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Abstract
Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over

a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially
dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number
of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this
article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence
among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis
of multivariate spatial data.
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1. INTRODUCTION
Multivariate spatial data consist of multiple variables

that exhibit inherent associations among themselves as well
as underlying spatial associations unique to each of them.
While modeling each variable separately captures its spa-
tial distribution independent of other variables, the result-
ing data analysis fails to account for associations among the
variables, which can substantially impair prediction or in-
terpolation [see, e.g., 9, 11, 21, 50]. Joint modeling of multi-
variate spatial data proceeds from vector-valued latent spa-
tial stochastic processes or random fields, such as a multi-
variate Gaussian process. These are specified with matrix-
valued cross-covariance functions [see, e.g., 24, 43, 33, and
references therein] that model pairwise associations at dis-
tinct locations. While theoretical characterizations of cross-
covariance functions are well established, modeling implica-
tions and practicability depend upon the specific application
[see, e.g. 5, 34, 46, 32, 20, 44].

Multivariate spatial processes are customarily specified
using a vector of mean functions and a cross-covariance
matrix function. Let z(s) = (z1(s), . . . , zq(s))

T be a q × 1
stochastic process, where each zi(s) is a real-valued ran-
dom variable at location s ∈ D ⊆ �d. The process is
specified by its means E[zi(s)] = μi(s) and the second-
order covariance functions Cij(s, s

′) = Cov{zi(s), zj(s′)}
for s, s′ ∈ �d and i, j = 1, 2, . . . , q. These covariances
define the matrix-valued q × q cross-covariance function
C(s, s′) = {Cij(s, s

′)} with (i, j)-th entry Cij(s, s
′). Since

the mean structure can be estimated by absorbing it into
a regression component, i.e., zi(s) = μi(s) + wi(s), where
∗Corresponding author.

wi(s) has zero mean, we focus on constructing a valid cross-
covariance function for a zero-mean latent process. From its
definition, C(s, s′) need not be symmetric, but must satisfy
C(s, s′)T = C(s′, s). Also, since var{

∑n
i a

T
i z(si)} > 0 for

any finite set of distinct locations s1, s2, . . . , sn ∈ D and any
set of nonzero constant vectors a1, a2, . . . , an ∈ �q \ {0}, we
have

∑n
i=1

∑n
j=1 a

T
i C(si, sj)ai > 0. See [24] for a review.

Spatial factor models [35, 40, 47, 53] are among the most
widely used approaches to build multivariate spatial mod-
els when the number of spatially dependent variables is
large. These models build upon the popular linear model of
coregionalization (LMC) [26, 44], which specifies the mul-
tivariate random field as a linear combination of r univari-
ate random fields. Choosing r � q produces low-rank or
spatial factor models. Computational benefits ensue; one
needs specify only a small number r of univariate processes
to ensure non-negative definiteness and, hence, yields large
q. While computationally convenient, multivariate spatial
analysis using LMC prohibits interpretation of spatial struc-
tures of each variable. For example, LMC endows each zj(s)
with the same smoothness (the smoothness of the rough-
est latent process). This is implausible in most applications
because different spatial variables typically exhibit very dif-
ferent degrees of smoothness. An alternate approach con-
structs cross-covariances by convolving univariate processes
with kernel functions [48, 49, 36]. However, barring certain
very special cases, the resulting cross-covariance functions
are analytically intractable, hence less interpretable, and
may require cumbersome numerical integration for estimat-
ing process parameters. Some of the aforementioned diffi-
culties are obviated by a conditional approach developed
in [12], where the univariate GPs are specified sequentially,

283

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS47


284 D. Dey, A. Datta, and S. Banerjee

conditional on the previous GPs assuming some ordering of
the q variables. Other notable approaches include [1] who
considered using latent dimensions to embed all the vari-
ables in a larger dimensional space and use standard co-
variance functions on this augmented space. However, this
embedding restricts all pairwise-correlations among the dif-
ferent variables to be positive. [25] and [2] directly formu-
lated multivariate Matérn cross-covariance functions where
both the univariate covariance functions for each variable
and the cross-covariance functions between each pair of vari-
ables are members of the Matérn family. The multivariate
Matérn GP is appealing in terms of interpretability, allow-
ing direct spatial inference for each variable via estimates
of the parameters of the corresponding component Matérn
GP.

While such methods have been applied to diverse data
sets, they have been restricted to a moderate number of
outcomes. This article focuses on the high-dimensional mul-
tivariate setting where a significantly larger number of out-
comes (tens to hundreds of variables) can be measured at
each spatial location. Such settings are becoming increas-
ingly commonplace in the environmental and physical sci-
ences where inference is sought on large numbers of depen-
dent outcomes. [17] developed a novel class of “Graphical
Gaussian Process” (GGP) models for scalable and inter-
pretable analysis of high-dimensional multivariate spatial
data. The underlying idea is to exploit conditional indepen-
dence among the variables using an undirected graph with
the components of the multivariate GP as the nodes. Ab-
sence of edges between nodes represent conditional indepen-
dence among the corresponding pair of component processes
given all the other nodes.

Graphical models are extensively used to represent the
joint distribution of several variables for many types of non-
spatial data. Applications in spatial settings have been con-
cerned with reducing the computational burden for large
n by replacing the complete graph between locations with
nearest-neighbor graphs [14]. Current multivariate GP co-
variance functions do not lend themselves naturally to in-
corporating an inter-variable graphical model. [30] proposed
a method for parsimonious joint analysis of such high-
dimensional multivariate spatial data via a common basis
function expansion and imposing sparse graphical models
for estimating the covariances of the coefficient vectors. This
approach, akin to similar approaches common in multivari-
ate functional modeling [52, 54], rely on multiple replicate
measurements of each variable at each location which may
not be available in many multivariate spatial applications.

