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Abstract
Basket trials have captured much attention in oncology research in recent years, as advances in health technology have

opened up the possibility of classification of patients at the genomic level. Bayesian methods are particularly prevalent in
basket trials as the hierarchical structure is adapted to basket trials to allow for information borrowing. In this article, we
extend the Bayesian methods to basket trials with treatment and control arms for continuous endpoints, which are often
the cases in clinical trials for rare diseases. To account for the imbalance in the covariates which are potentially strong
predictors but not stratified in a randomized trial, our models make adjustments for these covariates, and allow different
coefficients across baskets. In addition, comparisons are drawn between two-stage design and one-stage design for the four
Bayesian methods. Extensive simulation studies are conducted to examine the empirical performance of all models under
consideration. A real data analysis is carried out to further demonstrate the usefulness of the Bayesian methods.

keywords and phrases: Bayesian hierarchical model, Calibrated Bayesian hierarchical model, Covariates adjustment,
Mixture of finite mixtures, One-minimum power.

1. INTRODUCTION
The recent advancement in genomics sequencing and

molecular biology has enabled a detailed classification of pa-
tients based on genomics alterations or molecular profiles,
thus inspiring the establishment of targeted therapies [1, 5]
and precision medicine [2, 3, 14]. U.S. Food and Drug Ad-
ministration (FDA) provides the master protocol [29, 11]
guidance that facilitates the methodological innovation that
coordinates efforts to investigate treatments in more than
one patient population or disease types within one master
protocol [42, 30, 13]. Among the master protocols, basket
trials [28, 25, 13] have become a popular design since it al-
lows the evaluation of an investigational treatment in mul-
tiple disease cohorts in parallel and hence expedite the effi-
ciency of clinical research. U.S. Food and Drug Administra-
tion (FDA)[38] defines a basket trial protocol as follows:

“A master protocol designed to test a single investiga-
tional drug or drug combination in different populations
defined by different cancers, disease stages for a specific
cancer, histologies, number of prior therapies, genetic or
other biomarkers, or demographic characteristics is com-
monly referred to as a basket trial.”

Basket trials are typically conducted in a phase II trial
to provide preliminary proof-of-concept evidence for clini-
cal validation. Some of the other unique purposes of basket
studies and their application examples are discussed by Cu-
nanan et al. [8] and Tao et al. [35]. Basket trials are predom-
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inantly designed for oncology studies. This design is utilized
in [34], [16], [15], [22], [27] and [41], to name a few.

In a basket trial, patients from different baskets may be
expected to have similar responses because they may share
common features, such as disease stages or molecular al-
terations. This provides the basis for information borrowing
across baskets, which is one of the key statistical advantages
of basket trials. Note that different information borrowing
approaches can be applied. As a well-known example, Ve-
murafenib [12], initially approved for melanoma with V600E
BRAF mutations, was approved by the US Food and Drug
Administration (FDA) for treating BRAF V600 mutation-
positive Erdheim-Chester disease (ECD). The BRAF bas-
ket trial used the Simon Two-Stage design [32] that treated
the responses of each basket independently as they were
from separate studies and hence no information was bor-
rowed across baskets. In another example, Vitrakvi was
granted accelerated approval for treating locally advanced
or metastatic solid tumors harboring a neurotrophic tyro-
sine kinase receptor (NTRK) gene fusion. The Vitrakvi bas-
ket trial used full information borrowing by pooling data
together across all baskets, assuming that the response to
the drug was homogeneous across baskets. These are the
two extreme strategies for information borrowing. With the
emergence of basket trials, FDA issued the general guidance
on grouping strategies, stating FDA’s position on the gener-
alizability of the results of multiple basket studies [37] and
providing guidance on the overall design of master proto-
cols, as exemplified by the BRAF V600 basket trial [38]. An
excellent review and discussion on the guidance of basket
trials can be found from [31]. A wide range of statistical
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research has been devoted to exploring more flexible meth-
ods of information borrowing. These methods dynamically
or partially borrow information across baskets based on the
trial data.

One class of methods attempts to borrow across all bas-
kets. A Bayesian sequential monitoring method is presented
by Simon et al. [33]. It involves multiple interim looks, with
the amount of data borrowing at each interim determined
by the posterior probability of homogeneity. Thall et al. [36]
and Berry et al. [4] proposed the basket trial design us-
ing the full Bayesian Hierarchical Model (BHM), with the
treatment effects of the baskets modeled by a distribution
F . Due to a small number of baskets in actual basket trials,
the variance in F is difficult to be reliably estimated, leading
to potentially substantial Type I error inflation [9]. To cir-
cumvent this issue, Chu and Yuan [6] suggested a Calibrated
Bayesian Hierarchical model (CBHM) that provides a more
reliable estimate of the variance in F by pre-determine the
shrinkage parameter. Their results suggest that Type I er-
rors are better controlled than BHM, especially for the cases
where the effect of the basket is heterogeneous.

There is another class of methods, in which similar bas-
kets are first clustered and the information among similar
baskets is fully borrowed. Unlike the BHM model which as-
sumes the treatment effect for each basket is exchangeable
and localizes around a common mean, the exchangeability-
nonexchangeability (EXNEX) model of Neuenschwander et
al. [21] assumes that some baskets may be predefined to
be exchangeable (EX), while some may not be exchange-
able (NEX). Thus, each basket is assigned to either an EX
component, which allows within component parameter to
be partially exchangeable; or an NEX component which is
nonexchangeable from others. The assignment is based on
pre-specified probabilities. Chu and Yuan [7] and Zhou and
Ji [45] proposed a more sophisticated method, in which a la-
tent class variable is employed to group baskets into clusters
and hence avoid pre-specifying the aforementioned probabil-
ities in the EXNEX model. According to their approach, the
treatment effects within each cluster are assumed to be cen-
tralized such that information is borrowed locally using the
BHM; a Dirichlet distribution prior is applied to the weight-
ing probability that assigns the baskets into the clusters; and
the number of latent clusters and the basket memberships
are inferred by the data through a Dirichlet Process Mix-
ture Model (DPMM) model [19, 20]. The Mixture models
have a common difficulty in choosing the number of clus-
ters. Within the Bayesian framework, one could consider the
number of clusters as an unknown parameter and specify it
with a prior distribution. This kind of model is referred to
as the Mixture of Finite Mixtures (MFM). Miller and Harri-
son [18] proved many characteristics of the DPMM are also
exhibited by MFM. By applying the Markov chain Monte
Carlo (MCMC) sampling algorithm similar to DPMM but
with feasible alteration, this sampling algorithm exhibits
higher efficiency than the reversible jump technique. Geng

and Hu [10] applied MFM onto basket trials for binary end-
point.

Basket trials can have a variety of designs. First of all,
it may or may not have the concurrent control arms [26]. It
can also be applied for various types of endpoints: a contin-
uous outcome design is presented by Zheng and Wason [44]
and a time to event design is presented by Xu et al. [43].
Some settings also include the multiple covariates [44, 24]. In
prospective circumstances, the treatment effect of each bas-
ket may depend on several therapeutic indicating covariates,
and the coefficients of one covariate can vary across baskets.
Interim Analyses is also popular when designing clinical tri-
als. In this article, we primarily focus on the evaluation of
a few Bayesian approaches, including Bayesian Hierarchi-
cal Model (BHM), Calibrated Bayesian Hierarchical Model
(CBHM), and Mixture of Finite Mixtures (MFM), with ex-
tended the assumptions: (i) continuous endpoints; (ii) with
a concurrent controlled arm; (iii) interim analysis designs
and (iv) adjusting covariates effects across different baskets.

The trials to which the Bayesian approaches are applied
are mostly without a concurrent placebo control. In oncol-
ogy trials, non-controlled trials are usually adopted due to
ethical reasons. But in many other situations, for example,
when (i) side-effects and tumor size shrinkage are limited
so blindness can be maintained, and (ii) patients receive
the investigational treatment and placebo in addition to
a current curative treatment so there are no ethical con-
cern, randomized trials are advantageous to provide more
definitive answer to treatment effects and safety to the in-
vestigational product. To emphasize the importance and the
principles of estimating treatment effects and their sensitiv-
ity analysis, the US Food and Drug Administration (FDA)
released “E9(R1) Statistical Principles for Clinical Trials:
Addendum: Estimands and Sensitivity Analysis in Clinical
Trials”[39]. This implies that assessing the magnitude of the
treatment effect potentially will be of greater concern in
many trial designs. As such, this article explores the perfor-
mance of Bayesian methods in basket trials with a control
arm and continuous endpoint. However, these methods can
be readily extended to different designs.

The remaining part of this article is organized as follows.
The trial setting and assumptions are described in Section 2.
In Section 3, the considered Bayesian methods are intro-
duced and discussed in detail. To assess and compare the
performance of these methods, simulation studies and re-
sults are presented in Section 4. An application example is
provided in Section 5. Conclusion and possible extension of
the current work are addressed in Section 6. The additional
results, sensitivity analysis and technical details including
derivations are given in the Supplementary Material.

2. TRIAL SETTING
Consider a controlled basket trial with continuous end-

points and with K baskets. If interim analysis is planned
and the study has multiple stages, for simplicity it is as-
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sumed that equal number of subjects are enrolled in each
stage. For k = 1, . . . ,K baskets, let nck and ntk denote the
control and treatment arm sample sizes for basket k in each
stage, respectively. Let Y denote the outcomes, with sub-
scripts c and t denote the control arm and treatment arm.
Write i = 1, . . . , nck and i′ = 1, . . . , ntk as individual sub-
jects in the control and treatment groups. In addition, the
outcomes are assumed to be normally distributed, and the
subject level variation is the same across the whole popula-
tion, denoted by σ2.

The majority of the literature discussed information bor-
rowing methods in basket trials without considering the pos-
sible diversity of patients across the baskets. It is reasonable
to speculate that the outcomes of basket trials may depend
on the participants’ baseline characteristics, such as gender
and age. Also, it is known that randomization is a common
feature of clinical trials; however, complete randomization
may not be achievable in reality for a variety of reasons. U.S.
Food and Drug Administration [40] provides general guid-
ance on which covariates should be included in the modeling
of a clinical trial: including the adjustment of stratification
factors for randomization and important baseline character-
istics that are strong predictors for the outcome. In such
cases, adjustments for covariates are necessary, as discussed
in [44] and [43]. In this paper, we also model the outcomes by
including covariates effects, with the following assumptions
and notation.

Assume the outcome depends on r covariates. In the k-
th basket, denote τk as the treatment effect. For the k-th
basket, the covariates vectors are xcki and xtki′ , respec-
tively, for individual i in the control arm and for individual
i′ in the treatment arm, where xcki = (1, xcki1, . . . , xckir)

′

for the control arm and xtki′ = (1, xtki′1, . . . , xtki′r)
′ for

the treatment arm are (r + 1) × 1 vectors. The coeffi-
cient vectors βk = (βk0, βk1, . . . , βkr)

′ are assumed to be
different among baskets. Note the “βk0” is interpreted as
the control group effect for k-th basket (after adjusting
covariates). Denote {(xck1, yck1), . . . , (xcknck

, ycknck
)} and

{(xtk1, ytk1), . . . , (xtkntk
, ytkntk

)} for k = 1, . . . ,K to be the
data observations. The outcomes are assumed to follow

Ycki|βk, σ
2 iid∼ N(x′

ckiβk, σ
2),

with k = 1, . . . ,K; i = 1, . . . , nck.

and independently,

Ytki′ |βk, τk, σ
2 iid∼ N(x′

tki′βk + τk, σ
2),

with k = 1, . . . ,K; i′ = 1, . . . , ntk.

