
The New England Journal of Statistics in Data Science Volume 2, 339–356 (2024)
DOI: https://doi.org/10.51387/23-NEJSDS49

Sparse Estimation in Finite Mixture of Accelerated Failure Time
and Mixture of Regression Models with R Package fmrs

Farhad SHOKOOHI

Abstract
Variable selection in large-dimensional data has been extensively studied in different settings over the past decades.

In a recent article, Shokoohi et. al. [29, DOI:10.1214/18-AOAS1198] proposed a method for variable selection in finite
mixture of accelerated failure time regression models for studies on time-to-event data to capture heterogeneity within
the population and account for censoring. In this paper, we introduce the fmrs package, which implements the variable
selection methodology for such models. Furthermore, as a byproduct, the fmrs package facilitates variable selection in finite
mixture regression models. The package also incorporates a tuning parameter selection mechanism based on component-
wise bic. Commonly used penalties, such as Least Absolute Shrinkage and Selection Operator, and Smoothly Clipped
Absolute Deviation, are integrated into fmrs. Additionally, the package offers an option for non-mixture regression models.
The C language is chosen to boost the optimization speed. We provide an overview of the fmrs principles and the strategies
employed for optimization. Hands-on illustrations are presented to help users get acquainted with fmrs. Finally, we apply
fmrs to a lung cancer dataset and observe that a two-component mixture model reveals a subgroup with a more aggressive
form of the disease, displaying a lower survival time.

keywords and phrases: Feature selection, Penalized likelihood, The EM algorithm, Survival model, Lung Cancer.

1. INTRODUCTION
Over the last two decades, the variable selection prob-

lem has been the center of attention in many research areas
due to the surge of high-dimensional data resulting from ad-
vances in modern technologies. A recent study in epigenetics
by The Cancer Genome Atlas network on the relationship
between the survival time of ovarian cancer patients and
their dna methylation profile of genomic features, for in-
stance, has a complex structure with 396 observations and
at least 9,000 covariates. Approximately 28% of the data
are right censored and there are some signs of heterogeneity.
These data motivated the development of new methodolo-
gies for capturing possible heterogeneity while accounting
for right censoring in the finite mixture of accelerated fail-
ure time regression (fmaftr) models [29]. Because of the
novelty of this research, there was no software package to be
used in such situations. Thus, the fmrs package aims to pro-
vide a tool for variable selection and estimation in fmaftr.
As a byproduct, variable selection in the finite mixture of
regression (fmr) models [24] can be carried out using this
package. This is because the likelihood of fmr is propor-
tional to that of fmaftr when all observations are actually
failure times. For ease of reference, we use the term “fmrs”
to refer to both fmaftr and fmr hereafter, hence the name
of the fmrs package.

There are several packages that focus on estimation and
inference in finite mixture models. The mixtools package [2]

provides a collection of R functions for fitting univariate
and multivariate finite mixture models, primarily focusing
on two-component mixture models without covariates. It
covers parametric, nonparametric, and Bayesian approaches
in mixture models. The EMMIXuskew package [21] esti-
mates the parameters of finite mixtures of unrestricted mul-
tivariate skew-t distributions. The mixsmsn package [26] es-
timates the parameters of finite mixture models with com-
ponents belonging to the class of scale mixtures of the skew-
Normal distribution. The FlexMix package [13] performs
parametric inference in finite mixture models, including con-
comitant variable models and varying and constant parame-
ters for the component-specific generalized linear regression
models. The CAMAN package [28] focuses on the analy-
sis of finite semiparametric mixtures. The CensMix package
[27] employs parameter estimation in censored linear regres-
sion models, where random errors follow a finite mixture of
Normal or Student-t distributions.

For Bayesian approaches to fitting mixture models, there
are several packages available, such as BayesMixSurv [23],
BayesH [30], BayesCR [11], Ultimixt [18], and CUB [15],
among others.

Some packages focusing on model-based clustering, un-
supervised, supervised, and semi-supervised classification
include mclust [10], GMCM [5], and Rmixmod [20]. The
GLDEX package [32] considers fitting the mixture of gen-
eralized Lambda distributions. The MitISEM package [1]
analyzes data assuming a mixture of Student-t distribu-

339

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS49

340 F. Shokoohi

tions using the Importance Sampling weighted expectation–
maximization (EM) algorithm. The MixGHD [33] deals with
the mixture of generalized Hyperbolic distributions, provid-
ing results for model-based clustering, classification, and dis-
criminant analysis. When dealing with missing values, the
MixAll package [16] offers algorithms and methods for fit-
ting parametric mixture models to mixed data. The SM-
NCensReg package [12] implements right, left, or interval-
censored regression models under the family of scale mixture
of Normal distributions, including Normal, Student-t, Pear-
son VII, Slash, or Contaminated Normal.

In addition to mixture models, there are approaches fo-
cusing on aft regression and semi-parametric survival mod-
els. For example, authors in [17] reviewed a semi-parametric
aft model for the analysis of right censored data, and the
spsurv package [25] provides tools for semi-parametric sur-
vival analysis.

Lastly, for aft models with unspecified error distribu-
tion, the aftgee package [8] is available and can provide ro-
bust solutions when parameter interpretability is not the
main concern.

For a comprehensive list of packages that focus on cluster
analysis and finite mixture models, refer to https://CRAN.
R-project.org/view=Cluster.

To the best of our knowledge, there is currently no pack-
age available for variable selection in finite mixture of ac-
celerated failure time regression models. The only package
that focuses on variable selection in fmr models, although
without censoring, is fmrlasso by [31]. However, this pack-
age is limited to the Least Absolute Shrinkage and Selection
Operator (lasso) penalty and common tuning parameter.
The package is implemented using R as the base code and
functions. It is worth noting that packages written in R are
often, if not always, less computationally efficient compared
to those written in C for the same purpose. This inefficiency
becomes more pronounced when analyzing large datasets.

There are several reasons why we have chosen to develop
another software package for mixture models. Firstly, most
of the previously mentioned packages primarily focus on
non-regression mixture models. Secondly, with the excep-
tion of fmrlasso, none of them provide variable selection
capabilities specifically for fmrs. Thirdly, none of the ex-
isting implementations address the case when the data are
censored. Apart from these reasons, many of the mentioned
packages are developed for specific applications and lack the
flexibility to choose different subsets of variables for differ-
ent components of the mixture model. Our package has been
designed to address this limitation, allowing the inclusion of
pre-specified subsets of covariates in the model. Addition-
ally, our package offers the option for non-mixture regression
as well.

To ensure standardized objects, the fmrs package is de-
signed using S4 classes and methods [6, 7] and provides stan-
dard outputs. While S3 is simpler and easier to handle, S4 is
a formal object-oriented system that allows for dispatching

on multiple arguments and provides formal class definitions
with helper functions for defining generics and methods.
As all the base functions are implemented in C, the fmrs
package offers reasonable speed. In this paper, all computa-
tions were performed using version 2.0.1 of the fmrs package
and version 4.3.0 of R. Updates and future releases of the
latest version of the fmrs package will be available on the
Bioconductor - Open Source Software for Bioinformatics,
at https://bioconductor.org/packages/fmrs/. An up-to-date
version of this paper is also included as a vignette within the
package.

The remainder of this paper is organized as follows. In the
subsequent sections, we provide the theoretical background
of fmrs, including estimation and variable selection meth-
ods. We catalog the functions, penalties, distributions, as
well as a comprehensive list of arguments and controls im-
plemented in the package. Furthermore, we offer illustrative
guidelines on how to use the fmrs package by employing sim-
ulated datasets and comparing it with competing methods.
We then present a real data analysis conducted on patients
with lung cancer. Finally, we provide concluding remarks
and outline the roadmap for future extensions of the fmrs
package.

2. MODELS AND METHODS
We consider sparse estimation, i.e., estimation and vari-

able selection, in two families of mixture models: fmaftr

and fmr. We briefly describe each of these models and then
present maximum likelihood estimation (mle) and maxi-
mum penalized likelihood estimation (mple).

2.1 Finite Mixture of Accelerated Failure Time
Regression Models

Let X be the survival time with support X ⊂ R
+ and

let Z = (Z1, . . . , Zd)
� ∈ R

d be a vector of covariates that
may have an effect on X. Define T = min{Y,C}, where
Y = logX and C is the logarithm of the censoring time,
which is assumed to be noninformative and independent of
X. Additionally, we use δ to denote the censoring indicator,
i.e., δ = 0 if the time is censored. It is important to note that
we do not directly observe X (or equivalently Y); instead,
the observed data are (T, δ).

We say V = (T, δ,Z) follows a finite mixture of aft

regression models of order K if the conditional density of
(T, δ) given Z = z has the form:

f∗(t, δ; z,Ψ) =

K∑
k=1

πk[f(t; θk(z), σk)]
δ[S(t; θk(z), σk)]

1−δ

× [fC(t)]
1−δ[SC(t)]

δ. (2.1)

Here, the πks (0 < πk < 1, with
∑K

k=1 πk = 1) are the
mixing probabilities, and fC(.) and SC(.) are the density
and survival functions of C, respectively. Note that f(.)

https://CRAN.R-project.org/view=Cluster
https://CRAN.R-project.org/view=Cluster
https://bioconductor.org/packages/fmrs/

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 341

and S(.) are the density and survival functions of Y , where
θk(z) = h(β0k + z�βk). In this equation, h(.) is a known
link function, β0k and βk = (βk1, βk2, . . . , βkd)

� are the in-
tercept and regression coefficients, respectively, and σk is a
dispersion parameter.

