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Abstract
We address the estimation of the Integrated Squared Error (ISE) of a predictor η(x) of an unknown function f learned

using data acquired on a given design Xn. We consider ISE estimators that are weighted averages of the residuals of the
predictor η(x) on a set of selected points Zm. We show that, under a stochastic model for f , minimisation of the mean
squared error of these ISE estimators is equivalent to minimisation of a Maximum Mean Discrepancy (MMD) for a non-
stationary kernel that is adapted to the geometry of Xn. Sequential Bayesian quadrature then yields sequences of nested
validation designs that minimise, at each step of the construction, the relevant MMD. The optimal ISE estimate can be
written in terms of the integral of a linear reconstruction, for the assumed model, of the square of the interpolator residuals
over the domain of f . We present an extensive set of numerical experiments which demonstrate the good performance and
robustness of the proposed solution. Moreover, we show that the validation designs obtained are space-filling continuations
of Xn, and that correct weighting of the observed interpolator residuals is more important than the precise configuration
Zm of the points at which they are observed.
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1. INTRODUCTION AND MOTIVATION
Using machine learning models in real world applications,

for instance for industrial optimisation and testing [9, 14],
banking [31, 2, 24], or as tools in the context of social services
[15], imposes stringent requirements on their validation. The
same happens in the framework of computer experiments,
see for instance [25, 27], where numerically efficient ma-
chine learning models are used as controlled-error approxi-
mations of mathematical models with prohibitive computa-
tional complexity, [6, 39, 10].

Model validation ideally resorts to a reserved test set,
i.e. to evaluations of the modelled function on data points
that have not been used neither to select nor to train the
machine learning model [5, 46, 18]. Using the errors of the
model on this test set enables the assessment of the model
quality, using for instance estimates of the mean-squared
error in the context of regression problems, or the rate of
labeling errors of classifiers. This is the setting addressed in
this paper. When such a test-set cannot be made available,
model validation is most commonly done by cross-validation
[23, 17, 7], relying on the errors of models learnt only on a
subset of the learning set to infer the error of the model that
integrates the entire dataset.

This paper proposes a methodology to estimate the qual-
ity of an interpolator learned on a given experimental design.
More precisely, we suppose that data gathered on the points
of an experimental design Xn = {x1, . . . ,xn} with n points
in a compact set1 X has been used to build a predictor of
∗Corresponding author.
1We will often consider X = [0, 1]d.

the value of the function f : X → R that produced the
collected samples.

We denote by yn = (f(x1), . . . , f(xn))
� the vector col-

lecting the n evaluations of f at the design points xi, by
Fn = (Xn,yn) the learning dataset, and by ηFn(x) the
resulting predictor of f(x). The quality of ηFn is assessed
through a widely used measure of the precision of interpo-
lators, the Integrated Squared Error (ISE):

ISE(ηFn) =

∫
X

[ηFn(x)− f(x)]
2
μ(dx) , (1.1)

see, e.g., [38] for an early reference. In the definition above
the (user-defined) measure μ enables penalisation of the in-
terpolation errors over regions of X which are considered
to be of particular importance. We stress that we consider
that the experimental design Xn – also referred to as the
“learning design” – is given, making no assumptions on how
it is has been chosen.

Estimation of the integral (1.1) must necessarily resort to
the evaluation of the prediction error ε(x) = f(x)− ηFn(x)
over only a finite set of points Zm = {z1, . . . zm} ⊂ X ,
which we designate by “validation design”. The integral is
then approximated by replacing μ by a point mass mea-
sure ζ = ζ(w,Zm) =

∑
i wiδzi supported on Zm only.2 We

generically refer to ζ as the validation measure, using the
notation ζm to make explicit the size of the validation set.
Although ζ is not necessarily the uniform distribution sup-
ported on Zm, with a slight abuse of terminology we refer
2δa denotes the unit point-mass at x = a.
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to the corresponding ISE estimators

ÎSE(ηFn ; ζ) =

m∑
i=1

wi [ηFn(zi)− f(zi)]
2 (1.2)

as empirical ISE estimators.
We address the choice of the validation measure ζ – both

of the validation design Zm and of the validation weights w
– and investigate the properties of the resulting estimates
ÎSE(ηFn ; ζ) given by (1.2). The algorithms presented are it-
erative, defining increasing sequences of nested validation
designs Zm ⊂ Zm+1 ⊂ Zm+2 ⊂ · · · such that the perfor-
mance of ÎSE(ηFn ; ζ) improves as m increases. A preliminary
version of this work has been presented in [12], in the context
of a comprehensive comparison of validation methodologies.

The paper is organised as follows. Section 2.1 first relates
the ISE estimators (1.2) to other ISE estimators. Then, as-
suming that the interpolated function f is a realisation of
a Gaussian Process (GP) with known moments, we present
in Section 2.2 a computable criterion R(ζ,Fn) that mea-
sures the precision of empirical estimators of the form (1.2).
In Section 3 we discuss optimisation of R(ζ,Fn), detail-
ing application of related existing algorithms to the specific
conditions of the validation problem of interest here, and
revealing an instrumental interpretation of the correspond-
ing “optimal” empirical ISE estimators. Since the “optimal”
validation measure depends on the assumed GP model, the
robustness and performance of the validation methodology
presented are investigated numerically in Section 4, lead-
ing to two major conclusions. One concerns the validation
weights w, stating that to avoid overestimation of ISE(ηFn)

the contributions of the individual errors ε(zi) to ÎSE(ηFn ; ζ)
must be down-weighted – with respect to taking ζ as the uni-
form distribution over Zm. The second concerns the geome-
try of the validation design Zm, whose optimality is seen to
be much less important that correct choice of the weights w.
Based on these numerical studies we propose a default choice
for the covariance kernel of the GP model used, including its
scale parameter. The numerical studies of Section 4 resort
to simulation from selected Gaussian processes, and consider
only optimal kriging interpolators. In Section 5 we present
results on two “real case” models and for more general in-
terpolators, confirming the robustness and performance of
the proposed estimator. Finally, Section 6 summarises our
findings and proposes some directions for future work.

Throughout the manuscript we frequently resort to the
notion of space-filling designs, i.e., designs whose points are
evenly spread over X . This notion has been extensively
studied in the experimental design literature, in particu-
lar in the context of identification of surrogate models of
computer experiments, and several mathematical criteria –
e.g. discrepancy, or the classical minimax- and maximin-
distance criteria, also called covering and packing radii, see

[19, 32, 34] – have been proposed to measure how much a
given design is space filling. In this paper, we use the term
in a rather informal manner, meaning that the points of the
design are well spread over X , no design point being too
close to the remaining points, so that for the majority of
the usual space-filling criteria mentioned above it should be
considered as a good design.

2. A CRITERION FOR VALIDATION
MEASURES

Since f is unknown, we can at best expect to find an ISE
estimator that performs well for most functions f consis-
tent with dataset Fn. To characterise this set of functions
we adopt the Gaussian process framework – briefly recalled
below – enabling us to subsequently derive a criterion to
choose the validation measure ζ.

Before doing that, the next section puts our approach
in perspective in relation to other (non-parametric) model
validation methods.

2.1 Empirical ISE Estimation
Non-parametric estimation of the ISE of a computational

model learned on a dataset Fn is most commonly done using
Fn itself. In cross-validation (CV), see e.g. [8, 4], the resid-
uals εcvi = yi − ηFn\(xi,yi)(xi) at each data point (xi,yi) of
a predictor fit to all other n− 1 points of Fn are computed,
and ISE is estimated by their average:

ÎSEcv =
1

n

n∑
i=1

(εcvi )
2
. (2.1)

The setup considered in this paper is in some sense dual
of CV. On the one hand, CV requires more information
about η, assuming the ability to build the n new predic-
tors ηFn\(xi,yi) (one for each point that is “left out”) and
assumes thus knowledge of how ηFn is learned, while we
consider ηFn as a black-box model delivered by a third
party, using an undisclosed modelling approach. On the
other hand, CV requires no any additional observations of
f , while ÎSE(ηFn ; ζ) requires m new evaluations, one at each
point of Zm.

Given the observations of f over a validation set Zm, a
straightforward estimate of the ISE is the simple arithmetic
mean of the squared values of the m residuals εi = f(zi)−
ηFn(zi) observed over the zi ∈ Zm:

ÎSEun =
1

m

m∑
i=1

ε2i , (2.2)

a special case of (1.2), obtained by letting ζ be the uniform
distribution over Zm: ζ = (1/m)

∑
i δzi .

