.0 0.0000 0.0499 0.1095 0.1825 0.2763 0.4055 0.6091 1.0000
1.5 0.0000 0.0644 0.1392 0.2283 0.3376 0.4783 0.6753 1.0000
2.0 0.0000 0.0754 0.1614 0.2614 0.3805 0.5272 0.7190 1.0000
2.5 0.0000 0.0839 0.1783 0.2859 0.4110 0.5604 0.7470 1.0000

λ = 0.9; b = 0.5 0.0000 0.0314 0.0707 0.1222 0.1956 0.3185 0.6043 1.0000
1.0 0.0000 0.0481 0.1052 0.1751 0.2645 0.3872 0.5808 1.0000
1.5 0.0000 0.0623 0.1348 0.2212 0.3276 0.4653 0.6606 1.0000
2.0 0.0000 0.0734 0.1573 0.2554 0.3727 0.5186 0.7117 1.0000
2.5 0.0000 0.0818 0.1743 0.2804 0.4046 0.5544 0.7432 1.0000

Table 7 shows the resulting D-optimal exact designs when
errors have a Gaussian correlation structure and the pa-
rameter values for λ are 7, 8 and 9. For all cases, the up-
per limit of the design space is a support point of the D-
optimal exact design. If we want a D-optimal exact design
with 3 or 4 points, we found that PSO gave only a two-
points design at the lower and upper limits of the design
space. This suggests that the design requires replications at
the two points.

Table 8 shows the resulting D-optimal exact designs when
errors have a Rational correlation structure and the param-
eter values for λ are 1, 2 and 5. For all cases, the upper limit

of the design space is a support point of the D-optimal de-
sign. We observe from the table that the minimal support
point of a D-optimal exact design with 3 or 4 points is at the
lower limit of design space and the middle support points
become larger as the value of the parameter b increases.

3.2 PSO Variants and Their Performance
Relative to PSO

PSO is a nature-inspired metaheuristic algorithm, and
like all such algorithms, does not guarantee that it finds the
global optimum and sometimes it does not perform well. For
a well-known algorithm, like PSO, there have been many
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Table 3. PSO-generated 9-point locally D-optimal exact designs for the Michaelis-Menten model with autocorrelated errors
on the design interval [0, 1].

Parameters ξ∗9
λ = 0.1; b = 0.5 0.0000 0.0360 0.0814 0.1415 0.2262 0.3572 0.5655 0.7931 1.0000

1.0 0.0000 0.0575 0.1252 0.2064 0.3059 0.4314 0.5950 0.7998 1.0000
1.5 0.0000 0.0719 0.1526 0.2440 0.3489 0.4720 0.6206 0.8033 1.0000
2.0 0.0000 0.0822 0.1713 0.2686 0.3763 0.4979 0.6392 0.8087 1.0000
2.5 0.0000 0.0900 0.1849 0.2861 0.3955 0.5161 0.6532 0.8144 1.0000

λ = 0.5; b = 0.5 0.0000 0.0277 0.0613 0.1034 0.1590 0.2391 0.3761 0.6676 1.0000
1.0 0.0000 0.0434 0.0938 0.1538 0.2272 0.3210 0.4495 0.6497 1.0000
1.5 0.0000 0.0558 0.1193 0.1928 0.2798 0.3858 0.5209 0.7069 1.0000
2.0 0.0000 0.0654 0.1388 0.2221 0.3182 0.4317 0.5700 0.7479 1.0000
2.5 0.0000 0.0729 0.1536 0.2437 0.3459 0.4637 0.6029 0.7741 1.0000

λ = 0.9; b = 0.5 0.0000 0.0271 0.0598 0.1008 0.1548 0.2324 0.3647 0.6435 1.0000
1.0 0.0000 0.0417 0.0900 0.1473 0.2172 0.3061 0.4276 0.6174 1.0000
1.5 0.0000 0.0540 0.1155 0.1868 0.2713 0.3745 0.5071 0.6918 1.0000
2.0 0.0000 0.0637 0.1352 0.2167 0.3111 0.4233 0.5613 0.7408 1.0000
2.5 0.0000 0.0710 0.1499 0.2386 0.3397 0.4570 0.5970 0.7705 1.0000

Table 4. PSO-generated 10-point locally D-optimal exact designs for the Michaelis-Menten model with autocorrelated errors
on the design interval [0, 1].

Parameters ξ∗10
λ = 0.1; b = 0.5 0.0000 0.0316 0.0704 0.1195 0.1849 0.2775 0.4187 0.6172 0.8168 1.0000

1.0 0.0000 0.0507 0.1093 0.1779 0.2595 0.3586 0.4821 0.6390 0.8235 1.0000
1.5 0.0000 0.0636 0.1340 0.2124 0.3008 0.4016 0.5190 0.6592 0.8262 1.0000
2.0 0.0000 0.0729 0.1511 0.2355 0.3275 0.4291 0.5434 0.6754 0.8305 1.0000
2.5 0.0000 0.0798 0.1634 0.2517 0.3459 0.4478 0.5602 0.6874 0.8349 1.0000