The approach of Dey et al. [17] constructs a high-
dimensional multivariate model by adapting graphical Gaus-
sian models to process-based settings and does not require
replicate data. This process-level graphical model approach
addresses some key properties of multivariate GPs that are
deemed critical for handling highly multivariate data, in-
cluding the retention of the flexibility and interpretation of

spatial and non-spatial dependencies. The balance of the
manuscript proceeds as follows. We offer a brief overview of
inference from graphical models in spatial statistics followed
by an elucidation of the GGP and its implementation in a
fully Bayesian modeling framework. We illustrate with some
simulation examples, offer an analysis for a highly multivari-
ate environmental data, and conclude with some discussion
and pointers for future research.

2. GRAPHICAL MODELS FOR SPATIAL
DATA ANALYSIS

Undirected graphical models have an established history
in spatial statistics in the context of specifying spatial de-
pendencies via Markov random fields (MRF) for regionally
aggregated or areal data [see, e.g., 6, 7, 10, 41, 22, 5, and ref-
erences therein]. In areal modeling [37, 23, 28, 27] the nodes
of the graph represent regions and the presence of an edge
between two nodes indicates that the two regions are neigh-
bors (or adjacent). Spatial models are constructed from this
graph by assuming dependence between nodes with edges
between them. For example, the popular conditional auto-
regression (CAR) models assume conditional independence
between two nonadjacent nodes given all other nodes.

Our current development departs from the multivari-
ate areal setting in two aspects. First, we consider point-
referenced settings where inference is desired at the process-
level. Unlike areal settings where inference is limited to the
fixed set of areas, point-referenced datasets allow inference
about the variables over every conceivable location in an en-
tire region. Second, unlike MRFs where the graph is on the
set of areas specifying spatial dependencies, here the undi-
rected graph posits inter-variable conditional independence
relationships. Thus each node corresponds to the stochastic
process describing the distribution of the respective variable
over space.

In point-referenced settings, graphical models among lo-
cations based on spatial proximity have been used to specify
nearest neighbor Gaussian Processes (NNGP) [14, 18] that
offer a scalable solution to use of GP priors in Bayesian hi-
erarchical models. However, akin to the MRF models for
areal data, NNGP uses a graph among the locations to par-
simoniously specify spatial dependence. Neither approaches
model inter-variable relationships using graphs.

Recent developments for graphical modeling of multi-
variate functional or spatial data represents the multiple
variable processes using a common univariate basis func-
tion expansion with multivariate (vector-valued) coefficients
[52, 30]. Graphical modeling among the variables is induced
by a series of graphical models, one for each of the vector-
valued coefficients. As practically, basis functions are trun-
cated to a finite number of coefficients, the representation re-
duces to the standard graphical model estimation for vector-
valued data using graphical Lasso type techniques [19]. The
advantage of the approach is that the graph is allowed to
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vary for each coefficient and thereby allowing conditional
independence structures to be resolution-specific. However,
these methods rely on replicate data on each variable at each
location which is atypical in many spatial settings. Also, the
assumption of a common univariate basis function expansion
for the multivariate process may be inadequate.

We first present a simple alternative approach to build
a multivariate spatial model that explicitly respects a given
inter-variable graphical model. Let G = {V , E} be an undi-
rected graph with V being the set of vertices and E the set
of edges. A customary approach for developing probabilis-
tic models on such undirected graphs is to specify full con-
ditional distributions for each node given others and then
deriving a joint density from the set of full conditional dis-
tributions. This is achieved using Brook’s Lemma [6, 37],
which can be adapted to our setting as follows.

Let us consider a multivariate spatial process z(s)
with q univariate spatial processes and let zi =
(zi(si1), zi(si2), . . . , zini(sini))

T be an ni × 1 random vector
corresponding to the realizations of the i-th variable, zi(s),
for each i = 1, 2, . . . , q. We specify the following sequence
of full conditional distributions for modeling zi’s given all
other zj ’s:

zi | z(−i) ∼ N

⎛
⎝ q∑

j=1

Aijzj ,Γi

⎞
⎠ , i = 1, 2, . . . , q , (2.1)

where z−(i) = {z1, z2, . . . , zq}\{zi}, i.e., the collection of zj ’s
for j = 1, 2, . . . , q but excluding zi, Aij ’s are fixed ni × nj

matrices, Aii = O (the matrix of zeroes), and Γi’s are fixed
positive definite matrices. Since each variable can exhibit
its own spatial dependence structure, the Γi varies by vari-
able. Brook’s Lemma provides a straightforward method for
deriving the joint density from (2.1) using the identity:

π(z1, z2, . . . , zq) =

q∏
i=1

π(zi | z̃1, . . . , z̃i−1, zi+1, . . . , zq)

π(z̃i | z̃1, . . . , z̃i−1, zi+1, . . . , zq))

× π(z̃1, z̃2, . . . , z̃q) , (2.2)

where z̃ = (z̃T1 , z̃
T
2 , . . . , z̃

T
q )

T is any fixed point in the support
of π(z) and we assume that the joint density π(·) > 0 over
its entire support. The proof is a straightforward verification
proceeding from the last element of the right hand side (i.e.,
the joint density on the right hand side). Note that

π(zq | z̃1, . . . , z̃q−1)

π(z̃q | z̃1, . . . , z̃q−1)
× π(z̃1, z̃2, . . . , z̃q)

=
π(zq | z̃1, . . . , z̃q−1)

���������
π(z̃q | z̃1, . . . , z̃q−1)

×π(z̃1, . . . , z̃q−1)×���������
π(z̃q | z̃1, . . . , z̃q−1)

= π(z̃1, z̃2, . . . , z̃q−1, zq) .