We argue below that there is no rationale for uniform
weighting of the observed residuals. Let pη denote the (un-
known) probability density of the residuals ε(x) when x ∼ μ,
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and consider situations where Zm is a space-filling contin-
uation of Xn, sampling the regions of X the most distant
from Xn. We can then expect ε(Zm) = {ε(z), z ∈ Zm} to
be biased towards the upper limit of the support of pη, and
thus ÎSEun to over-estimate ISE. To correct from this biased
sampling of the errors, the contribution of each observed
residual to ÎSE should be adjusted, counterbalancing the
anticipated poor sampling of the smallest residual values.
The validation measures ζ proposed in this paper automat-
ically implement this variable residual weighting, relying on
a prior stochastic model for f to infer how much ε(Zm) is
expected to be representative of the errors over the entire
X . Moreover, nothing justifies enforcing ζ to be a proper
probability distribution. If ε(Zm) is not a plausible i.i.d.3
sample from pη, expression (2.2) cannot be assimilated to a
Monte Carlo estimate of the ISE integral unless appropriate
importance sampling weights are used.

This means that there is no reason to impose that∑
i wi = 1, and we thus drop this common constraint, let-

ting ζ be an un-normalised measure dictated by the geom-
etry of Zm relative to Xn. To substantiate this choice, note
that when ηFn is an interpolator, so that ε(xi) = 0 for all
xi ∈ Xn, incorporation of these n zero residuals in (2.2),
which should lead to a better estimator of ISE(ηFn), yields

ÎSE
�

un =
1

m+ n

m∑
i=1

ε2i < ÎSEun ,

for which
∑

i wi = m/(n+m) < 1. Analysis of the biases of
estimators ÎSEun and ÎSE

�

un is difficult, since, as discussed
above, the residuals observed over the validation design are
not an i.i.d. sample from pη. Figure 1 illustrates numerically
the performance of the two estimators on a simple example,
showing histograms of the errors of estimators ÎSEun (in
blue) and ÎSE

�

un (in red) over 500 realisations of a Gaus-
sian process.4 On the top panel, n = m = 15 while the
bottom panel corresponds to a larger learning design, with
n = 25. We can see that in both cases the estimations errors
of ÎSE

�

un are smaller than those of ÎSEun. The two estimators
are affected by biases of opposite signs, the (positive) bias
of ÎSEun being larger (even when n > m) than the (nega-
tive) bias of ÎSE

�

un. Larger values of n produce qualitatively
similar comparison results (not shown). When n and m are
very different, more sophisticated corrections, depending on
the distinct effective sampling rates of the learning and val-
idation designs, could be defined and should yield better

3independent and identically distributed.
4In Figure 1, the {f (i)}500i=1 are realisations of a uni-dimensional GP
on the unit interval with a Matérn 5/2 kernel (see (C.2)) with range
parameter θ = n + m, and η

(i)
Fn

is the optimal kriging regressor for
the simulated model. Xn is a space-filling design and Zm is a space-
filling continuation of Xm. The uniform measure is approximated by
a uniform grid with 212 points.

Figure 1: Histograms of the errors of estimators ÎSEun and
ÎSE

�

un over 500 realisations of a Gaussian process. Top: n =
m = 15. Bottom: n = 25, m = 15.

results. The bottom line is that even this simplistic correc-
tion (uniform down-weighting) is able to reduce the error in
the estimate of the ISE.

2.2 Choosing the Validation Measure: a
GP-Based Criterion

The estimation error |ÎSE(ηFn ; ζ) − ISE(ηFn)| is not a
computable criterion that we can optimise to choose ζ. A
possible approach would be to consider that f belongs to
some class of functions C and optimise the worst estima-
tion performance over all f ∈ C. Here we follow an alterna-
tive and simpler route, assuming that f is a realisation of
a Gaussian Process (GP), or Gaussian Random Field, and
minimising the second-order moment of the ISE estimation
error under the assumed model.

Assume thus that the function f is a sample Fx from a
GP indexed by X , with known second-order characteris-
tics E{FxFx′} = σ2K(x,x′): f ∼ GPf (m(x), σ2K(x,x′)).
The kernel K is supposed to be Strictly Positive Definite
(SPD), and, for the sake of simplicity, we consider that
m(x) = E{Fx} = 0 for all x ∈ X . Extension of the mate-
rial presented below to the case of a linearly parameterised
mean, with E{Fx} = β�h(x) for a vector β of unknown
parameters and a vector h(x) = (h1(x), . . . , hp(x))

� of p
known functions of x is possible via some adaptation.

Under the assumption above ISE(ηFn) given by (1.1) is
a random variable. The statistical moments of ÎSE(ηFn ; ζ)
under this stochastic model for f provide computable and
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pertinent criteria to chose ζ. We use the Mean Squared Error
(MSE) of ÎSE(ηFn ; ζ) given Fn,

R(ζm,Fn) = E

{[
ISE(ηFn)− ÎSE(ηFn ; ζm)

]2∣∣∣∣Fn

}
= E

{[∫
X

[Fx − ηFn(x)]
2 (ζm − μ)(dx)

]2∣∣∣∣∣Fn

}
,

as a criterion to choose the validation design: ζ�m(Fn) ∈
argminζm R(ζm,Fn).

The GP assumption defines a prior distribution for f ,
which given Fn can be updated into the posterior distri-
bution of its values over the unobserved points, with mean
E{Fx|Fn} = k�

n (x)K
−1
n yn and covariance E{FxFx′ |Fn} =

σ2K|n(x,x
′), with K|n defined by

K|n(x,x
′) = K(x,x′)− k�

n (x)K
−1
n kn(x

′) (2.3)

for any x, x′ in X , where

kn(x) = (K(x,x1) . . . ,K(x,xn))
�

{Kn}i,j = K(xi,xj) , i, j = 1, . . . , n .

The n× n matrix Kn is SPD as K is SPD (we assume that
the xi in Xn are pairwise distinct). Note that K|n(xi,x) =
0 for all x ∈ X and all xi ∈ Xn. The Integrated Mean
Squared Error (IMSE) is thus

IMSE(Fn) =

∫
X

E
{
[Fx − ηFn(x)]

2 |Fn

}
μ(dx)

=

∫
X

E
{[

ηFn(x)− k�
n (x)K

−1
n yn

]2 |Fn

}
μ(dx)

+σ2

∫
X

K|n(x,x)μ(dx) .

IMSE(Fn) is minimum when ηFn(x) is the posterior mean
kn(x)

�K−1
n yn. This minimum value depends only on the

learning design Xn and is given by

IMSE�(Xn) = σ2

∫
X

K|n(x,x)μ(dx) ≤ IMSE(Fn) . (2.4)

For any kernel K and signed measure ν on X , let EK(ν)
denote the energy of ν for K,

EK(ν) =

∫
X 2

K(x,x′) ν(dx)ν(dx′) .

When K defines a Reproducing Kernel Hilbert Space
(RKHS) HK , for any function f in HK and any probability
measures ξ and μ on X , the integration error Δξ,μ(f) =∣∣∫

X f(x) ξ(dx)−
∫

X f(x)μ(dx)
∣∣ can be bounded by the

product of two terms, one depending of f only, the other on
the signed measure ξ − μ but not on f . Indeed, application
of (i) the reproducing property f(x) = 〈f,Kx〉HK

, where
〈·, ·〉HK

denotes the scalar product in HK and where, for any

x′ ∈ X , Kx(x
′) = K(x,x′), and (ii) of the Cauchy-Schwarz

inequality, gives Δξ,μ(f) ≤ ‖f‖HK
E

1/2
K (ξ − μ), where the

quantity E
1/2
K (ξ− μ) is called the Maximum-Mean Discrep-

ancy (MMD) between ξ and μ; see, e.g., [41, 40, 36]. Direct
calculation yields R(ζm,Fn) = R(ζm,Xn), with

R(ζm,Xn) = σ4

∫
X 2

K |n(x,x
′)(ζm − μ)(dx)(ζm − μ)(dx′)

= σ4EK|n
(ζm − μ) , (2.5)

with K |n(x,x
′) = (1/σ4)E

{
ε2(x)ε2(x)′

∣∣Fn

}
, a scaled ver-

sion of the second-order moment of the squared residuals;
that is, R(ζm,Xn) is proportional to the squared MMD be-
tween the measures ζm and μ for the kernel K |n. Under the
GP model GPf ,

K |n(x,x
′) = 2K2

|n(x,x
′) +K|n(x,x)K|n(x

′,x′) , (2.6)

and we are thus lead to

ζ�m(Fn) ∈ argmin
ζm

EK|n
(ζm − μ) ,

with K |n(x,x
′) given by (2.6).

When ηFn does not interpolate yn, and under the same
GP model for f , similar developments still give R(ζm,Fn) =
σ4EK|n

(ζm − μ), with now

K |n(x,x
′) = 2

[
K|n(x,x

′) + 2 δ̂n(x)δ̂n(x
′)
]
K|n(x,x

′)

+
[
δ̂2n(x) +K|n(x,x)

] [
δ̂2n(x

′) +K|n(x
′,x′)

]
, (2.7)

where δ̂n(x) = k�
n (x)K

−1
n yn−ηFn

(x). Although in the fol-
lowing we will always consider that ηFn is the optimal inter-
polator kn(x)

�K−1
n yn, and thus that (2.6) holds, note that

our approach covers generic machine learning predictors by
considering K|n defined by (2.7).