λ = 0.5; b = 0.5 0.0000 0.0245 0.0535 0.0886 0.1328 0.1916 0.2774 0.4272 0.7008 1.0000
1.0 0.0000 0.0383 0.0821 0.1330 0.1932 0.2667 0.3603 0.4881 0.6842 1.0000
1.5 0.0000 0.0493 0.1046 0.1673 0.2396 0.3247 0.4276 0.5575 0.7335 1.0000
2.0 0.0000 0.0578 0.1218 0.1932 0.2738 0.3664 0.4748 0.6056 0.7716 1.0000
2.5 0.0000 0.0644 0.1349 0.2125 0.2988 0.3961 0.5073 0.6376 0.7959 1.0000

λ = 0.9; b = 0.5 0.0000 0.0239 0.0521 0.0863 0.1292 0.1861 0.2690 0.4128 0.6771 1.0000
1.0 0.0000 0.0368 0.0788 0.1274 0.1847 0.2545 0.3430 0.4633 0.6493 1.0000
1.5 0.0000 0.0477 0.1012 0.1620 0.2320 0.3146 0.4150 0.5426 0.7179 1.0000
2.0 0.0000 0.0562 0.1185 0.1882 0.2673 0.3585 0.4659 0.5968 0.7646 1.0000
2.5 0.0000 0.0627 0.1315 0.2076 0.2928 0.3893 0.5005 0.6319 0.7924 1.0000

improvements been made to the original version to enhance
its performance in various ways. These are enhancements
or modified PSO algorithms, called variants, aim to make
the origin PSO more effective in different ways, such as,
making it converge faster, better control of particles that
fly out of range or how to more cleverly bring them to the
region of interest. Some are modified to solve special types
of optimization problems and many are improved ways to
tune the PSO parameters for accelerated convergence.

There are probably 20–30 or more PSO variants now and
it is good practice to compare the performance of PSO with
some of them. We select the following variants to compare
because they seem to be popular variants of PSO: Guaran-
tee Convergence PSO [30], Quantum PSO [24, 23], Locally
Convergent Rotationally Invariant PSO [2] and Competitive

Swarm Optimization [5]. For space consideration, we do not
provide details for these variants and refer the interested
reader to the cited references.

We compare these 5 PSO-based algorithms using differ-
ent setups of the design problem for the Michaelis-Menten
model. The model has one of the 5 types of correlation func-
tions in Section 3.1 and we seek exact D-optimal designs
with N = 4, 12 and 20. Each algorithm is run 100 times,
and for each run, all algorithms use the same initial swarm.
Table 9 summarizes the D-criterion values obtained by the 5
algorithms after 100 replications. All algorithms have similar
performance except that, for Gaussian correlation function,
the QPSO algorithm finds a better design.

Fedorov’s type of algorithms are commonly used to find
optimal designs and it is interesting to compare their per-
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Table 5. PSO-generated 2, 3 and 4-point locally D-optimal exact designs for the Michaelis-Menten model with Exponential
correlation structure on the design interval [0, 1].

Parameters ξ∗2 ξ∗3 ξ∗4
λ = 1.0; b = 0.5 0.2735 1.0000 0.0000 0.1390 1.0000 0.0000 0.0802 0.2322 1.0000

1.0 0.3768 1.0000 0.0000 0.2283 1.0000 0.0000 0.1341 0.3599 1.0000
1.5 0.4308 1.0000 0.0000 0.2854 1.0000 0.0000 0.1712 0.4347 1.0000
2.0 0.4637 1.0000 0.0000 0.3238 1.0000 0.0000 0.1975 0.4814 1.0000
2.5 0.4859 1.0000 0.0000 0.3510 1.0000 0.0000 0.2169 0.5129 1.0000

λ = 2.0; b = 0.5 0.2579 1.0000 0.0000 0.1526 1.0000 0.0000 0.0935 0.2843 1.0000
1.0 0.3497 1.0000 0.0000 0.2509 1.0000 0.0000 0.1541 0.4104 1.0000
1.5 0.3974 1.0000 0.0000 0.3088 1.0000 0.0000 0.1928 0.4737 1.0000
2.0 0.4267 1.0000 0.0000 0.3456 1.0000 0.0000 0.2189 0.5113 1.0000
2.5 0.4464 1.0000 0.0000 0.3707 1.0000 0.0000 0.2376 0.5362 1.0000

λ = 5.0; b = 0.5 0.2502 1.0000 0.2060 0.5193 1.0000 0.1788 0.3800 0.7108 1.0000
1.0 0.3340 1.0000 0.2597 0.5433 1.0000 0.2250 0.4281 0.7068 1.0000
1.5 0.3761 1.0000 0.2882 0.5675 1.0000 0.2473 0.4502 0.7060 1.0000
2.0 0.4015 1.0000 0.3058 0.5834 1.0000 0.2609 0.4639 0.7085 1.0000
2.5 0.4184 1.0000 0.3178 0.5945 1.0000 0.2701 0.4734 0.7115 1.0000

Table 6. PSO-generated locally 2, 3 and 4-point D-optimal exact designs for the Michaelis-Menten model with the
Triangular correlation structure on the design interval [0, 1].