Proceeding as above will continue to replace z̃i with zi in
the joint density on the right hand side of (2.2) for each i =
q−1, q−2, . . . , 1 and we eventually arrive at π(z1, z2, . . . , zq).

Applying (2.2) to the full conditional distributions in
(2.1) with z̃i = 0 for each i = 1, . . . , q yields the joint density

π(z) ∝ exp

⎧⎨
⎩−1

2

⎛
⎝ q∑

i=1

zTi Γ
−1
i zi −

q∑
i=1

q∑
j �=i

zTi Γ
−1
i Aijzj

⎞
⎠
⎫⎬
⎭

∝ exp

(
−1

2
zTQz

)
,

(2.3)

where z = (zT1 , . . . , z
T
q )

T is (
∑q

i=1 ni)×1 and Q = M−1(I−
A) is (

∑q
i=1 ni)×(

∑q
i=1 ni) with M = ⊕Γi is block-diagonal

with (i, i)-th block Γi for i = 1, . . . , q and A = (Aij) is the
(
∑q

i=1 ni)× (
∑q

i=1 ni) block matrix with Aij as the (i, j)th
block. For (2.3) to be a valid density, Q needs to be sym-
metric and positive definite and z ∼ N(0, Q−1) in (2.3).

How, then, can we construct Q to be symmetric and pos-
itive definite while also respecting the conditional indepen-
dence relationships among the outcomes from a given undi-
rected graph? To be precise, if two distinct nodes i and j in
the graph do not have an edge, then we must ensure that
zi ⊥ zj | z−(i,j) or, equivalently, the ni ×nj block submatrix
of the precision Qij = −Γ−1

i Aij = O, i.e., the (i, j)-th block
of Q must be an ni × nj matrix of zeros. Note that since
Aii = O in (2.1), the (i, i)-th block of Q is Γ−1

i .
Given the inter-variable graph G = {V , E} let Λ = (λij) =

D − ρW be the q × q graph Laplacian, where W = (wij) is
the adjacency matrix with nonzero wij only if there is an
edge between i and j, D = (dii) is a q × q diagonal matrix
with the sum of each row of W along the diagonal, i.e., dii =∑q

j=1 wij , and ρ is a scalar parameter that ensures positive-
definiteness of Λ as long as ρ ∈ (1/ζmin, ζmax), where ζmin

and ζmax are the minimum and maximum eigenvalues of
D−1/2WD−1/2, respectively. Since each node corresponds
to the realizations of a spatial process, which is modeled as
a latent (unobserved) process, we can assume without much
loss of generality that each zi is n × 1, i.e. ni = n for each
i = 1, . . . , q.

Let Ri be the n × n upper triangular factor in the
Cholesky decomposition of the positive definite covari-
ance matrix of zi, i.e., var(zi) = Cii = RT

i Ri for each
i = 1, 2, . . . , q. We now set Γ−1

i = λiiR
T
i Ri and Aij =

−λijR
−1
i Rj in (2.1). Then Qij = λijR

T
i Rj and Q = R̃T(Λ⊗

I)R̃, where R̃ = ⊕q
i=1Ri. Since each Ri is nonsingular and

Λ is positive definite, it follows that Q is positive definite
and det(Q) =

∏q
i=1(det(Ri))

2(det(Λ))n. The special case
where every variable has the same spatial covariance func-
tion so that Ri = R for i = 1, 2, . . . , q yields the separable
model Q = Λ ⊗ (RTR). We accrue computational bene-
fits by modeling the spatial process so that the Ri’s are
easily computed for massive data [see, e.g., 14, 4, 29, 39,
and references therein]. Other, even more general, structures
for Q can also be derived by adapting multivariate Markov
random fields [27] to incorporate spatial processes into the
nodes of a graph.



286 D. Dey, A. Datta, and S. Banerjee

The above construction yields proper densities in (2.3)
that will conform to conditional independence among the
variables represented by the nodes of a posited undi-
rected graph and can also be adapted for analyzing high-
dimensional multivariate spatial data, where at least one of
or both n and q are large. However, an important drawback
is that it will be challenging to characterize the marginal
distributions of such a multivariate process parsimoniously
in terms of a few parameters. To elucidate, even if Γi is
chosen to be from an interpretable parametric family of co-
variances like the Matérn family, the constuction does not
ensure that zi will follow a Matérn distribution. Similarly,
the cross-covariances will not correspond to standard fam-
ilies of valid, cross-covariance functions [24]. Furthermore,
the construction of Q described above is essentially finite-
dimensional and the notion of conditional independence is
restricted to the finite set of locations s1, . . . , sn. It is unclear
if this construction can lead to a highly-multivariate spatial
process over the entire domain D that respects process-level
conditional independences. To see how this can be achieved,
we elucidate the GGP [14] using a paradigm for graphi-
cal models fundamentally different from Markov random
fields—covariance selection.