Kernels K |n present a number of features which are not
shared by the most commonly used GP kernels. The as-
sumption that ηFn is an interpolator, i.e. ε(xi) = 0, implies
that K |n(xi,x) = 0 for all x ∈ X and all xi ∈ Xn. The
squared error process is thus non-stationary, with a spatial
coherency structure that is strongly dictated by the geome-
try of Xn. Adapting the validation weights wi to this corre-
lation structure dictates the performance of ÎSE(ηFn ; ζm) in
a critical manner. Yet, as the numerical studies of Section 4
show, exploiting the particular shape of K |n when choosing
the validation points Zm is less critical (as long as they do
not fall in the vicinity of Xn).

Finally, notice that K |n is PD. Indeed, the Hadamard
product C◦2

n with elements {C◦2
n }i,j = C2(xi,xj), i, j =

1, . . . , n, is PD when the matrix Cn with elements {Cn}i,j =
C(xi,xj) is PD. Hence, the positive definiteness of K|n im-
plies that K2

|n is PD, which in turn implies that K |n is also
PD.
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3. MINIMISATION OF EK|n

We address now the minimisation of EK|n
(ζm − μ) with

respect to ζm.
We drop the two constraints usually imposed on weights:

besides the sum-of weights-equals-one constraint (see Sec-
tion 2.1), we also do not impose wi ≥ 0. Imposing positivity
would be natural if the observations were noisy independent
random samples of the interpolation error, but here the εi
are noise-free and, more importantly, strongly linked by a
coherency structure dictated by both the regularity char-
acteristics of f and the quality of ηFn as an interpolator.
Nonetheless, our numerical experiments show that the wi

are almost always positive; see for example Figures 13 and
14. One may refer to [21] for an investigation of conditions
that ensure positivity of quadrature weights, which shows
that positivity can be guaranteed only under rather specific
circumstances.

Since for a given f and ηFn the validation residuals
are deterministic, repeating validation points or choosing
zi ∈ Xn brings no additional information. We thus restrict
Zm to configurations of m distinct points in X \Xn. The
minimisation of EK|n

(ζm−μ) with respect to the parameters
of ζm is a non-linear optimisation problem over a large di-
mensional space (m(d+1) scalar parameters when X ⊂ R

d).
As briefly evoked in the introduction, rather than fixing up-
front the size m of the validation design, we are interested in
finding nested sequences of validation designs, generated by
a sequence of identical steps, each one increasing the design
size by one:

Zm+1 = Zm ∪ {zm+1} , (3.1)

where zm+1 is restricted to Xm = X \ {Zm ∪Xn}.
Before we present in Section 3.2 the sequential Bayesian

quadrature algorithm that performs this iterative construc-
tion, greedily decreasing EK|n

(ζm − μ) at each step, we
present background on relevant literature on iterative en-
ergy (or, equivalently, MMD) minimisation.

3.1 Background
Kernel Herding (KH) [44] can be seen to correspond

to the Frank-Wolfe conditional gradient algorithm [3] ap-
plied to MMD minimisation, that is, to the vertex-direction
method with predefined step-length, commonly used in op-
timal experimental design since the pioneering work of H.P.
Wynn [45] and V.V. Fedorov [11]. It is an accretive method,5
generating a sequence z1, z2, . . . which can be incrementally
grown to any target size m.

In Bayesian quadrature (BQ) [29, 37] the goal is to choose
samples that best approximate an integral by exploiting the
assumption that the integrated function is the realisation of
5However, it does not provide the optimal design for a fixed m: the
construction of one-shot m-point designs minimising an MMD criterion
is considered for instance in [26, 36]; we do not develop this aspect here.

a GP. Sequential BQ (SBQ) sequentially expands the set of
sampled points by adding a new sample at the point that
decreases the variance of the integral estimate the most.
This variance is shown to be the MMD between the target
integral measure and the discrete measure that implements
the quadrature rule for the kernel of the assumed GP model.

KH and SBQ are closely related, see e.g. [16], both at-
tempting to minimise the same MMD. The two techniques
embed the problem in consideration in the RKHS of a posi-
tive definite kernel that is chosen to reflect the characteris-
tics of the underlying data distribution (in the original for-
mulation of KH) or of the integrated functions (in SBQ). As
stressed in [16], a major distinction between the two tech-
niques concerns the weights assigned to each sample, which
are uniform for standard KH, while they are optimally se-
lected in SBQ. The two methods differ both in complex-
ity and performance: SBQ is superior to standard (uniform
weight) KH, this improvement coming at the cost of an in-
creased complexity, O(n) for KH and O(n2) for SBQ when
constructing an n-point design among a finite set of candi-
dates; see [33].

Experiments combining the two methodologies, by using
the optimal BQ weights for a design found by standard KH,
show that correct weighting is more critical than sample
placement [16, 33], affecting in particular the algorithm’s
convergence rate: KH has performance similar to SBQ for
small design sizes, but displays worse performance as design
size grows.

The validation setup of this paper coincides with the
framework assumed by BQ, our final goal being to estimate
an integral from a small number of samples, and we also
resort to a GP assumption. As in BQ, the weights of our
empirical estimator do not need to sum to 1 and are not
necessarily positive (see [21]), and the optimal solution min-
imises an MMD. Placing the GP assumption not directly on
the function we wish to integrate – in our case ε2(x) – but
on the interpolated f , leads to the identification of the per-
tinent MMD kernel under our validation framework as the
non-stationary kernel K|n, whose structure encodes the ge-
ometry of the learning design Xn.

Both KH and BQ assume that the RKHS kernel is charac-
teristic, meaning that the corresponding MMD between two
probability measures is zero if and only if these two measures
coincide. Kernel K |n is not characteristic, and in particu-
lar it cannot differentiate between measures that differ only
over the finite set Xn, where K |n is zero. However, as we
stressed before, since we know that ε(x) = 0 for x ∈ Xn, the
set of target measures over which we minimise EK|n

(ζm−μ)

all put zero mass on Xn, and thus this minimisation still
makes sense.

3.2 Greedy Minimisation of EK|n
(ζm − μ)

In this section we briefly present the SBQ method, rein-
terpreting it in the validation setup of interest to us.
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By noting that EK|n
(ζm−μ) is quadratic in the {wi}mi=1,

the optimal weights w̃(Zm) for a given Zm are obtained
explicitly as

w̃(Zm) = K|n(Zm,Zm)−1PK|n
(Zm) , (3.2)

where the m×m matrix K |n(Zm,Zm) has generic element
K |n(zi, zj) and the i-th entry of the m-dimensional column
vector PK|n

(Zm) is the potential of μ associated with kernel
K |n at validation point zi:[

PK|n
(Zm)

]
i
= PK|n

(zi) =

∫
X

K |n(zi,x)μ(dx) .

Remembering that σ4K |n(x,x
′) = E

{
ε2(x)ε2(x′)|Fn

}
,

PK|n
(z) can be recognised as

PK|n
(z) =

1

σ4
E
{
ε2(z) ISE(ηFn)

∣∣Fn

}
.

Define

ε̂2Fn(x|Zm) = K |n(x,Zm)K |n(Zm,Zm)−1ε2(Zm) . (3.3)

Under the posterior model, i.e., given Fn, ε̂2Fn(x|Zm) is
the Minimum MSE (MMSE) linear estimate of ε2(x) given
the residuals observed over Zm. When the weights wi of
the validation measure are given by (3.2), ÎSE has thus the
following simple and enlightening expression:

ÎSE(ηFn ,Zm) =
∑
i

w̃i(Zm)ε2(zi)=

∫
X

ε̂2Fn(x|Zm)μ(dx) .

(3.4)
Note that the weights w̃i(Zm), and thus the estimator
ÎSE(ηFn ,Zm) itself, are independent of σ2. The estima-
tors ε̂2Fn(x|Zm) and ÎSE(ηFn ,Zm) rely on the assumed GP
model GPf for f , but as explained in [42, Sect. 3.2], model
misspecification has a much smaller effect on estimated func-
tion values than on predictions of their MSE. One impor-
tant strength of our approach is thus that our estimator
of ISE(ηFn) does not involve the predicted MSE associated
with the reconstructed residuals. As shown in Appendix A,
this is no longer the case when one attempts at removing
the bias of ÎSE(ηFn ,Zm), which leads to estimators that are
no longer robust to model misspecification.