It is worth noting that for each component of the mixture
specified in (2.1), say the kth component, we have:

Y = logX = h(β0k + z�βk) = β0k + z�βk + σkε.

Here, ε has a suitable distribution such as standard nor-
mal, extreme value, generalized extreme value, or logistic.
A common aft model in survival analysis is based on the
Log-Normal distribution [19] in which ε ∼ N(0, 1).

The vector of all parameters is:

Ψ = (β01, . . . , β0K ,β1, . . . ,βK , σ1, . . . , σK , π1, . . . , πK−1)
�,

which has a length of d∗ = K(d+3)−1, increasing with the
order of the mixture.

Under the assumption of noninformative censoring,

f∗(t, δ; z,Ψ)∝
∑K

k=1
πk[f(t; θk(z), σk)]

δ[S(t; θk(z), σk)]
1−δ.

(2.2)

2.2 Finite Mixture of Regression Models
Let Y be the response variable, and let Z =

(Z1, . . . , Zd)
� be a vector of covariates that may have an

effect on Y . We say that (Y,Z) follows an fmr model of
order K [24] if the conditional density of Y given z has the
form:

f(y; z,Ψ) =
∑K

k=1
πkf(y; θk(z), σk). (2.3)

It should be noted that for a given sample when all the
observations are failure times, i.e., there is no censoring (δi =
1), the density f∗(t, δ; z,Ψ) in (2.2) is proportional to the
density of a finite mixture of regression models. Therefore,

f∗(y; z,Ψ) ∝ f∗(t, δ = 1; z,Ψ). (2.4)

As a result, the mle of parameters of the fmr model is the
same if we use the finite mixture of aft regression model
with no censoring. Therefore, the fmrs package can also be
used to analyze data using the fmr model.

3. MAXIMUM LIKELIHOOD ESTIMATION
IN FMRS

The log-likelihood of FMRs is given as

�n(Ψ) =
∑n

i=1
log

∑K

k=1
πk [f(ti; θk(zi), σk)]

δi

[S(ti; θk(zi), σk)]
1−δi . (3.1)

The expectation–maximization (EM) algorithm is often
used in the mixture of distributions to estimate model pa-
rameters. The complete log-likelihood function is then given
as

�cn(Ψ) =
∑n

i=1

∑K

k=1
uik

[
log πk + log

{
[f(ti; θk(zi), σk)]

δi

[S(ti; θk(zi), σk)]
1−δi

}]
,

where uik is the latent variable indicating the membership
of the ith individual to kth component of fmrs [29]. Having
established the complete log-likelihood function, we follow
E- and M-step.

In the E-step, τ (m)
ik = E

[
uik|Ψ(m), V1, . . . , Vn

]
is the con-

ditional expectation of the unobserved variable uik, where
Vi = (Ti, δi,Zi), and is computed as

τ
(m)
ik =

π
(m)
k

[
f(ti; θ

(m)
k (zi), σ

(m)
k)

]δi [
S(ti; θ

(m)
k (zi), σ

(m)
k)

]1−δi

∑K
j=1 π

(m)
j

[
f(ti; θ

(m)
j (zi), σ

(m)
j)

]δi [
S(ti; θ

(m)
j (zi), σ

(m)
j)

]1−δi
.

(3.2)
The M-step follows by maximizing Q(Ψ;Ψ(m)) using the

updated π
(m)
k =

∑n
i=1 τ

(m)
ik /n, where

Q(Ψ;Ψ(m)) =
∑n

i=1

∑K

k=1
τ
(m)
ik log π

(m)
k

+
∑n

i=1

∑K

k=1
τ
(m)
ik

[
δi log f(ti; θk(z), σk)

+ (1− δi) logS(ti; θk(z), σk)
]
. (3.3)

Depending on the form of the sub-distribution, a numerical
method may be required to obtain the updated estimates of
Ψ. For the mixture of Log-Normal aft and the mixture of
Normal models, the M-step of the algorithm has a closed-
form solution, as developed below.

3.1 M-Step for Maximizing Q(.) Function in
the Mixture of Normal and Mixture of
AFT Log-Normal Distributions

Let τ
(m)
k = diag

{
τ
(m)
ik : i = 1, . . . , n

}
, k = 1, . . . ,K. De-

note the pseudo-survival times as:

t
(m)
ik = δiti + (1− δi)

{
z�
i β

(m)
k + σ

(m)
k A(ω

(m)
ik)

}
, (3.4)

where ω(m)
ik = (ti − z�

i β
(m)
k)/σ

(m)
k , A(ω) = φ(ω)/(1−Φ(ω)),

and φ(.) and Φ(.) are the density and cumulative distri-
bution functions of N(0, 1), respectively. For each k =

1, 2, . . . ,K, let T
(m)
k = (t

(m)
1k , t

(m)
2k , . . . , t

(m)
nk)�, and let Z =

(z1, z2, . . . , zn)
� be the n × d dimensional design matrix.

The updated estimates of the parameters for the mixture of
Log-Normal aft models (when t is actually the logarithm
of t) and the mixture of Normal models for k = 1, 2, . . . ,K
are given by

β
(m+1)
k =

(
Z�τ

(m)
k Z

)−1

Z�τ
(m)
k T

(m)
k , (3.5)

342 F. Shokoohi

and

σ
(m+1)
k =

√√√√√
∑n

i=1 τ
(m)
ik (t

(m)
ik − z�

i β
(m)
k)2

n∑
i=1

τ
(m)
ik

[
δi + (1− δi){A(ω

(m)
ik)[A(ω

(m)
ik)− ω

(m)
ik]}

] .
(3.6)

3.2 M-Step for Maximizing Q(.) Function in
Mixture of AFT Weibull Distributions

There is no closed-form solution for parameter estima-
tion in the Weibull distribution. Hence, we use a numerical
method such as the Newton-Raphson algorithm [29]. The
iterative algorithm is basically given as

βnew = βold − I−1(βold) U(βold),

where U and I are the first and second derivative functions
of the log-likelihood, respectively, evaluated at βold.

Let Y ∗ follow a Weibull distribution. Then y = log y∗

follows the extreme value distribution with the probability
density function (pdf) and cumulative distribution function
(cdf) given by

f(y;x�β, σ)=
1

σ
exp

(
y − x�β

σ

)
exp

(
− exp

(
y − x�β

σ

))
and

F (y;x�β, σ) = 1− exp

(
− exp

(
y − x�β

σ

))
,

respectively. For the kth component, we have

U(β0k;β
old
k ,y) = −

n∑
i=1

toldik δi
σold
k

+

n∑
i=1

toldik

σold
k

e

(
yi−x�

i βold
k

σold
k

)
,

and

U(βjk;β
old
k ,y) = −

n∑
i=1

toldik δi
σold
k

xij +

n∑
i=1

toldik

σold
k

xije

(
yi−x�

i βold
k

σold
k

)
,

for j = 1, . . . , d. For the second derivatives, we have

I(βjk, βrk;β
old
k ,y) = −

n∑
i=1

toldik

σold
k

xijxir exp

(
yi − x�

i β
old
k

σold
k

)

and

I(βjk, β0k;β
old
k ,y) = −

n∑
i=1

toldik

σold
k

xij exp

(
yi − x�

i β
old
k

σold
k

)
,

for j, r = 1, . . . , d, and

I(β0k, β0k;β
old
k ,y) = −

n∑
i=1

toldik

σold
k

exp

(
yi − x�

i β
old
k

σold
k

)
.

Algorithm 1 in Appendix A provides instructions for ob-
taining mles and Ridge estimators.

It is widely acknowledged that finite mixture models,
specifically finite mixtures of regression models, are iden-
tifiable up to a permutation [14, 9]. As a consequence, in
practical applications, it is common for the estimated com-
ponents to deviate from the order of the simulation setup or
the true order in the population (which remains unknown).
To establish the correct order, it becomes necessary to pos-
sess some knowledge about the regression coefficients’ loca-
tions and select initial values accordingly. When analyzing
real data, one possible approach to rearranging the compo-
nents is to consider the order of their grand means.

4. VARIABLE SELECTION IN FMRS
Having the current estimates Ψ(m), the penalized Q(.)

function is given as

Q(Ψ;Ψ(m)) =
∑n

i=1

∑K

k=1
τ
(m)
ik log π

(m)
k (4.1)

+
∑n

i=1

∑K

k=1
τ
(m)
ik

[
δi log fY (ti; θk(z), σk)

+ (1− δi) logSY (ti; θk(z), σk)
]
− pλn(Ψ),

where the penalty is replaced by the local quadratic approx-
imation

pλn(Ψ) ≈ pλn(Ψ;Ψ(m)) = n

K∑
k=1

π
(m)
k

d∑
j=1

{
pλn,k

(β
(m)
kj)

+
p′λn,k

(β
(m)
kj)

2β
(m)
kj

(
β2
kj − (β

(m)
kj)2

)}
.

The maximum penalized likelihood estimator (mple), when
the sub-distributions are log-normal, is then given as

β
(m+1)
k =

(
Z�τ

(m)
k Z +Σk(β

(m)
k)

)−1

Z�τ
(m)
k T

(m)
k , (4.2)

where

Σk(β
(m)
k)=diag

{
nπ

(m+1)
k p′λn,k(β

(m)
kj)/β

(m)
kj : j=1, 2, . . . , d

}
and σ

(m+1)
k is equal to (3.6) when replacing (4.2) in (3.6).

