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Abstract
Sequential change detection is a classical problem with a variety of applications. However, the majority of prior work

has been parametric, for example, focusing on exponential families. We develop a fundamentally new and general frame-
work for sequential change detection when the pre- and post-change distributions are nonparametrically specified (and
thus composite). Our procedures come with clean, nonasymptotic bounds on the average run length (frequency of false
alarms). In certain nonparametric cases (like sub-Gaussian or sub-exponential), we also provide near-optimal bounds on
the detection delay following a changepoint. The primary technical tool that we introduce is called an e-detector, which
is composed of sums of e-processes—a fundamental generalization of nonnegative supermartingales—that are started at
consecutive times. We first introduce simple Shiryaev-Roberts and CUSUM-style e-detectors, and then show how to de-
sign their mixtures in order to achieve both statistical and computational efficiency. Our e-detector framework can be
instantiated to recover classical likelihood-based procedures for parametric problems, as well as yielding the first change
detection method for many nonparametric problems. As a running example, we tackle the problem of detecting changes
in the mean of a bounded random variable without i.i.d. assumptions, with an application to tracking the performance of
a basketball team over multiple seasons.
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1. INTRODUCTION
Suppose we observe sequentially a stream of random vari-

ables X1, X2, . . . , whose marginal distributions may change
at some unknown time, or changepoint, ν. To take one con-
crete example that we generalize later, denote the data
stream by X1, . . . , Xv ∼ Pμ0 and Xv+1, Xv+2, . . . ∼ Pμ

where Pμ0 and Pμ are some probability distributions with
parameters μ0, μ ∈ R, respectively. Let Pν and Eν denote
probability and expectation, respectively, with respect to
the distribution of the entire infinite data stream, when the
change occurs at time ν. If there is no change, we think of
ν as being equal to ∞, and we let P∞ and E∞ refer to the
corresponding probability and expectation.

We are concerned with designing sequential changepoint
detection procedures to determine, at each time, whether
a changepoint has occurred in the near past that (i) pro-
vide non-asymptotic false alarm guarantees, (ii) allow for
non-parametric classes of pre- and post-change distribu-
tions and (iii) are computationally efficient. Formally, a se-
quential changepoint detection algorithm consists of a data-
dependent stopping rule N∗ ≥ 1. If not specified explicitly,
the underlying filtration with respect to which N∗ is de-
fined is assumed to be the natural filtration generated by
the data stream X1, X2, . . . , but in some cases it is beneficial
to coarsen the filtration. If the stopping time N∗ is finite,
∗Corresponding author.

then we declare that a changepoint has been detected, in
the sense that sufficient evidence has accumulated to sup-
port the hypothesis that the data generating distribution
has changed. If the algorithm never stops, we set N∗ = ∞
and no changepoint is proclaimed. To evaluate the perfor-
mances of detection algorithms, we can check how quickly
the algorithm can detect a change in the distribution while
controlling the frequency of false alarms.

To control false alarms, we adopt the average run length
(ARL) metric [23], defined by

ARL := E∞N∗. (1.1)

We say that the “ARL is controlled at level α” if E∞N∗ ≥
1/α. An equivalent error metric is the False Alarm Rate
(FAR), which is the reciprocal of the ARL, and we would like
to ensure that the FAR is at most α, and we call a sequential
change detection procedure as “valid” if it satisfies the above
constraint.

A widely-used measure of the speed of detection after
a changepoint is the worst average delays conditioned on
the least favorable observations before the change [18], or
conditioned on the event that the algorithm stops after the
changepoint [25]. These are defined by

JL

(
N∗) := sup

ν≥0
esssupEν

[[
N∗ − ν

]
+
| Fν

]
, (1.2)
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JP

(
N∗) := sup

ν≥0
Eν

[
N∗ − ν | N∗ > ν

]
, (1.3)

where the subscripts indicate the authors, and it is known
that JP (N

∗) ≤ JL(N
∗) [22].

Our implicit objective is to (approximately) minimize
JL(N

∗) or JP (N
∗) while guaranteeing that the ARL is con-

trolled at a prespecified level α ∈ (0, 1). We differ from other
work in that our focus is on nonparametric and compos-
ite pre- and post-change distributions, as well as on deriv-
ing nonasymptotic guarantees. In several such settings, it is
a priori unclear how to define any valid sequential change de-
tection algorithm, let alone an optimal one. Accordingly, we
first address the design problem, and then move to questions
involving (approximate) optimality for detection delays.