For a given ζm define Em (x) = EK|n
(ζ�m+1 − μ), the en-

ergy for measure ζ�m+1 having support Zm+1(x) = Zm∪{x}
and optimal weights w̃(Zm+1(x)) given by (3.2). If ζm =
ζ(w̃(Zm),Zm), for x ∈ Xm we have

Em (x) = EK|n
(ζm − μ)

−

(
PK|n

(x)−K |n(x,Zm)K |n(Zm,Zm)−1PK|n
(Zm)

)2
s2(x)

,

where

s2(x) = K |n(x,x)

−K |n(x,Zm)K |n(Zm,Zm)−1K |n(Zm,x)

=
1

σ4
E

{(
ε2(x)− ε̂2Fn(x|Zm)

)2∣∣∣∣Fn

}
.

The next validation point is thus a maximiser of the second
term in Em (x), which can equivalently be written as

zm+1 ∈ argmax
x∈Xm

E
{
ISE(ηFn)

(
ε2(x)− ε̂2Fn(x|Zm)

)∣∣∣Fn

}
E

{(
ε2(x)− ε̂2Fn(x|Zm)

)2∣∣∣∣Fn

} .

(3.5)

The numerator measures how much ISE(ηFn) and the er-
ror of ε̂2Fn(z|Zm) as an estimate of ε2(x) are statistically
associated. Points where this term is large are good candi-
dates to extend the current design. The denominator pe-
nalises points x where ε2(x) is estimated with a large MSE,
tending in particular to keep zm+1 away from the bound-
aries of X (where the uncertainty is in general large), as
the numerical studies presented later will show.

The recursive extension of the validation measure is ini-
tiated with Z1 = {z1} solution of

z1 = max
x∈X \Xn

PK|n
(x)2

K|n(x,x)
. (3.6)

In practice, a finite set XL ⊂ X , for instance the L first
elements of a low-discrepancy sequence in X , or a regular
grid in X if d is not too large, is substituted for X in
(3.5) and (3.6). The determination of zm+1, m ≥ 0, then
requires the evaluation of PK|n

(x) for all x ∈ XL \ Xn.
This calculation is done once for all, at the initialisation
of the algorithm. In the numerical examples of Sections 4
and 5, PK|n

= PK|n,μ
is replaced by PK|n,μL

, with μL the
uniform (discrete) measure uniform on XL, see Appendix C
for details. When K is a tensor-product kernel and μ is
uniform on X = [0, 1]d, PK|n

(x) can often be calculated
explicitly; see Appendix B. The same approach (substitution
of the discrete measure μL for μ, or tensorisation) can be
used to evaluate (3.4).

With the aid of a one-dimensional example we formulate
now a number of comments about the expected behaviour
and properties of the estimators ÎSE obtained by repeated
application of (3.5) – to extend Zm to Zm+1 – and (3.2) –
fixing the weights of ζm+1, and thus ε̂2Fn(x|Zm+1) for the
subsequent design extension. The red bold curve in the top
panel of Figure 2 plots the squared residuals ε2(x) of the
interpolator ηFn for the function f plotted in the bottom
panel (where ηFn and f are in red and green, respectively),
trained on the learning design of size 10 indicated by the
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red stars. The blue and green curves on the top panel are
the squared residuals ε̂2Fn(x|Zm) predicted by two distinct
ζm (m = 10), both generated using (3.5) and (3.2), but
assuming distinct kernels K(x,x′): Cauchy (in green) and
Matérn 3/2 (in blue), with range parameters θ as indicated
in the legend.6 The (nearly coincident) validation designs
Zm are indicated by the squares and circles filled with the
corresponding colours.

Remark first that, as anticipated, both designs Zm have
no points in the boundaries of X , even if the uncertainty
affecting ε2(x) is large in those regions. Those familiar with
optimal interpolation using monotonically decreasing sta-
tionary covariance kernels may be surprised by the fact that
in intervals between learning points containing no valida-
tion points (e.g. around x � 0.3) the interpolated squared
residual is non-zero, i.e., ε̂2Fn(x|Zm) > 0. This is a conse-
quence of the particular shape of kernel K |n, strongly dic-
tated by the geometry of Xn, which has larger values at
pairs of points at large distance than the original K, as
shown in Figure 3. For z1 � 0.1 ∈ Zm, the figure plots

Figure 2: Top: ε(x) (red) and ε̂2Fn(x|Zm) (blue and green)
for two distinct GP models. Bottom: f , η and Xn.

Figure 3: K |n(z1,x)/K |n(z1, z1) (bold lines) and
K(z1,x)/K(z1, z1) (thin lines) for the Cauchy and
Matérn kernels used in Figure 2 (same colour code) and
z1 � 0.1.

6The exact definition of these kernels is given in Appendix C.

normalised versions of both the assumed (stationary) signal
correlation K(z1−x) (in thin coloured lines) as well as ker-
nel K|n(z1,x) (bold lines), with the same colour code as in
Figure 2. The similarity of the two K|n allows us to expect
that the estimator will have some robustness with respect
to the assumed GP model. The numerical studies presented
in Section 4 confirm this expectation.

Above, we recognised ε̂2Fn(x|Zm), given by (3.3), as the
MMSE linear estimator of ε2(x) given ε2(Zm). Being ag-
nostic with respect to the expected values of the involved
random variables, estimators ε̂2Fn(x|Zm), and thus ÎSE,
are biased. We investigate in Appendix A the possibil-
ity of exploiting knowledge of the first moments, namely
E
{
ε2(x)

∣∣Fn

}
= σ2K|n(x,x) and E { ISE(ηFn)|Fn} =

IMSE(Fn), to replace ε̂2Fn(x|Zm) in (3.4) with an unbi-
ased estimator. Unfortunately, bias correction comes at the
price of loosing robustness with respect to the assumed GP
model for f , as we might expect given the explicit depen-
dency on σ2 of both expected values. Thus, the unbiased
estimators in Appendix A cannot be considered as instru-
mental alternatives to ÎSE, and we do not consider them in
the numerical study of Section 4.

4. NUMERICAL EXPERIMENTS
Section 4.1 presents numerical studies that demonstrate

the robustness of ÎSE with respect to the assumed GP model,
with ζm found by SBQ. Section 4.2 confirms the importance
of using K |n to define the energy minimised by SBQ. We
then study, in Section 4.3, the possibility of using KH, which
has slightly smaller computational complexity, rather than
SBQ, to find the validation support of ζm. Our conclusion
is that doing so not only leads to worse performance but
is also prone to numerical instability. Finally, Section 4.4
illustrates via some examples the properties of the validation
measures, in particular their space-filling properties and the
fact that they down-weight the observed squared residuals.
In all examples X = [0, 1]d, with d = 1, 2 or 3. Use of larger
values of d leads to similar conclusions; see [35].

Our analysis resorts to simulations from several (zero
mean) GP models, and the MSE of the ISE estimates is
approximated by averaging the squared errors of ÎSE

(i)
on

M = 500 realisations {f (i)}Mi=1 of the assumed GP model.
We reserve the notation Q(·, ·; θ0) for the kernel of the GP
model from which is f sampled, θ0 being thus “the true”
scale parameter. The scale parameter is adapted to the size
of the learning design, θ0 = n1/d, such that good interpo-
lation performance over X can be attained with n points.
Designs Xn are always space filling, and ηFn is the opti-
mal Bayesian interpolator for the simulated GP model. See
Appendix C for details.

K(·, ·; θ) denotes the kernel of the GP model assumed
by the design algorithm that produces ζm, with θ its
scale parameter. In all numerical examples we always con-
sider σ2 = 1. The influence of θ is studied for θ ∈
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n1/d/4,max(n1/d, 2 (n+m)1/d)

]
, an interval that always

contains

θc(n,m, d) = (n+m)1/d

(as well as θ0 = n1/d). All plots consider the normalisation
θ/θc, such that θc ↔ 1 in the plots shown. In all plots of this
section the special symbols in the plotted curves indicate
θ = θ0, the scale parameter of the simulated GP model.

4.1 Robustness with Respect to Assumed GP
Model

We address robustness by studying how much the MSE
of ÎSE is affected by model mismatch, i.e., by estimating
the ISE assuming that the kernel is K(·, ·; θ) when in fact
the data generating model uses Q(·, ·; θ0). Figure 4 plots
empirical estimates of R(ζm,Fn). Kernel Q is the Matérn
3/2 kernel, Xn has n = 10 points and d = 1, θ0 = n.

The panels correspond to different values of the regularity
parameter – ν = 1/2, 3/2, 5/2, from left to right – of the
Matérn kernel K.

The three curves in each plot correspond to different
sizes of Zm (with Zm depending on K, and thus on ν):
m ∈ {5, 10, 20} (in blue, red and yellow, respectively), plot-
ting R as a function of θ/(n+m). The black stars indicate
θ = θ0. Comparison of the three panels confirms the an-
ticipated robustness of the estimator. When K has higher
regularity than Q, as in the rightmost panel (ν = 5/2), the
curves are almost identical to the central panel, where the
correct model is used. However, the assumption of a less
regular model, as in the leftmost panel, may significantly
degrade performance. The estimators are reasonably robust
with respect to precise choice of the scale parameter if values
θ � θc are used.