Having specified a threshold, the elements of β
(m+1)
k that

fall below the threshold will be set to zero, which leads to
variable selection [29]. Note that for Weibull, the NR algo-
rithm must be carried out in the M-step of the EM algo-
rithm. Algorithm 3 in Appendix A provides instructions to
obtain mples.

It is known that the fitted model of fmrs depends on the
choice of initial values. Furthermore, it is argued that the
mle could be a set of good initial values to obtain mples.
The following penalty functions are implemented in the fmrs
package:

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 343

• lasso: pn(θ;λ)
n2 = λ|θ|;

• adaptive lasso: pn(θ;λ)
n2 = λw|θ|, for some (possibly

random) known weights w;
• The Minimax Concave Penalty (mcp):

p′
n(θ;λ)
n2 = sgn(θ) (aλ−|θ|)+

a ;
• Smoothly Clipped Absolute Deviation (scad):

p′
n(θ;λ)
n2 = sgn(θ)

{
λI(|θ| ≤ λ) + (aλ−|θ|)+

a−1 I(|θ| > λ)
}

,

where p′n(·;λ) is the first derivative of penalty with respect
to θ and (x)+ = max{0, x}.

4.1 Choice of Tuning Parameters
Two approaches are available for choosing tuning pa-

rameters: the common approach and the component-wise
approach. If the common tuning parameter approach is
adopted, one can choose the value that minimizes the bic

from a set of candidates within the interval (0, λmax], where
λmax is a pre-specified value. This approach is suitable for
datasets with sufficiently large sample sizes, and it reduces
the computational burden when a common tuning parame-
ter is used.

On the other hand, if we adopt the component-wise ap-
proach, we will search for the optimal values (λ1, . . . , λK)
from a set of candidate values derived from the interval
(0, λmax]. We choose the combination that minimizes the
component-wise bic, which is defined below.

Let τ̃ik be the mle in (3.2). For a given k, the component-
wise log-likelihood is defined as

�̃nk(Ψk) =
∑n

i=1
τ̃ik log

{
[fY (ti, θk(zi), σk)]

δi

[SY (ti, θk(zi), σk)]
1−δi

}
. (4.3)

Let Ψ̂k(λk) be the mple under (4.3) for a given λk; i.e.,

Ψ̂k(λk) = argmax
Ψk

[
�̃nk(Ψk)− nπk

∑d

j=1
pλk

(|βjk|)
]
.

We define the component-wise bic as

bick(λk) = −2�̃nk(Ψ̂k(λk)) + DF(λk)× lognk, (4.4)

where nk =
∑n

i=1 τ̃ik, DF(λk) =
∑d

j=1 I(β̂kj �= 0) is the
number of estimated non-zero coefficients, and �̃nk is eval-
uated at Ψ̂k(λk). The component-wise tuning parameter is
then chosen as

λ̂k = argminλk∈(0,λmax]bick(λk), for k = 1, . . . ,K.

By choosing a grid of values in the interval (0, λmax] with a
length of L, the total number of searches required to find K
tuning parameters is reduced to K×L. In contrast, using the
non-component-wise approach would require LK searches to
find K tuning parameters. By adopting the component-wise
approach, we significantly reduce the number of searches.

It is important to note that although this approach has
not been theoretically studied, our simulations have shown
promising results. Algorithm 2 in Appendix A provides in-
structions for obtaining the tuning parameters.

4.2 Choice of Mixture Order
So far, we assumed that the order of fmrs is known a pri-

ori. However, in many real applications, such information is
not available. For order selection in mixture model setups,
information criteria such as bic have been extensively stud-
ied [24, 14]. In fmrs, we suggest using bic for order selection.
Consider the possible values K ∈ {1, . . . ,Kmax} for the or-
der of mixture, where Kmax is a pre-specified upper bound.
The optimal order, denoted as K̂, is chosen as the one that
minimizes the quantity

bic
∗(K) = −2�n(Ψ̂n,K)

+

[
(3K − 1) +

∑K

k=1

∑d

j=1
I(β̂jk �= 0)

]
logn,

where �n in (3.1) is evaluated at Ψ̂n,K , the vector of esti-
mated parameters with order K. Note that this approach
has yet to be theoretically studied. In simulation studies,
however, promising results are observed.

5. PRELIMINARIES AND MAIN
FUNCTIONS

In the following subsections, we present comprehensive
lists of all available arguments and provide detailed descrip-
tions of the main functions in the fmrs package.

5.1 Preliminaries
The command ‘help(package = “fmrs”)’ returns a list of

all available arguments in fmrs. The basic functions are im-
plemented in the C programming language, which greatly
improves memory management and package speed. The
package utilizes S4 objects and methods. Table 1 presents
a list of all S4 classes along with their descriptions. Table 2
provides a comprehensive list of S4 methods and functions,
including their arguments and associated default values. Ta-
ble 3 displays a list of arguments, controls, and notations,
along with their default values and descriptions. Currently,
the fmaftr supports Log-Normal and Weibull distribu-
tions, while the fmr includes the Normal distribution in
the package.

5.2 Description of the Main Functions
The fmrs package has two main classes and four main

functions. The classes are as follows:

• The fmrsfit class

The class fmrsfit is designed to store fitted models ob-
tained through mle and mple using the functions fmrs.mle
and fmrs.varsel. It stores various information such as the

344 F. Shokoohi

Table 1. List of S4 classes in the fmrs package.

class Slot Value Description
fmrsfit y A length-nobs numeric vector Response vector

delta A length-nobs numeric vector Censoring vector
x A dimension-nobs-ncov numeric matrix Covariates
nobs A length-one numeric vector Number of observations
ncov A length-one numeric vector Number of covariates
ncomp A length-one numeric vector Order of the mixture
coefficients A length-(ncov+1)-ncomp numeric matrix Fitted regression coefficients
dispersion A length-ncomp numeric vector Fitted dispersions
mixProp A length-ncomp numeric vector Fitted mixing proportions
logLik A length-one numeric vector Log-likelihood
BIC A length-one numeric vector Bayesian information criteria
nIterEMconv A length-one numeric vector Number of the EM algorithm iterations
disFamily A length-one character vector Name of sub-distributions
penFamily A length-one character vector Penalty function
lambPen A length-ncomp numeric vector Tuning parameters
lamRidge A length-one numeric vector Ridge tuning parameter
MCPGam A length-one numeric vector mcp’s extra tuning parameter
SICAGam A length-one numeric vector sica’s extra tuning parameter
model A length-one character vector Fitted model
fitted A dimension-nobs-ncomp numeric matrix Predicted values
residuals A dimension-nobs-ncomp numeric matrix Predicted residuals
weights A dimension-nobs-ncomp numeric matrix Predicted weights
activeset A dimension-(ncov+1)-ncomp matrix Parameters that must be active in model
selectedset A dimension-(ncov)-ncomp matrix Parameters selected via variable selection

fmrstunpar ncomp A length-one numeric vector Order of mixture
ncov A length-one numeric vector Number of covariates
lambPen A length-ncomp numeric vector Tuning parameters
MCPGam A length-ncomp numeric vector mcp’s extra tuning parameters
SICAGam A length-ncomp numeric vector sica’s extra tuning parameters
disFamily A length-one character vector Name of sub-distributions
penFamily A length-one character vector Penalty function
lamRidge A length-one numeric vector Ridge tuning parameter
model A length-one character vector Fitted model
activeset A dimension-(ncov+1)-ncomp matrix Parameters that must be active in model

Table 2. List of S4 methods and functions in the fmrs package.

Generic Name Description
fmrs.gendata Generates a dataset from FMRs under the specified setting.
fmrs.mle Performs mle and ridge regression for FMRs.
fmrs.tunsel Computes component-wise tuning parameters based on a bic for FMRs.
fmrs.varsel Performs variable selection and computes penalized mle for FMRs.
BIC Provides the estimated bic of an FMRs from an fmrsfit-class
coefficients Provides the estimated regression coefficients from the FMRs from an fmrsfit-class
dispersion Provides the estimated dispersions of the fitted FMRs from an fmrsfit-class
fitted Provides the fitted response of the fitted FMRs from an fmrsfit-class
logLik Provides the estimated logLikelihood of an FMRs from an fmrsfit-class
mixProp Provides the estimated mixing proportions of an FMRs from an fmrsfit-class
ncomp Provides the order of an FMRs from an fmrsfit-class
ncov Provides the number of covariates of an FMRs from an fmrsfit-class
nobs Provides the number of observations in an FMRs from an fmrsfit-class
residuals Provides the residuals of the fitted FMRs from an fmrsfit-class
summary Displays estimated coefficients, dispersions, and mixing proportions or selected tuning parameters
weights Provides the weights of fitted observations for each observation under all components of an FMRs model

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 345

Table 3. List of arguments, controls and notations in the fmrs package.