Parameters ξ∗2 ξ∗3 ξ∗4
λ = 1.0; b = 0.5 0.2725 1.0000 0.0000 0.1340 1.0000 0.0000 0.0755 0.2136 1.0000

1.0 0.3820 1.0000 0.0000 0.2192 1.0000 0.0000 0.1265 0.3383 1.0000
1.5 0.4403 1.0000 0.0000 0.2753 1.0000 0.0000 0.1627 0.4166 1.0000
2.0 0.4760 1.0000 0.0000 0.3139 1.0000 0.0000 0.1888 0.4673 1.0000
2.5 0.5000 1.0000 0.0000 0.3417 1.0000 0.0000 0.2083 0.5019 1.0000

λ = 2.0; b = 0.5 0.2500 1.0000 0.0000 0.1340 1.0000 0.0000 0.1054 0.6054 1.0000
1.0 0.3333 1.0000 0.2560 0.7560 1.0000 0.0000 0.1506 0.6506 1.0000
1.5 0.3750 1.0000 0.2798 0.7798 1.0000 0.0000 0.1742 0.6742 1.0000
2.0 0.4000 1.0000 0.2918 0.7918 1.0000 0.0000 0.1889 0.6889 1.0000
2.5 0.4167 1.0000 0.2987 0.7987 1.0000 0.0000 0.1987 0.6987 1.0000

λ = 5.0; b = 0.5 0.2500 1.0000 0.1973 0.3973 1.0000 0.1838 0.3838 0.8000 1.0000
1.0 0.3333 1.0000 0.2659 0.4659 1.0000 0.2446 0.4446 0.8000 1.0000
1.5 0.3750 1.0000 0.3015 0.5015 1.0000 0.2770 0.4770 0.8000 1.0000
2.0 0.4000 1.0000 0.3233 0.5233 1.0000 0.2962 0.4962 0.8000 1.0000
2.5 0.4167 1.0000 0.3378 0.5378 1.0000 0.3101 0.5101 0.8000 1.0000

formance relative to that from metaheuristic algorithms.
To compare their performances, we fix, as an example, (b,
λ)� = (1.7, 0.5)� and apply the algorithms to find D-
optimal designs with different number of support points,
say, m = 8, 10 and 20. Table 10 shows the results of com-
paring two PSO-type of algorithms with two types of Fe-
dorov’s exchange-type algorithms: Fed from Fedorov’s ex-
change algorithm [10] and mFed from modified Fedorov’s
exchange algorithm [6]. We observe that the PSO-type al-
gorithms are comparable and slightly outperform the latter
two Fedorov-type algorithms in terms of the design crite-
rion log |M(ξ∗, θ)| values. For space consideration, we show
the results for the autoregressive correlation structure, but
results are similar for other correlation structures.

4. OPTIMAL EXACT DESIGNS FOR
FITTING A GROWTH CURVE

A growth curve describes the change of an outcome over
time. To estimate a growth curve model, we take multiple
observations at different time points from the same subject
and so the observed responses are correlated.

A generalized version of the Michaelis-Menten model to
study the biomass W of an animal over time was introduced
by [17]. At time t, the model is as follows:

W (t; θ) =
W0K

h +Wf t
h

Kh + th
, t > 0, θ = (W0,Wf ,K, h)�

(4.1)
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Table 7. PSO-generated 2, 3 and 4-point locally D-optimal exact designs for the Michaelis-Menten model with the Gaussian
correlation structure on the design interval [0, 1].

Parameters ξ∗2 ξ∗3 ξ∗4
λ = 7.0; b = 0.5 0.2503 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0007 1.0000

1.0 0.3352 1.0000 0.0000 0.0000 1.0000 0.0000 0.0002 0.0002 1.0000
1.5 0.3794 1.0000 0.0000 0.0000 1.0000 0.0000 0.0036 1.0000 1.0000
2.0 0.4071 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0002 1.0000
2.5 0.4263 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000

λ = 8.0; b = 0.5 0.2501 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0006 1.0000
1.0 0.3342 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0004 1.0000
1.5 0.3772 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
2.0 0.4038 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
2.5 0.4219 1.0000 0.3822 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000

λ = 9.0; b = 0.5 0.2500 1.0000 0.0000 0.0000 1.0000 0.0000 0.0003 0.0003 1.0000
1.0 0.3337 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0002 1.0000
1.5 0.3761 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.5868 1.0000
2.0 0.4020 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.5958 1.0000
2.5 0.4196 1.0000 0.4181 1.0000 1.0000 0.3920 0.9995 1.0000 1.0000

Table 8. PSO-generated locally 2, 3 and 4-point D-optimal exact designs for the Michaelis-Menten model with the Rational
correlation structure on the design interval [0, 1].

Parameters ξ∗2 ξ∗3 ξ∗4
λ = 1.0; b = 0.5 0.2821 1.0000 0.0000 0.1426 1.0000 0.0000 0.0824 0.2376 1.0000

1.0 0.3893 1.0000 0.0000 0.2341 1.0000 0.0000 0.1384 0.3650 1.0000
1.5 0.4444 1.0000 0.0000 0.2914 1.0000 0.0000 0.1766 0.4378 1.0000
2.0 0.4778 1.0000 0.0000 0.3294 1.0000 0.0000 0.2034 0.4828 1.0000
2.5 0.5000 1.0000 0.0000 0.3561 1.0000 0.0000 0.2230 0.5130 1.0000