Figure 5 reproduces the same study for simulations from
a process with a Cauchy kernel and for a larger Zm: m ∈

Figure 4: MSE of ÎSE. Statistics over 500 realisations. Q is a Matérn 3/2 kernel; K is a Matérn kernel with ν = 1/2 (left),
ν = 3/2 (middle) and ν = 5/2 (right); d = 1.

Figure 5: MSE of ÎSE. Statistics over 500 realisations. Q is a Cauchy kernel, K is as in Figure 4; d = 1.
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Figure 6: MSE of ÎSEun. Statistics over 500 realisations for the example in Figure 4.

{10, 20, 30} (left to right). As in previous figure, K is a
Matérn kernel and the three panels correspond to different
smoothness parameters ν ∈ {1/2, 3/3, 5/2}. Here the sim-
ulated model has a weaker regularity than the models as-
sumed, and a noticeable performance degradation is now ob-
served for the smaller designs and the more regular Matérn
kernel with ν = 5/2. Similar results were obtained when
simulating from other models and for higher values of d.

Finally, Figure 6 shows, for the same validation designs
Zm as in Figure 4, the MSE of ÎSEun given by equation
(2.2), estimated over 500 realisations of a GP with the same
Matérn 3/2 model. We can see that proper residual weight-
ing leads to a significant decrease of the estimation error,
which is nearly one order of magnitude larger in Figure 6
than for the optimal BQ weighting used in Figure 4.

The experiments in this section suggest a rule-of-thumb
to choose the kernel K used by the design algorithm: K
should model functions with a reasonably large degree of
smoothness (Matérn 3/2 was found to be a good compro-
mise), with a scale parameter θ dependent on the sizes of
the learning and validation sets. For the Matérn family used
in our experiments a good choice is θ � (n + m)1/d, auto-
matically adjusting to the actual total number of residual
samples.

4.2 Impact of K |n

Our main novel contribution is the identification of K |n
as the kernel that appears in the MMD that the valida-
tion measure ζm, both its weights and its support, must
minimise. One may question the importance of using the
non-stationary conditional kernel K |n to find Zm, instead of
directly using kernel K. We now compare the performance
of the empirical estimator ÎSE with Zm determined by SBQ
for kernel K |n, as in Section 3.2, which from now on we de-
note by ζBQ�, with the estimates produced by a validation
measure ζBQK whose support Zm is incrementally found by

SBQ for kernel K, the continuation of Xn that is optimal
to integrate the function f . Independently of how Zm was
found, the validation measures ζm used by the estimators
ÎSE always have optimal weights given by (3.2).

Figures 7 (d = 1) and 8 (d = 3) show the empirical MSE
of ÎSE for ζBQ� (black lines) and ζBQK (red lines) observed
when Q is the Matérn 3/2 kernel (top) and the Cauchy ker-
nel (bottom), for a learning design of size n = 10 d. From
left to right, K is a Matérn kernel with ν = 1/2, 3/2 and
5/2. The size of the validation designs, m ∈ {10 d, 20 d, 30 d},
is indicated by the line symbols (+, 
 and ◦, respectively).
We can see that the two estimators display similar perfor-
mance and robustness with respect to mis-modelling. When
m is small ζBQ� often yields smaller MSE, see top curves,
but the red and black curves are almost coincident for the
larger values of m. These results, which are representative
of those obtained for other choices of Q and d, indicate that
correct residual weighting is more important than the de-
tailed placement of the validation points Zm.

Note that, in the configurations tested, the default rule-
of-thumb for the choice of K and θ presented in Section 4.1
leads indeed to good and stable performance.

4.3 Comparison with Kernel Herding
Considering only validation measures ζ with uniform

weights 1/m, standard KH also minimises an MMD, incre-
mentally extending Zm with

zm+1 ∈ argmax
x∈XL\{Zm∪Xn}

PK|n
(x)−K |n(x,Zm)1m/m ,

where 1m denotes the m-dimensional vector with all compo-
nents equal to one. Since KH has smaller complexity than
SBQ, and the results of the previous section suggest that
optimal choice of Zm is less important than correct deter-
mination of the weights wi, we compare now ζBQ� to two
other validation measures, whose designs Zm are found by
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Figure 7: MSE of ÎSE for ζBQ� (black) and ζBQK (red) for m ∈ {10, 20, 30}. From left to right ν = 1/2, 3/2, 5/2. Statistics
over 500 realisations. Top: Q is the Matérn 3/2 kernel, bottom: Q is the Cauchy kernel; d = 1.

extending Xn by KH: ζKHK , that performs KH for kernel K,
and ζKH� that uses K|n. As we will see, the SBQ design
is a superior alternative, both in terms of performance and
numerical stability, to the KH designs.

Since ζKHK considers only, at each step, measures with uni-
form weights, and ζKH� does not take into account the op-
timal weights that will be applied when Zm is extended to
Zm+1, we can expect the following ranking of these estima-
tors:

R(ζKHK ;Fn) ≥ R(ζKH�;Fn) ≥ R(ζBQ�;Fn) . (4.1)

Figures 9 and 10 plot, for d = 1 and d = 2, respectively,
the MSE of estimators ÎSE that use ζBQ� (black solid lines),
ζKHK (red dashed lines) and ζKH� (dotted green lines). Ker-
nels (Q and K) and designs sizes m are as in the previous
examples, see the figures’ captions. We can see that ζBQ� has
virtually always smaller MSE than the validation measures
using validation designs Zm found by KH, in particular for

small design sizes m and the more regular models. It also ap-
pears to be more robust with respect to the choice of the GP
kernel. We remark that the design found by KH for kernel
K|n, i.e., the validation measure ζKH� (in green), often leads
to the poorest performance. That use of K|n may lead to
worse performance than simply using K has already been
noticed in [12], where only validation sets generated with
KH were considered.

Moreover, our experiments reveal that the designs ζKH�

can sometimes lead to ISE estimates with very large errors.
This happens when KH places design points close to Xn.
In fact, the implementation of standard KH for kernel K |n
needs careful handling of possible repetition of design points,
as already noted in [35] where an algorithm is proposed
to accommodate this eventuality. Since the implementation
used in Figures 9 and 10 simply imposes zm+1 �∈ (Xn∪Zm),
a grid point very close to Xn∪Zm can chosen, as shown be-
low.
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Figure 8: MSE of ÎSE for ζBQ� (black) and ζBQK (red) for m ∈ {20, 40, 60}. Top: Q is a Matérn 3/2 kernel; bottom: Q is
the Cauchy kernel. K is always a Matérn kernel, from left to right ν = 1/2, 3/2, 5/2; d = 3.

Figure 9: MSE of ÎSE for ζBQ� (black solid lines), ζKHK (red dashed lines) and ζKH� (dotted green lines), for m = 10 (+),
m = 20 (
) and m = 30 (◦). From left to right ν = 1/2, 3/2, 5/2. Q is a Matérn 3/2 kernel; d = 1.
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Figure 10: MSE of ÎSE for ζBQ� (black solid lines), ζKHK (red dashed lines) and ζKH� (dotted green lines), for m = 20 (+),
m = 30 (
) and m = 60 (◦). From left to right ν = 1/2, 3/2, 5/2. Q is a Matérn 3/2 kernel; d = 2.

Figure 11: Designs for θ = θ0 in Figure 9. From top to
bottom: ν = 1/2, 3/2, 5/2. Xn: red ∗; ZBQ�

m : black ∗; ZKH
m :

red � and ZKH�
m : green ◦.

Figure 11 shows the designs Zm, m = 30, for Matérn
kernels with θ = θ0, d = 1, and regularity parameter (top
to bottom panels) ν = 1/2, 3/2 and 5/2. The vertical red
lines indicate Xn and the black stars, green circles and red
squares the position of points of ζBQ�, ζKH� and ζKHK , respec-
tively. A vertical offset is used to facilitate the visualisation
of each design (from top to bottom, ζKHK , ζKH� and ζBQ�).
Remark first that the SBQ designs are always space-filling
continuations of Xn, presenting a good stability with respect
to ν, mainly moving points closer to the boundaries of X
when ν increases. The other two designs place a few points
in the vicinity of Xn.

4.4 Properties of the Design Measures ζBQ�

For the same set of kernels K and design sizes considered
in Figure 4 (with d = 1), we plot in Figure 12 the sum of
the design weights, S(θ) =

∑
i wi(θ), as a function of the

(normalised) scale parameter of K. K is always a Matérn
kernel, with regularity parameter ν = 1/2, 3/2, 5/2 (top to
bottom), as indicated in the legends. The learning design
Xn (n = 10) is the same for all cases.