Name Default Description
Arguments
y Response vector
delta Censoring indicator vector
x Design matrix (covariates)
nObs A numeric value represents the number of observations (sample size)
nComp 2 A numeric value represents the order of mixture in FMRs
nCov A numeric value represents the number of covariates in design matrix
mixProp A vector of mixing proportions which their sum must be one
rho A numeric value in [-1, 1] which represents the correlation between covariates of design matrix
dispersion A vector of positive values for dispersion parameters of sub-distributions in FMRs
coeff A vector of length nComp*(nCov+1) of all regression coefficients including intercepts.
umax A numeric value that represents the upper bound in Uniform distribution for censoring
disFamily "lnorm" A sub-distribution family. The choices are "norm" for fmr, "lnorm" for fmaftr with Log-Normal

sub-distribution,"weibull" for fmaftr with Weibull sub-distribution.
Controls
conveps 1e-08 A positive number for avoiding NaN in computing divisions
convepsEM 1e-08 A positive value for threshold of convergence in the EM algorithm
convepsNR 1e-08 A positive value for threshold of convergence in the Newton-Raphson algorithm
gamMixPor 1 Proportion of mixing parameters in the penalty function. The value must belong to the interval [0, 1].

If gamMixPor = 0, the penalty structure is no longer a mixture.
initCoeff A vector of initial values for coefficients including intercepts
initmixProp A vector of initial values for the proportion of components
initDispersion A vector of initial values for standard deviations
lambPen A vector of lambda for penalty
lambRidge 0 Lambda for the ridge penalty or Elastic Net
lambMCP Extra tuning parameter for the mcp penalty
lambSICA 5 Extra tuning parameter for the sica penalty
LambMin 0.01 A positive value for the minimum value of tuning parameters
LambMax 1.0 A positive value for the maximum value of tuning parameters
nLamb 100 An integer for the number of tuning parameters between LambMin and LambMax
nIterEM 400 Maximum number of iterations for the EM algorithm
nIterNR 2 Maximum number of iterations for the Newton-Raphson algorithm
penFamily "lasso" The penalty used in variable selection method. The available options are "lasso", "adplasso", "mcp",

"scad", "sica" and "hard".
NRpor 2 A positive integer for the maximum number of searches in the Newton-Raphson algorithm
activeset A 0-1 matrix that shows which coefficients must be active in the model. This could be an oracleset

as well.
cutpoint 0.05 A positive integer for setting the estimates to zero if they are too small.
Notations
FMRs Finite Mixture of Regression Models including fmaftr and FMR
fmaftr Finite Mixture of Accelerated Failure Time Regression
FMR Finite Mixture of Regression

response variable, design matrix, censoring information, pa-
rameter estimates, fitted values, posterior probabilities, and
evaluation criteria like log-likelihood and bic. The R func-
tion summary provides a standard output of this information.

• The fmrstunpar class

The class fmrstunpar is introduced to store tuning param-
eters obtained using the component-wise bic approach in
(4.4), which can be utilized in the fmrs.varsel function.

The package introduces 17 functions, with four of them

being the main functions. The arguments for these func-
tions are described in Tables 1-3. Below, we provide a brief
introduction to these functions.

• The fmrs.gendata function

The R function fmrs.gendata is used to simulate a dataset
from fmrs. It has the following form:
fmrs.gendata(nObs, nComp, nCov, coeff,
dispersion, mixProp, rho, umax, disFamily, ...),
where nObs, nComp, nCov, coeff, dispersion, mixProp and

346 F. Shokoohi

disFamily represent the sample size, the order of fmrs, the
number of regression covariates, the regression coefficients,
the dispersions of errors, the mixing proportions, and the
distribution of components of fmrs, respectively.

It is important to note that rho (i.e., ρ) is used in the
variance-covariance matrix to simulate the design matrix X
from a multivariate Gaussian distribution with mean 0 and
variance-covariance matrix ΣX = (ρ|l−m|). The right censor-
ing times are generated using a Uniform distribution with
lower and upper bounds of 0 and umax, respectively. Depend-
ing on the choice of disFamily, the function fmrs.gendata
generates a dataset from fmaftr or fmr. The default
value is disFamily = "lnorm". If disFamily = "norm",
the function ignores the censoring parameter umax and gen-
erates a dataset from fmr with Normal sub-distributions.
On the other hand, if disFamily = "lnorm" or disFamily
= "weibull", the function produces a dataset from fmaftr

with Log-Normal or Weibull sub-distribution. Consequently,
fmrs.gendata returns a list containing a vector of responses
y, a matrix of covariates x, a vector of censoring indicators
delta, and the name of the sub-distributions of the mixture
model.

• The fmrs.mle function

The C function fmrs.mle returns the mle for the parame-
ters of fmrs. It has the following form:
fmrs.mle(y, delta, x, nComp, disFamily,
initCoeff, initDispersion, initmixProp,
oracleset, ...).
Here, delta, initCoeff, initDispersion, initmixProp,
and oracleset represent the censoring indicators, the ini-
tial values for regression coefficients, the dispersions, and
the mixing proportions, and the set of oracle covariates that
should be included in each component of the mixture model,
respectively. The remaining arguments in fmrs.mle are con-
trolling parameters.

This function returns a fitted fmrs model that includes
the mle of regression parameters, standard deviations, and
mixing proportions based on the EM algorithm. The out-
put also includes the log-likelihood and bic for the fitted
model, the maximum number of iterations used in the EM
algorithm, and the type of the fitted fmrs (i.e., FMAFTR or
FMR). To perform Ridge regression, a positive value must be
chosen for lambRidge, which is the tuning parameter of the
Ridge penalty.

The default values for the arguments are as follows: nComp
= 2, disFamily = "lnorm", lambRidge = 0, nIterEM =
400, nIterNR = 2, conveps = 1e-08, convepsEM = 1e-
08, convepsNR = 1e-08, and NRpor = 2.

• The fmrs.tunsel function

The C function fmrs.tunsel is used to search for a data-
driven tuning parameter from a selected set of values. It has
the following form:

fmrs.tunsel(y, delta, x, nComp, disFamily,
initCoeff, initDispersion, initmixProp,
penFamily, lambRidge, oracleset, lambMCP,
lambSICA, LambMin, LambMax, nLamb, ...).
Here, penFamily, lambMCP, and lambSICA represent the
penalty function, the hyper-parameter for mcp, and the
hyper-parameter for sica penalty. Additionally, LambMin,
LambMax, and nLamb specify the minimum, maximum, and
the number of tuning parameters used to obtain the opti-
mal tuning parameter based on the component-wise tun-
ing parameter selection approach. The function returns an
fmrstunpar class.

The default values for the arguments are as follows:
disFamily = "lnorm", penFamily = "lasso", lambRidge
= 0, nIterEM = 400, nIterNR = 2, conveps = 1e-08,
convepsEM = 1e-08, convepsNR = 1e-08, NRpor = 2,
gamMixPor = 1, cutpoint = 0.05, LambMin = 0.01,
LambMax = 1, and nLamb = 100.

• The fmrs.varsel function

The C function fmrs.varsel is used to perform variable
selection (mple) for the parameters of fmrs. It has the fol-
lowing form:
fmrs.varsel(y, delta, x, nComp, disFamily,
initCoeff, initDispersion, initmixProp,
penFamily, lambPen, lambRidge, oracleset,
lambMCP, lambSICA, ...).
Here, lambPen represents the set of tuning parameters for
the penalty function. The function returns an fmrstfit
class that stores the values of mple for the regression pa-
rameters.

The default values for the arguments are as follows:
disFamily = "lnorm", penFamily = "lasso", lambRidge
= 0, nIterEM = 2000, nIterNR = 2, conveps = 1e-08,
convepsEM = 1e-08, convepsNR = 1e-08, NRpor = 2,
gamMixPor = 1, and cutpoint = 0.05.

• Additional functions

In addition to the main functions, we have introduced sev-
eral auxiliary functions to extract and report the results ob-
tained from the main functions. These functions are listed in
Table 2. One such example is the summary function, which
summarizes the results of all functions in a standard man-
ner.

6. THE FMRS PACKAGE IN ACTION
6.1 Example 1: FMAFTR Model with

Log-Normal Sub-Distributions
In order to illustrate the application of fmrs, we begin

by generating a dataset from an fmaft model. It is worth
noting that for a comprehensive simulation study, users can
refer to [29].

We generate the covariates from a multivariate normal
distribution with a dimension of 10 and a sample size of

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 347

500. The mean vector is set to 0, and the variance-covariance
matrix is Σ = (0.25|l−m|). Subsequently, we simulate time-
to-event data from a finite mixture of two components using
aft regression models with Log-Normal sub-distributions.
We load the necessary libraries and assign the parameters of
the model. The parameter values chosen for this simulation
are provided in the following code:

> library(fmrs); set.seed(1980)
> myk <- 2; myd <- 10; myn <- 500; myrho <- 0.25
> mydisp <- c(1,1); myu <- 40; mypi <- c(0.4,0.6)
> coeff1 <- c(2,2,-1,-2,1,2,0,0,0,0,0)
> coeff2 <- c(-1,-1,1,2,0,0,0,0,-1,2,-2)

One can use fmrs.gendata to generate data from an
fmaftr model as follows:

> dat <-
+ fmrs.gendata(nObs = myn, nComp = myk,
+ nCov = myd, mixProp = mypi,
+ coeff = c(coeff1, coeff2),
+ dispersion = mydisp, rho = myrho,
+ umax = myu, disFamily = "lnorm")

Regrettably, the use of R for random generation produces
distinct datasets across various machines and operating sys-
tems. Therefore, we have included alternative Python code
to ensure reproducibility.

With the simulated dataset in hand, we proceed to esti-
mate the mles of the model parameters using the fmrs.mle
function. It is worth noting that the initial values for the re-
gression parameters are generated from a standard normal
distribution.