(2.1)

If there is no covariate that need to be adjusted, the above
formulae will be simplified with xcki = 1, xtki′ = 1 and the
coefficients βk = βk0.

The main objective is to detect whether the treatment
is superior to the control in any of the K baskets. This
corresponds to testing the following hypotheses:

H0 : τk = δ versus H1 : τk > δ, (2.2)

for k = 1, . . . ,K. The value of δ represents the magnitude
of improvement over the control arm needed to declare a
clinical benefit of the new treatment [44] and needs to be
specified in advance. Implicitly, a positive τk indicates the
drug or treatment is effective.

We are piloting two study designs: a one-stage design
without any Interim Analysis (IA) and a two-stage design
with one IA. Let “D” denote the available data collected at
the time point of the analysis. Let DIA denote all available
data at the interim analysis within the two-stage design;
and DFA denote all available data at the Final Analysis
(FA). For trials with the two-stage design, we adopt similar
decision rule proposed by Mehta and Pocock [17]: at the IA,
a basket could stop early for futility or efficacy, or enter the
“promising zone”: meaning the recruitment continues and it
is evaluated in the next stage. In the final stage, a basket
could be claimed as futility or efficacy.

The inference is performed using the posterior probability
based on the data available at the current stage, i.e.

– Pr(τk > δ|DIA) for Interim Analysis;
– Pr(τk > δ|DFA) for Final Analysis.

Two cut-off values 0 < q1 < q2 < 1 are pre-set for futility
stopping and efficacy stopping, respectively. Below describes
the decision criteria for the stopping rules:

1. At IA,

– If Pr(τk > δ|DIA) ≤ q1, the basket is claimed ineffec-
tive and stops for futility;

– If Pr(τk > δ|DIA) > q2, the basket is claimed effective
and stops for efficacy;

– Otherwise (i.e. q1 < Pr(τk > δ|DIA) ≤ q2) the bas-
ket enters the “promising zone”: continues accrual and
enters the next stage;

2. At FA,

– If Pr(τk > δ|DFA) ≤ q1 the basket is claimed ineffec-
tive;

– Otherwise the basket is claimed to be effective.

There criteria are illustrated graphically in Figure 1.

Figure 1: Stopping Criteria.

There are various methods to determine the cut-off val-
ues q1 and q2. Usually, they shall imply the percentage level
required to certify that the treatment is compellingly im-
proved over the control. In our simulation study, we link
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q1 and q2 by a parameter 0 ≤ η < 1: 1 − q2 = η(1 − q1).
η is essentially the ratio between the “effective zone” and
the “effective zone” plus “promising zone”, thus controlling
alpha-splitting in the two stages. Specially, when η = 0,
there is no chance claiming success at IA: only futility rule
is applied. For η between 0 and 1, there will be a “promis-
ing zone” and both efficacy and futility rules are applied.
Further, the cut-off values are determined by allowing the
trial to comply with certain statistical constraints: under the
scenario of the global null (GN) (i.e. the treatment effect is
zero in every basket), controlling Family-Wise Error Rate
(FWER) at the final stage to be 10%. The details of setting
the rules are given in Section 4.3.

The sample sizes are assumed to be equally assigned in
the two stages. The sample sizes of the two stages can be
different in principle, and the allocation between stages is
related to alpha-slitting. The calculation of overall sample
size as well as allocation between stages is not the focus of
this article, but may be a topic worth exploring.

3. METHODS
A major concern of the basket trial is that the sample

size is often too small to achieve a desirable power. This re-
lates to the accuracy of the variance estimates. Under our
assumption that the response outcomes share the same pop-
ulation variation, a favorable set up is estimating the popu-
lation variance by aggregating all the data across individual
baskets. Assume conjugate priors for the normal likelihood
function to facilitate the posterior derivation and save com-
putation time. Thus in our modeling, data are assumed to
be normal with conjugate priors and the population vari-
ance is given an Inverse Gamma prior. These assumptions
are universal for all the methods applied in this article.

3.1 General Notation
The following notations are consistently used throughout

this article:
1. yck = (yck1, . . . , ycknck

)′, ytk = (ytk1, . . . , ytkntk
)′,

Xck = (xck1, . . . ,xcknck
)′, Xtk = (xtk1, . . . ,xtkntk

)′,

yk =

(
yck

ytk

)
, Xk =

(
Xck

Xtk

)
.

They denote data observations from the k-th basket.
2. Vectors of parameters: τ = (τ1, . . . , τK)′,

βk = (βk0, βk1, . . . , βkr)
′ for k = 1, . . . ,K.

Denote β = {β1, . . . ,βK}.
3. 1ntk

= (1, . . . , 1)′ is an ntk length vector of 1’s.
4. Denote π(·) as a prior distribution, L(·) as the likeli-

hood function, and p(·) as the posterior distribution.
Denote D as the collection of available data observa-
tions at the time of analysis.

3.2 Separate Model (SEP) with Full
Conjugacy

We would like to compare the performance of the
Bayesian methods with a separate analysis under the

Bayesian framework. Under models adjusting for covariates,
the linear model is

yck = Xckβk + εck, k = 1, . . . ,K,

ytk = Xtkβk + τk1ntk
+ εtk, k = 1, . . . ,K,

(3.1)

where the error terms εck and εtk follow MVNnck
(0, Inck

σ2)

and MVNntk
(0, Intk

σ2), respectively. In the k-th basket, the
likelihood functions are given by

L(βk, σ
2|yck,Xck) =

1

(
√
2πσ2)nck

exp
(
− 1

2σ2
‖yck −Xckβk‖2

)
,

L(βk, τk, σ
2|ytk,Xtk) =

1

(
√
2πσ2)ntk

exp
(
− 1

2σ2
||ytk − τk1ntk

−Xtkβk||2
)
.

(3.2)

The complete likelihood function is

L(β, τ , σ2|D) =
∏
k

[
L(βk, σ

2|yck,Xck)L(βk, τk, σ
2|ytk,Xtk)

]
.

(3.3)

Assuming conjugate priors for parameters β, τ , σ2,

βk|σ2 iid∼ MVNr+1(0, σ
2Λ−1

k ), k = 1, . . . ,K,

τ |σ2 ∼ MVNK(0, σ2Λ−1
τ ),

σ2 ∼ IG(a0, b0).

(3.4)

If no prior knowledge is available, non-informative priors
are assumed, for example, by setting Λk = diagr+1(

1
10000 ),

k = 1, . . . ,K, and Λτ = diagK( 1
10000 ).

The full posterior distribution is

p(β, τ , σ2|D) ∝L(β, τ , σ2|D)
∏
k

π(βk|σ2)π(τ |σ2)π(σ2).

(3.5)

The posterior for τ can be derived by integrating out the
nuisance parameters:

p(τ |D) ∝
∫∫

L(β, τ , σ2|D)
∏
k

π(βk|σ2)π(τ |σ2)π(σ2)dβdσ2.

(3.6)

Hence, the posterior distribution of τ is a K-dimensional
multivariate t distribution with degrees of freedom ν =

2a0+
∑

k nck+
∑

k ntk. Several quantities are defined below
in order to express the location parameters and the scale
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matrix of the posterior multivariate t distribution:

ΛDk = Λk +X ′
kXk,

μ∗
k = X ′

kyk,

ck = 1′
ntk

1ntk
− 1′

ntk
XtkΛ

−1
DkX

′
tk1ntk

,

dk = y′
tk1ntk

− μ∗′

k Λ−1
DkX

′
tk1ntk

;

and denote diagonal matrix C and vector d

C = diag(c1, . . . , cK),

d = (d1, . . . , dK)′.

(3.7)

The location parameter for the posterior of τ is

μτ =(C +Λτ )
−1d. (3.8)

The scale matrix is

Σ =
2B

ν(C +Λτ )
, (3.9)

where B = b0 + 1
2

∑
k

(
y′
kyk − μ∗′

k Λ−1
Dkμ

∗
k

)
− 1

2d
′(C +

Λτ )
−1d. Given the above forms, τk’s independently follow

shifted and scaled t-distributions, and their posterior prob-
abilities can be computed directly.

3.3 Bayesian Hierarchical Model (BHM)
Berry et al. [4] and Thall et al. [36] introduced a Bayesian

adaptive design with frequentist interim analyses and hierar-
chical modeling across the patient subgroups. In addition to
model (3.1), a additional structure is built to model τk’s, i.e.,
τk ∼ N(μτ , σ

2
τ ). Non-informative normal and inverse gamma

priors are given to μτ and σ2
τ , respectively. Since all τk’s are

sharing the same mean parameter μτ in their priors, one can
expect that each estimate of them is pulled towards μτ . The
shrinkage parameter σ2

τ indicates the amount of information
borrowing intensity between the baskets: larger σ2

τ indicates
less borrowing, and smaller σ2

τ indicates stronger borrowing.
To control the shrinkage parameter, we can define σ2

τ = φσ2

and set a large value of φ to form a non-informative prior
for τk’s.

The model is described in (3.1). The likelihood function
is described in (3.2) and (3.3). The priors are assumed to be

βk
ind∼ MVNr+1(0, σ

2Λ−1
k ), k = 1, . . . ,K,

τk
iid∼ N(μτ , σ

2
τ ), k = 1, . . . ,K,

μτ ∼ N(0, φσ2
τ ),

σ2
τ ∼ IG(a′0, b

′
0),

σ2 ∼ IG(a0, b0).

(3.10)

To specify non-informative priors, set Λk = diagr+1(
1

10000 )
for k = 1, . . . ,K. The Gibbs collapsed sampling procedure
is used to obtain the posterior samplers.

3.4 Calibrated Bayesian Hierarchical Model
(CBHM)

The challenge of achieving advantageous results for BHM
to basket trials is that the number of baskets, K, is often
small so the parameter σ2

τ cannot be estimated robustly and
the results are very sensitive for the prior setting. The de-
tailed discussion can be found in [4]. To overcome this issue,
Chu and Yuan [6] proposed a Calibrated Bayesian Hierarchi-
cal model (CBHM) for binary endpoints. Instead of giving
a prior to σ2

τ , they proposed to estimate σ2
τ as a monotonic

increasing function of a Chi-square test statistic T , where T
is a quantity that measures the similarity of the treatment
effects across baskets (i.e. Chi-square test statistics):

σ2
τ = exp(a+ b log T ), (3.11)

where a and b > 0 are pre-calculated constants obtained by
simulation. The information is borrowed more if the treat-
ment effects are similar across baskets, and less otherwise.
To determine the values of a and b, one needs to pre-specify
the two cases of σ2

τ ’s representing the data being heteroge-
neous and homogeneous (e.g., σ2

τ = 80 versus σ2
τ = 1). In the

simulation, one also needs to first decide on some scenarios
where information should be borrowed (e.g., the treatment
effects are the same for all baskets) across baskets and some
other scenarios where information should not be borrowed
(e.g., only one basket is truly efficacious), and then record
the median of their Chi-square statistics. The constants a
and b could be calculated by solving (3.11) under these two
scenarios.