λ = 2.0; b = 0.5 0.2713 1.0000 0.0000 0.1553 1.0000 0.0000 0.0920 0.2637 1.0000
1.0 0.3709 1.0000 0.0000 0.2526 1.0000 0.0000 0.1548 0.3901 1.0000
1.5 0.4220 1.0000 0.0000 0.3096 1.0000 0.0000 0.1953 0.4562 1.0000
2.0 0.4531 1.0000 0.0000 0.3459 1.0000 0.0000 0.2226 0.4959 1.0000
2.5 0.4739 1.0000 0.0000 0.3707 1.0000 0.0000 0.2420 0.5222 1.0000

λ = 5.0; b = 0.5 0.2605 1.0000 0.0000 0.1856 1.0000 0.0000 0.1184 0.3114 1.0000
1.0 0.3520 1.0000 0.0000 0.2854 1.0000 0.0000 0.1913 0.4259 1.0000
1.5 0.3986 1.0000 0.0000 0.3380 1.0000 0.0000 0.2326 0.4807 1.0000
2.0 0.4268 1.0000 0.0000 0.3700 1.0000 0.0000 0.2587 0.5127 1.0000
2.5 0.4457 1.0000 0.0000 0.3915 1.0000 0.0000 0.2766 0.5337 1.0000

where W0 and Wf are the zero- and infinite-time values of
the biomass, respectively. If K > 0, it is the time when
half-maximal growth is achieved. When h = 1 and W0 = 0,
model (4.1) reduces to the usual Michaelis-Menten model.

We consider the data set from [17] consisting of 17
weight (kg) records of one castrated male Percheron horse
from birth to 220 weeks of age. Its growth pattern
has been described by the generalized Michaelis-Menten
model with nominal values θ0 = (W0,Wf ,K, h)� =
(85.50, 731.00, 56.70, 1.39)� in [17]. Using θ0, they found
a locally D-optimal exact design, ξ∗D for estimating pa-
rameters in (4.1) by maximizing the determinant of the
Fisher information matrix. For model (4.1), the elements
in the covariance matrix are Σij = σ2 exp {(−λ|ti − tj |}
and

fi =

[
kh

kh + thi
,

thi
kh + thi

,
hkh−1W0

kh + thi
− hkh−1(khW0 + thi Wf )

(kh + thi )
2

,

(khW0 log k + thi Wf log ti)

kh + thi

− (kh log k + thi log ti)(k
hW0 + thi Wf )

(kh + thi )
2

]�
.

4.1 Single-Objective Optimal Designs
To fix ideas, we assume that (λ, σ2)� = (0.5, 1.0)� and

suppose we are interested in finding D-optimal exact designs
with sample sizes N = 4, 10 and 17. Table 11 displays the
PSO-generated D-optimal exact designs found with 256 par-
ticles and 200 iterations. The logarithm of their D-optimal
criterion values are 10.919, 13.984 and 15.599, respectively.
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Table 9. Performances of 5 PSO variants for finding locally D-optimal exact designs for the Michaelis-Menten model with
various correlation structures.

N = 4 N = 12 N = 20
Corr. Algorithm Min. Mean Max. Min. Mean Max. Min. Mean Max.
AR PSO −5.180 −5.180 −5.180 −5.076 −5.074 −5.074 −5.069 −5.069 −5.068

GCPSO −5.180 −5.180 −5.180 −5.076 −5.074 −5.074 −5.070 −5.069 −5.068
QPSO −5.180 −5.180 −5.180 −5.074 −5.074 −5.074 −5.069 −5.068 −5.068
LcRiPSO −5.180 −5.180 −5.180 −5.075 −5.074 −5.074 −5.070 −5.069 −5.068
CSO −5.180 −5.180 −5.180 −5.076 −5.074 −5.074 −5.071 −5.070 −5.069

EXP PSO −5.655 −5.655 −5.655 −5.542 −5.540 −5.540 −5.536 −5.534 −5.534
GCPSO −5.655 −5.655 −5.655 −5.542 −5.540 −5.540 −5.535 −5.534 −5.534
QPSO −5.655 −5.655 −5.655 −5.541 −5.540 −5.540 −5.535 −5.534 −5.534
LcRiPSO −5.655 −5.655 −5.655 −5.541 −5.540 −5.540 −5.536 −5.535 −5.534
CSO −5.655 −5.655 −5.655 −5.542 −5.541 −5.540 −5.537 −5.536 −5.535

TRI PSO −5.868 −5.868 −5.868 −5.772 −5.771 −5.771 −5.767 −5.766 −5.766
GCPSO −5.868 −5.868 −5.868 −5.772 −5.771 −5.771 −5.767 −5.766 −5.766
QPSO −5.868 −5.868 −5.868 −5.771 −5.771 −5.771 −5.766 −5.766 −5.766
LcRiPSO −5.868 −5.868 −5.868 −5.772 −5.771 −5.771 −5.767 −5.766 −5.766
CSO −5.868 −5.868 −5.868 −5.772 −5.771 −5.771 −5.768 −5.767 −5.766

GAU PSO −6.048 −6.047 −5.893 −4.906 −1.195 14.635 −4.470 −4.170 −4.101
GCPSO −6.048 −6.044 −5.846 −5.093 −1.395 14.351 −4.281 −4.109 −0.149
QPSO −6.048 –5.987 –5.293 –4.636 0.604 15.803 −4.320 –4.079 1.675
LcRiPSO −6.048 −6.046 −5.877 −4.904 −1.874 12.766 −4.334 −4.187 −2.603
CSO −6.048 −6.048 −6.048 −5.267 −4.695 12.133 −4.329 −4.236 −4.157