3. GRAPHICAL GAUSSIAN PROCESSES
Rather than building a Gaussian graphical model whose

nodes are finite-dimensional random vectors, GGP builds a
graphical model whose nodes are the component Gaussian
processes of a multivariate spatial GP and edges represent
process-level conditional dependence between the incident
nodes given all other nodes. To do so, we first clarify what
it means for two spatial process to be conditionally inde-
pendent. Let the q nodes of G represent q different spa-
tial processes, {zi(s) : s ∈ D} for i = 1, 2, . . . , q. Two dis-
tinct processes zi(·) and zj(·) are conditionally independent
given the remaining q − 2 processes, which we denote by
zi(·) ⊥ zj(·) | z−(ij)(·), if the covariance between zi(s) and
zj(s

′) is zero for any pair of locations s, s′ ∈ D conditional on
full realizations of all of the remaining processes. A q-variate
process z(s) is a GGP with respect to an inter-variable graph
G = {V , E} if zi(·) and zj(·) are conditionally independent
given the remaining processes whenever (i, j) /∈ E .

Any collection of q independent spatial processes is a
GGP with respect to any graph G but is of limited use
as it does not leverage inter-variable dependencies. Sparse
graphical models are often used as parsimonious working
models serving as a scalable approximation to a richer (or
fuller) data generating model. Hence, a more relevant ques-
tion is given a reasonable inter-variable graph G, possi-
bly inferred from scientific knowledge, how to construct a
GGP that respects G and provides best approximation to
a multivariate GP with a given cross-covariance function.
Thus, we wish to construct a multivariate spatial process
such that it conforms to the posited graphical relationships

among the q dependent variables and best approximates the
spatial structures of a given q × q cross-covariance matrix
C(s, s′) = (Cij(s, s

′)). [17] proved that such an optimal
GGP exists and is unique, and is one that preserves the
marginal spatial covariance structure for each variable i as
specified by Cii(s, s

′) as well as cross-covariances Cij(s, s
′)

between any pairs of variables (i, j) ∈ E .
In this regard, we recall a seminal paper by Dempster

[16] on covariance selection. The key result can be described
as follows. Let G = {V , E} be any undirected graph with q
nodes and let F = (fij) be any positive definite covariance
matrix whose elements fij give the covariance between ran-
dom variables at nodes i and j. Then, the best approxima-
tion of F (in terms of the Kullback-Liebler distance) among
the class of covariance matrices that satisfy the conditional
independence relationships specified by the Gaussian graph-
ical model G is a unique positive definite matrix F̃ = (f̃ij)
such that:

1. f̃ii = fii;
2. f̃ij = fij for all (i, j) ∈ E ; and
3. (F̃−1)ij = 0 for (i, j) /∈ E .

The first two conditions state that the optimal graphical
model preserves all marginal variances and cross-covariances
for edges included, while the third condition ensures adher-
ence to the conditional independence relations specified by
G. Observe that covariance selection does not explicitly re-
quire Markovian assumptions, nor does it require modeling
full conditionals such as in (2.1).

Covariance selection, as described above, is applicable to
finite-dimensional inference, where, for example, we restrict
attention to parameter estimation and random effects at a
specified set of n spatial locations. Let C = (C(si, sj)) be
an nq × nq spatial covariance matrix, where each C(si, sj)
is a q× q submatrix evaluated using a valid cross-covariance
function. Given an undirected graph that posits conditional
independence relations among the q variables, we can com-
pute the unique C̃ preserving marginal variances and co-
variances and conforming to the graph using an iterative
proportional scaling (IPS) algorithm [45, 51].

Consider the graph in Figure 1 specifying the conditional
independence structure among 4 variables. We consider each
variable being observed at 10 locations uniformly sampled
from a (0, 1)× (0, 1) grid. We assume a multivariate Mateŕn
covariance structure [2] between the processes and compute
the 40×40 cross-covariance matrix C. Now, Algorithm 1 lays
out the steps to obtain the unique cross-covariance matrix
C̃ corresponding to the GGP that conforms to the graph in
Figure 1. The resulting precision matrix is plotted in Figure
2 which has zero entries only in the (1, 3) and (2, 4)-th block,
i.e., when there are no edges present between the variable
nodes.

However, this finite-dimensional application of covariance
selection or IPS does not immediately extend to the process-
level formulation of conditional dependence in a multivariate
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Figure 1: A cyclic (non-decomposable) 4-variable graph.

Algorithm 1 Covariance selection using Iterative Propor-
tional Scaling (IPS).
1: Input: Cross-covariance matrix C of dimension 40× 40, and

adjacency matrix AV of the graph in Figure 1
2: Create a variable-location pair adjacency matrix (40 × 40)

A = kronecker(AV , J10), where J10 is the 10 × 10 matrix
with all entries 1.

3: Load helperfunctions2.R and source IPS2.cpp from Github
(https://github.com/Ddey07/IPS) [38].

4: Run the IPS function with arguments C, adjacency matrix
A, and an error threshold eps.
K_ips = IPS(S=C, A= A, eps = 1e-8)

5: The precision matrix after covariance selection is obtained as
output of the function.

GP. We now illustrate how GGP of [17] extends covariance
selection to infinite-dimensional framework that will allow
predictive inference at arbitrary spatial locations over the
entire domain of interest D.