> dat <-
+ list(y = as.numeric(unlist(read.csv(
+ paste0(PathData,'Ydata_1.csv'),header=TRUE))),
+ x = as.matrix(read.csv(
+ paste0(PathData,'Xdata_1.csv'),header=TRUE)),
+ delta = as.numeric(unlist(read.csv(
+ paste0(PathData,'Ddata_1.csv'),header=TRUE))))
> res.mle <-
+ fmrs.mle(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = rnorm(myk * myd + myk),
+ initDispersion = rep(1, myk),
+ initmixProp = rep(1 / myk, myk))
> summary(res.mle)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; 10 Covariates; 500 samples.

Coefficients:

Comp.1 Comp.2
Intercept 2.02454239 -1.060113719
X0 2.02532034 -0.941695429
X1 -0.96496554 1.021660992
X2 -2.00238318 1.874530674
X3 1.00386599 -0.039067909
X4 2.14597060 -0.073005941
X5 0.12657840 -0.002645082
X6 -0.13008430 -0.006336930
X7 0.09310156 -0.949417514
X8 0.03849414 1.932369807
X9 -0.01741908 -1.964006855

Dispersion:
Comp.1 Comp.2

1.019993 0.931589

Mixing Proportions:
Comp.1 Comp.2

0.4458544 0.5541456

LogLik: -779.0462; BIC: 1713.458

It is evident that the mles of the regression coefficients
are not equal to zero. As a result, the mle approach alone
cannot provide a sparse solution. To achieve sparsity, we uti-
lize the variable selection method developed by [29]. Once we
obtain the mles, the next step is to determine a set of suit-
able tuning parameters. This can be accomplished by em-
ploying the component-wise approach implemented in the
fmrs.tunsel function. However, in certain scenarios, it is
worthwhile to explore whether the common tuning parame-
ter approach yields superior results. This can be investigated
through data-driven simulation studies, for example.

> res.lam <-
+ fmrs.tunsel(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso", LambMin = 0.01,
+ LambMax = 1, nLamb = 100)
> summary(res.lam)
–––––––––––––––––––––-
Selected Tuning Parameters:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; adplasso Penalty;

Component-wise lambda:
Comp.1 Comp.2
0.0199 0.01

348 F. Shokoohi

We have utilized the mle estimates as initial values to
obtain the tuning parameters. In this phase, the same set
of values is employed to conduct variable selection with an
adaptive lasso penalty.

> res.var <-
+ fmrs.varsel(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso",
+ lambPen = slot(res.lam,"lambPen"))
> summary(res.var)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; 10 Covariates; 500 samples.

Coefficients:
Comp.1 Comp.2

Intercept 1.9592133 -1.0601621
X0 1.9748971 -0.9307360
X1 -0.8960131 1.0125806
X2 -1.9616150 1.8569027
X3 0.9668803 0.0000000
X4 2.1228268 0.0000000
X5 0.0000000 0.0000000
X6 0.0000000 0.0000000
X7 0.0000000 -0.9328832
X8 0.0000000 1.9244269
X9 0.0000000 -1.9519150

Selected Set:
Comp.1 Comp.2

X0 1 1
X1 1 1
X2 1 1
X3 1 0
X4 1 0
X5 0 0
X6 0 0
X7 0 1
X8 0 1
X9 0 1

Dispersion:
Comp.1 Comp.2

1.024904 0.9397894

Mixing Proportions:
Comp.1 Comp.2

0.4466108 0.5533892

LogLik: -782.0566; BIC: 1663.547

6.1.1 Common Tuning Parameters

If we desire to select a common tuning parameter,
there is no need to execute any additional functions after
fmrs.mle(.). Instead, we can employ a for-loop command
to search for the optimal fit and the common tuning parame-
ter using fmrs.varsel(.). The following code demonstrates
an example of this process.

> set.seed(1980)
> res.mle <-
+ fmrs.mle(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = rnorm(myk * myd + myk),
+ initDispersion = rep(1, myk),
+ initmixProp = rep(1 / myk, myk))
> summary(res.mle)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; 10 Covariates; 500 samples.

Coefficients:
Comp.1 Comp.2

Intercept 2.02454239 -1.060113719
X0 2.02532034 -0.941695429
X1 -0.96496554 1.021660992
X2 -2.00238318 1.874530674
X3 1.00386599 -0.039067909
X4 2.14597060 -0.073005941
X5 0.12657840 -0.002645082
X6 -0.13008430 -0.006336930
X7 0.09310156 -0.949417514
X8 0.03849414 1.932369807
X9 -0.01741908 -1.964006855

Dispersion:
Comp.1 Comp.2

1.019993 0.931589

Mixing Proportions:
Comp.1 Comp.2

0.4458544 0.5541456

LogLik: -779.0462; BIC: 1713.458

> BICmin <- 1e+22
> optLam <- 0
> Ctune <- seq(0.01, 1, length.out = 100)

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 349

> for (j in seq_along(Ctune)) {
+ holdfit <-
+ fmrs.varsel(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso",
+ lambPen = rep(Ctune[j], myk))
+ if (BIC(holdfit) < BICmin) {
+ BICmin <- BIC(holdfit)
+ optLam <- Ctune[j]
+ res.var <- holdfit
+ }
+ }
> summary(res.var)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; 10 Covariates; 500 samples.

Coefficients:
Comp.1 Comp.2

Intercept 1.9839202 -1.0592957
X0 2.0015958 -0.9319706
X1 -0.9248311 1.0128721
X2 -1.9919941 1.8565197
X3 1.0070240 0.0000000
X4 2.1402970 0.0000000
X5 0.0000000 0.0000000
X6 0.0000000 0.0000000
X7 0.0000000 -0.9320393
X8 0.0000000 1.9249533
X9 0.0000000 -1.9510538

Selected Set:
Comp.1 Comp.2

X0 1 1
X1 1 1
X2 1 1
X3 1 0
X4 1 0
X5 0 0
X6 0 0
X7 0 1
X8 0 1
X9 0 1

Dispersion:
Comp.1 Comp.2

1.025767 0.9402267

Mixing Proportions:
Comp.1 Comp.2

0.4460635 0.5539365

LogLik: -781.7193; BIC: 1662.872
> optLam
[1] 0.01

6.2 Example 2: FMR Model with Normal
Sub-Distributions

As mentioned in Section 2, the mle and mple of an fmr

model can be obtained by disregarding the censoring in the
fmaftr setting. We select the following parameters to gen-
erate the data from an fmr model.

By specifying "norm" for disFamily in fmrs.gendata,
we generate a dataset from an fmr model using the following
code:

> set.seed(1980)
> dat <-
+ fmrs.gendata(nObs = myn, nComp = myk,
+ umax = myu,coeff = c(coeff1, coeff2),
+ dispersion = mydisp, mixProp = mypi,
+ rho = myrho, disFamily = "norm", nCov = myd)

Similar to the above, we use Python to generate the data.

> set.seed(1980)
> dat <-
+ list(y = as.numeric(unlist(read.csv(
+ paste0(PathData,'Ydata_2.csv'),header=TRUE))),
+ x = as.matrix(read.csv(
+ paste0(PathData,'Xdata_2.csv'),header=TRUE)))

The mle of the fmr model parameters are obtained as
follows:

> res.mle <-
+ fmrs.mle(y = dat$y, x = dat$x,
+ disFamily = "norm", nComp = myk,
+ initCoeff = rnorm(myk * myd + myk),
+ initDispersion = rep(1,myk),
+ initmixProp = rep(1 / myk, myk))
> summary(res.mle)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Regression Models
2 Components; 10 Covariates; 500 samples.

Coefficients:
Comp.1 Comp.2

Intercept 1.949067724 -1.07600740
X0 1.828278272 -0.95309672
X1 -0.913203579 0.88183494
X2 -2.103336565 2.00573346

350 F. Shokoohi

X3 0.761163611 0.04434990
X4 2.085979948 -0.01370548
X5 -0.060527376 0.02220583
X6 -0.203188863 -0.04046472
X7 0.215037392 -0.99520378
X8 0.057290643 2.06305705
X9 -0.002688772 -1.97832175

Dispersion:
Comp.1 Comp.2

0.8960443 0.9867858

Mixing Proportions:
Comp.1 Comp.2

0.3693712 0.6306288

LogLik: -941.7167; BIC: 2038.799

The following code is used in selecting the component-
wise tuning parameters:

> res.lam <-
+ fmrs.tunsel(y = dat$y, x = dat$x,
+ disFamily = "norm", nComp = myk,
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso", LambMin = 0.01,
+ LambMax = 1, nLamb = 100)
> summary(res.lam)
–––––––––––––––––––––-
Selected Tuning Parameters:
–––––––––––––––––––––-
Finite Mixture of Regression Models
2 Components; adplasso Penalty;

Component-wise lambda:
Comp.1 Comp.2
0.01 0.01

Having selected the tuning parameters, we perform vari-
able selection in fmr as follows:

> res.var <-
+ fmrs.varsel(y = dat$y, x = dat$x,
+ disFamily = "norm", nComp = myk,
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso",
+ lambPen = slot(res.lam, "lambPen"))
> summary(res.var)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Regression Models
2 Components; 10 Covariates; 500 samples.