RAT PSO −4.370 −4.370 −4.370 −4.255 −4.253 −4.253 −4.248 −4.247 −4.246
GCPSO −4.370 −4.370 −4.370 −4.253 −4.253 −4.253 −4.248 −4.247 −4.246
QPSO −4.370 −4.370 −4.370 −4.254 −4.253 −4.253 −4.247 −4.247 −4.246
LcRiPSO −4.370 −4.370 −4.370 −4.254 −4.253 −4.253 −4.248 −4.247 −4.247
CSO −4.370 −4.370 −4.370 −4.255 −4.253 −4.253 −4.249 −4.248 −4.247

Table 10. Performances of PSO Variants versus exchange algorithms for finding locally D-optimal exact designs for the
Michaelis-Menten model with autoregressive correlation structure.

N = 8 N = 10 N = 20
Corr. Algorithm Min. Median Max. Min. Median Max. Min. Median Max.
AR PSO −4.779 −4.773 −4.773 −4.495 −4.493 −4.492 −3.699 −3.698 −3.697

QPSO −4.774 −4.773 −4.773 −4.496 −4.493 −4.492 −3.699 −3.698 −3.697
Fed −5.026 −4.791 −4.773 −4.702 −4.524 −4.494 −3.811 −3.724 −3.699
m-Fed −4.808 −4.785 −4.773 −4.512 −4.502 −4.493 −3.704 −3.701 −3.697

Table 11. PSO-generated locally D-optimal exact designs for the horse example.
N ξ∗D
4 0.00 19.69 74.63 220.00
10 0.00 6.21 17.10 25.59 46.38 73.65 86.38 101.81 209.47 220.00
17 0.04 5.72 13.23 19.82 24.47 31.20 39.45 50.83 65.11 77.33

91.57 101.87 113.10 159.22 204.19 211.12 220.00

Model (4.1) is quite common in animal growth modelling
because it has the “Growth Parameters” which are functions
of θ. In [17], they were interested to estimate five growth
parameters; two components in θ, and, W0 and Wf repre-
senting the initial weight and the final weight of the animal,
respectively. The maximum growth rate indicates the slope

at the point of inflection where the animal grows the fastest
and it is defined by

ΔWmax =
dW

dt

∣∣∣∣
t=t∗

where d2W

dt2

∣∣∣∣
t=t∗

= 0.
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For h > 1, t∗ = K
(

h−1
h+1

)1/h

and hence

ΔWmax(θ) =
h(Wf −W0)

(
h−1
h+1

)1−1/h

K
(

2h
h+1

)2 .

The average growth rate during postnatal life,

〈ΔW 〉(θ) = 1

Wf −W0

∫ Wf

W0

dW

dt
dW

=
1

Wf −W0

∫ ∞

0

(
dW

dt

)2

dt

=
(Wf −W0)(h

2 − 1)π csc (π/h)

6Kh2
.

It is also interesting to estimate the time at which 50% of
the final weight is achieved, t50. By substituting W with
0.5Wf on the left hand side of (4.1), we have

t50(θ) =

(
Kh(Wf − 2W0)

Wf

)1/h

.

The design criterion for estimating a model parameter
is the asymptotic variance of the estimated parameter and
we find an exact design ξ∗c that minimizes the criterion over
all possible exact designs on the design space. The resulting
optimal designs are c-optimal and they minimize

min
ξ

c�M−1(ξ, θ)c, (4.2)

where c� = e�1 = (1, 0, 0, 0) for estimating W0 and c� =
e�2 = (0, 1, 0, 0) for estimating Wf .

More generally, to estimate a function g(θ) of the model
parameters, we find an exact design that minimizes the
asymptotic variance of the estimated function. By the Deltaś
method, this variance is proportional to

var
[
g(θ̂)

]
= [∇θg(θ)]

�
M−1(ξ, θ) [∇θg(θ)] . (4.3)

Hence, for estimating ΔWmax, 〈ΔW 〉 and t50, their asymp-
totic variances, are respectively given by

∇θ (ΔWmax) =
h2 − 1

4hK

(
h+ 1

h− 1

)1/h

·
[
−1, 1,−Wf −W0

K
,
Wf −W0

h2

(
h+ log

h− 1

h+ 1

)]�
,

∇θ (〈ΔW 〉) = (h2 − 1)π

6h2K
csc

(π
h

)
·[

−1, 1,−Wf −W0

K
,
Wf −W0

h4(h2 − 1)

(
2h+(h2 − 1)π cot

(π
h

))]�

and

∇θ (t50) =

[
− 2t50
h(Wf − 2W0)

,
2KhW0t

1−h
50

hW 2
f

,
t50
K

,

t50
h

log

(
K

t50

)]�
.

Using θ�0 = (W0,Wf ,K, h) = (85.50, 731.00, 56.70, 1.39),
we have ∇θ0 (ΔWmax)

�
= (−7.03, 7.03,−80.06,−993.65),

∇θ0 (〈ΔW 〉)� = (−3.73, 3.73,−42.43, 253.32) and
∇θ0 (t50)

�
= (−0.12, 0.01, 0.83, 6.46). The correlation

structure is autoregressive with (λ, σ2)� = (0.5, 1.0)�.
We implemented PSO, with 256 particles and 200 itera-

tions, to search for the exact c-optimal designs for estimating
W0, Wf , ΔWmax, 〈ΔW 〉 and t50. Table 12 displays the c-
optimal exact designs for different sample sizes N = 4, 10
and 17.