Three values of m are considered, m = 10, 20 and 30
(blue, red and cyan curves, respectively). In each curve the
black squares indicate the value θ0 = n1/d. We can see that
S(θ) increases with m. For θ larger than a certain value,
S becomes nearly constant, with a value smaller than one
(note that the value θc prescribed by our rule of thumb for

Figure 12: S =
∑

i wi for measure ζBQ�, n = 10.
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Figure 13: ζBQ� in Figure 12, θ = n1/d. Validation design
sizes: m = 10 (blue), m = 20 (red) and m = 30 (cyan).

Figure 14: ζBQ� in Figure 12, θ = (n + m)1/d. Validation
design sizes: m = 10 (blue), m = 20 (red) and m = 30
(cyan).

the scale parameter, which corresponds to the normalised
value of θ equal to one, is always inside this range) while for
θ = n1/d (indicated by a square), under the more regular
model with a Matérn 5/2 kernel, S may be larger than 1.

Figures 13, 14 and 15 present the designs for three values
of θ: θ = n1/d (the value used in the simulations of Fig-
ure 4, and indicated by the squares in Figure 12), for the
value prescribed by our rule of thumb, θ = (n+m)1/d, and
for θ = 2 (n + m)1/d, the upper limit considered in Figure
4. In the figures, the weights of ζm are shown multiplied
by m, to enable comparison. The distinct kernels K cor-
respond to the three row panels, as indicated in the figure

Figure 15: ζBQ� in Figure 12, θ = 2 (n + m)1/d. Validation
design sizes: m = 10 (blue), m = 20 (red) and m = 30
(cyan).

(with regularity increasing from top to bottom). The dotted
black vertical lines (the same in the three panels) indicate
the learning design Xn. The colours code the validation de-
sign size: m = 10 in blue, m = 20 in red and m = 30 in
cyan. Remark the striking similarity of the validation mea-
sures obtained for the different kernels in Figures 14 and
15, supporting our observations concerning the robustness
of the estimator. The figures also show that the validation
designs are, as expected, space-filling continuations of Xn,
and that as m grows (remember Z10 ⊂ Z20 ⊂ Z30) the holes
of Xn∪Zm are refined. Note, however, the slow rate of pop-
ulation of the immediate neighborhood of Xn, Zm tending
first, as m grows, to refine the interior of the wider holes of
Xn. For the Matérn 5/2 kernel and θ = n1/d a few weights,
corresponding to validation points close to Xn, become very
large, see Figure 13, explaining that S(θ) may be larger than
one on the bottom panel of Figure 12. Analysis of the vali-
dation measures obtained assuming the larger value of θ in
Figure 15 shows that, as the assumed correlation length de-
creases, ζBQ� tends to a uniform measure, all weights having
now a similar value. Note that even in this situation, use of
the BQ measure, which down-weights the squared residu-
als, leads to a smaller error than use of the simple uniform
measure over Zm, as the comparison of Figures 4 and 6 in
Section 4.1 has shown.

5. “REAL” MODELS
We study in this section the behaviour of the validation

method proposed considering deterministic functions. More
precisely, we consider the following multidimensional func-
tions:
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• The 2-dimensional drag model that describes the
quasi-steady drag coefficient CD of a spherical parti-
cle in a compressible flow, see [30]:

CD(M,Re) = (α(Re)− β(Re)) ξ(M,Re) + β(Re)

α(Re) =
24

Re

(
1 + 0.107R0.867

e

)
+ 0.646

(
1 +

861

R0.634
e

)−1

β(Re) = 24
(
1 + 0.118R0.813

e

)
Re + 0.69

(
1 +

3550

R0.793
e

)−1

ξ(M,Re) =

3∑
i=1

fi(M)
∏

j �=i,j∈{1,2,3}

logRe − Cj

Ci − Cj

where

C1 = 6.48, C2 = 8.93, C3 = 12.21

f(M) = a+ bM + cM2 + dM2 − g(M)

a = − [2.963 6.617 5.866]
T

b = [4.392 12.11 11.57]
T

c = − [1.169 6.501 6.665]
T

d = [−0.027 1.182 1.312]
T

g(M) =

⎡⎣ 0.233e(1−M)/0.11

0.174e(1−M)/0.01

0.350e(1−M)/0.012

⎤⎦
• The 7-dimensional piston model, that describes the cir-

cular motion of a piston within a cylinder, see [1]:

C(x) = 2π

√
M

k + S2 P0V0

T0

Ta

V 2

V =
S

2k

(√
A2 + 4kTA

P0V0

T0
−A

)

A = P0S −+19.62M − k
V0

S

with x1 = M ∈ [30, 60], x2 = S ∈ [0.005, 0.020],
x3 = V0 ∈ [0.002, 0.010], x4 = k ∈ [1000, 5000],
x5 = P0 ∈ [90000, 110000], x6 = Ta ∈ [290, 296] and
x7 = T0 ∈ [340, 360]. In [28], a screening study is pre-
sented, indicating that only variables xi for i ≤ 4 are
relevant. For this reason we consider C(x) only as a
4-dimensional function, with the remaining three input
variables (x5, x6 and x7) being fixed to the mid-point
of the corresponding intervals.

The functions generated by the models above cannot
be well interpolated using simple kriging unless the design
size is very large, having a smooth tendency which, when
not taken into account, leads to a residual signal ε(x) that
strongly departs from the stationarity hypothesis assumed
in this work. For that reason, we consider the estimation of

ISE for interpolators of f of the form

η(x) = Pq,n(x) + g(x) .

Above, P (x) is the complete q-degree polynomial obtained
by least squares fit to the n observations yn over the learning
design Xn. The term g(x) is the simple kriging interpolator
of

f ′(x) = f(x)− Pq,n(x) .

In all cases, Xn is a space filling design determined by Kernel
herding for a spherical Matérn 3/2 kernel with θ = n1/d, and
all validation designs Zm assume a spherical Matérn kernel
(several settings of its correlation length are studied). All
experiments reported in this section consider m = n/2.

We compare the performance of the ISE estimator pro-
posed in the paper, using the validation measure ζBQ�, with
the simple empirical estimator ÎSEun that uses a uniform val-
idation distribution with support the validation design Zm,
see (2.2). All validation measures ζBQ� assume a Matérn
3/2 kernel. Learning designs Xn are always space filling,
found by Kernel Herding for a Matérn kernel with parame-
ter θ = n1/d.

The robustness of the estimator with respect to the as-
sumed value of the range parameter of the covariance of
the GP model is studied by showing three panels, corre-
sponding to θ ∈ {m1/d, n1/d, (n + m)1/d} (increasing from
left to right). The figures display grouped bar plots, cor-
responding to increasing sizes of Xn (and thus of Zm):
n ∈ {10, 20, 30, 40, 50}d. The blue bars correspond to the
true value, the red bars to ÎSE

BQ�
, and the yellow bars to

ÎSEun.

5.1 Drag Model
For the drag model Pq,n has degree q = 1.
Figure 16 confirms the robustness of ÎSE

BQ�
with respect

to the choice of θ. Also, the anticipated overestimation of
the empirical estimator, as well as the negative bias of the
BQ estimator, are apparent in the figure. Note that different
values of the assumed θ – corresponding to the three panels
of the figure – lead both to distinct validation weights and
to different validation designs Zm. As we had anticipated,
the validation weights of ÎSE

BQ�
compensate for the precise

location of the points of Zm, and the variation of the esti-
mates across the three panels in Figure 16 is minor. On the
contrary, the empirical estimator ÎSEun displays an impor-
tant sensitivity with respect to the exact placement of Zm,
changing significantly across the three panels.

Figure 17 considers η(x) = Pq,n(x), violating the interpo-
lating assumption. As we might expect, the SBQ estimate of
ISE (red bars) has now an important (negative) bias. Some-
what surprisingly, when the value of n is small the positive
bias of ÎSEun (yellow bars) partially compensates, in this
example, for the non-zero residuals of η over Xn.
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Figure 16: Drag model. True ISE (blue) SBQ estimate (red) and ÎSEun (yellow), η(x) = Pq,n(x)+ g(x). From left to right:
θ = m1/d, n1/d, (n+m)1/d.

Figure 17: Drag model. True ISE (blue) SBQ estimate (red) and ÎSEun (yellow), η(x) = Pq,n(x). From left to right:
θ = m1/d, n1/d, (n+m)1/d.

Figure 18: Piston model. True ISE (blue) BQ estimate (red) and ÎSEun (yellow). Interpolator, η(x) = P (x) + g(x). From
left to right: θ = m1/d, n1/d, (n+m)1/d; p = 3.