We begin the construction with a given inter-variable
graph G, a multivariate cross-covariance function C(s, s′)
and with a finite set of locations L. Using covariance selec-
tion, we obtain a covariance matrix C̃ := C̃(L) such that we
can define a multivariate spatial model on L as

w̃(L) ∼ N(0, C̃) (3.1)

The properties of covariance selection ensure that w̃i(L) ∼
N(0, Cii(L)), Cov(w̃i(L), w̃j(L)) = Cij(L) for all (i.j) ∈
E , and Cov(w̃i(L), w̃j(L)|w−ij(L) = (C̃−1)ij = O for all
(i, j) /∈ E . Thus on L, each component of w̃ retains marginal
covariances as specified by C, marginal cross-covariances for
variable pairs included in the graph are also preserved, and
conditional dependencies align with the graph.

To extend this finite-dimensional framework on L into a
process-level graphical model for a multivariate GP on D,
we leverage the property that a univariate GP wi(s) with
covariance function Cii(s) can be constructed as the sum of
two orthogonal GPs w∗

i (s) and ri(s). Here w∗
i (s) is a finite

rank predictive process that can be represented as w∗
i (s) =

bi(s)
Tw̃i(L) where w̃i(L) is some random vector such that

w̃i(L) d
= wi(L) and bi(s) are such that the predictive process

Figure 2: 40 × 40 precision matrix of the GGP after IPS
algorithm. Zero-entries are plotted as circles and non-zero
entries are plotted as dots.

w∗
i (·) agrees with wi(·) on L [3]. The second GP ri(·) is often

referred to as the residual GP as it explains the residual
covariance between realizations of the GP wi(·) beyond what
can be explained by the predictive process. Choosing w̃i(L)
to be the components of w̃(L) from (3.1) and ri(·)’s to be
independent across the variables i, one creates a multivariate
GP w(s) = B(s)w̃(L)+r(s) where B(s) = ⊕bi(s) and r(s) =
(r1(s), . . . , rq(s))

T.
Covariance selection and predictive process harmonize to

ensure that the resulting process w(·) exactly or approxi-
mately satisfies all the three criteria for being an optimal
multivariate process given a covariance function C and a
graphical model G. The component processes satisfy the
law wi(s) ∼ GP (0, Cii) thereby preserving the marginals.
Cross-covariances for (i, j) ∈ E are also preserved exactly
on L and approximately elsewhere when choosing L to be
sufficiently representative of the domain. Finally, the condi-
tional independence of w̃(L) with respect to G induced by
covariance selection together with the component-wise in-
dependent residual processes ri(·) ensure that the resulting
multivariate process w(·) conforms to process-level condi-
tional independences as specified by G and is thus a GGP.
This construction is referred to as stitching – the multiple
processes can be envisioned as multiple layers of fabric which
are connected to each other only at the locations L via the
edges of G, serving as threads.

3.1 Inference from the Graphical Matérn GP
We consider a spatial dataset on q outcomes. Each vari-

able is recorded at a set of locations Di and is associated
with a set of covariates Xi. Both the measurement-locations
and covariates are allowed to be variable-specific. If a sparse
graphical model G can be justified, empirically or scientifi-
cally, among the q variables, then a GGP model for analyz-
ing such data will be specified at the process-level as

yi(s) ∼ Xi(s)
Tβi + wi(s) + εi(s) for i = 1, . . . , q,

https://github.com/Ddey07/IPS
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εi(s)
iid∼ N(0, τ2i ) for i = 1, . . . , q, s ∈ D

w(·) = (w1(·), . . . , wq(·))T ∼ GGP (0, C,G) (3.2)

Here C denotes the full q-variate cross-covariance function
used to derive the covariance of the GGP. Without loss of
generality, we use a reference set L that does not overlap
with the data locations. The data likelihood corresponding
to this hierarchical model can be formulated as

q∏
i=1

∏
s∈Di

N(yi(s) |Xi(s)
Tβi, τ

2
i I)

×
q∏

i=1

N(w(Si) |Biwi(L), Rii)×N(w(L)|0, C̃) .

(3.3)

Here Bi stacks up the bi(s)
T’s for s ∈ Di and Rii is the

covariance matrix for the residual process ri(·) over Di.
If C is chosen to be from the popular multivariate Matérn

class, then the resulting cross-covariance for the GGP is de-
noted by the graphical Matérn and will retain the desirable
properties of the multivariate Matérn family. In particular,
each component process wi(·) is exactly a Matérn GP with
own set of parameters that allow interpretions about the
spatial variance, smoothness and decay of the process. The
cross-covariances for variable pairs included in G are also ex-
actly or approximately multivariate Matérn, while unlike the
multivariate Matérn the graphical Matérn allows process-
level conditional independencies.

For a general graph, the data likelihood for GGP (3.3) in-
volves manipulation of the O(q)×O(q) matrix C̃ (suppress-
ing the dependence on the number of locations n, which,
for this article, is assumed to be small or moderate). This
matrix is derived from the full covariance matrix C(L,L)
using the IPS algorithm. However, in its full generality, the
IPS will require O(q2) floating point operations or FLOPS
[51]. Additionally, the parent covariance C needs to repre-
sent a valid cross-covariance class, which for the multivariate
Matérn family, involves O(q2) parameters with constraints
that require O(q3) FLOPS for assessment. Hence, for highly
multivariate setting GGP with a general graph can remain
computationally prohibitive both in terms of memory and
time demands.