4.2 Multi-Objective Optimal Designs
Sometimes, there are two or more objectives in the study.

For example, we may want to estimate the individual param-
eters and functions of the model parameters simultaneously,
such as in our case, W0, Wf , ΔWmax, 〈ΔW 〉 and t50. Let
C� = [e1; e2;∇θ0 (ΔWmax) ;∇θ0 (〈ΔW 〉) ;∇θ0 (t50)] and let
ξ∗L be the L− optimal design that minimizes

tr
{
CTM−1(ξ)C

}
over all designs on the design interval. For the horse exam-
ple, using the same set of nominal values, Table 13 presents
the PSO-generated L-optimal designs with N = 4, 10 and
17 observations.

Another approach is to construct a maximin design that
maximizes the minimum efficiencies of the design across the
five criteria. Recalling that if ξ∗c is the c-optimal design, the
c-efficiency of a design ξ is given by

Effc(ξ) =
c�M−1(ξ∗c , θ)c

c�M−1(ξ, θ)c
, (4.4)

and the minimization is over all plausible values of θ in some
given compact parameter space. Operationally, the maximin
design is defined by

ξ∗MM = arg (4.5)
max

ξ
min
θ

{
EffW0(ξ),EffWf

(ξ),EffΔWmax(ξ),Eff〈ΔW 〉(ξ),

Efft50(ξ)
}
.

The search for the maximin design is a two-step task. First,
for each value of θ ∈ Θ, where Θ is a known set containing
all plausible values of θ, we use PSO to find the locally
c-optimal designs, ξ∗W0

, ξ∗Wf
, ξ∗ΔWmax

, ξ∗〈ΔW 〉 and ξ∗t50 for
the five criteria. Table 12 presents these locally c-optimal
designs in the horse example for selected sample sizes of N =
4, 10 and 17. The c-optimal designs are then used in(4.5)
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Table 12. PSO-generated locally c-optimal exact designs for the horse example.
N ξ∗W0

4 0.00 45.18 45.18 148.60
10 0.00 1.78 3.96 6.81 26.76 33.37 94.72 104.66 112.02 220.00
17 0.01 1.44 3.02 5.30 7.70 29.58 35.65 39.87 90.73 95.92

105.07 127.63 127.93 133.01 193.43 209.98 215.55
N ξ∗Wf

4 0.00 14.38 75.22 220.00
10 0.00 15.50 21.37 70.52 78.21 85.44 93.23 205.94 213.65 220.00
17 0.08 13.02 16.50 20.45 22.14 24.51 67.10 71.56 79.51 84.84

87.40 95.21 103.50 202.47 208.64 215.18 220.00
N ξ∗ΔWmax

4 0.00 41.70 50.95 220.00
10 0.00 2.30 5.40 27.51 33.13 38.42 43.83 49.89 56.57 216.66
17 0.05 1.75 4.10 6.78 9.49 23.56 27.49 30.98 33.43 37.40

41.51 45.79 48.45 54.31 59.58 70.93 196.03
N ξ∗〈ΔW 〉

4 3.03 63.77 73.70 220.00
10 0.00 3.16 6.42 10.10 49.62 56.88 63.05 69.34 77.32 218.88
17 0.12 4.31 9.71 12.37 39.24 45.39 50.81 56.63 60.76 63.16

68.32 77.52 83.38 92.41 195.56 207.90 217.80
N ξ∗t50

4 0.00 80.64 90.01 220.00
10 0.01 13.92 59.86 66.57 74.02 81.02 89.28 205.78 214.52 220.00
17 0.37 13.77 18.20 52.09 60.03 65.82 72.88 83.66 91.80 97.65

104.36 112.58 195.40 202.98 210.25 215.42 220.00

Table 13. PSO-generated locally linear exact designs for the horse example.
N ξ∗L
4 0.00 34.38 73.62 220.00
10 0.01 2.75 6.66 25.40 33.40 43.65 53.72 61.71 71.08 220.00
17 0.07 3.08 6.27 7.86 22.47 30.73 35.35 38.24 45.10 50.29

58.74 69.75 83.15 95.63 173.97 212.07 217.16

Table 14. PSO-generated maximin optimal exact designs for the horse example.
N ξ∗MM

4 0.00 14.78 61.44 220.00
10 0.01 4.32 21.96 29.37 55.60 66.19 74.61 84.06 212.45 220.00
17 0.00 3.54 17.92 25.37 30.51 35.90 48.38 55.14 65.46 71.51

80.07 83.88 87.71 199.29 209.10 213.49 219.22

to compute the C-efficiencies before using another PSO to
search for the optimal maximin design, ξ∗MM .