1.1 Prior Work and Our Contributions
If both pre- and post-change parameters μ0, μ are known

and the distributions have densities pμ0 and pμ with respect
to some common reference measure, then the CUSUM pro-
cedure [23] has been known to achieve the optimal worst
average delay (exactly for JL(N

∗) and asymptotically for
JP (N

∗) as α → 0) among all procedures controlling ARL
at the same level [18, 21, 31, 14]. Recall that the CUSUM
procedure is defined by the stopping time N∗

CU := inf{n ≥
1 : MCU

n ≥ cCU
α }, where cCU

α > 0 is a constant chosen so
that E∞(N∗

CU) = 1/α, and the test statistic MCU
n is defined

by the recursive formula

MCU
n =

pμ(Xn)

pμ0(Xn)
·max

{
MCU

n−1, 1
}
, MCU

0 := 0. (1.4)

The Shiryaev–Roberts (SR) procedure [37, 32] is defined by
the stopping time N∗

SR := inf{n ≥ 1 : MSR
n ≥ cSRα }, where

cSRα > 0 is a constant chosen so that E∞(N∗
SR) = 1/α, and

the test statistic MSR
n is obtained recursively as

MSR
n =

pμ(Xn)

pμ0(Xn)
·
[
MSR

n−1 + 1
]
, MSR

0 := 0. (1.5)

Unlike CUSUM, the SR procedure does not achieve exact
minimax optimality for JL(N

∗). However, the SR proce-
dure and its generalized versions enjoy strong asymptotic
optimality guarantees [26, 27, 41, 39].

The literature sometimes assumes that the pre-change
distribution is known or can be approximated with a high
precision by using the previous history. However, the post-
change distribution is typically unknown and is assumed to
belong to a family of distributions P := {pμ : μ ∈ Θ}.
In this case, one natural approach would be to replace the
unknown parameter μ with an estimator μ̂. If we use the
maximum likelihood estimator (MLE), then we obtain the
CUSUM procedure based on the generalized likelihood ratio
(GLR) rule [e.g., see 1, 49, 38]. For those not familiar with
sequential change detection, [15] provides a good overview.

Limitations of Prior Work Though the usage of GLR
statistic for the sequential change detection problem has a
long history and often yields good empirical performance,
the current literature has two main limitations.

First, most existing methodology relies on parametric as-
sumptions on the family of distributions (e.g.: exponential
families), both pre-change and post-change. There have been
attempts to move away from this setting, and we will dis-
cuss these later. However, a general framework for deriving
sequential change detection procedures in general nonpara-
metric or composite settings has not been previously pre-
sented in the generality that we do here.

Second, the study of statistical properties has typically
focused on the asymptotic regime of α → 0, unless the GLR
statistic is defined on a well-separated post-change parame-
ter space. In this paper, we guarantee nonasymptotic control
on the ARL at a prespecified level (such as α = 0.001). In
fact, in many settings considered, we do not know of any ex-
isting method to guarantee (even asymptotic) ARL control.

(We think that in theory and practice, the first is a big-
ger issue than the second. Luckily, our solution for the first
automatically handles the second. Indeed, in the composite
and nonparametric settings we consider, it is quite unclear
how to control the ARL in any asymptotic sense.)

Finally, a direct online implementation of the GLR rule
is infeasible since the memory and computation time both
increase at least linearly as n → ∞. One natural approach
to tackle this online implementation issue is to use window-
limited versions of the GLR rule [49, 13]. For instance, a
simple form of the window-limited GLR rule can be defined
by, at each time n, computing μ̂ over only times n −W to
n for a properly chosen window size W > 0. However, the
optimal choice of window size W has been studied only in
the asymptotic setting (α → 0). For a fixed α, the optimal
window size depends on the difference between the pre- and
post-change distributions, which is unknown.

Our Contributions We present a general framework for se-
quential change detection, focusing on (parametric and non-
parametric) settings with composite pre- and post-change
distributions, and nonasymptotic guarantees on the ARL:

1. We introduce the concept of an e-detector that un-
derlies our construction of sequential change detection
procedures. The e-detector utilizes a generalization of
the underlying martingale structure of likelihood ra-
tios in classical sequential change detection procedures.
This e-detector framework is applicable in nonparamet-
ric settings including sub-Gaussian, sub-exponential,
and bounded random variables, among many others.
In such settings, there is no common reference mea-
sure and likelihood ratios cannot be directly defined,
thus composite nonnegative supermartingales, or more
generally “e-processes”, must be employed in their
place.
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2. Despite handling composite pre- and post-change
distributions, even without an iid (independent and
identically distributed) assumption on the data,
our e-CUSUM and e-SR sequential change detec-
tion procedures based on e-detectors can always
nonasymptotically control the ARL at level α.