Coefficients:
Comp.1 Comp.2

Intercept 1.9452912 -1.0864495
X0 1.8117090 -0.9395877
X1 -0.8956017 0.8635743
X2 -2.1003460 2.0107557
X3 0.7569757 0.0000000
X4 2.0638455 0.0000000
X5 0.0000000 0.0000000
X6 -0.1142514 0.0000000
X7 0.1386943 -0.9973441
X8 0.0000000 2.0545577
X9 0.0000000 -1.9664867

Selected Set:
Comp.1 Comp.2

X0 1 1
X1 1 1
X2 1 1
X3 1 0
X4 1 0
X5 0 0
X6 1 0
X7 1 1
X8 0 1
X9 0 1

Dispersion:
Comp.1 Comp.2

0.8996044 0.9968098

Mixing Proportions:
Comp.1 Comp.2

0.3668194 0.6331806

LogLik: -943.7634; BIC: 1999.39

6.3 Example 3: Comparison with the Existing
Methods

We conducted a simulation study to compare the perfor-
mance of fmrs with existing methods. Currently, fmrlasso is
the only method available that offers a variable selection in
fmr, and there is no package providing variable selection in
fmaftr.

In our simulation study, we consider the model yi = xiβ+

ei, i = 1, . . . , n, where ei
iid∼ N(0, σ2). For the fmr model,

we set K = 2, n = 500, d = 5, π = [0.4, 0.6], ρ = 0.25,
σ = [1, 1], β1 = [−1, 2, 0, 0,−1, 2]�, β2 = [2, 1, 1, 0, 0, 0]�.

We generated r = 100 datasets and evaluated the per-
formance. The simulation results are presented in Table 4.
The results demonstrate that fmrs outperforms fmrlasso in
terms of correctly identifying zero or non-zero coefficients.
The codes are given in the supplementary materials.

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 351

Table 4. Percentage of correctly identified regression coefficients as zero or non-zero.

Package β11 β21 β31 β41 β51 β12 β22 β32 β42 β52

fmr 100 100 88 89 89 100 66 77 100 100
fmrlasso 100 100 63 55 54 100 47 61 100 100

It is worth noting that fmrs significantly outperforms fm-
rlasso in terms of computational speed. In the aforemen-
tioned simulation study, where bic was used, fmrs was found
to be over 20 times faster than fmrlasso. Moreover, un-
like fmrlasso, fmrs provides variable selection capabilities
for various penalties such as mcp, scad, and others. Addi-
tionally, fmrs can handle variable selection in the presence
of censored observations, which is a limitation of fmrlasso.

6.4 Example 4: Non-Mixture Models
As stated by the reviewers, the non-mixture versions of

the models implemented in fmrs are highly beneficial for
researchers. Therefore, we have added these models to the
package. The users need to specify nComp = 1 to fit such
models. A sample code for the accelerated failure time re-
gression model is given as follows:

> library(fmrs); set.seed(1980)
> myk <- 1; myd <- 10; myn <- 500; myrho <- 0.25
> mydisp <- c(1); myu <- 40; mypi <- c(1.0)
> coeff1 <- c(2,2,-1,-2,1,2,0,0,0,0,0)
> dat <-
+ list(y = as.numeric(unlist(read.csv(
+ paste0(PathData,'Ydata_4.csv'),header=TRUE))),
+ x = as.matrix(read.csv(
+ paste0(PathData,'Xdata_4.csv'),header=TRUE)),
+ delta = as.numeric(unlist(read.csv(
+ paste0(PathData,'Ddata_4.csv'),header=TRUE))))
> res.mle <-
+ fmrs.mle(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = rnorm(myk * myd + myk),
+ initDispersion = rep(1, myk),
+ initmixProp = rep(1 / myk, myk))
> summary(res.mle)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Accelerated Failure Time

Regression Models
Log-Normal Distribution

1 Component; 10 Covariates; 500 samples.

Coefficients:
Comp.1

Intercept 1.981058507

X0 2.016923696
X1 -1.031801844
X2 -1.967974101
X3 0.947853244
X4 2.066622625
X5 0.010931878
X6 -0.095261647
X7 0.112314056
X8 -0.004505504
X9 0.052504637

Dispersions:
Comp.1

1.011018

LogLik: -461.7918; BIC: 998.159

> res.lam <-
+ fmrs.tunsel(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso", LambMin = 0.01,
+ LambMax = 1, nLamb = 100)
> summary(res.lam)
–––––––––––––––––––––-
Selected Tuning Parameters:
–––––––––––––––––––––-
Accelerated Failure Time

Regression Models
Log-Normal Distribution

1 Components; adplasso Penalty;

Component-wise lambda:
Comp.1
0.0199

> res.var <-
+ fmrs.varsel(y = dat$y, delta = dat$delta,
+ x = dat$x, nComp = myk,
+ disFamily = "lnorm",
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = "adplasso",

352 F. Shokoohi

+ lambPen = slot(res.lam,"lambPen"))
> summary(res.var)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Accelerated Failure Time

Regression Models
Log-Normal Distribution

1 Component; 10 Covariates; 500 samples.

Coefficients:
Comp.1

Intercept 1.9434740
X0 1.9668506
X1 -0.9992472
X2 -1.9408830
X3 0.9151896
X4 2.0320537
X5 0.0000000
X6 0.0000000
X7 0.0000000
X8 0.0000000
X9 0.0000000

Selected Set:
Comp.1

X0 1
X1 1
X2 1
X3 1
X4 1
X5 0
X6 0
X7 0
X8 0
X9 0

Dispersions:
Comp.1

1.014697

LogLik: -465.0646; BIC: 973.6314

7. ANALYZING LUNG CANCER DATA
In this section, we analyze lung cancer data obtained from

the survival package [22]. The dataset consists of informa-
tion from 228 subjects with 7 covariates. The data includes
the survival time of patients with lung cancer along with
their censoring status. The following information is avail-
able for each subject:

• time: Survival time in days;
• status: censoring status 1=censored, 2=dead;
• age: Age in years;
• sex: Male=1 Female=2;

• ph.ecog: Eastern Cooperative Oncology Group
(ECOG) performance status (0=good 5=dead);

• ph.karno: Karnofsky performance score (bad=0-
good=100) rated by physician;

• pat.karno: Karnofsky performance score as rated by
the patient;

• meal.cal: Calories consumed at meals;
• wt.loss: Weight loss in the last six months.

In our analysis, we first remove the variable meal.cal
due to a large number of missing values. Next, we exclude
subjects with missing information, resulting in a reduced
number of subjects (patients) to 210. The analysis includes
the remaining 6 covariates.

We perform variable selection using fmrs. We fit fmaftr

models of order K ranging from 2 to 5 using the order selec-
tion technique described in Section 4.2 and the component-
wise technique described in Section 4.1. We use the following
parameter values: cutpoint = 0.001, LambMin = 0.001,
LambMax = 1, and nLamb = 1000. The code is given as fol-
lows:

> library(survival)
> lung.r <-lung[,-c(1,9)]
> r.lung <-lung.r[-which(is.na(rowSums(lung.r))),]
> r.lung$sex <- as.numeric(r.lung$sex - 1)
> Days <- r.lung$time; Status <- r.lung$status - 1
> Features <- as.matrix(r.lung[, -c(1, 2)])
> Tol <- 0.001; d <- 6
> Final.Model <- list()
> for (K in 2:5) {
+ res.mle <-
+ fmrs.mle(y = Days, x = Features,
+ delta = Status,
+ nComp = K, disFamily = 'lnorm',
+ initCoeff = rnorm(K * d + K),
+ initDispersion = rep(1, K),
+ initmixProp = rep(1 / K, K))
+ res.lam <-
+ fmrs.tunsel(y = Days, x = Features,
+ delta = Status,
+ nComp = ncomp(res.mle),
+ disFamily = 'lnorm',
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),
+ initmixProp = mixProp(res.mle),
+ penFamily = 'adplasso',
+ cutpoint = Tol, LambMin = 0.001,
+ LambMax = 1, nLamb = 1000)
+ res.var <-
+ fmrs.varsel(y = Days, x = Features,
+ delta = Status,
+ nComp = ncomp(res.mle),
+ disFamily = 'lnorm',
+ initCoeff = c(coefficients(res.mle)),
+ initDispersion = dispersion(res.mle),

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 353

+ initmixProp = mixProp(res.mle),
+ penFamily = 'adplasso',
+ lambPen = slot(res.lam, 'lambPen'),
+ cutpoint = Tol)
+ if (K == 2) {
+ Final.Model <-
+ list(res.mle = res.mle, res.lam = res.lam,
+ res.var = res.var)
+ Max_BIC <- BIC(res.var)
+ } else {
+ if (BIC(res.var) <= Max_BIC) {
+ Final.Model <-
+ list(res.mle = res.mle, res.lam = res.lam,
+ res.var = res.var)
+ Max_BIC <- BIC(res.var)
+ }
+ }
+ }
> summary(Final.Model$res.var)
–––––––––––––––––––––-
Fitted Model:
–––––––––––––––––––––-
Finite Mixture of Accelerated Failure Time

Regression Models
Log-Normal Sub-Distributions

2 Components; 6 Covariates; 210 samples.

Coefficients:
Comp.1 Comp.2

Intercept 3.725023502 12.69267171
age 0.000000000 -0.06016423
sex 0.401502006 0.00000000
ph.ecog 0.000000000 -0.72846678
ph.karno 0.019597502 -0.03484284
pat.karno 0.004004021 0.00000000
wt.loss 0.000000000 0.00000000

Selected Set:
Comp.1 Comp.2

age 0 1
sex 1 0
ph.ecog 0 1
ph.karno 1 1
pat.karno 1 0
wt.loss 0 0

Dispersion:
Comp.1 Comp.2

0.5232071 1.368616

Mixing Proportions:
Comp.1 Comp.2

0.6927942 0.3072058

LogLik: -226.1958; BIC: 511.2097

Figure 1: Density of fitted values for the lung cancer data.