The computational advantages of GGP with a sparse
graphical model is maximized when considering decom-
posable (or chordal) graphs. Such graphs are popular in
Bayesian graphical models because of the computational
conveniences and are often justifiably used to replace non-
chordal graphs as any non-chordal graph can be embedded
in a chordal one. Decomposable graphs can be represented
in terms of a set of cliques K and a set of separators S such
that the likelihood for the GGP on L can be decomposed as

N(w(L)|0, C̃) =

∏
A∈K N(wA(L)|0, C)∏
A∈S N(wA(L)|0, C)

(3.4)

where for any A ⊂ {1, . . . , q}, wA(L) denotes the subset of
w(L) corresponding to the indices in A. Note that this obvi-
ates the necessity to explicitly obtain the O(q)-dimensional
matrix C̃ via the IPS algorithm as the right hand side can be
written in terms of the multivariate densities based on the
parent covariance C. The maximum dimension of any ma-
trix involved is O(c3) where c denotes the largest clique-size
and there would be atmost O(q) such matrices. Also the re-
sulting likelihood only depends on the cross-covariances Cij

for either i = j or (i, j) ∈ E . Thus the full parent multivari-
ate Matérn GP with O(q2) parameters need not be spec-
ified, only O(q + |E|) parameters are required resulting in
significant dimension reduction for sparse graphs. The GGP
likelihood with Matérn covariance and a sparse graph G of-
fers drastic reduction in both memory, time and parameter-
dimensionality while retaining the benefits of spatial mod-
eling using the Matérn family.

3.2 Implementation
We elucidate, with examples, the construction of a GGP

given, in particular, a multivariate Matérn cross-covariance
function and an undirected decomposable graph.

3.2.1 Setup

Here, we consider q = 10 variables with each variable
being observed at 250 locations uniformly chosen from the
(0, 1)×(0, 1) grid. The latent spatial random process w(s) in
(3.2) is taken as the 10×1 multivariate graphical Matérn GP
[17] with respect to a decomposable variable graph G (3).
The marginal scale, variance, and smoothness parameters
for each component Matérn process, wi(·), are denoted by
φii, σii and νii, respectively, for each i = 1, 2, . . . , q.

To ensure a valid multivariate Matérn cross-covariance
function, a sufficient condition is to limit the intra-site co-
variance matrix Σ = (σij) to be [see Theorem 1 of 2]

σij = bij
Γ( 1

2 (νii+νjj+d))Γ(νij)

φ
2ΔA+νii+νjj
ij Γ(νij+

d
2 )

, (3.5)

where ΔA ≥ 0 and B = (bij) > 0, i.e., is positive defi-
nite. This implies Σ = (B (γij)), where γij ’s are constants
collecting the components in (3.5) involving just νij ’s and
φij ’s, and  indicates the Hadamard (element-wise) prod-
uct. For simplicity, we will assume νii = νjj = νij = 0.5,
φ2
ij =

φ2
ii+φ2

jj

2 . The constraints in (3.5) simplifies to

σij = (σiiσjj)
0.5 ∗ φ0.5

ii φ0.5
jj

φ0.5
ij

rij (3.6)

where R = (rij) is positive definite. Hence, as part of
our simulation exercise, we only need to estimate the
marginal scale (φii) and variance parameters (σii) and cross-
correlation parameters rij .

Observe that the graph in Figure 3 posits full conditional
dependencies among the 10 spatially indexed variables. We
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Figure 3: Our example variable graph (G).

Figure 4: Perfect ordering of cliques and separators for (G).

now calculate the perfect ordering of the cliques of G to ob-
tain the cliques and separators (Figure 4). Now using (3.4),
the likelihood of the decomposable GGP can be written as

N(w(L)|0, C̃)

=
N(w(1,2,3)(L)|0, C)N(w(2,3,4)(L)|0, C)

N(w(6)(L)|0, C)N(w(8)(L)|0, C)
×

N(w(4,5,6)(L)|0, C)N(w(6,7,8)(L)|0, C)N(w(8,9,10)(L)|0, C)

N(w(6)(L)|0, C)N(w(8)(L)|0, C)
(3.7)

3.2.2 Data Generation

We choose the 10 length vector of marginal
variance (σii) and scale (φii) parameters as
two different permutations of the sequence
(1, 1.444, 1.889, 2.333, 2.777, 3.222, 6.667, 4.111, 4.556, 5).

The cross-correlation matrix R in (3.6) is generated as
the standardized random matrix R0R0

T, where R0 has
independent entries from Uniform(−1, 1) distribution.

The precision matrix of the GGP w(L) is calculated as
[see Lemma 5.5 of 31]

C̃(L,L)−1 =

p∑
m=1

[C[Km](L,L)−1
]V×L

−
p∑

m=2

[C[Sm](L,L)−1
]V×L ,

(3.8)

where, for any symmetric matrix A = (aij) with rows and
columns indexed by U ⊂ V × L, AV×L is defined as a
|V × L|×|V × L| matrix so that (AV×L)ij = aij if (i, j) ∈ U ,
and (AV×L)ij = 0 otherwise. Equations (3.7) and (3.8) show
that inverting the full GGP cross-covariance matrix only re-
quires inverting the clique and separator specific covariance
matrices. Hence, the computational complexity for calcu-
lating the likelihood of a multivariate GGP boils down to
O(n3c3), for e.g. O(2503 ∗ 33) in our example, where the
maximum size of a clique in Figure 4 is 3. On the contrary,
the likelihood of a full multivariate Matern GP would need
O(n3q3) complexity, i.e. O(2503 ∗ 1000).