We extend this idea to the linear regression models, by
replacing the Chi-square test statistic with the p-value of a
F test statistic. The F test statistic is to test whether any
treatment effect difference are heterogeneity from other bas-
kets when the covariates are included in the model. Since the
F test statistics is associated with different degrees of free-
dom, which depends on the sample size of the basket, num-
ber of covariates adjusted and the number of baskets being
assessed, we use their p-values instead of the test statistics.
See Section S.4 of the Supplementary Material for the for-
mulae of the testing procedure. The main challenge may be
to set a suitable function that relates the value of σ2

τ to the
p-value (pval). Note that the p-value is always between 0
and 1, and σ2

τ should monotonically decrease with the p-
value. We simply apply the following relation:

σ2
τ = a+ b× (1− pval), (3.12)

where a, b ≥ 0 are the tuning parameters. To find a robust
function between σ2

τ and p-values, some other functions are
also tested, including the original exponential function link-
age as well as the logit function of pval. The property of the
exponential function may arise large variances in our setting
and thus cause Type I error inflation. The logit function per-
forms best on Type I error rate control, whereas the power
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improvement may not be as satisfactory. Compared with
these functions, the above linear function performs quite ro-
bustly, and has good Type I error rate control and power im-
provement. A simplified procedure is used by adjusting the
a and b directly instead of running simulations. Using these
procedures, comparable results are produced with those by
Chu and Yuan [6] in terms of power and Type I error rate
comparison with other methods.

The model is described in (3.1). The likelihood function
is described in (3.2) and (3.3). The priors for the parameters
are given as

βk
ind∼ MVNr+1(0, σ

2Λ−1
k ), k = 1, . . . ,K,

τk ∼ N(τ, σ̂2
τ ), k = 1, . . . ,K,

τ ∼ N(0, σ2
0),

σ2 ∼ IG(a, b).

(3.13)

Non-informative priors are specified by setting Λk =
diagr+1(

1
10000 ) for k = 1, . . . ,K. The Gibbs collapsed sam-

pling procedure to obtain the posterior samples is given in
Algorithm 1.

3.5 Mixture of Finite Mixtures (MFM)
Inferences from simple pooling or separate analyses are

recognized to be inferior to hierarchical modeling methods,
which allow adaptive borrowing of information across sub-
groups. However, the full Bayesian model bears the risk of
too much shrinkage and excessive borrowing. In recent years,
more and more attention is given to approaches based on
local borrowing through mixture models. In such models,
baskets can be grouped to clusters so that the information
is borrowed within each cluster. Choosing or modeling the
number of clusters M is critical when the mixture model is
applied. It is even more important when applied to basket
trials, as there are usually a limited number of baskets, and
hence the overall model performance heavily relies on the
model of M . We attempt to apply the Mixture of Finite
Mixtures (MFM) approach [18], for its flexible and targeted
control of modeling M .

The full MFM model can be specified as usual:

M ∼ p(m) : truncated Poisson p.m.f.
on positive integer m with parameter λ,

π1, . . . , πM ∼ DirichletM (γ, . . . , γ),

P (zk = m|M) = πm,m = 1, . . . ,M, k = 1, . . . ,K,

(3.18)

where zk, the latent variable, denotes cluster that the k-th
basket belongs to, and πm is the corresponding probabil-
ity P (zk = m|M). The truncated Poisson prior is chosen
because of its convenience in sampling from the posterior
distribution [18]. Several parameters remain unspecified in
the above model. The value of λ indicates the prior choice
of the number of clusters. Setting λ equal to K seems to

Algorithm 1 CBHM (models adjusting for covariates)
MCMC Sampling Algorithm-Collapsed Gibbs Sampler.
1: procedure CBHM (with Covariates) sampling

2: Initial βk, k = 1, . . . ,K, τ = (τ1, . . . , τK), τ and σ2.
3: for i =1 to N do
4: Sample βk, k = 1, . . . ,K conditional on τ , σ2 by

βk|X,y, τ , σ2,∼ MVNr+1(μ
∗
k, σ

2Λ−1
Dk),

where ΛDk = X ′
kXk +Λk,

and μ∗
k = Λ−1

Dk(X
′
kyk −X ′

tk1ntkτk);

(3.14)

5: Sample σ2 conditional on β, τ by

σ2|X,y,β, τ ∼ IG
(
a∗ = a0 +

∑
k

nck + ntk

2
+ (r + 1)K/2,

b∗
)
, where b∗ = b0 +

1

2

∑
k

[
||ytk −Xtkβk − 1ntkτk||

2+

||yck −Xckβk||2 + (βk − μk)
′Λk(βk − μk)

]
;

(3.15)

6: Sample τk, k = 1, . . . ,K conditional on β, σ2 and τ
by

τk|X,y,βk, σ
2, μτ ∼

N

[
σ̂2
τ (ytk −Xtkβk)

′1ntk + μτσ
2

σ̂2
τ1′

ntk
1ntk + σ2

,
σ̂2
τσ

2

σ̂2
τ1′

ntk
1ntk + σ2

]
;

(3.16)

7: Collapse sample μτ conditional on β, σ2 by integrating
out τk’s:

μτ |X,y,β, σ2 ∼

N

[ ∑
k

(ytk−Xtkβk)
′1ntk

1′
ntk

1ntk
σ̂2
τ+σ2∑

k

1′
ntk

1ntk

1′
ntk

1ntk
σ̂2
τ+σ2 + 1

σ2
0

,
1∑

k

1′
ntk

1ntk

1′
ntk

1ntk
σ̂2
τ+σ2 + 1

σ2
0

]
.

(3.17)

8: end for
9: end procedure

help alleviate the excessive borrowing. γ affects the proba-
bility of assigning the basket to a distinct new cluster, hence
influencing the borrowing strength across baskets.

The model is described in (3.1). The likelihood function
is described in (3.2) and (3.3) by replacing τk by τzk . The
priors for the parameters are given as follows:

βk
iid∼ MVNr+1(0, σ

2Λ−1
k ), k = 1, . . . ,K,

τm
iid∼ N(0, φσ2), m = 1, . . . ,M,

σ2 ∼ IG(a0, b0),

(3.19)

with Λk = diagr+1(
1
ξ ,

1
10000 , . . . ,

1
10000 ). For φ and ξ, they

together control the amount of information to be borrowed
across the baskets and therefore need to be carefully speci-
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Algorithm 2 MFM (models adjusting for covariates) MCMC Sampling Algorithm-Gibbs Sampler.
1: procedure MFM (with Covariates) sampling

2: Initial z = (z1, . . . , zK),βk, k = 1, . . . ,K, τ = (τ1, . . . , τM ) and σ2.
3: for i =1 to N do
4: Sample βk, k = 1, . . . ,K conditional on τ and σ2 by

βk|X,y,z, τ , σ2 ∼ MVNr+1(μ
∗
k, σ

2Λ−1
Dk),

where ΛDk = X′
kXk +Λk,

and μ∗
k = Λ−1

Dk(X
′
kyk −X′

tk1ntkτzk );

(3.20)

5: Sample σ2 conditional on β and τ by

σ2|X,y,z,β, τ ∼ IG(a∗ = a0 +
∑
k

nck + ntk

2
+ (r + 1)K/2 +M/2, b∗)

where b∗ = b0 +
1

2

M∑
zk=1

τ2zk/φ+
1

2

∑
k

(
||yck −Xckβk||2 + ||ytk − 1ntkτzk −Xtkβk||2 + β′

kΛkβk

)
;

(3.21)

6: Sample τ conditional on β, σ2 and z by

τm|X,y,z,β, σ2 ∼ N

[
φ
∑

k:zk=m(ytk −Xtkβk)
′1ntk

φ
∑

k:zk=m 1′
ntk

1ntk + 1
,

φσ2

φ
∑

k:zk=m 1′
ntk

1ntk + 1

]
; (3.22)

7: Update z = (z1, . . . , zK) conditional on τ = (τ1, . . . , τM ), βk, k = 1, . . . ,K and σ2 for each k in {1, . . . ,K}, based on close form of
P (zk = g|z−k,β, τ , σ

2,D):

∝
{

[|g|+ γ]L(Xck,yck|βk, σ
2)L(Xtk,ytk, τg |βk, σ

2), in an existing cluster g,
VK(|G−k|+1)

VK(|G−k|)
γm(D|βk, σ

2), in a new cluster, (3.23)

where |G−k| denotes the number of clusters obtained by removing the k-th basket, |g| denotes the cluster size of cluster labeled g, and
L(yck,Xck|βk, σ

2)L(ytk,Xtk, τg |βk, σ
2) are the likelihood functions from the normal distributions of yck and ytk presented in formula

(3.2) conditioning on the updated values of σ2 and βk.
m(D|βk, σ

2) can be obtained by the closed expression:

m(D|βk, σ
2) =L(Xck,yck|βk, σ

2)
1

(
√
2πσ2)ntk

1√
φ1′

ntk
1ntk + 1

exp

{
φ[(ytk −Xtkβk)

′1ntk ]
2

2σ2(φ1′
ntk

1ntk + 1)
− 1

2σ2
||ytk −Xtkβk||2

}
. (3.24)

8: end for
9: end procedure

fied. A programmable algorithm to fit the MFM with covari-
ates adjustment is given in Algorithm 2. In the Algorithm,
as a priori the basket k is placed in
⎧⎨
⎩

an existing cluster g ∈ G−k with probability ∝ |g|+ γ,

a new cluster with probability ∝ VK(t+ 1)

VK(t)
γ,

(3.25)
where t = |G−k| is the number of clusters obtained by re-
moving the k-th basket, and VK(t) needs to be precomputed
as

VK(t) =

∞∑
m=1

m(t)

(γm)(K)
pM (m). (3.26)

Here x(t) = x(x+1) . . . (x+t−1), and x(t) = x(x−1) . . . (x−
t + 1). By convention, x(0) = 1 and x(0) = 1. Meanwhile,
pM (m) is the mass density function of the truncated Poisson
distribution on {1, 2, . . . } with parameter λ.

The derivation of m(D|βk, σ
2) in (3.24) is given in Section

S.3 of the Supplementary Material.

4. SIMULATION STUDIES
4.1 Data Generation

Consider the case that the outcomes are influenced by
two covariates, one continuous (X1) and one binary (X2).
Following previous notation, the outcomes are modeled as

Ycki = βk0 + βk1Xcki1 + βk2Xcki2 + εcki,

with i = 1, . . . , nck,

Ytki′ = βk0 + τk + βk1Xtki′1 + βk2Xtki′2 + εtki′ ,

with i′ = 1, . . . , ntk,

(4.1)

where k = 1, . . . , 4. The number of subjects in control and
treatment arm are assumed to be the same (nck = ntk

.
=

nk). For baskets 1 to 4, they are assumed to be n1 = 30,
n2 = 30, n3 = 20, and n4 = 20, and the same sample sizes
are assumed for each stage (if the basket is available for
analysis in that stage). Let βk0 denotes the intercept in the
control arm for the k-th basket. τk denotes the difference
in the intercept between treatment and control for the k-th
basket. Each of the error terms εcki(εtki′) ∼ N(0, 1). The
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coefficients are allowed to be different across baskets, and
set to be (β11, β21, β31, β41) = (0.2, 0.4, 0.6, 0.8). The con-
tinuous covariates Xcki1 in the control arm are simulated
from logN(0, 0.92), and the covariates Xtki′1 in the treat-
ment arm are simulated from N(1.5, 2.8). The binary covari-
ates Xcki2 in the control arm are simulated from Bin(0.4),
and the covariates Xtki′2 in the treatment arm are simu-
lated from Bin(0.6). The values of the binary coefficients
are assumed to differ by basket to be (β12, β22, β32, β42) =
(0.4, 0.3, 0.2, 0.1).