The results show that a mixture of two components is se-
lected, with approximately 69% of the patients classified in
Component 1. In Component 1, the variables sex, ph.karno,
and pat.karno are selected with positive effects. On the
other hand, in Component 2, the variables age, ph.ecog,
and ph.karno are selected with negative effects. Compo-
nent 1 represents a more aggressive form of the disease,
characterized by a lower survival time (see Figure 1).

8. CONCLUDING REMARKS
We have developed the R package fmrs to perform sparse

estimation in finite mixture models, including the finite
mixture of accelerated failure time and the finite mixture of
regression models. The main functions in the package are
implemented in C language to enhance computational effi-
ciency. The R functions are written using S4-methods. The
package also includes ridge regression, and it implements
various penalty functions. Our tests show that the fmrs
package outperforms fmrlasso in terms of computational
time.

Censoring is a crucial aspect of time-to-event data, and
ignoring it can significantly deteriorate the performance of
variable selection methods. Additionally, heterogeneity of ef-
fects is common in many time-to-event datasets, and ignor-
ing it can lead to misleading analyses [29].

The classical statistical theory assumes the validity of
statistical inference (tests and confidence intervals) when
model selection and model fitting are performed separately
[3]. If the focus of data analysis is solely on mle and statis-
tical inference such as goodness-of-fit tests, one can obtain
the variance-covariance matrix from the Hessian matrix and
perform inference accordingly. However, variable selection
methods produce stochastic models, which invalidate clas-
sical inferences. Therefore, post-selection methods must be
developed to address this issue, which is beyond the scope
of this paper.

We recommend users repeat the EM algorithm with dif-
ferent initialization. The best initialization is the one that
yields the highest likelihood value. It is worth noting that
several initialization strategies have been proposed in the
literature [4].

The method presented in [29] is suitable for scenarios
with a small number of variables (p) and a large number of

354 F. Shokoohi

observations (n). In cases where the total number of param-
eters (p∗ = K(p+3)− 1) approaches or exceeds n, one may
utilize the fmrs package. However, it is essential to approach
such cases with caution and carefully select an optimal ridge
tuning parameter. Moreover, for high-dimensional settings,
the development of new methods is required.

To expand the scope of our package, we plan to include
additional sub-distribution functions, such as the General-
ized Gamma and Gompertz distributions, in the near future.
For the Gamma and Generalized Gamma distributions, we
will investigate closed-form solutions for parameter estima-
tion based on the method of moments and implement them
in the package.

SUPPLEMENTARY MATERIAL
Supplementary materials are available online with this

paper at the New England Journal of Statistics in Data Sci-
ence website which includes version 2.0.1 of the fmrs pack-
age, the R and Python codes as well as simulated datasets
(’CodesAndData.zip’ file) for reproducibility and simulation
studies.

APPENDIX A. ALGORITHMS

Algorithm 1 mle of fmaftr with Log-Normal sub-
distributions.

Data Read data (ti, δi, Zi) for i = 1, . . . , n; Set t′i = log ti
Initialize TOL, MaxIter,K, d, m=0, Diff =2
Initialize Ψ(0) = (β01, . . . , β0K ,β1, . . . ,βK , π1, . . . , πK)
while m ≤ MaxIter & Diff > TOL do

E-Step:
Update τ (m) = [τ

(m)
ik] similar to Eq. (3.2) using Ψ(m)

Calculate T (m) = [t
(m)
ik] similar to Eq. (3.4) using Ψ(m)

M-Step:
for k = 1 to K do

Construct Z�τ
(m)
k Z & Z�τ

(m)
k T

(m)
k

Update β
(m+1)
0k and β

(m+1)
k based on Eq. (3.5)

Update σ
(m+1)
k similar to Eq. (3.6)

Update π
(m+1)
k =

∑n
i=1 τ

(m)
ik /n

end for
Calculate Diff = ‖Ψ(m+1) −Ψ(m)‖
Set m = m + 1

end while

Algorithm 2 Component-wise tuning parameter selection
in fmaftr with Log-Normal.

Data Read data (ti, δi, Zi) for i = 1, . . . , n; Set t′i = log ti
Initialize K, d, M , ε, λMax, α, cutpoint
Choose λ: candidate set in (0, λMax]
Set Ψ obtained from Algorithm 1 (full model)
Calculate τ = [τ ik] similar to Eq. (3.2) using Ψ
for k = 1 to K do

for m = 1 to M do
Calculate T = [tik] similar to Eq. (3.4) using Ψ
Choose λm

Calculate Σk = nπα
kp

′
λm

(βk)/(|βk|+ε) and Z�τ kZ+Σk

and Z�τ kT k

Construct Z�τ (m)Z & Z�τ (m)T (m)

Update β
(new)
0k and β

(new)
k similar to Eq. (4.2)

Update T = [tik] using β
(new)
0k & β

(new)
k

Update σ
(new)
k similar to Eq. (3.6) with β

(new)
0k & β

(new)
k

if |βkj | ≤cutpoint then
selection[k][j] = 0

else
selection[k][j] = 1

end if
Calculate bic[m][k] base on Eq. (4.4)

end for
Choose the λ that minimizes the bic and report it.

end for

Algorithm 3 Variable selection in fmaftr with Log-
Normal sub-distributions.

Data Read data (ti, δi, Zi) for i = 1, . . . , n
Set t′i = log ti
Initialize K, d, ε, α, TOL, MaxIter, m=0, Diff=2, cutpoint
Initialize Ψ(0) using Algorithm 1 (full model)
Initialize λ1, . . . , λK using Algorithm 2
while m ≤ MaxIter & Diff > TOL do

E-Step:
Update τ (m) = [τ

(m)
ik] similar to Eq. (3.2) using Ψ(m)

Calculate T (m) = [t
(m)
ik] similar to Eq. (3.4) using Ψ(m)

M-Step:
for k = 1 to K do

Calculate Σk = n[π
(m)
k]αp′λm

(β
(m)
k)/(|β(m)

k |+ ε)

Construct Z�τ
(m)
k Z +Σk & Z�τ

(m)
k T

(m)
k

Update β
(m+1)
0k and β

(m+1)
k based on Eq. (4.2)

Update T (m) = [t
(m)
ik] using β

(m)
0k & β

(m)
k

Update σ
(m+1)
k similar to Eq. (3.6) using β

(m)
0k & β

(m)
k

Update π
(m+1)
k =

∑n
i=1 τ

(m)
ik /n

if |βkj | ≤cutpoint then
selection[k][j] = 0

else
selection[k][j] = 1

end if
end for
Calculate Diff = ‖Ψ(m+1) −Ψ(m)‖
Set m = m + 1

end while
Report Ψ̂, Log-likelihood, bic

Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs 355

ACKNOWLEDGEMENTS
The author would like to express his gratitude to the Ed-

itor, the Associate Editor, and the two anonymous referees
for their valuable and insightful comments, which greatly
enhanced the quality of this paper and the fmrs package.
Additionally, the author would like to extend his thanks to
Professor Masoud Asgharian and Abbas Khalili from McGill
University, as well as Shili Lin from Ohio State University,
for their invaluable contributions to this research. The au-
thor would also like to acknowledge Samuel Black and Pro-
fessor Kazem Taghva from the University of Nevada-Las Ve-
gas for their assistance with C programming.

FUNDING
Farhad Shokoohi is supported by the University of

Nevada - Las Vegas, through the Startup Grant PG18929.

Accepted 4 September 2023

REFERENCES
[1] Basturk, N., Hoogerheide, L. F., Opschoor, A. and van Dijk,

H. K. (2015). MitISEM: Mixture of Student t Distributions using
Importance Sampling and Expectation Maximization. https://
cran.r-project.org/web/packages/MitISEM/.

[2] Benaglia, T., Chauveau, D., Hunter, D. R. and Young, D.

(2009). mixtools: An R Package for Analyzing Finite Mixture
Models. Journal of Statistical Software 32(6) 1–29.

[3] Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013).
Valid post-selection inference. The Annals of Statistics 41(2)
802–837. https://doi.org/10.1214/12-AOS1077.

[4] Biernacki, C., Celeux, G. and Govaert, G. (2003). Choos-
ing starting values for the EM algorithm for getting the
highest likelihood in multivariate Gaussian mixture models.
Computational Statistics & Data Analysis 41(3) 561–575. Re-
cent Developments in Mixture Model. https://doi.org/10.1016/
S0167-9473(02)00163-9. MR1968069

[5] Bilgrau, A. E., Eriksen, P. S., Rasmussen, J. G., Johnsen,

H. E., Dybkaer, K. and Boegsted, M. (2016). GMCM: Un-
supervised Clustering and Meta-Analysis Using Gaussian Mix-
ture Copula Models. Journal of Statistical Software 70(2) 1–23.
https://doi.org/10.18637/jss.v070.i02.

[6] Chambers, J. M. (1998) Programming with Data. Springer-
Verlag, New York.

[7] Chambers, J. M. (2008) Software for Data Analysis: Program-
ming with R. Springer, New York.

[8] Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated
Failure Time Models in Routine Survival Analysis with R Package
aftgee. Journal of Statistical Software 61(11) 1–23.

[9] Fraley, C., Raftery, A. E. and Scrucca, L. (2002). Inference
for finite mixture models. Journal of the Royal Statistical Society.
Series B (Statistical Methodology) 64(3) 491–507.