We use the cross-covariance in (3.8) to simulate the latent
process w(·) as a 2500(250 ∗ 10)-variate normal observation.
Next, we use (3.2) to simulate our multivariate outcomes
yi(.), i = 1, . . . , 10. In order to do that, we generate some
random covariates Xi(·) from N(0, 2) distribution and sim-
ulate the error process εi(.) independently from N(0, τ2i ).
We take τ2ii = τ2 = 0.25 for all i.

For analyzing predictive efficiency of our method, we ran-
domly pick 20% of the locations for each outcome variable
and consider them missing. We treat the full set of 250 loca-
tions as our reference set L and predict the test observations
at every step of our sampler to compare with predictions
later.

3.2.3 Data Analysis

The analysis of our simulated GGP data can be broken
down in the following steps

1. Marginal parameter estimation: We estimate the
marginal scale (φii), variance (σ2

ii) and smoothness
parameters (νii) from the component Gaussian pro-
cesses. We also estimate the error variance (τ2i ) for each
marginal processes. (Details in Algorithm 2)

2. Gibbs sampler initialization: For this step, we process
the variable graph to calculate cliques and separators.
Moreover, we color the nodes of the variable graph. This
allows us to simulate the latent processes belonging to
the same color in parallel in the Gibbs sampler.
We also construct a new edge-graph GE(G) = (EV , E

∗)
on the set of edges EV , i.e., there is an edge
((i, j), (i′, j′)) in this new graph GE(G) if {i, i′, j, j′} are
in some clique K of G. This edge-graph enables us to
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facilitate parallel updates of cross-correlation parame-
ters corresponding to edges of the same color. These are
specific examples of chromatic Gibbs samplers and sig-
nificantly improve the speed of our sampling on paral-
lel architectures. We also initialize our cross-correlation
parameters at this step to start off the Gibbs sampler.
The details are laid out in Algorithm 2.

3. Gibbs sampler : We run our Gibbs sampler to sample
latent spatial processes, predict test observations and
sample latent correlations. The detailed steps are laid
out in Algorithm 3.
Sampling cross-correlation parameters requires only
checking positive-definiteness of the clique-specific
cross-correlation parameter matrix (3×3 here at maxi-
mum). For likelihood calculation, the largest matrix in-
version across all these updates is of the order 750×750,
corresponding to the largest clique. The largest ma-
trix that needs storing is also of dimension 750 × 750.
These result in appreciable reduction of computations
from any multivariate Matérn model that involves
2500 × 2500 matrices and positive-definiteness checks
for 10× 10 matrices at every iteration.

Figure 5: Coloring of variable graph G.

Figure 6: Coloring of the edge graph GE(G).

Algorithm 2 Marginal parameter estimation and Gibbs
sampler initialization.
1: Input: yi(s), Xi(s).
2: Use training data to estimate τ2

i , σii, φii, i = 1, . . . , q
marginally. We also estimate the regression coefficients (βi)
marginally. The estimates are obtained using R package
BRISC [42].

3: Take an initial cross-correlation matrix R0 = 0.8 ∗
Cor(Y (L))+0.2∗ Iq where Y = (Y (L))′ and the correlation
is computed based on pairwise complete observations.

4: Color the variable graph (G) (Figure 5. Use function sequen-
tial.vertex.coloring from R package RBGL [8]. The chromatic
number, i.e. the number of unique colors needed for the col-
oring, is denoted as χ(G), which is 3 in our case.

5: Construct edge graph GE(G) and color it like Figure 6. Use
the same package as step 2.. The chromatic number is de-
noted by χ(GE(G)), which is 3 in this case.

6: Consider that the graph G has clique set K and separator set
S in the perfect ordering (Figure 4). Use estimates in Step 2
to construct a list of covariance sub-matrices: M = {Caa; a ∈
K ∪ S}.

7: Obtain initial latent effects corresponding to training out-
comes as: wi(Di) = yi(Di) − xi(Di)βi. Simulate latent pro-
cesses corresponding to test outcomes as wi(L \ Di) ∼
N(0, Cii(L \ Di)) for i = 1, . . . , q.

8: Calculate clique and separator multivariate normal likeli-
hoods and store in a list: L = {N(wa(.)|0, C̃); a ∈ K ∪ S}.

9: Start cross-correlation vector: r0 = ({R0
ij : (i, j) ∈ EV}).

We run the sampler in Algorithm 3 for 1000 iterations
and obtain the cross-correlation parameter estimates and
test set predictions after a burn-in of 150 samples. Fig-
ure 7 shows that we have accurately estimated the marginal
micro-ergodic parameters (σii × φii). In Figure 8, we plot
the edge-specific estimates of cross-correlation parameter
rij . Here, we observe that GGP accurately estimates the
cross-correlation parameters for the edges in the graph G
(95% credible interval of all but one estimate contain true
values). We also create a grid of plots across 10 variables
comparing the true test data values and predicted values
from our algorithm. This is presented in Figure 9. The
points fairly align on y = x line and mean-square error
varied from 0.403 to 1.064. Figures 10 and 11 depict two
instances of the convergence of cross-correlation parameter
chains.

4. ENVIRONMENTAL DATA EXAMPLE
We demonstrate the practical use of GGP for modeling

non-stationary spatial time-series data using daily PM2.5
measurements from monitoring stations in 11 northeast-
ern states of the contiguous US, including Washington DC,
for February 2020. The data are publicly available from
the United States Environmental Protection Agency (EPA)
website. Our current analysis focuses on n = 99 monitor-
ing stations that recorded at least 20 days of data in both
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Algorithm 3 Gibbs sampler algorithm.
1: Input yi(s), Xi(s), βi, τ2

i , σii, φii for i = 1, . . . , q, M, L, G,
r0 and the colorings of G GE(G) from Algorithm 2.