5.2 Piston Model
We switch now to the higher dimensional piston model

(d = 4), for which Pq,n is a polynomial of degree q = 2.
Figure 18 is the equivalent of Figure 16. It confirms the
superior performance and robustness of ζBQ� over ÎSEun.

When η is not an interpolator a behaviour similar to the
one observed for the drag model has been observed.

6. CONCLUSIONS
The paper presents an estimator for the ISE of an inter-

polator based on knowledge of the design on which it has
been learned, defined as the ISE for a finitely supported
validation measure. The estimator proposed is the optimal
MSE linear estimator under the assumption that the inter-
polated function is a realisation from a Gaussian process
with known statistical moments. The support and weights
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of the validation measure are found by minimising an MMD
for a non-stationary kernel that is adapted to the learning
design, and a nested sequence of validation designs is greed-
ily determined by SBQ. A default rule is proposed to select
the covariance kernel of the assumed model.

Numerical experiments on both simulations from nominal
Gaussian processes and on two real models of small dimen-
sion confirm the superior performance of the proposed esti-
mator when compared to common estimation by the simple
empirical average of the observed squared residuals.

The interpretation of the ISE estimator in terms of an in-
terpolation of the squared residuals explains the utmost im-
portance of accounting for the correct shape of their second-
order moment. Moreover, it unriddles the observed robust-
ness of the estimator with respect to the covariance of the
assumed GP model.

The work presented suggests several directions for future
developments. One concerns the determination of indica-
tors of the quality of the ISE estimate itself, ideally given
by the risk function that is optimised. These could both
be used to define stopping rules, indicating that incorpora-
tion of further residual observations should not yield a sig-
nificant improvement on the confidence of the current ISE
estimate, or to flag poor performance of the current inter-
polator, and trigger its update including some of the resid-
uals observed over Zm in the learning dataset Fn. A major
difficulty is related to the dependency of the MSE of the in-
terpolator on the assumed process variance, which is known
to be difficult to estimate [22]. A possible source of subop-
timality of the estimator presented concerns the restriction
to a linear estimator. The extension to more general esti-
mators while preserving at the same time the robustness
property of the method forms a challenging objective. Fi-
nally, we believe that the analysis presented here suggests
possible approaches to defining (down-)weighted CV esti-
mators that perform better than standard ones; this is the
subject of ongoing work.

APPENDIX A. BIAS CORRECTION
Under the assumed GP model for f|Fn

, the estimator
ÎSE(ηFn ,Zm) has a non-zero bias:

B(Zm) = E
{
ÎSE(ηFn ,Zm)− ISE(ηFn)

∣∣∣Fn

}
= σ2w̃(Zm)Tk|n(Zm)− IMSE�(Xn) ,

with k|n(Zm) the m-dimensional column vector with com-
ponents [k|n]i = K|n(zi, zi) (see equation (2.3)), and
IMSE�(Xn) given by (2.4).

By noting that ε̂2Fn(x|Zm) given by (3.3) is also the
optimal MMSE estimator under the zero mean model
GP0 = GP(0, s2K|n) for some (arbitrary) s2 (necessarily
linear, since the model is Gaussian), equation (3.4) sug-
gests that B(Zm) may be negative: as ε̂2Fn(x|Zm) is op-
timal for GP0, it should tend to have smaller values than

Figure 19: Bias of ε̂2, x ∈ X . (simulations from Cauchy and
Matérn 3/2 kernels).

estimators that consider the correct first posterior moment,
i.e., GP(σ2K|n(x,x), σ

4K |n). Figure 19 displays the empir-
ical bias (1/M)

∑
i

(
(ε̂2Fn)

(i)(x|Zm)− (ε2)(i)(x)
)

observed
over M = 500 realisations from several GP models, support-
ing this conjecture (simulations are from the models consid-
ered in Figure 2).

Simply subtracting B(Zm) from the biased linear estima-
tor yields the following unbiased affine estimator

ÎSEaffine(Xn,Zm) =

m∑
i=1

w̃iε
2(zi)−B(Zm)

= IMSE�(Xn) + w̃TΔm , (A.1)

where Δm collects the mean corrected squared residuals
at the validation points: Δm(zi) = ε2(zi) − σ2K|n(zi, zi),
i = 1, . . . ,m. Note that implementation of the expression
above requires specification of the value of σ2, which is in
practice unknown. In the numerical experiments presented
in Figures 20 and 21, we considered the ideal situation where
the true value (σ2 = 1) is known.

Alternatively, a linear (instead of affine) unbiased solu-
tion can be found by using weights w(Zm) that minimise
the same quadratic cost function, but under the zero bias
constraint. This leads to the following additive correction of
the optimal weights of the biased linear estimator ÎSE:

wlinear(Zm) = w̃(Zm)

−
σ2w̃(Zm)k|n(Zm)− IMSE�(Xn)

σ2k|n(Zm)T t
t , (A.2)

where t = K|n(Zm,Zm)−1k|n(Zm).
Denote by ÎSEbiased the empirical ISE estimator that uses

the validation measure presented in Section 3.2, and let
ÎSElinear denote the linear unbiased estimator with weights
given by (A.2).

As (A.2) is linear and ε̂2Fn(x|Zm) in (3.3) is the MMSE
linear estimate of ε2(x) given Fn, ÎSElinear will necessarily
perform worse than ÎSEbiased when using the correct model
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Figure 20: IMSE�(Xn; θ) (black), ISE (dashed), ÎSEbiased(θ) (blue), ÎSEaffine(θ) (red) and ÎSElinear(θ) (green). From left
to right m = 5, 10, 20. Q and K are the Matérn 3/2 kernel.

Figure 21: IMSE�(Xn; θ) (black), ISE (dashed), ÎSEbiased(θ) (blue), ÎSEaffine(θ) (red), ÎSElinear(θ) (green). From left to
right m = 5, 10, 20. Q is the Matérn 3/2 kernel; K is the Matérn kernel with parameter ν = 1/2 (top) and ν = 5/2
(bottom).

for f . Conversely, ÎSEaffine performs better than ÎSEbiased

for the right model for f . In fact, the numerical experi-
ments presented below show that ÎSElinear and ÎSEaffine

have both bad performance and poor robustness: as both
estimators explicitly incorporate the uncertainty predicted
by the posterior distribution, they inherit, as we will see, the
well known sensitivity of modelled prediction uncertainty
with respect to the assumed model.

We performed M = 500 simulations from a GP with ker-
nel Q(·, ·; θ0), the Matérn kernel with regularity parameter
ν = 3/2 and θ0 = n, over the domain X = [0, 1]d (d = 1).
The corresponding optimal Bayesian interpolators η

(i)
Fn

all
use the same learning design Xn of size n = 10 (see details
in Appendix C).

Let ÎSE
(i)

c (Kθ), c ∈ {biased, affine, linear} denote the
estimate ÎSEc(η

(i)
Fn

) when the validation measure assumes
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kernel K(·, ·; θ). Figures 20 and 21 plot the average of these
estimates. In Figure 20 K = Q, while in Figure 21 measures
ζm are based on Matérn kernels with ν ∈ {1/2, 5/2}. In both
figures the horizontal dashed black lines indicate ISE, the
empirical average of ISE(i)(ηFn) over the M realisations, and
the solid black curve is IMSE�(Xn; θ), predicted by kernel
K(·, ·; θ). The three panels correspond to increasing design
sizes m = 5, 10, 20 (from left to right).

The correct θ0 can be identified in Figure 20 as the
value at which the black solid and dashed lines intersect:
IMSE�(Xn; θ0) = ISE. We can see that for the correct pa-
rameter value the unbiased estimates (red and green curves)
both have the correct mean, while the biased estimator (blue
line) has, as foreseen, a negative bias. For θ �= θ0 all three
estimators have a non-zero bias, which decreases when m
grows as the estimators become less dependent on the prior
stochastic model for f . For large design sizes, the two linear
estimates (blue and green curves) have nearly the same bias,
showing that bias correction is mainly relevant for small
validation designs. As anticipated, the unbiased estimates
display a larger sensitivity with respect to model mismatch
than the original ÎSEbiased(θ), which shows a remarkably
stable behaviour with respect to θ.

In Figure 21 wrong values of ν are assumed by the de-
sign algorithm. In the top row ν = 1/2, less regular than
Q, while in the bottom row ν = 5/2, more regular than
the simulated model. While a much larger bias is observed
for the exponential (ν = 1/2) model in the top row, the
curves in the bottom panels are similar to those in Fig-
ure 20, indicating that the estimator can accommodate a
model that assumes a higher regularity. The robustness of
BQ with respect to models assuming higher regularity than
the true one has been previously noted in [20]. Finally, re-
mark that ÎSEbiased has a remarkably stable behaviour, and
that its bias is often the smallest amongst all three estima-
tors.

