
The New England Journal of Statistics in Data Science Volume 1, 145–146 (2023)
DOI: https://doi.org/10.51387/23-NEJSDS4C

Discussion of: Four Types of Frequentism and Their Interplay with
Bayesianism, by J. Berger✩

Judith ROUSSEAU

Jim Berger proposes an interesting review of different
ways of addressing the problem of error reporting from a
frequentist point of view and their connections to Bayesian
ways of thinking. In a way this paper echoes Neyman (1977)
[2] – at least as far as testing is concerned. Jim Berger has
repeatedly made major contributions on the questioning of
what makes a relevant measure of uncertainty or reported
error and again this article is thought provoking.

Interestingly Neyman in Neyman (1977) [2] justifies (or
advocate) the empirical frequentist criteria or error mea-
sures, although the Neyman–Pearson is defined as a proce-
dural frequentist approach (in Jim Berger’s terminology).
If I agree with Jim Berger’s point that the justification of
the Neyman-Pearson procedure from an empirical frequen-
tist point of view is not fully convincing, I don’t quite agree
with his arguments. This might be due to the interpretation
of the definition of empirical frequentism and a difficulty for
me is making sense to this definition which is quite vague.

Let us consider the type I error in a test of a simple null
hypothesis versus a simple alternative hypothesis (or not
simple, it does not really matter although in the latter the
definition of type I and type II errors can be debatable). As
in the paper, consider a series of tests with nominal type I
error α and power β. One problem with reporting the type I
error only is that it provides a very partial picture of the
error (it provides no information if the true distribution is
not in the null). Following the example of Section 3.2.1 of
the paper and recalling that α = PH0i(Ri) is the type I error
for each experiment. Hence it only makes sense to report it
when H0i holds (i.e. θi = θ0i) in which case we have

1

N

N∑

i=1

1θi=θ0i(α− 1xi∈Ri) → 0 (1)

in probability as soon as the experiments are independent
(or more generally as soon as a weak law of large numbers
is valid). This is what is suggested in Neyman (1977) [2],
pages 108–109. What is not satisfying in (1) is that the re-
ported error only makes sense when non observable events
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(θi = θ0i) occur. However since

lim inf
N

1

N

N∑

i=1

1θi=θ0i(α− 1xi∈Ri) ≥ 0,

the type I error α can still be viewed as valid from an empir-
ical frequentist view point, but obviously is much less inter-
esting in the latter inequality. It appears very limited as an
accuracy measure. In the theory of minimax estimation the
typical risk function for a test is the sum of the type I and
type II errors: α + 1− β. Interestingly this quantity suffers
from the same drawback as the type I error:

1

N

N∑

i=1

[1θi=θ0i(α− 1xi∈Ri) + 1θi=θ1i(1− β − 1xi /∈Ri
)] = 0,

and needs a reporting strategy which depends on non ob-
servables for a long run justification, although the following
inequality holds true:

α+ 1− β ≥ 1

N

N∑

i=1

[1θi=θ0iα+ 1θi=θ1i(1− β)]

≥ 1

N

N∑

i=1

1θi=θ0i1xi∈Ri + 1θi=θ1i1xi /∈Ri
+ o(1).

The above inequality clearly shows the limit of reporting
α + 1 − β: in the long run if the proportion of null and of
alternatives are of the same order then

1

N

N∑

i=1

[1θi=θ0iα+ 1θi=θ1i(1− β)] ≈ α+ 1− β

2
,

which is significantly smaller than α+1−β. The same holds
if α ≈ 1−β and actually reporting max(α, 1−β) is closer to
the lower bound. The same reasoning holds for the multiple
testing problem under the Bonferroni correction. Again it is
not clear to me that the problem with reporting α comes
from the reported error not being empirical, but rather that
it only makes sense when the null is true, which is often
interpreted wrongly as: it only makes sense when the null is
rejected.
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One of the issues I have with the notion of empirical fre-
quentism is, as I said, that it is quite vague: to which ex-
tent need the experiments be related or close to replicates?
should the θi in the various experiments be considered as
deterministic or random? Empirical frequentist justicifica-
tion of a reported error depends on how we answer these
questions. In particular the posterior risk can be validated
under the assumption that the θi are random and come
from the (same) prior distribution. The targets suggested
in Eqs. (3.1), (3.3) or (3.7) of the present paper clearly aim
at giving an error measure when the null is rejected (i.e.
given that the null is rejected) but this inevitably requires
to model at least the probability that the null is verified and
typically also the distribution under the alternative, which
somewhat involves a prior distribution, say π0 and/or f1.
Reporting error in a statistical test has long been a subject
of debate, and much more than in other inference problems
(estimation, confidence/credible regions etc) is still largely
unresolved. There has been recent growing interests on E-
values, as measures of accuracy in a testing procedure, as
in Shafer (2021) [3] or Grunwald et al. (2020) for instance,
which are strongly related to Bayes factors (BF) (see Grun-
wald et al. (2020) [1]). A difficulty with Bayes factors or
E values – although some new results and propositions are
made towards answering it for the latter – is that their scale
is not known. Jim Berger shows that they do not enjoy an
empirical frequentist justification either. But what about the
log Bayes factors? In the safe test approach, Grunwald et al.
(2020) [1] relates logE (which can be viewed as a log-BF)
to the Kullback–Leibler divergence between the alternative

and the null (roughly speaking), when studied under the al-
ternative, which gives an empirical frequentist justification
to logE. The fact that E (or BF) does not have an empir-
ical frequentist justification while logE could have, makes
me wonder about the usefulness of considering empirical fre-
quentist justifications.
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