[10] Fraley, C., Raftery, A. E., Murphy, T. B. and Scrucca, L.

(2012). mclust Version 4 for R: Normal Mixture Modeling for
Model-Based Clustering, Classification, and Density Estimation.
https://doi.org/10.1007/s11222-009-9138-7. MR2725403

[11] Garay, A. M., Massuia, M. B. and Lachos, V. H. (2015).
BayesCR: Bayesian Analysis of Censored Regression Models Un-
der Scale Mixture of Skew Normal Distributions. https://cran.
r-project.org/web/packages/BayesCR/.

[12] Garay, A. M., Massuia, M. B. and Lachos, V. (2015). SMN-
CensReg: Fitting Univariate Censored Regression Model Under
the Family of Scale Mixture of Normal Distributions. https://
cran.r-project.org/web/packages/SMNCensReg/.

[13] Grün, B. and Leisch, F. (2008). FlexMix Version 2: Finite Mix-
tures with Concomitant Variables and Varying and Constant Pa-
rameters. Journal of Statistical Software 28(4) 1–35.

[14] Hennig, C. (2004). Identifiability of mixtures of regression mod-
els. Journal of the Royal Statistical Society. Series B (Statistical
Methodology) 66(3) 593–615.

[15] Iannario, M. and Piccolo, D. (2015). CUB: A Class of Mix-
ture Models for Ordinal Data. https://cran.r-project.org/web/
packages/CUB/.

[16] Iovleff, S. (2015). MixAll: Clustering Heterogenous data
with Missing Values. https://cran.r-project.org/web/packages/
MixAll/.

[17] Jin, Z. (2016). Semiparametric accelerated failure time model for
the analysis of right censored data. Communications for Statisti-
cal Applications and Methods 23(6) 467–478.

[18] Kamary, K. and Lee, K. (2015). Ultimixt: Bayesian Analysis of a
Non-Informative Parametrization for Gaussian Mixture Distribu-
tions. https://cran.r-project.org/web/packages/Ultimixt/index.
html.

[19] Lawless, J. F. (2003) Statistical Models and Methods for Life-
time Data, 2nd ed. Wiley Series in Probability and Statistics.
MR1940115

[20] Lebret, R., Iovleff, S., Langrognet, F., Biernacki, C.,
Celeux, G. and Govaert, G. (2015). Rmixmod: The R Pack-
age of the Model-Based Unsupervised, Supervised, and Semi-
Supervised Classification Mixmod Library. Journal of Statistical
Software 67(6) 1–29. https://doi.org/10.18637/jss.v067.i06.

[21] Lee, S. X. and McLachlan, G. J. (2013). EMMIXuskew: An R
Package for Fitting Mixtures of Multivariate Skew t Distributions
via the EM Algorithm. Journal of Statistical Software 55(12)
1–22. https://doi.org/10.1007/s11222-012-9362-4. MR3165547

[22] Loprinzi, C. L., Laurie, J. A., Wieand, H. S. et al. (1994).
Prospective evaluation of prognostic variables from patient-
completed questionnaires. North Central Cancer Treatment
Group. Journal of Clinical Oncology 12(3) 601–607. PMID:
8120560. https://doi.org/10.1200/JCO.1994.12.3.601.

[23] Mahani, A. S. and Sharabiani, M. T. A. (2015). BayesMix-
Surv: Bayesian Mixture Survival Models using Additive Mixture-
of-Weibull Hazards, with Lasso Shrinkage and Stratification.
https://cran.r-project.org/web/packages/BayesMixSurv/.

[24] McLachlan, G. and Peel, D. (2004) Finite Mixture Mod-
els. John Wiley & Sons. https://doi.org/10.1002/0471721182.
MR1789474

[25] Panaro, R. V. (2020). spsurv: An R package for semi-parametric
survival analysis. 2003.10548.

[26] Prates, M. O., Cabral, C. R. B. and Lachos, V. H. (2013).
mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal
Distributions. Journal of Statistical Software 54(12) 1–20.

[27] Sanchez, L. B. and Lachos, V. H. (2015). CensMixReg: Cen-
sored Linear Mixture Regression Models. https://cran.r-project.
org/web/packages/CensMixReg/.

[28] Schlattmann, P., Hoehne, J. and Verba, M. (2015). CA-
MAN: Finite Mixture Models and Meta-Analysis Tools - Based on
C.A.MAN. https://cran.r-project.org/web/packages/CAMAN/.

[29] Shokoohi, F., Khalili, A., Asgharian, M. and Lin, S. (2019).
Capturing heterogeneity of covariate effects in hidden subpopula-
tions in the presence of censoring and large number of covariates.
The Annals of Applied Statistics 13(1) 444–465. https://doi.org/
10.1214/18-AOAS1198. MR3937436

[30] Silva, R. R. (2016). BayesH: Bayesian Regression Model with
Mixture of Two Scaled Inverse Chi Square as Hyperprior. https://
cran.r-project.org/web/packages/BayesH/.

[31] Städler, N. (2010). fmrlasso: Lasso for Finite Mixture of Regres-
sions. http://mukherjeelab.nki.nl/stadler/fmrlasso_1.0.tar.gz.

[32] Su, S., Wuertz, D., Maechler, M., Rmetrics et al. (2015).
GLDEX: Fitting Single and Mixture of Generalised Lambda Dis-
tributions (RS and FMKL) using Various Methods. https://cran.
r-project.org/web/packages/GLDEX/.

[33] Tortora, C., Browne, R. P., Franczak, B. C. and McNi-

https://cran.r-project.org/web/packages/MitISEM/
https://cran.r-project.org/web/packages/MitISEM/
https://doi.org/10.1214/12-AOS1077
https://doi.org/10.1016/S0167-9473(02)00163-9
https://doi.org/10.1016/S0167-9473(02)00163-9
https://mathscinet.ams.org/mathscinet-getitem?mr=1968069
https://doi.org/10.18637/jss.v070.i02
https://doi.org/10.1007/s11222-009-9138-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2725403
https://cran.r-project.org/web/packages/BayesCR/
https://cran.r-project.org/web/packages/BayesCR/
https://cran.r-project.org/web/packages/SMNCensReg/
https://cran.r-project.org/web/packages/SMNCensReg/
https://cran.r-project.org/web/packages/CUB/
https://cran.r-project.org/web/packages/CUB/
https://cran.r-project.org/web/packages/MixAll/
https://cran.r-project.org/web/packages/MixAll/
https://cran.r-project.org/web/packages/Ultimixt/index.html
https://cran.r-project.org/web/packages/Ultimixt/index.html
https://mathscinet.ams.org/mathscinet-getitem?mr=1940115
https://doi.org/10.18637/jss.v067.i06
https://doi.org/10.1007/s11222-012-9362-4
https://mathscinet.ams.org/mathscinet-getitem?mr=3165547
https://doi.org/10.1200/JCO.1994.12.3.601
https://cran.r-project.org/web/packages/BayesMixSurv/
https://doi.org/10.1002/0471721182
https://mathscinet.ams.org/mathscinet-getitem?mr=1789474
https://arxiv.org/abs/2003.10548
https://cran.r-project.org/web/packages/CensMixReg/
https://cran.r-project.org/web/packages/CensMixReg/
https://cran.r-project.org/web/packages/CAMAN/
https://doi.org/10.1214/18-AOAS1198
https://doi.org/10.1214/18-AOAS1198
https://mathscinet.ams.org/mathscinet-getitem?mr=3937436
https://cran.r-project.org/web/packages/BayesH/
https://cran.r-project.org/web/packages/BayesH/
http://mukherjeelab.nki.nl/stadler/fmrlasso_1.0.tar.gz
https://cran.r-project.org/web/packages/GLDEX/
https://cran.r-project.org/web/packages/GLDEX/

356 F. Shokoohi

cholas, P. D. (2015). MixGHD: Model Based Clustering, Clas-
sification and Discriminant Analysis Using the Mixture of Gener-
alized Hyperbolic Distributions. https://cran.r-project.org/web/
packages/MixGHD/.

Farhad Shokoohi. Department of Mathematical Sciences, Uni-
versity of Nevada-Las Vegas, Las Vegas, USA. E-mail address:
farhad.shokoohi@unlv.edu

https://cran.r-project.org/web/packages/MixGHD/
https://cran.r-project.org/web/packages/MixGHD/
mailto:farhad.shokoohi@unlv.edu

	Introduction
	Models and Methods
	Finite Mixture of Accelerated Failure Time Regression Models
	Finite Mixture of Regression Models

	Maximum Likelihood Estimation in FMRs
	M-Step for Maximizing Q(.) Function in the Mixture of Normal and Mixture of AFT Log-Normal Distributions
	M-Step for Maximizing Q(.) Function in Mixture of AFT Weibull Distributions

	Variable Selection in FMRs
	Choice of Tuning Parameters
	Choice of Mixture Order

	Preliminaries and Main Functions
	Preliminaries
	Description of the Main Functions

	The fmrs Package in Action
	Example 1: FMAFTR Model with Log-Normal Sub-Distributions
	Common Tuning Parameters

	Example 2: FMR Model with Normal Sub-Distributions
	Example 3: Comparison with the Existing Methods
	Example 4: Non-Mixture Models

	Analyzing Lung Cancer Data
	Concluding Remarks
	Supplementary Material
	Algorithms
	Acknowledgements
	Funding
	References
	Author's addresses