Unless a high confidence can be given to the assumed GP
model, including its scale parameter, the lack of robustness
of the unbiased estimators prevents their use. For small de-
sign sizes, where bias correction could indeed be important,
guaranteeing the fidelity of the assumed model is in general
impossible, severely limiting the practical interest of the un-
biased estimators discussed here.

APPENDIX B. POTENTIAL PK|n
(z) FOR

TENSOR-PRODUCT
KERNELS ON [0, 1]d

B.1 Factorisation in the General Case
A key difficulty for the algorithmic construction of a val-

idation design by SBQ (Section 3.2) or KH (Section 4.3) is
the calculation of PK|n

(x) = PK|n,μ
(x) for many x in order

to choose zm+1. However, when K is a tensor-product ker-
nel, PK|n,μ

can be calculated explicitly when μ is uniform
on X = [0, 1]d.

We can write μ(dx) =
∏d

i=1 μ1(dxi) with μ1 the uni-
form measure on [0, 1] and x = (x1, . . . , xd)

�. When
K(x,x′) =

∏d
i=1 Ki(xi, x

′
i), with x = (x1, . . . , xd)

� and
x′ = (x′

1, . . . , x
′
d)

�, we thus have

PK,μ(x) =

d∏
i=1

∫
Xi

Ki(xi, x
′
i)μ1(dx

′
i) =

d∏
i=1

PKi,μ1(xi) .

One may refer to [43] for connections between positive-
definiteness properties of the Ki and those of K. The ex-
pression of PKi,μ1(·) is available for many kernels Ki; see
[36] and the references therein.

Before deriving the expression of PK|n,μ
(x) we introduce

some notation. Denote by ΩK,n the n × n matrix with re-
spective elements

{ΩK,n}j,k =

d∏
i=1

βKi(xj i, xki) ,

and by ωK,n(x) the vector with j-th component

{ωK,n(x)}j =
d∏

i=1

βKi(xj i, xi) ,

where xji (respectively, xki) is the i-th component of xj

(respectively, xk), and

βKi(r, s) =

∫
X

Ki(r, t)Ki(s, t)μ1(dt) , i = 1, . . . , d .

Then, using (2.6), direct calculation gives

PK|n,μ
(x) = 2PK2,μ(x)− 4k�

n (x)K
−1
n ωK,n(x)

+2 k�
n (x)K

−1
n ΩK,nK

−1
n kn(x)

+
[
1− k�

n (x)K
−1
n kn(x)

] [
1− trace(K−1

n ΩK,n)
]
.

The expressions of PK2,μ1
(x) and βK(u, v), x, u, v ∈ [0, 1],

for μ1 uniform on [0, 1] and Ki(x, x
′) a Matérn 3/2 ker-

nel (C.1) are given in Section B.2, making the expression
of PK|n,μ

(x) available in closed form when K(x,x′) is the
product of uni-dimensional Matérn 3/2 kernels and μ is uni-
form on X = [0, 1]d. Similar calculations can be conducted
for other kernels. The expression of EK|n

(μ), which appears
in the expansion of R(ζm,Xn), see (2.5), can be obtained in
closed form in a similar way; see [35].

B.2 The Matérn 3/2 Case

When Ki(x, x
′) = K

3/2
Matérn(|x − x′|) given by (C.1) with

θ = γ/
√
3, we have [36]

PKi,μ1(x) = Sγ(x) + Sγ(1− x) ,



412 L. Pronzato and M. J. Rendas

with Sγ(x) =
1
γ [2−(2+γx)e−γx], x ∈ [0, 1]. Straightforward

but lengthy calculation gives

PK2
i ,μ1

(x) = Tγ(x) + Tγ(1− x) ,

with Tγ(x) = 1
4 γ [5 − (5 + 6 γx + 2 γ2x2)e−2 γx], x ∈ [0, 1].

Also, the expressions βKi(u, v) = Bγ(u, v) − Cγ(u, v) −
Cγ(1− u, 1− v), u, v ∈ [0, 1], with

Bγ(u, v) =
e−γ|u−v|

6 γ

[
15 (1 + γ|u− v|) + 6 γ2|u− v|2

+γ3|u− v|3
]
,

Cγ(u, v) =
e−γ(u+v)

4 γ

[
5 + 3 γ(u+ v) + 2 γ2uv

]
,

permit to calculate PK|n,μ
(x) explicitly.

APPENDIX C. DETAILS ON NUMERICAL
EXPERIMENTS

C.1 GP Models
Let {f(x)}x∈X , f(x) ∈ R be a real d-dimensional

stochastic process defined over the compact index set X ⊂
R

d. {f(x)}x∈X is a Gaussian process with mean func-
tion μ(·) and covariance kernel K(·, ·), noted {f(x)}x∈X ∼
GP(μ(·),K(·, ·)), if for any finite n ∈ N, and any X =
{x1, . . . ,xn} ⊂ X , the collection of random variables
{f(xi), i = 1, . . . , n} is a n-dimensional normal random vec-
tor, i.e.,

{f(xi), i = 1, . . . , n} ∼ N (μX,KX) ,

where μX ∈ R
d has i-th component [μX]i = μ(xi), and

the n× n matrix KX has generic (i, j) element [KX](i,j) =

K(xi,xj).
All Gaussian models considered in the numerical exper-

iments presented assume a zero mean, i.e., μ(·) ≡ 0, and
are defined over X = [0, 1]

d. Besides, only stationary and
isotropic processes are considered, i.e., all covariance kernels
K satisfy K(x,x′) = Ψ(x− x′) = ψ (‖x− x′)‖).

The experiments presented resort to several parametric
families for the kernel K, namely, the Cauchy kernel KCauchy
as defined in [13], and the Matérn kernels Kν

Matérn with
regularity parameter ν ∈ {1/2, 3/2, 5/2}, all given below.
For all kernels θ ∈ R

+ is the scale parameter, and for the
Cauchy kernels (ρ, γ) are the long distance dependency and
the shape parameters, respectively. Below, � = ‖x− x′‖.

ψCauchy(�) = (1 + (θ �)γ)
−ρ/γ

,

ψ
1/2
Matérn(�) = e−θ 
 ,

ψ
3/2
Matérn(�) =

(
1 +

√
3θ �

)
e−

√
3θ 
 , (C.1)

ψ
5/2
Matérn(�) =

(
1 +

√
5θ �+

5

3
(θ �)2

)
e
√
5θ 
 . (C.2)

For the Cauchy kernel, we set ρ = γ = 1, and thus a rational
kernel with bandwidth determined by θ.

The parameter θ0 of the simulated GP model is depen-
dent of the size of the learning design of Fn: θ0 = n1/d. This
will guarantee the numerical stability of the KH algorithm
used to define Xn (see below), and that the interpolator ηFn

will have a moderate error level.

C.2 Sampling from a GP Processes
The material in Section 4 presents the average perfor-

mance of the ISE estimators over M = 500 simulations from
an assumed GP model. These simulations are supported in
a dense finite subset XL of X of size L = 212; XL is a
uniform grid when d = 1 and a scrambled low-discrepancy
Sobol’ sequence when d ≥ 2.

Generation of realisations from the GP model requires
factorisation of the matrix KXL

collecting the values of ker-
nel K over the pairs of points of XL:

f (i)(t) = K−1/2u , u ∼ N
(
0, I|T |

)
, t ∈ T .

When L is very large this may lead to numerical instabilities
for some parameter values, due to near singularity of K.
In that case, our simulated signals are the optimal MSE
estimate (under the simulated GP) of samples obtained as
above over a smaller dense subset XM of X , of size M =
103 d:

{u(i)(x)}x∈XM
∼ N (0, IM )

−→ {f (i)(x)}x∈XM
→ {f̂ (i)(x)}x∈X .

The simulated functions are thus slightly smoother than the
actual realisations from the assumed GP. We believe, how-
ever that this does not compromise the validity of our con-
clusions.

C.3 Learning Design Xn, Interpolator ηFn, ISE
Estimates

In Section 4, for each GP kernel K and design size n, Xn

is always the space-filling design obtained by standard KH
for kernel K. For each realisation f (i), its interpolator η

F
(i)
n

is the optimal interpolator for the assumed GP model using
the learning data F

(i)
n = (Xn, f

(i)(Xn)),

η
F

(i)
n
(x) = k|n(x,Xn)

TK|n(Xn,Xn)
−1f (i)(Xn) .

Simulated residuals are thus ε(i)(x) = f (i)(x) − η
F

(i)
n
(x).

For a validation measure ζm = (w,Zm) the MSE of the
corresponding estimate ÎSE is approximated as

R̂(ζ) =
1

M

M∑
i=1

(
ÎSE

(i)
− ISE(i)

)2

,
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where

ÎSE
(i)

=

m∑
i=i

wiε
2
η

F
(i)
n

(zi), ISE(i) =
1

L

∑
ti∈XL

(ε(i)(ti))
2 .
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