Table 14 displays the PSO-generated optimal maximin
designs for three sample sizes: N = 4, 10 and 17 for the
horse example. How does the optimal maximin designs com-
pare with the locally optimal designs? A direct calculation
shows the c−-efficiencies of the 4-point optimal maximin
design for estimating W0,Wf ,ΔWmax, 〈ΔW 〉 and t50 are
99.99%, 93.48%, 68.07%, 68.07% and 78.23%, respectively.
This 4-point design has higher c-efficiencies for estimating

W0 and Wf and lower c-efficiencies for estimating ΔWmax

and 〈ΔW 〉. If we increase the number of support points re-
quired of the exact optimal designs, we observe that the
estimation performances of the exact maximin design of the
growth parameters become more balanced. The correspond-
ing c-efficiency values of the 10−point optimal maximin de-
sign are 84.22%, 77.09%, 77.09%, 84.43% and 77.23%, re-
spectively, and the corresponding results for the 17-point
optimal design are 83.04%, 88.23%, 82.22%, 82.35%, and,
83.79%, respectively.
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5. OPTIMAL DESIGNS FOR ESTIMATING
PARAMETERS IN A HIV DYNAMIC

MODEL
Human immunodeficiency viruses (HIV) are a subgroup

of retrovirus that can cause infection, resulting in progres-
sive failure of the immune system. The presence of viruses
is usually detected when the CD4 cell counts are low. Mon-
itoring the cell counts continuously is key to understand-
ing disease progression. Various statistical models have been
proposed to model CD4 cell count longitudinally. A com-
mon model is to assume a fixed effect model defined on a
time line in hours over a pre-specified time interval, say,
t ∈ T = [0, 6 11

12 ] = [0, 6.917],

E(Yj | V0, c, δ, tj) = η(V0, c, δ, tj) (5.1)
= log V0+

log

[
c2

(c− δ)2
e−δtj − c2 − (c− δ)2

(c− δ)2
e−ctj − cδ

c− δ
te−ctj

]
.

The above time interval is taken from Table 1 in [13]
that describes HIV RNA copies per milliliter plasma and
time is measured since treatment initiation and the predic-
tor, t, is time after pharmacologic delay. Frequently interest
is in estimating one or more of the parameters in the model
parameters since not every parameter has a meaningful bio-
logical interpretation. When all parameters are interesting,
the D-criterion discussed previously is an appropriate design
objective; otherwise, if only a subset of the parameters is in-
teresting, the design criterion is c-optimality. In the above
model, we are interested to find an optimal design to esti-
mate θT = (log V0, log c, log δ) and optimal designs to best
estimate each of its components. Additionally, we also find
a maximin optimal design goal that maximizes the lowest
efficiency among the three efficiencies for estimating each of
the three parameters.

For such studies, there is usually a standard protocol rec-
ommended by physicians for implementation. The protocol
specifies how many times and when to sample blood to de-
termine cd4 counts and for other laboratory tests. However,
the protocol is usually not based on statistical considera-
tions. We now apply PSO to find various optimal designs
and ascertain how efficient is the protocol design under var-
ious scenarios, including situations where there are multiple
objectives and there are different emphases in each of the
study objectives.

We compute various optimal exact designs and eval-
uate the efficiencies of the recommended or proto-
col design or baseline design for such a study. For
a given number of points, uniform designs have them
evenly distributed on the time interval T . For ex-
ample, such a design with 8 observations is ξ8 =
{0.000, 0.917, 1.917, 2.917, 3.917, 4.917, 5.917, 6.917}. A di-
rect calculation shows its Fisher information matrix is pro-
portional to

M(ξ, θ) =
1

N
F�F (5.2)

where the (ij)th element of the matrix F is Fij(t) =
∂η(θi, t)/∂θj and η(θ, t) is the mean response at
time t ∈ T . For estimating all parameters in the
model, D-optimality is commonly used and is defined
by the determinant of M(ξ, θ). Because the informa-
tion matrix contains unknown parameters, we replace
θ by its nominal values before we maximize the de-
terminant using PSO. Using nominal values θ� =
(log V0, log c, log δ)

� = (11.0, 1.1,−1.0), the resulting PSO-
generated locally D-optimal design with 8 observations is
ξD = {0.000, 0.000, 0.000, 2.083, 2.083, 6.917, 6.917, 6.917}.
This implies that the implemented design requires 3 repli-
cates at 0, 2 replicates at 2.08 and 3 replicates at 6.92.

To estimate log c or log δ, we find an exact design that
minimizes the asymptotic variance of the estimated func-
tion. Setting c� = (0, 1, 0) to estimate log c, c� = (0, 0, 1)
to estimate log δ in (4.2) and using the given nominal val-
ues for the model parameters, the PSO-generated designs
for estimating log c- and log δ are

ξlog c = {0.000, 0.000, 0.000, 2.113, 2.113, 2.113, 2.113, 6.917}

and

ξlog δ = {0.000, 1.923, 1.923, 1.923, 1.923, 6.917, 6.917, 6.917}.

These designs can be implemented in practice as dis-
cussed for the PSO-generated 8-point D-optimal exact de-
sign. When there are multiple objectives in the study, one
considers them simultaneously at the design stage. For ex-
ample, when we wish to estimate θ, log c and log δ, we want a
design that provides high efficiencies under all three criteria.
One way is to use a maximin optimality criterion and find
an exact design ξMM that maximizes the minimal efficiency
across the three criteria:

min

{{
detM(ξ, θ)

detM(ξD, θ)

} 1
3

, (5.3)

e�2 M
−1(ξlog c, θ)e2

e�2 M
−1(ξ, θ)e2

,
e�3 M

−1(ξlog δ, θ)e3
e�3 M

−1(ξ, θ)e3

}
.