4.2 Scenarios and Evaluation
To evaluate the performance of these various methods,

the data is generated assuming the control effects to be
(0, 0, 0, 0). Consider 6 scenarios of the true treatment ef-
fects, τ = (τ1, . . . , τ4), which are summarized in Table 1.
Note that the first scenario corresponds to the global null
(GN).

Table 1. True effects in the treatment arm.
Scenarios τ1 τ2 τ3 τ4
1 GN 0 0 0 0
2 0.4 0 0 0
3 0.4 0.4 0 0
4 0.4 0.4 0.4 0
5 0.4 0.4 0.4 0.4
6 0 0.2 0.4 0.6

Under each scenario, 1000 trials are simulated. The fol-
lowing characteristics of all methods are evaluated under
each scenario:

1. FWER: The percentage of trials in which any ineffective
basket is wrongly selected as efficacious.

2. One-minimum power (P1): The percentage of trials in
which at least one effective basket is correctly selected
as efficacious.

3. Correct power (P2): The percentage of trials in which
at least one effective basket is correctly selected as effi-
cacious, and none of the ineffective baskets is selected.

4. Exact correct power (P3): The percentage of trials in
which all effective baskets are correctly selected as effi-
cacious, and none of the ineffective baskets is selected.

5. % Rejection: The percentage of trials in which the spe-
cific basket is selected as efficacious.

6. RMSE: Calculated as E[(τ̂k − τk)
2]1/2 for each basket

k, where τ̂k is the Posterior mean. The expectation is
calculated as the average over the simulated trials.

7. Average Enrollment: The number of participants con-
sumed in the specific basket, for each arm, averaged
over all simulated trials.

Another set of simulation analyses is provided when the
outcome data is affected by covariates but models are in-
correctly designed as having no covariate. They are referred
to as Mis-specified Models.

4.3 Value of Tuning Parameters
For all methods, if not specified, the values of ξ and φ are

10,000, and the hyper-parameters a0 = 0.5 and b0 = 0.05,
forming non-informative priors for the corresponding pa-
rameters. BHM, CBHM and MFM require sampling pro-
cedures. The MCMC sample size is 1300, with 300 burn-in.
Trace plots are monitored to ensure convergence.

For CBHM, the tuning parameters in equation (3.12) are
set to be a = 0 and b = 0.2. These values are picked based
on the data observations and they yield the best overall
performance.

For MFM, the truncated Poisson parameter is set to be
λ = 4 and the Dirichlet parameter is set to be γ = 100. This
reflects the original belief that the basket are separately an-
alyzed, which essentially helps reduce FWER in the sim-
ulation. To determine the values of φ and ξ, we run the
simulation for various combinations and select the following
values that provide the best balance between FWER infla-
tion and power: φ = 0.1 and ξ = 0.16. In particular, some
settings actually provide even a larger power but those are
not chosen because they also have a larger FWER. The re-
sults of the sensitivity analysis for other combinations of φ
and ξ are reported in Tables S.4 to S.6 for models without
covariates and Tables S.7 to S.9 for models adjusting for
covariates in Section S.2 of the Supplementary Material.

All the methods are compared in One-Stage Design (i.e.,
no interim analysis) and two-stage designs (i.e., with one in-
terim analysis). For two-stage design, we set q2 = 1− η(1−
q1) as one of the conditions to determine q1 and q2. When
η = 1

2 , both early efficacy and futility rules are adopted;
when η = 0, no early stopping for efficacy. For a fixed value
of η, the value of q1 (and hence q2) is determined via simu-
lation to control the FWER under the global null to be no
more than 10%. The values of q1 under different stage design
are provided in Table 2 for Models adjusting for covariates;
in Table S.2 for Models without covariates.

Table 2. Value of q1 for Models Adjusting Covariates.
Two-Stage, Two-Stage,

Method One-Stage both stopping futility stopping only
(η = 1

2
) (η = 0)

SEP 0.9772 0.9649 0.9434
BHM 0.9590 0.9400 0.9240
CBHM 0.9660 0.9480 0.9305
MFM 0.9180 0.8920 0.8790

4.4 Simulation Results
In this section, simulation results for the models adjust-

ing for covariates when the covariates are correctly identified
are presented. For simulation data without covariates, the
simulation results are presented in Section S.1 of the Sup-
plementary Material. The results for models with covariate
adjustment and models without covariates are similar. This
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is because both models are “correctly specified”, i.e. the in-
clusion of covariates is consistent with how the data were
generated. to assess the performance of these methods, the
6 scenarios summarized in Table 1 are applied. In Scenario 1,
the treatment is ineffective in any of the baskets; In Scenario
2, the treatment is effective for basket 1 only; In Scenario 3,
the treatment is effective for baskets 1 and 2; In Scenario 4,
the treatment is effective for baskets 1, 2 and 3; In Scenario
5, the treatment is effective for all baskets. The effect size
of 0.4 is equivalent for all baskets in Scenarios 2 to 5; In
Scenario 6, the treatment is effective for baskets 2, 3 and 4
with effect sizes of 0.2, 0.4, and 0.6, respectively. Scenario
1 is used to determine the thresholds for all models to have
the FWER of less or equal to 10% at the end of the final
stage under the global null.

4.4.1 One-Stage Design

The simulation results for one-stage design are shown in
Table 3. See Table S.3 for models without covariates in Sup-
plementary Material.

With both BHM and CBHM, information is borrowed
through a common mean parameter shared by various treat-
ment effects in different baskets. As a result, the estimated
treatment effects of all baskets tend to be pulled toward the
average. For Scenario 2, CBHM and MFM performed better
than SEP and BHM by an increase in P1 without lowering
P2 and P3. CBHM and MFM has greater P1, which is the
probability of identifying the only basket (basket 1) respon-
sive to the treatment. Compared with SEP, BHM shows
similar P1 but worse P2 and P3, as the result of excessive
borrowing. In Scenarios 3 to 6, with the increase of the num-
ber of baskets responsive to the treatment, the gain in power
increases with BHM, CBHM and MFM, from approximately
3% to 12%. In all scenario, including Scenario 6, where the
treatment effect varies across all baskets, MFM performs
uniformly better than all other methods, regarding P1, P2
and P3.

All three methods resulted in greater FWER than SEP
as the result of information borrowing for scenarios where
at least one but not all baskets are responsive to treatment.
FWER with BHM is uniformly greater than all other meth-
ods due to extensive borrowing. Since information is bor-
rowed depending on the similarities of the baskets, CBHM
yields lower FWER than BHM without lowering in power.
These results are consistent with the research by Chu and
Yuan [6]. In all scenarios, MFM performed better than BHM
and CBHM in keeping the FWER around 10%. Unlike BHM
and CBHM, MFM allows localized borrowing by grouping
baskets into new clusters thereby controlling FWER.

Among all three methods, BHM is the least favorable
with the highest FWER and lowest P1, P2 and P3 across
all scenarios. MFM is the most preferable with the lowest
FWER and a substantial increase of P1 in all scenarios rang-
ing from 5% to 14%. With MFM, P2 and P3 are also uni-
formly better than other methods for all scenarios.

For all borrowing methods, the estimation of treatment
effects may be biased. However, biased estimates in bas-
ket trial may contribute to an overall power improvement.
Thereby, bias is not regarded as an adequate assessment tool
for performance; as an alternative perspective, the RMSE
can be used as the examine criteria. RMSE accounts for both
bias and variance. In all scenarios, MFM, BHM and CBHM
perform better than SEP in reducing the RMSE. MFM is
again the most preferable methods in reducing RMSE than
BHM and CBHM.

4.4.2 Two-Stage Design with Efficacy and Futility Stopping

The simulation results for this design are reported in Ta-
ble 4 for models adjusting for covariates. Performance of the
methods for models without covariates are reported in Table
S.4 in the Supplementary Material.

Unlike their performance in one-stage design, BHM and
CBHM has higher P1 than SEP in all scenarios. This differ-
ence may be the result of adding the efficacy stopping at the
first stage, thereby increase the power by selecting the bas-
ket responsive to the treatment at the interim analysis, pre-
venting the information borrowing of the responsive baskets
from other non-efficacious baskets at the second stage. With
the increase of the number of responsive baskets, the gain in
P1 increase with BHM and CBHM, from 1% to 11%. Like
what is observed in one-stage design, MFM shows greater
P1, and P2 compared with BHM, CBHM and SEP in all
scenarios. Overall, MFM, BHM, CBHM perform better in
two-stage design than one-stage design.

Like one-stage design, MFM, BHM, CBHM resulted in
greater FWER than SEP in all scenarios. FWERs with
BHM and CBHM in two-stage design are like those in one-
stage design. However, FWER with MFM in two-stage de-
sign is lower than that with BHM, CBHM in two-stage de-
sign. Compared with MFM in one-stage design, FWER is
lower in two-stage design. The early futility stopping helps
dropping the baskets not responsive to the treatment before
the second stage.

Similar to what is observed in one-stage study design,
the MFM, BHM, CBHM produced lower RMSEs lower than
SEP in all scenarios. The column “Average Enrollment” dis-
plays the average number of participants consumed. These
numbers show advantage of MFM in retaining the baskets
that are responsive to the treatment and dropping those
that are not.

4.4.3 Two-Stage Design with Futility Stopping Only

For this design, the simulation results are reported in
Table 5 for models adjusting for covariates and Table S.5 for
models without covariates in the Supplementary Material.

