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1. BACKGROUND OF THE SPECIAL ISSUE
This special issue is on “Modern Bayesian Methods with

Applications in Data Science”, originated from the EAC-
ISBA 2021 conference, with the theme of celebrating Dr.
James O. Berger’s 70th birthday.

This issue brings together a collection of thought-
provoking discussions and innovative methodologies that
shed light on the interplay between frequentist and Bayesian
approaches in statistics.

2. THE DISCUSSIONS
James O. Berger’s paper [1] sets the stage by providing a

comprehensive examination of different types of frequentism
and their compatibility with Bayesian reasoning. Through
practical examples, he elucidates the strengths and limita-
tions of various frequentist perspectives, offering valuable
insights to researchers and practitioners alike.

Van der Vaart [14] provides personal reflections on
Berger’s classification of frequentists into different types. It
offers appraisal for Type I and Type II frequentism, resonat-
ing with the author’s pragmatism. The discussion highlights
the natural acceptance of empirical frequentism across sta-
tistical frameworks and the compatibility of procedural fre-
quentism with Bayesian reasoning, grounded in the notions
of consistency and compatibility.

Pericchi [7] emphasizes the importance of distinguishing
between different types of frequentism and highlights the
scientifically compelling “empirical frequentist” approach.
It delves into the convergence between frequentist and
Bayesian schools, particularly through the lens of objective
Bayesian reasoning.

In Rousseau [10], the attention is drawn to Berger’s re-
view of error reporting from a frequentist perspective and
its connection to Bayesian thinking. The discussion raises
intriguing questions about the justification of Neyman-
Pearson procedures from an empirical frequentist viewpoint,
stimulating thought-provoking discussions around relevant
measures of uncertainty and reported errors.

The rejoinder [2] provides valuable insights from promi-
nent researchers who respond to specific comments and ob-
servations. Their contributions further enrich the discussions
on empirical error, precision in defining frequentism, and
empirical frequentist targets in multiple testing scenarios.

3. RESEARCH ARTICLES
In addition to the discussion paper, this issue also features

a diverse range of research articles that explore Bayesian and
frequentist inferences in various statistical domains.

Porwal and Raftery [8] talk about Bayesian model av-
eraging (BMA), which accounts for model uncertainty in
statistical inference tasks. The authors compare eight dif-
ferent model space priors and three adaptive parameter pri-
ors in BMA for variable selection in linear regression mod-
els. They assess the performance of these prior specifica-
tions for various statistical tasks, including parameter es-
timation, interval estimation, inference, point and interval
prediction, through extensive simulation studies based on
14 real datasets. The authors reveal that the beta-binomial
model space priors specified in terms of the prior probabil-
ity of model size performed the best on average for different
statistical tasks and datasets.

Vimalajeewa et al. [15] propose a method for wavelet
denoising of signals contaminated with Gaussian noise us-
ing level dependent shrinkage rules. The method is particu-
larly useful for denoising tasks when the signal-to-noise ratio
is low. Through simulations, the proposed method outper-
formed several standard wavelet shrinkage methods.

Gu et al. [4] focus on scalable marginalization of latent
variables in modeling correlated data. The authors intro-
duce innovative approaches, such as Gaussian processes and
sparse representation, to overcome the computational com-
plexity associated with large data sets. These techniques
have wide-ranging applications in various domains, includ-
ing molecular dynamics simulation, cellular migration, and
agent-based models.

Halder et al. [5] discuss double generalized linear mod-
els, which can vary the mean and dispersion across obser-
vations, and are applicable to many commonly used distri-
butions. However, there are challenges with model specifi-
cation when dealing with many covariates and dependent
data. To address these challenges, the authors propose a hi-
erarchical model with a spatial random effect, specifically
using a Gaussian process specification. They use Bayesian
variable selection with a continuous spike-and-slab prior on
fixed effects to address the problem of model specification.
They showcase the accuracy of their frameworks through
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synthetic experiments and apply them to analyze automo-
bile insurance premiums in Connecticut.

Maity and Basu [6] also focus on variable selection, an
important topic in data analytics applications. The authors
propose a Bayesian approach to selecting the model with
the highest posterior probability. The authors use simu-
lated annealing to perform this optimization over the model
space and show its feasibility in high-dimensional problems
through various simulation studies. They provide theoretical
justifications and discuss applications to high-dimensional
datasets. The proposed method is implemented in an R
package called sahpm and is available in R CRAN.

Shen et al. [11] compare tail probabilities between the
Bayesian and frequentist methods. The authors investigate
why the Bayesian estimator for tail probability is consis-
tently higher than the frequentist estimator and estab-
lish sufficient conditions for this phenomenon, using both
Jensen’s inequality and Taylor series approximations. These
analyses point to the convexity of the distribution function.
The authors bring up the example of a rainfall in Venezuela
that caused over 30,000 deaths, which was not captured by
simple frequentist extreme value techniques but was pre-
dicted by Bayesian inference using parameter uncertainty
and full available data.

Prothero et al. [9] discuss the under-examined aspect of
centering in data analysis, specifically in functional data
analysis (FDA). The authors suggest that centering along a
dimension other than the default can identify a useful mode
of variation not previously explored in FDA. They propose
a unified framework and new terminology for centering op-
erations, as well as a series of diagnostics for determining
the best choice of centering for a given dataset. The authors
clearly demonstrate the intuition behind and consequences
of each centering choice through informative graphics and
explore the application of their diagnostics in several FDA
settings. The article also addresses ambiguities in matrix
orientation and nomenclature.

Shen et al. [12] consider the envelope model, a dimension
reduction method for multivariate linear regression that has
gained attention for its modeling flexibility and improved
estimation and prediction efficiency. The authors incorpo-
rate the partial response envelope model and the simultane-
ous envelope model into a Bayesian framework and propose
a novel Bayesian simultaneous partial envelope model that
addresses some of the limitations of both approaches. The
method has the flexibility of incorporating prior information
and enables coherent quantification of all modeling uncer-
tainty through the posterior distribution of model parame-
ters. A block Metropolis-within-Gibbs algorithm for Markov
chain Monte Carlo sampling from the posterior is developed.

Thornton et al. [13] study approximate confidence dis-
tribution computing (ACDC), which is a likelihood-free in-
ference method within a frequentist framework that pro-
vides frequentist validation for computational inference in
problems with unknown or intractable likelihoods. The main

theoretical contribution of this work is the identification of
a matching condition necessary for frequentist validity of
inference from this method, connecting Bayesian and fre-
quentist inferential paradigms. The authors present a data-
driven approach to drive ACDC in both Bayesian or fre-
quentist contexts, using a data-dependent proposal function
that is general and adaptable to many settings. The ACDC
development does not require to use a sufficient statistic,
sidestepping a constraint for making a valid inference in an
Approximate Bayesian Computing (ABC) method. The pa-
per also includes numerical studies to empirically validate
the theoretical results and suggests instances where ACDC
outperforms the ABC methods.

Dey et al. [3] introduce the use of graphical Gaussian
processes for modeling multivariate spatial data, which is
an area that has seen significant growth and usage in spatial
data science. While much of the literature has focused on a
single or few spatially dependent outcomes, recent attention
has been given to modeling and inference for a large number
of outcomes. The focus of the article is on scalable graphical
models that exploit the notion of conditional independence
among a large number of spatial processes to enable fully
model-based Bayesian analysis.

4. REMARK
We hope that this special issue will inspire researchers

to further explore the fascinating bridges between frequen-
tism and Bayesianism, and simulate further developments of
novel methodologies to advance statistics and data science.
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