Phase 1 – Updating latent random effects

2: for color from 1 to χ(G) do
3: for i in color (embarrassingly parallel) do
4: simulate wi(L) (Section S2 of [17])
5: end for
6: end for
7: for i in K ∪ S do
8: Update L for new values for wi(s1, . . . , sn)
9: Simulate test outcomes corresponding to i-th variable:

yi(L \ Di) | · ∼ N(Xi(L \ Di)
′βi + wi(L \ Di), τ

2
i I)

10: end for

Phase 2 – Updating cross-correlation parameters

11: for color in χ(GE(G)) do
12: for e = (i, j) in color (embarrassingly parallel) and

(i, j) ∈ EV do
13: Propose g(r1ij) ∼ N(g(r0ij), 0.4), where g : [−1, 1] −→

R, g(x) = log( 1+x
1−x

)
14: Check Metropolis-Hastings acceptance probability

(Section S2 of [17])
15: r1ij ← r0ij if accepted
16: Update M accordingly if accepted.
17: end for
18: end for

Figure 7: Marginal scale-variance product estimates, red line
denotes y = x line.

2019 and 2020. From the National Center for Environmen-
tal Prediction’s (NCEP) North American Regional Reanal-
ysis (NARR) database, we obtained daily values of mete-
orological factors (temperature, barometric pressure, wind-
speed, and relative humidity) that are posited to influence
PM2.5 levels. We used multilevel B-spline smoothing using
the MBA package in R to impute daily values of these
variables and merge them with the EPA data. To account

Figure 8: Estimates of the cross-correlation parameters rij
with errorbars denoting 95% credible interval, red line de-
notes y = x line.

Figure 9: Prediction of values in the test set with 95% cred-
ible interval, red line denotes y = x line.

Figure 10: MCMC simulations of the cross-correlation pa-
rameter corresponding to (5, 6) edge.

for baseline levels and weekly periodicity, we included a 7-
day moving average of the PM2.5 data for each station and
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Figure 11: MCMC simulations of the cross-correlation pa-
rameter corresponding to (9, 10) edge.

Figure 12: AR (2) graph for 28 days in Februray as nodes.

day in 2020, centered around the same day of 2019, and
subtracted the day-of-the-week specific means from the raw
PM2.5 values. We then analyzed the resulting highly multi-
variate (28-dimensional) spatial data set over n = 99 loca-
tions.

After conducting exploratory analysis that revealed auto-
correlations among pollutant processes on consecutive days
(for both lag 1 and 2), even after adjusting for covariates,
we employed a graphical Matérn GP with an AR(2) graph
(Figure 12). The marginal parameters for day t are σtt, φtt,
and τ2t , the autoregressive cross-covariances are denoted by
bt−1,t and bt−2,t between day t and days t − 1 and t − 2,
respectively. GGP enables us to model non-separability in

Figure 13: Estimates of time-specific lag 1 cross-correlations.

Figure 14: Estimates of time-specific lag 2 cross-correlations.

auto-covariances across both space and time, as well as time-
varying marginal spatial parameters and autoregressive co-
efficients.

The GGP requires only 53 cross-covariance parameters
(27 parameters for lag 1 and 26 parameters for lag 2). As
the largest clique size in an AR(2) graph is 3, the largest ma-
trix one must deal with for the data at 99 stations is only
297 × 297. We present the estimates and credible intervals
for lag 1 and lag 2 auto-correlation parameters rt−1,t and
rt−2,t (normalized bt−1,t and bt−2,t) obtained from GGP in
Figures 13 and 14, respectively. These estimates display sub-
stantial variation across time, with the many spikes indicat-
ing high positive autocorrelation. Specifically, 95% Bayesian
credible intervals for 6 out of the 27 (22%) of the lag 1 es-
timates and 4 out of the 26 (15%) of the lag 2 estimates
exclude 0, providing strong evidence in support of non-
stationary autocorrelation across time. The presence of sig-
nificant lag 2 autocorrelations justifies our choice of AR(2)
graph. The Graphical Matérn GP also yields impressive pre-
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Figure 15: Prediction performance on the test dataset for
the analyses.

dictive performance (93% coverage) on hold-out data (Fig-
ure 15).

5. DISCUSSION
This article has developed and elucidated, with examples,

the construction of multivariate Gaussian processes with as-
sociations among variables modeled by a valid spatial cross-
covariance function while conditional independence between
variables conforming to a posited undirected graph. The
sparsity of the posited graph accrues substantial computa-
tional gains and makes the proposed approach especially at-
tractive for datasets with very large numbers of spatially de-
pendent outcomes. The algorithms implemented here have
been especially designed to exploit the structure of decom-
posable graphs. Our examples demonstrate the algorithmic
efficiency of chromatic Gibbs samplers used to update the
latent process and the cross-covariance parameters and also
the inferential efficiency, in terms of estimation and predic-
tion, of the graphical Gaussian process model. Future av-
enues for research will include incorporating scalable spatial
processes, such as the Nearest-Neighbor Gaussian Process
[15, 13] for spatial and spatial-temporal processes and exten-
sive comparisons with competing methods for multivariate
outcomes, such as factor models, from computational and
inferential standpoints.
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