Unlike the two-stage design with both futility and efficacy
stopping at the interim, two-stage design with futility but
without efficacy stopping lowers P1 with BHM and CBHM
compared with SEP in most scenarios. The loss of power
may be caused by the lower for futility and therefore fewer
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Table 3. Performance of SEP, BHM, CBHM and MFM, one-stage design (models adjusting for covariates).
Scn Method FWER P1 P2 P3 % Reject 100 x RMSE
1 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 2.1 2.8 2.7 2.7 26.1 26.4 34.0 32.8
BHM 9.6 0.0 0.0 0.0 2.7 4.1 1.9 3.2 18.7 18.8 21.4 20.6
CBHM 10.0 0.0 0.0 0.0 5.1 2.6 2.7 2.5 20.6 20.5 23.7 22.6
MFM 9.9 0.0 0.0 0.0 3.4 3.9 2.2 2.2 13.7 13.8 14.3 13.7

2 [1] 2 3 4 [1] 2 3 4
SEP 8.1 35.9 32.8 32.8 35.9 2.8 2.7 2.7 26.1 26.4 34.0 32.8
BHM 13.4 32.3 24.0 24.0 32.3 6.2 4.9 5.2 22.9 19.9 22.7 22.4
CBHM 10.3 40.0 33.7 33.7 40.0 4.3 4.1 4.2 22.4 21.3 25.4 24.1
MFM 11.5 40.7 33.2 33.2 40.7 5.5 4.1 3.6 22.8 14.8 15.5 15.0

3 [1] [2] 3 4 [1] [2] 3 4
SEP 5.4 56.8 53.6 10.2 35.9 31.7 2.7 2.7 26.1 26.4 34.0 32.8
BHM 16.2 59.8 47.2 11.8 41.5 33.6 9.1 9.5 20.4 21.0 24.8 25.2
CBHM 12.4 59.7 48.7 10.8 46.2 29.4 8.1 7.9 21.2 22.1 27.3 25.9
MFM 11.7 68.9 58.4 20.9 49.0 45.5 6.6 6.4 20.6 21.3 17.0 16.4

4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.7 67.1 64.9 2.9 35.9 31.7 24.8 2.7 26.1 26.4 34.0 32.8
BHM 13.2 74.1 61.9 7.9 47.4 37.8 38.8 13.2 19.2 19.6 22.5 28.0
CBHM 11.9 74.0 62.5 6.3 50.4 37.1 34.6 11.9 20.7 21.2 24.2 28.1
MFM 8.3 78.7 70.8 12.9 53.8 48.6 38.8 8.3 19.2 19.9 22.0 17.5

5 [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 73.7 73.7 0.5 35.9 31.7 24.8 23.6 26.1 26.4 34.0 32.8
BHM 0.0 85.5 85.5 10.3 52.9 42.3 47.1 52.4 18.7 18.8 21.4 20.6
CBHM 0.0 82.5 82.5 14.8 52.7 44.7 45.1 44.6 20.6 20.5 23.7 22.6
MFM 0.0 87.6 87.6 13.2 60.0 56.3 45.3 43.6 17.9 18.6 20.3 20.0

6 1 [2] [3] [4] 1 [2] [3] [4]
SEP 2.1 62.2 60.9 1.4 2.1 11.3 24.8 45.3 26.1 26.4 34.0 32.8
BHM 11.9 68.2 57.1 4.7 11.9 19.9 35.4 55.2 23.7 19.7 23.7 27.0
CBHM 11.8 63.8 53.2 3.2 11.8 16.5 31.2 50.5 24.8 21.2 24.7 27.1
MFM 8.2 69.3 61.9 7.3 8.2 21.1 35.7 54.8 16.5 15.8 23.0 33.5

Table 4. Performance of SEP, BHM, CBHM and MFM, two-stage design and η = 1
2 (models adjusting for covariates).

Scn Method FWER P1 P2 P3 % Reject 100 x RMSE Average Enrollment
1 1 2 3 4 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 1.9 3.2 2.6 2.6 25.3 25.8 33.3 31.9 30.7 30.7 20.4 20.4
BHM 9.9 0.0 0.0 0.0 2.7 4.5 2.3 2.7 18.3 18.6 21.2 20.1 31.0 30.9 20.5 20.5
CBHM 10.1 0.0 0.0 0.0 3.1 3.3 2.9 3.1 19.9 19.9 23.2 22.3 30.9 31.0 20.5 20.4
MFM 9.8 0.0 0.0 0.0 3.4 3.8 2.3 2.3 13.5 13.5 14.0 13.4 31.3 31.2 20.7 20.6

2 [1] 2 3 4 [1] 2 3 4 [1] 2 3 4
SEP 8.2 40.2 36.6 36.6 40.2 3.2 2.6 2.6 26.4 25.8 33.3 31.9 33.2 30.7 20.4 20.4
BHM 13.6 41.6 32.3 32.3 41.6 6.8 4.9 4.9 23.6 19.5 22.3 21.7 34.4 31.2 20.8 20.8
CBHM 11.1 41.4 34.3 34.3 41.4 4.7 4.9 4.1 23.6 20.6 24.6 23.2 32.6 31.2 20.7 20.6
MFM 10.9 46.4 38.2 38.2 46.4 5.3 3.9 3.0 22.6 14.5 15.0 14.3 35.2 31.3 21.0 21.0

3 [1] [2] 3 4 [1] [2] 3 4 [1] [2] 3 4
SEP 5.2 62.1 58.7 12.4 40.2 35.0 2.6 2.6 26.4 26.6 33.3 31.9 33.2 33.1 20.4 20.4
BHM 14.5 71.4 57.7 23.0 52.1 50.8 8.4 7.9 21.0 21.4 23.9 23.9 33.8 33.8 21.1 21.3
CBHM 12.6 68.6 57.1 17.7 49.3 43.3 8.7 7.9 22.0 22.7 25.6 24.7 32.7 34.7 21.2 20.9
MFM 9.6 74.4 65.6 27.2 54.8 50.7 6.0 4.3 20.4 21.2 16.1 15.4 35.5 35.9 21.3 21.2

4 [1] [2] [3] 4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.6 73.1 70.7 3.8 40.1 35.0 28.8 2.6 26.4 26.6 33.9 31.9 33.2 33.1 21.6 20.4
BHM 11.8 80.9 69.3 20.1 60.5 57.4 43.8 11.8 19.6 19.9 23.4 26.2 33.9 33.3 22.6 21.9
CBHM 13.8 79.9 66.4 11.9 55.0 48.8 44.1 13.8 21.1 21.7 25.0 27.1 32.3 33.8 22.6 21.0
MFM 6.3 83.7 77.7 16.8 59.3 55.1 42.5 6.3 19.1 20.0 22.1 16.4 35.0 36.2 23.6 21.5

5 [1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 78.9 78.9 1.3 40.1 35.0 28.8 26.4 26.4 26.6 33.9 32.6 33.2 33.1 21.6 21.7
BHM 0.0 89.7 89.7 25.4 67.4 64.9 51.3 56.8 19.2 19.4 22.1 21.5 33.8 33.8 22.2 23.2
CBHM 0.0 88.3 88.3 27.5 63.0 59.3 53.6 55.8 20.5 20.9 24.3 23.3 32.2 33.0 22.2 22.5
MFM 0.0 91.0 91.0 16.2 64.7 60.4 48.2 48.7 17.9 18.7 20.7 20.3 35.0 35.7 24.0 24.2

6 1 [2] [3] [4] 1 [2] [3] [4] 1 [2] [3] [4]
SEP 1.9 67.4 66.0 2.3 1.9 11.6 28.8 52.5 25.3 25.9 33.9 33.3 30.7 31.6 21.6 22.5
BHM 10.7 74.9 64.7 8.9 10.7 25.4 39.2 65.7 22.4 19.8 24.4 26.7 32.4 32.6 22.1 23.1
CBHM 9.3 73.5 64.9 6.2 9.3 19.4 39.3 61.7 23.0 21.0 25.5 27.3 30.9 32.5 22.2 22.6
MFM 6.3 75.5 69.6 8.7 6.3 22.2 40.2 61.7 15.5 16.1 23.1 32.1 32.1 34.0 23.6 24.2
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Table 5. Performance of SEP, BHM, CBHM and MFM, two-stage design and η = 0 (models adjusting for covariates).
Scn Method FWER P1 P2 P3 % Reject 100 x RMSE Average Enrollment
1 1 2 3 4 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 2.2 2.7 2.9 2.5 24.0 24.1 31.1 29.5 32.0 31.9 21.3 21.3
BHM 10.0 0.0 0.0 0.0 3.1 3.7 2.7 2.7 17.7 18.0 20.9 19.2 32.0 31.9 21.0 21.2
CBHM 10.0 0.0 0.0 0.0 3.3 3.7 2.8 2.5 18.5 19.2 22.2 20.9 32.8 32.2 21.2 21.2
MFM 10.0 0.0 0.0 0.0 3.6 3.8 2.8 2.5 13.2 13.2 13.8 13.2 32.0 31.9 21.0 20.9

2 [1] 2 3 4 [1] 2 3 4 [1] 2 3 4
SEP 8.0 46.6 42.5 42.5 46.6 2.9 2.9 2.4 22.6 24.1 31.1 29.5 45.2 31.9 21.3 21.3
BHM 14.1 36.3 30.9 30.9 36.3 5.7 5.3 5.4 24.6 18.5 21.5 19.9 43.5 33.1 21.8 22.2
CBHM 11.4 46.9 41.3 41.3 46.9 4.7 4.2 3.9 23.3 19.4 23.1 21.8 46.1 32.7 21.7 21.7
MFM 11.9 47.8 39.8 39.8 47.8 5.2 4.6 3.7 23.0 14.0 14.9 14.0 45.5 32.6 21.5 21.5

3 [1] [2] 3 4 [1] [2] 3 4 [1] [2] 3 4
SEP 5.3 69.0 65.0 18.7 46.6 41.9 2.9 2.4 22.6 23.2 31.1 29.5 45.2 43.8 21.3 21.3
BHM 14.6 62.8 53.2 11.2 39.3 37.7 7.9 8.2 22.0 22.4 22.1 20.9 46.2 43.5 23.0 23.5
CBHM 12.6 68.4 58.5 12.3 48.7 35.3 7.9 6.6 21.7 23.0 23.7 22.1 48.2 44.8 23.1 22.9
MFM 11.5 74.1 64.0 25.2 54.4 49.3 7.6 5.1 20.8 21.4 16.0 14.9 47.9 46.9 22.5 22.1

4 [1] [2] [3] 4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.4 80.2 78.1 6.7 46.6 41.9 34.1 2.4 22.6 23.2 28.8 29.5 45.2 43.8 27.8 21.3
BHM 11.0 75.7 67.1 6.2 42.4 34.4 39.5 11.0 20.4 21.0 23.2 22.5 48.0 44.8 30.2 24.5
CBHM 9.3 76.1 68.0 6.8 46.8 34.3 33.9 9.3 20.8 22.0 23.7 23.5 49.1 45.8 30.3 23.9
MFM 7.1 85.1 78.3 17.8 57.7 55.1 46.5 7.1 19.4 20.1 22.2 15.8 49.0 48.5 30.2 22.7

5 [1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 86.7 86.7 2.4 46.8 41.8 34.0 31.7 22.6 23.2 28.8 27.4 45.2 43.8 27.8 27.5
BHM 0.0 87.4 87.4 5.6 45.1 32.8 41.8 52.7 19.5 20.1 21.2 19.9 49.1 46.2 31.8 33.2
CBHM 0.0 81.3 81.3 7.5 43.3 38.0 38.7 38.2 20.7 21.3 23.1 22.3 49.5 47.2 31.7 31.7
MFM 0.0 90.9 90.9 19.4 63.5 60.5 51.9 52.4 18.1 18.8 20.6 20.3 50.6 50.1 31.5 31.4

6 1 [2] [3] [4] 1 [2] [3] [4] 1 [2] [3] [4]
SEP 2.4 77.5 75.5 4.0 2.4 14.7 34.6 61.6 24.0 22.8 28.8 28.5 32.0 35.8 27.8 32.7
BHM 10.8 70.7 62.7 3.8 10.8 19.8 30.6 50.4 19.9 19.2 24.8 27.5 36.4 39.3 29.3 33.8
CBHM 7.8 67.5 62.4 3.6 7.8 19.2 33.0 41.1 19.8 19.1 24.4 28.0 36.5 38.8 29.2 33.4
MFM 6.6 77.2 70.9 9.3 6.6 24.8 42.9 61.9 14.9 16.1 23.4 30.4 34.3 39.4 29.3 33.5

baskets get dropped in the first stage compared with the
two-stage design with both futility and efficacy stopping.
Some baskets not responding to treatment entered the sec-
ond stage and consequently increased FWER and lower the
power, resulting from information borrowing. These results
suggest the importance of an early efficacy stopping rule for
hierarchical models used in two-stage design to keep FWER
and boost the power and lower RMSE. In contrast, MFM
exhibits a very robust performance under this study design
with high power than BHM, CBHM and SEP in all scenar-
ios.