The first of the three terms in the outer curly brackets
represents the D-efficiency (D-eff) of the design ξ and the
last two terms represent the c-efficiencies (c-eff) of the design
ξ of estimating log c and log δ. In practice, designs with high
efficiencies are sought. If the efficiency of a design ξ is 0.5
or 50%, this means that the design ξ needs to be replicated
twice to perform as well as the optimal design.

The search for the locally maximin optimal design is a
two-step approach. First, we identify the three locally D-
and c-optimal designs required to compute the efficiency
values in (5.3). Second, we use PSO to search for the max-
imin optimal design that maximizes (5.3). In particular, the
criterion is the minimal value among three efficiencies and
thus at each iteration, PSO needs to find the optimal de-
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Algorithm 2 The PSO algorithm for searching maximin
optimal designs.
1: Generate locally D-optimal design, ξD, by PSO and compute

its D-optimal criterion value φD(ξD).
2: Generate locally log c-optimal design, ξlog c, by PSO and com-

pute its optimal criterion value φlog c(ξlog c) by (4.2) where
c = (0, 1, 0)�.

3: Generate locally log δ-optimal design, ξlog δ, by PSO and com-
pute its optimal criterion value φlog δ(ξlog δ) by (4.2) where
c = (0, 0, 1)�.

4: Generate maximin optimal design by PSO for ξ in (5.3) where
the three locally optimal design criterion values are φD(ξD),
φlog c(ξlog c) and φlog δ(ξlog δ), respectively.

sign, compute these three relative efficiencies first and then
identify the minimal value as the criterion value.

For the given set of nominal values, Algorithm 2 pro-
duced the 8-point PSO-generated maximin design: ξMM =
{0.000, 0.000, 1.847, 1.847, 1.847, 1.849, 6.917, 6.917}, imply-
ing that the implemented design requires 2 replicates at 0,
4 replicates at 1.85 and 2 replicates at 6.92.

Table 15 displays the various relative efficiencies among
the protocol design, ξ8, the locally D-optimal design, ξD,
the locally c-optimal designs, ξlog c and ξlog δ and the locally
maximin optimal design, ξMM .

The protocol design ξ8 has low c-efficiencies for estimat-
ing log c and log δ, averaging about 45% and substantially
higher D-efficiency, about 72% for estimating all parameters
in the model. The locally D-optimal design has at least 67%
c-efficiency, which is acceptable for estimating the individ-
ual parameters log c and log δ. When one of the two model
parameters log c or log δ is of interest, the c-efficiency of
the optimal design for estimating the other parameter is not
high; Table 15 shows they are 48.33% and 54.25%, suggest-
ing that they are not robust to mis-specification in the opti-
mality criterion. This is in contrast to the maximin optimal
design, which has at least 81.31%-efficiency across all three
criteria. This suggests that when we are unsure at the onset
which of the parameters are more interesting to estimate, it
may be desirable to implement a maximin optimal design.

Table 15. Comparisons among the competing designs.
Criterion Design D-eff. (%) log c-eff. (%) log δ-eff. (%)
Baseline ξ8 72.21 44.96 46.94
D-optimal ξD 100.00 69.63 67.88
log c-optimal ξlog c 87.35 100.00 48.33
log δ-optimal ξlog δ 87.04 54.25 100.00
maximin optimal ξMM 95.37 81.31 81.31

6. CONCLUSIONS
Optimal exact designs are rarely reported in the literature

because they are harder to find and study analytically even

when the sample size is small. It is essentially a number-
theoretical problem, where invariably, solutions, have to be
derived for each problem and frequently, for different values
of N as well. Further, the derivation of the analytical opti-
mal design for a model is inapplicable to a slightly changed
model, and the few algorithms for finding optimal exact de-
signs are restrictive and usually for relatively simple linear
models only; see for example, [3].

This paper investigates PSO’s capability to generate a va-
riety of exact designs for various biomedical nonlinear mod-
els when errors in a nonlinear model may be correlated and
there is one or more design criteria in the study. We im-
plemented PSO using R codes to find them; for example,
Algorithm 1 generates the locally D-optimal designs for the
Michaelis-Menten model in this paper.

In all cases, PSO was able to successfully and efficiently
identify the best designs and they agreed with the theoret-
ical exact D-optimal designs when the latter are available
for simpler setups. Unfortunately, there are no theoretical
checks whether the PSO-generated optimal exact designs
are truly optimal. One way to assess its validity is to com-
pare the optimal exact design with the corresponding opti-
mal approximate design, which can be found using standard
algorithms and confirmed theoretically via an equivalence
theorem. To this end, we also apply PSO to find the cor-
responding optimal approximate designs for models studied
in the paper and we were able to confirm that both the
generated PSO exact designs and the optimal approximate
designs are close. For example, for the design problem dis-
cussed in the last section, we found the relative D-efficiency
is 98.28% and the c-efficiencies for estimating log c and log δ
are 99.78%, and 94.29%, respectively.

Because PSO is a general optimization technique and re-
quires little or no assumption on the problem for it to be
applicable, we expect PSO should also perform well in find-
ing other optimal exact designs for different types of models
with various correlation structures, including high dimen-
sional models. We also encourage further exploration and
application of PSO to solve general optimization problems
in statistics.
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