This study design also increases the RMSE with BHM
and CBHM. Moreover, the average enrollment is increased
considerably within this study design compared with the
two-stage design with both futility and efficacy stopping.

4.4.4 Summary of Simulation Results

The performance comparisons of these methods are
graphically shown in Figure 2 for models adjusting for co-
variates and Figure S.1 for models without covariates in the
Supplementary Material.

BHM and CBHM demonstrate greater power in both the
one-stage study design and the two-stage study design with
both futility and efficacy stopping, but not in the two-stage
study with futility stopping only; Adding the early stop for
efficacy helps the borrowing methods to identify baskets re-

sponding to treatment before the second stage. With hier-
archical methods, early efficacy stopping helps increase in
power while controlling FWER and saving resource. Com-
pared with BHM and CBHM, MFM yields more robust
power gains in all study designs while controlling FWER
in a model level in almost all scenarios.

4.5 Simulation Results for Mis-specified
Models

In the above simulations, we assume that the covariates
are strong predictors of the outcomes and need to be ad-
justed in the model. The following tables reanalyze the sim-
ulated data in the presence of covariate effects, using a model
with no adjustment for covariates. Since the effects of covari-
ates are not included in the analytical model, the indepen-
dent simulations used to determine the tuning parameters
also assume no covariate effect, i.e. the tuning parameter
values in these additional simulations are the same as those
in Table 2.

This simulation is referred to “Mis-specified Model 1” and
their results are summarized in Table 6. As expected, the
performance of all methods is affected by the mis-specified
analytical model. The proposed methods still provide signif-
icant power gains in most scenarios, but all methods have
greatly increased FWER inflation. The FWER inflation for
MFM is drastic. The effect on SEP seems to be minimal,
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Figure 2: One-minimum Power and FWER for Bayesian Methods, models adjusting for covariates.

however, it may also depend on the magnitude of the co-
variates.

Another type of Mis-specified Model is those adjusting
covariates of which the outcome is independent. These are
referred to as “Mis-specified Model 2” and their results are
summarized in Table 7. Our simulation results show that
including negligible covariates does not impact the perfor-

mance of our methods. Therefore, it is advantageous to in-
clude at least some potential predictors as the covariates.

4.6 Additional Simulation with Unbalanced
Sample Sizes

As an extension our current simulation results, additional
simulation is done with the doubled sample size of the treat-
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Table 6. Performance of SEP, BHM, CBHM and MFM (Mis-specified Model 1).
One-Stage Design Two-Stage Design, η = 1

2
Two-Stage Design, η = 0

Scn Method FWER P1 P2 P3 FWER P1 P2 P3 FWER P1 P2 P3
1 SEP 15.1 0.0 0.0 0.0 14.5 0.0 0.0 0.0 15.2 0.0 0.0 0.0

BHM 16.3 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.5 0.0 0.0 0.0
CBHM 13.6 0.0 0.0 0.0 13.6 0.0 0.0 0.0 13.4 0.0 0.0 0.0
MFM 44.3 0.0 0.0 0.0 42.7 0.0 0.0 0.0 41.7 0.0 0.0 0.0

2 SEP 13.8 28.3 23.4 23.4 13.2 36.1 30.6 30.6 13.0 43.8 37.3 37.3
BHM 22.2 33.5 20.2 20.2 23.0 42.3 24.4 24.4 22.3 37.3 25.4 25.4
CBHM 19.4 23.5 13.3 13.3 19.6 34.0 21.4 21.4 14.0 34.5 26.7 26.7
MFM 50.1 60.1 23.7 23.7 47.2 70.4 31.8 31.8 46.8 70.3 33.4 33.4

3 SEP 10.8 45.9 40.3 6.8 9.9 55.3 49.4 10.2 10.1 65.2 57.9 15.6
BHM 24.0 59.5 38.8 15.1 23.0 67.9 46.2 20.1 23.6 61.0 41.8 8.5
CBHM 21.6 44.7 27.4 5.5 22.3 56.4 36.9 10.6 15.5 54.0 41.7 6.1
MFM 50.0 85.8 38.4 20.0 48.0 90.7 44.2 26.0 47.0 89.2 44.0 23.1

4 SEP 7.0 55.3 51.6 2.1 6.3 64.9 60.9 3.5 5.8 73.9 69.3 5.4
BHM 19.6 74.2 55.8 10.6 18.3 80.3 62.4 16.7 17.3 75.0 58.9 8.4
CBHM 20.8 65.3 46.4 4.9 24.1 74.2 51.0 8.3 11.3 66.9 56.6 4.4
MFM 39.8 93.0 54.2 17.7 35.9 95.5 60.3 24.2 32.8 94.4 62.1 24.9

5 SEP 0.0 66.5 66.5 0.5 0.0 74.8 74.8 0.8 0.0 79.6 79.6 1.7
BHM 0.0 83.7 83.7 11.8 0.0 88.7 88.7 24.4 0.0 82.6 82.6 5.5
CBHM 0.0 73.9 73.9 13.0 0.0 83.4 83.4 26.1 0.0 72.7 72.7 4.1
MFM 0.0 96.4 96.4 34.4 0.0 97.3 97.3 38.2 0.0 96.5 96.5 35.7

6 SEP 1.6 57.3 56.4 1.0 1.8 60.7 59.6 1.4 3.1 63.1 61.1 2.0
BHM 16.8 61.8 46.9 5.6 14.4 68.8 55.2 9.3 15.8 62.6 51.0 4.3
CBHM 8.6 56.8 48.7 3.5 9.5 65.5 56.3 5.8 9.2 57.8 50.4 2.1
MFM 19.0 88.6 70.3 16.8 17.8 91.1 73.8 19.5 19.2 88.2 70.4 15.3

Table 7. Performance of SEP, BHM, CBHM and MFM (Mis-specified Model 2).
One-Stage Design Two-Stage Design, η = 1

2
Two-Stage Design, η = 0

Scn Method FWER P1 P2 P3 FWER P1 P2 P3 FWER P1 P2 P3
1 SEP 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0

BHM 9.6 0.0 0.0 0.0 9.3 0.0 0.0 0.0 10.0 0.0 0.0 0.0
CBHM 10.0 0.0 0.0 0.0 10.1 0.0 0.0 0.0 10.0 0.0 0.0 0.0
MFM 9.7 0.0 0.0 0.0 9.4 0.0 0.0 0.0 10.1 0.0 0.0 0.0

2 SEP 8.1 35.9 32.8 32.8 8.2 40.2 36.6 36.6 8.0 46.6 42.5 42.5
BHM 13.4 32.3 24.0 24.0 12.7 38.6 29.8 29.8 14.1 36.3 30.9 30.9
CBHM 10.3 40.0 33.7 33.7 11.1 41.4 34.3 34.3 11.4 46.9 41.3 41.3
MFM 11.3 40.4 33.1 33.1 10.6 46.3 38.3 38.3 11.9 47.7 39.7 39.7

3 SEP 5.4 56.8 53.6 10.2 5.2 62.1 58.7 12.4 5.3 69.0 65.0 18.7
BHM 16.2 59.8 47.2 11.8 13.9 68.8 56.1 22.4 14.6 62.8 53.2 11.2
CBHM 12.4 59.7 48.7 10.8 12.6 68.6 57.1 17.7 12.6 68.4 58.5 12.3
MFM 11.3 69.2 58.9 20.8 9.8 74.0 65.0 27.0 11.6 73.8 63.6 25.6

4 SEP 2.7 67.1 64.9 2.9 2.6 73.1 70.7 3.8 2.4 80.2 78.1 6.7
BHM 13.2 74.1 61.9 7.9 11.5 80.5 69.5 17.5 11.0 75.7 67.1 6.2
CBHM 11.9 74.0 62.5 6.3 13.8 79.9 66.4 11.9 9.3 76.1 68.0 6.8
MFM 8.1 78.4 70.6 13.0 6.5 83.7 77.3 17.4 7.4 84.5 77.4 18.3

5 SEP 0.0 73.7 73.7 0.5 0.0 78.9 78.9 1.3 0.0 86.7 86.7 2.4
BHM 0.0 85.5 85.5 10.3 0.0 90.3 90.3 22.4 0.0 87.4 87.4 5.6
CBHM 0.0 82.5 82.5 14.8 0.0 88.3 88.3 27.5 0.0 81.3 81.3 7.5
MFM 0.0 87.0 87.0 12.7 0.0 90.8 90.8 16.1 0.0 91.1 91.1 19.1

6 SEP 2.1 62.2 60.9 1.4 1.9 67.4 66.0 2.3 2.4 77.5 75.5 4.0
BHM 11.9 68.2 57.1 4.7 10.2 75.2 65.4 9.6 10.8 70.7 62.7 3.8
CBHM 11.8 63.8 53.2 3.2 9.3 73.5 64.9 6.2 7.8 67.5 62.4 3.6
MFM 7.9 69.3 62.2 7.4 6.6 75.4 69.5 9.0 6.6 77.1 70.6 9.0

ment arm. In one stage, sample sizes for treatment arm are
assumed to be nt1 = 60, nt2 = 60, nt3 = 40, and nt4 = 40;
sample sizes for control arm are assumed to be nc1 = 30,
nc2 = 30, nc3 = 20, and nc4 = 20. Their results are summa-
rized in Table 8, Table 9 and Table 10. A larger cross model
performance difference is observed. As expected, there was

a significant power increase for all methods. For CBH and
BHM, the inflation of type I errors is moderate, if not severe,
as a cost of increased power. Similar to previously reported
simulation results, implementing the early efficacy rule helps
Bayesian methods in terms of power increase and Type I er-
ror control.
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Table 8. Performance of SEP, BHM, CBHM and MFM, one-stage design (2:1 allocation).
Scn Method FWER P1 P2 P3 % Reject 100 x RMSE
1 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 3.1 2.5 1.9 2.8 23.4 23.1 28.9 28.2
BHM 10.0 0.0 0.0 0.0 4.8 3.7 2.1 3.8 15.6 15.3 16.7 16.3
CBHM 9.9 0.0 0.0 0.0 6.1 2.5 2.0 3.0 18.1 17.4 19.4 18.9
MFM 9.8 0.0 0.0 0.0 4.2 3.0 1.9 2.4 13.1 12.7 12.8 12.6

2 [1] 2 3 4 [1] 2 3 4
SEP 7.2 43.0 39.8 39.8 43.0 2.5 1.9 2.8 23.4 23.1 28.9 28.2
BHM 16.5 44.3 32.1 32.1 44.3 8.6 5.4 8.2 21.2 16.7 17.8 18.4
CBHM 9.3 52.8 45.4 45.4 52.8 4.1 3.3 4.4 19.8 18.5 21.3 20.4
MFM 11.7 50.9 42.2 42.2 50.9 5.7 3.4 3.6 20.7 14.2 14.4 14.2

3 [1] [2] 3 4 [1] [2] 3 4
SEP 4.7 68.5 65.4 16.6 43.0 43.1 1.9 2.8 23.4 23.1 28.9 28.2
BHM 22.6 77.8 56.7 24.3 58.0 57.1 12.9 15.0 17.9 18.0 20.6 22.2
CBHM 13.5 76.9 64.1 26.0 61.9 50.6 8.4 9.7 18.6 18.7 23.7 22.5
MFM 10.7 80.4 70.4 33.5 59.4 60.6 5.4 6.3 18.4 18.3 16.1 15.7

4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.8 78.8 76.6 5.4 43.0 43.1 30.5 2.8 23.4 23.1 28.9 28.2
BHM 24.4 88.7 64.7 19.5 66.5 62.8 54.8 24.4 16.2 16.1 18.3 26.0
CBHM 14.4 87.3 73.1 15.6 66.8 57.9 44.5 14.4 18.2 17.9 19.9 25.1
MFM 8.4 90.5 82.4 22.8 64.7 64.6 51.6 8.4 17.1 16.9 19.3 17.1

5 [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 84.3 84.3 2.0 43.0 43.1 30.5 27.7 23.4 23.1 28.9 28.2
BHM 0.0 95.6 95.6 30.6 71.0 65.8 66.2 76.4 15.6 15.3 16.7 16.3
CBHM 0.0 93.8 93.8 29.7 74.1 67.4 58.6 58.9 18.1 17.4 19.4 18.9
MFM 0.0 96.9 96.9 22.9 71.0 70.7 58.8 58.9 15.7 15.5 17.5 17.3

6 1 [2] [3] [4] 1 [2] [3] [4]
SEP 3.1 75.6 73.4 2.7 3.1 15.2 30.5 58.0 23.4 23.1 28.9 28.2
BHM 21.3 85.5 64.4 14.8 21.3 41.3 48.6 77.1 21.9 16.3 19.7 24.6
CBHM 17.5 79.4 63.1 6.5 17.5 27.0 39.3 65.5 23.1 18.2 20.4 23.8
MFM 10.4 85.1 75.1 12.0 10.4 30.3 48.4 70.8 16.2 14.7 20.2 29.5

Table 9. Performance of SEP, BHM, CBHM and MFM, two-stage design and η = 1
2 (2:1 allocation).

Scn Method FWER P1 P2 P3 % Reject 100 x RMSE Average Enrollment
1 1 2 3 4 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 2.9 2.4 2.1 2.9 22.8 22.5 28.3 27.8 91.3 91.5 60.8 60.5
BHM 9.9 0.0 0.0 0.0 4.3 3.1 2.0 3.2 15.4 15.1 16.6 16.0 91.9 91.9 60.8 61.3
CBHM 10.0 0.0 0.0 0.0 5.4 2.7 2.4 2.6 17.4 17.1 19.0 18.3 92.6 91.4 60.8 61.0
MFM 9.9 0.0 0.0 0.0 4.1 3.2 2.0 2.2 12.7 12.6 12.7 12.4 92.5 91.7 61.0 60.9

2 [1] 2 3 4 [1] 2 3 4 [1] 2 3 4
SEP 7.4 49.2 45.5 45.5 49.2 2.4 2.1 2.9 23.7 22.5 28.3 27.8 96.8 91.5 60.8 60.5
BHM 13.7 50.5 39.2 39.2 50.5 6.1 4.0 6.8 21.3 16.0 17.1 17.6 100.1 93.9 62.1 62.7
CBHM 9.1 59.4 51.7 51.7 59.4 4.1 3.6 4.3 20.1 18.1 20.2 19.7 99.8 92.2 62.0 61.7
MFM 12.2 60.9 50.9 50.9 60.9 5.9 3.8 3.8 20.1 13.7 13.9 13.7 101.8 93.8 62.0 61.8

3 [1] [2] 3 4 [1] [2] 3 4 [1] [2] 3 4
SEP 5.0 75.3 71.8 22.9 49.2 50.4 2.1 2.9 23.7 23.5 28.3 27.8 96.8 97.0 60.8 60.5
BHM 16.4 82.0 66.5 36.5 65.3 66.3 7.7 11.2 17.9 18.1 19.0 20.6 100.2 101.2 63.8 64.8
CBHM 11.6 82.4 71.3 31.6 67.0 56.0 7.2 7.2 18.8 19.5 21.6 21.2 98.4 103.4 63.6 62.7
MFM 9.4 86.4 77.4 43.9 68.3 68.2 5.1 5.1 18.0 18.0 15.1 15.0 99.9 100.6 62.9 62.4

4 [1] [2] [3] 4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.9 85.4 82.8 8.4 49.2 50.4 36.2 2.9 23.7 23.5 29.0 27.8 96.8 97.0 63.7 60.5
BHM 16.5 90.6 74.3 30.8 75.4 73.6 56.7 16.5 16.1 16.2 19.3 23.5 99.2 98.4 68.7 67.0
CBHM 12.1 91.5 79.5 22.7 74.1 64.1 51.2 12.1 18.4 18.6 21.0 23.6 98.6 103.0 68.7 63.2
MFM 7.2 94.9 87.8 31.7 73.8 72.9 58.0 7.2 16.6 16.7 19.5 16.0 100.3 99.9 68.2 63.0

5 [1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 90.2 90.2 2.9 49.2 50.4 36.2 33.7 23.7 23.5 29.0 28.2 96.8 97.0 63.7 64.2
BHM 0.0 97.5 97.5 44.2 82.9 81.2 66.3 75.1 15.8 15.4 17.6 17.2 97.6 96.2 67.4 68.0
CBHM 0.0 97.1 97.1 35.8 80.8 72.6 62.5 65.3 18.4 17.9 20.4 19.7 97.3 99.7 67.5 67.1
MFM 0.0 98.2 98.2 31.1 78.0 77.2 64.9 64.4 15.5 15.4 17.8 17.6 99.5 97.9 67.3 67.5

6 1 [2] [3] [4] 1 [2] [3] [4] 1 [2] [3] [4]
SEP 2.9 80.8 78.6 3.4 2.9 16.8 36.2 63.8 22.8 22.6 29.0 28.4 91.3 93.8 63.7 63.9
BHM 16.8 87.0 70.5 17.5 16.8 40.9 51.2 80.2 20.7 16.7 20.6 22.7 97.0 99.2 68.1 67.8
CBHM 14.3 85.1 71.3 8.8 14.3 28.3 47.9 72.6 21.7 18.1 21.5 23.1 95.4 99.8 69.4 67.9
MFM 10.3 89.9 79.9 15.7 10.3 35.2 55.2 80.4 15.4 15.0 20.3 27.7 94.8 100.6 68.4 66.8
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Table 10. Performance of SEP, BHM, CBHM and MFM, two-stage design and η = 0 (2:1 allocation).
Scn Method FWER P1 P2 P3 % Reject 100 x RMSE Average Enrollment
1 1 2 3 4 1 2 3 4 1 2 3 4

SEP 10.0 0.0 0.0 0.0 3.3 2.9 1.8 2.6 21.3 21.1 26.5 25.7 94.5 94.3 62.6 62.6
BHM 10.0 0.0 0.0 0.0 4.3 3.1 1.7 3.3 14.9 14.7 16.3 15.6 94.0 93.2 61.3 62.4
CBHM 9.9 0.0 0.0 0.0 5.0 2.5 2.0 2.5 16.2 16.5 18.3 17.9 95.8 92.5 61.6 61.7
MFM 10.0 0.0 0.0 0.0 4.2 3.2 2.1 2.2 12.4 12.2 12.4 12.2 94.5 93.4 61.6 61.5

2 [1] 2 3 4 [1] 2 3 4 [1] 2 3 4
SEP 7.1 59.0 55.0 55.0 59.0 2.8 1.8 2.8 20.6 21.1 26.5 25.7 126.7 94.3 62.6 62.6
BHM 15.1 46.8 38.5 38.5 46.8 6.4 4.6 6.8 22.8 15.3 16.6 16.5 121.5 97.0 63.5 64.8
CBHM 9.5 59.5 52.7 52.7 59.5 3.5 3.5 4.2 20.5 17.2 19.4 18.8 127.3 94.4 63.2 63.0
MFM 12.2 57.7 49.6 49.6 57.7 6.0 4.0 3.9 20.4 13.2 13.7 13.3 127.5 96.4 63.0 63.0

3 [1] [2] 3 4 [1] [2] 3 4 [1] [2] 3 4
SEP 4.3 83.6 80.0 32.4 59.1 58.6 1.8 2.7 20.6 20.6 26.5 25.7 126.7 126.9 62.6 62.6
BHM 18.9 78.7 63.1 19.4 48.5 56.4 9.3 12.1 19.2 19.1 17.9 18.7 128.9 128.3 66.7 68.8
CBHM 11.2 81.7 71.3 26.6 62.8 51.3 6.8 5.9 18.5 19.4 20.1 19.6 132.4 126.9 66.7 65.2
MFM 10.4 80.3 71.4 30.9 58.0 57.8 5.4 5.9 18.0 18.0 14.7 14.5 132.2 132.4 64.9 64.2

4 [1] [2] [3] 4 [1] [2] [3] 4 [1] [2] [3] 4
SEP 2.7 92.1 89.7 14.3 59.1 58.6 43.8 2.7 20.6 20.6 24.9 25.7 126.7 126.9 79.2 62.6
BHM 20.2 89.0 70.1 13.9 55.3 50.1 56.4 20.2 16.9 17.1 19.2 20.7 133.5 130.3 85.3 73.3
CBHM 8.7 87.9 79.4 15.2 62.2 52.9 45.9 8.7 17.5 18.2 19.3 20.9 135.4 130.9 83.2 67.6
MFM 7.7 90.3 82.9 22.7 61.4 60.5 54.3 7.7 16.6 16.7 19.2 15.4 134.8 134.6 85.4 65.6

5 [1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]
SEP 0.0 95.7 95.7 6.7 59.1 58.8 43.7 43.2 20.6 20.6 24.9 24.5 126.7 126.9 79.2 79.0
BHM 0.0 96.5 96.5 13.1 56.6 44.3 63.2 73.7 15.9 16.1 16.7 15.3 135.7 131.3 89.0 92.8
CBHM 0.0 92.4 92.4 19.1 62.1 56.6 57.7 51.2 17.0 17.2 18.0 18.5 137.0 134.5 88.0 87.3
MFM 0.0 95.0 95.0 24.2 65.8 64.7 61.6 60.4 15.2 15.2 17.5 17.3 137.3 137.1 88.0 87.7

6 1 [2] [3] [4] 1 [2] [3] [4] 1 [2] [3] [4]
SEP 3.4 88.1 85.4 6.2 3.4 20.4 43.8 73.2 21.3 19.6 24.9 25.1 94.5 106.0 79.2 89.6
BHM 17.2 85.7 69.6 11.1 17.2 38.6 43.1 68.6 18.2 16.4 21.3 22.7 105.7 117.6 82.6 93.0
CBHM 11.0 82.3 72.4 4.9 11.0 27.5 46.5 50.0 18.3 16.1 20.0 24.1 103.9 111.5 82.0 89.8
MFM 9.5 87.2 78.7 11.5 9.5 34.6 54.4 64.2 14.4 15.0 20.4 25.0 100.3 115.0 84.4 92.0

5. AN APPLICATION EXAMPLE
Note that as the assumptions of the basket trial are ex-

tended in many aspects, it is currently difficult to find a
published study dataset of basket trials that satisfies these
assumptions at the same time. We do find one example men-
tioned by Ouma et al. [23]: a study trial comparing pulse
rates after participants performed three kinds of exercises
between different dietary interventions. This study is simi-
lar to a basket trial with a controlled arm. Two diet types
(low-fat and non low-fat) are considered, and low-fat is set as
the control. The data source included two sub-studies that
can be regarded as two stages. Each sub-study involved 30
participants randomly assigned to three exercises and two
diets. Pulse rate measurement is the continuous endpoint of
interest.1

We attempted to explore two model designs, the first as-
suming that the outcome estimates (pulse rate after exer-
cise) are independent of any covariates; the second assessing
the change from the baseline and model the outcome with
adjusting the baseline values as the covariate. The results
are summarized in Tables 11, 12 and 13 for one-stage design,
two-stage design with futility and efficacy, and two-stage de-
sign with futility only, respectively. Also, note the one-stage
1The dataset can be found at https://stats.oarc.ucla.edu/r/seminars/
repeated-measures-analysis-with-r.

Table 11. Bayesian methods applied to the case study
One-Stage Design.

Non-Cov q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 2.7 (-3.2, 8.8) 4.4 (-1.4, 10.6) 26.4 (20.3, 32.2)
BHM 3.9 (-2.2, 11.5) 5.6 (0.1, 11.5) 24.1 (18.1, 29.9)

CBHM 3.3 (-2.7, 9.8) 5.1 (-1.1, 10.5) 24.9 (18.6, 30.7)
MFM 3.6 (-1.1, 8.4) 3.6 (-1.1, 8.4) 26.4 (20.0, 32.7)

Posterior Probability (%)
SEP 97.4 81.6 92.8 100.0
BHM 95.3 89.8 97.1 100.0

CBHM 95.0 85.6 95.2 100.0
MFM 90.0 94.7 94.7 100.0

Cov-Adj q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 0.3 (-4.5, 5.4) -0.3 (-5.4, 5.2) 28.4 (22.8, 33.8)
BHM 0.6 (-4.1, 6.0) 0.0 (-5.0, 4.6) 27.3 (21.1, 32.1)

CBHM 1.0 (-4.3, 5.9) 0.5 (-4.6, 5.8) 26.9 (21.0, 32.3)
MFM 0.2 (-3.2, 3.9) 0.2 (-3.2, 3.9) 28.3 (23.0, 33.1)

Posterior Probability (%)
SEP 98.1 55.4 45.8 100.0
BHM 95.7 59.4 51.5 100.0

CBHM 96.7 64.9 56.3 100.0
MFM 92.9 54.3 54.3 100.0

design applied all data from the two sub-studies instead of
only from the first sub-study.

The performance of the model may depend on the tun-
ing parameters in our simulations, for illustration purposes
we simply placed the non-informative prior in this example.
The estimates of treatment effects and their 95% Highest

https://stats.oarc.ucla.edu/r/seminars/repeated-measures-analysis-with-r
https://stats.oarc.ucla.edu/r/seminars/repeated-measures-analysis-with-r
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Table 12. Bayesian methods applied to the case study
Two-Stage Design with Futility and Efficacy.

Non-Cov q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 3.2 (-4.1, 11.3) 1.4 (-6.6, 8.8) 29.2 (21.4, 36.6)
BHM 4.7 (-3.3, 13.2) 3.3 (-4.0, 11.7) 25.9 (17.8, 33.6)

CBHM 4.3 (-3.4, 12.3) 3.0 (-4.5, 10.7) 26.4 (18.9, 34.2)
MFM 2.4 (-4.6, 8.6) 2.4 (-4.6, 8.6) 29.5 (20.4, 37.8)

Posterior Probability (%)
SEP 96.9 79.9 64.4 100.0
BHM 93.9 87.9 79.9 100.0

CBHM 94.0 85.9 78.4 100.0
MFM 89.4 75.6 75.6 100.0

Cov-Adj q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 0.8 (-5.6, 7.7) -1.4 (-8.7, 5.4) 31.2 (23.7, 38.3)
BHM 1.5 (-5.3, 8.2) -0.6 (-7.5, 5.4) 29.1 (21.0, 36.7)

CBHM 2.0 (-5.6, 8.5) 0.3 (-7.0, 7.7) 28.2 (20.1, 35.8)
MFM -0.2 (-4.8, 4.0) -0.2 (-4.8, 4.0) 31.0 (23.8, 38.1)

Posterior Probability (%)
SEP 97.4 59.1 34.4 100.0
BHM 94.6 66.9 42.7 100.0

CBHM 95.7 72.2 50.9 100.0
MFM 90.1 46.2 46.2 100.0

Table 13. Bayesian methods applied to the case study
Two-Stage with Futility Only.

Non-Cov q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 3.2 (-4.1, 11.3) 1.4 (-6.6, 8.8) 26.4 (20.0, 32.8)
BHM 4.7 (-3.3, 13.2) 3.3 (-4.0, 11.7) 26.4 (20.0, 32.8)

CBHM 4.3 (-3.4, 12.3) 3.0 (-4.5, 10.7) 26.4 (20.0, 32.8)
MFM 2.4 (-4.6, 8.6) 2.4 (-4.6, 8.6) 26.4 (20.0, 32.8)

Posterior Probability (%)
SEP 96.9 79.9 64.4 100.0
BHM 93.9 87.9 79.9 100.0

CBHM 94.0 85.9 78.4 100.0
MFM 89.4 75.6 75.6 100.0

Cov-Adj q1(%) Estimates (95% HPD Interval)
Model 1 2 3
SEP 0.8 (-5.6, 7.7) -1.4 (-8.7, 5.4) 28.4 (21.3, 35.8)
BHM 1.5 (-5.3, 8.2) -0.6 (-7.5, 5.4) 28.4 (21.3, 35.8)

CBHM 2.0 (-5.6, 8.5) 0.3 (-7.0, 7.7) 28.4 (21.3, 35.8)
MFM -0.2 (-4.8, 4.0) -0.2 (-4.8, 4.0) 28.4 (21.3, 35.8)

Posterior Probability (%)
SEP 94.1 59.1 34.4 100.0
BHM 91.5 66.9 42.7 100.0

CBHM 92.9 72.2 50.9 100.0
MFM 86.1 46.2 46.2 100.0

Posterior Density (HPD) Interval are summarized in the ta-
bles. The cut-off value is firstly determined based on the
simulated global null (GN) scenario. The GN scenario was
simulated by bootstrapping the control arm data. The cut-
off values of q1 controlled the FWER to be 10% under GN
and they are summarized in the result Tables. The poste-
rior probability Pr(τk > 0|D) are also summarized to be
compared with q1.

For one-stage design, since all data are included in the
analysis, borrowing resulted in the overestimate of the ef-
fects in small-effect-baskets such as baskets 1 and 2. In con-
trast, a two-stage design allows baskets that meet the futil-
ity and/or efficacy stopping rule to drop at interim analysis.
Thus the two-stage designs helped reducing Type I Error
Rate inflation and the estimates of baskets 1 and 2 are not
much overestimated. BHM tend to have the largest esti-

mates for baskets 1 and 2, which is also reflected in the high
Type I error. In Table 13, the reason that all methods have
the same estimates for basket 3 is that the other two bas-
kets are dropped in stage one, and only basket 3 enters the
second stage and it is evaluated the same way as SEP. In all
designs, MFM tends to clustered baskets 1 and 2 together
as they both have small effects. Comparing the methods dis-
cussed so far, a similar pattern is observed in our simulation
results.

6. DISCUSSION
Basket trials study design are innovative for clinical de-

velopment, which can bring effective treatment to patients
faster. To achieve full strength of basket trials, sophisticated
statistical analysis methods are needed. In the context of
identifying true efficacious treatment for further evaluation,
we pilot four Bayesian methods when apply to 3 study de-
signs, and have demonstrated the feasibility of adding a con-
trol arm as well as adding covariates to the modeling.

Modifications to CBHM and MFM are proposed. For
CBHM, we extend [6] to the continuous outcomes with a
few changes to obtain similar performance. For MFM, tun-
ing parameters are introduced into the prior settings to op-
timize the borrowing effect. Based on our simulation, each of
CBHM and MFM performs better than others in some but
not all scenarios. In general, MFM has more robust perfor-
mance, and it has more power while lower inflated FWER
than other methods in a wide range of scenarios.

For the one-stage design, the CBHM is an improvement
over the BHM in terms of better control of the FWER while
sacrificing a small amount of power. Both models surpass the
power of the Bayesian Separate Model. For the two-stage de-
sign with only a futility rule, CBHM and BHM lose some
of their power improvements because their full borrowing
strategy creates a tendency to borrow from the futility bas-
ket in the second stage, dragging down the efficacy basket
estimates. When the early efficacy stopping rule is incorpo-
rated in the two-stage design, CBHM and BHM gain im-
provement because the efficacy stopping rule prevents the
truly active baskets from being mixed with the ineffective
baskets. Meanwhile, MFM shows robustness in all study de-
signs due to its allowance for local borrowing and deliberate
prior parameters setting. The potential downside is the com-
putation time when sample size getting large. For moderate
sample size, as what this paper has considered, computa-
tion time does not seem to be an issue. It only take a few
hours to complete 1000 simulations. Another downside is the
lack of standard software for implementation. One needs to
derive the complicated formulas to run model for different
applications.

In our research, many assumptions were set at the begin-
ning in order to test the modeling performance and study
design. However, many of the assumptions can be either
removed or made more flexible. First, all methods may as-
sume that the baskets have different within basket variances
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rather than a unified variance. To implement this, update
the Gibbs sampling algorithm for BHM, CBHM and MFM,
e.g. update σ2

k instead of σ2 in (3.15) and (3.21). Second, the
sample size can be different between the control and treat-
ment arms, and between stages. In addition, the sample size
determination is not our focus thus not mentioned in this
article. Moreover, we arbitrarily set δ = 0 for all stages;
and set the parameter η = 1/2 that links the two cut-off
values of futility and efficacy stopping rules. These settings
may affect the alpha-split in two-stage trials. Many different
considerations of these settings appear in the literature. All
of the aforementioned may not be the main research focus in
this work, but may be potential extensions for future work.

Another important extension of the work is the consid-
eration of other types of endpoints, for example, count data
and time-to-event data. Some of the models that can be
considered are the Poisson regression model and the pro-
portional hazards model. In a similar way to a continuous
endpoint, a Bayesian hierarchical structure can be added to
the treatment effect part of the model. When non-conjugacy
modeling is considered, other sampling algorithms can be
explored for both CBHM and MFM. Some references can
be found in articles by Miller and Harrison [18, 19], and
Neal [20].

SUPPLEMENTARY MATERIAL
The Supplementary Material includes the models with-

out covariates supplementary results (Section S.1), sensitiv-
ity analysis of MFM (Section S.2), derivation of MFM sam-
pling algorithm formula (Section S.3), and testing treatment
difference among baskets for CBHM (Section S.4).
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