3. Nonasymptotic bounds on the worst average delay are
derived in special cases for nonparametric distributions
with exponential tail decay (such as sub-Gaussian or
sub-exponential), and they match the rate of known
lower bounds for exponential families as α → 0.

4. Computationally feasible algorithms are presented,
in order to run our procedures in an online fashion
without windowing. Practical strategies to choose
hyperparameters are discussed. These are based on an
adaptive mixture method, with the number of mixture
components growing slowly over time.

Our procedures have natural gambling interpretations,
and our work can be viewed as setting the foundations for
a game-theoretic approach to sequential change detection.
Before discussing the general framework in detail, in the
following subsection, we present a motivating real-world ex-
ample involving bounded random variables to illustrate how
our nonparametric framework can be easily used in settings
in which it is nontrivial to apply other common methods.

1.2 Example: A Changepoint in Cleveland
Cavaliers 2011–2018

The Cleveland Cavaliers are an American professional
basketball team. We use the Cavaliers’ game point records
over 2010–11 to 2017–18 NBA seasons to illustrate how our
proposed nonparametric sequential change detection algo-
rithm can be applied to detect an interesting changepoint
in the Cavaliers’ recent history.1

The left plot in Figure 1 shows the difference between
the scores of the Cavaliers and those of their opposing
teams (also known as Plus-Minus) in all the games from
the 2010–11 to the 2017–18 regular seasons. Each red line
refers to the yearly average difference score in each season.
Roughly, this value shows how well the Cavaliers performed
against their opponent in terms of scoring. Typically, if a
seasonal average is positive (or negative) then we may say
that the Cavaliers showed a strong (or poor) performance
in the corresponding season. The right plot shows a change-
point detected in early 2015; NBA fans may recall one major
cause of the sharp improvement — LeBron James returned
to the Cavaliers in 2014. However, how can we detect such a
change on the fly by only tracking the Plus-Minus for each
game?

This type of question fits well into the sequential change
detection framework. Let X1, X2, . . . be the sequence of
1The R code to reproduce all the plots and simulation re-
sults of the paper is available at https://github.com/shinjaehyeok/
e_detector_paper

Plus-Minus stats we observe sequentially. After observing
a poor performance of the Cavaliers in 2010–11 season, we
define the Cavaliers’ pre-change distribution on the Plus-
Minus stats as follows: the average Plus-Minus of the team
is less than or equal to μ0 := −1. Now, we are interested
in detecting a meaningful performance improvement on the
fly by defining the post-change distribution as follows: the
average Plus-Minus of the team is greater than μ1 := 1.
Here, the gap |μ1 − μ0| between averages of Plus-Minus in
pre- and post-changes refers to the degree of improvement
we consider as a significant one.

Although the formulation of the problem is simple as de-
scribed above, it is still nontrivial to fit this problem into
commonly used sequential change detection procedures for
the following reasons. First, it is not easy to choose a proper
parametric model to fit observed Plus-Minus stats since they
are integer-valued samples with varying mean and variance
over seasons as Figure 1 illustrates. Second, even if we can
choose a proper model, it is difficult to find a threshold to
detect the changepoint since we are interested in detect-
ing any changes larger than |μ1 − μ0| instead of a fixed
post-change. Many common methods have been relying on
a high-quality simulator or large enough sample history for
pre-change observations to compute a valid threshold. For
this example, however, it is hard to access such tools since
the Cavaliers’ overall Plus-Minus stats are difficult to model
directly, and it is tricky to justify using existing records to
get a valid threshold as the team’s overall performance varies
a lot around the 2010–11 season.

Based on the introduced framework of the sequential
change detection procedure using e-detectors, we detour dif-
ficulties in the commonly used methods illustrated above as
follows. First, due to the nonparametric nature of the new
framework, we do not need to choose any parametric model
to fit the data. Instead, we simply assume the absolute value
of each Plus-Minus stat is bounded by a large number — in
this example, we set 80 as the boundary. Though we set a
conservatively large boundary, our detection procedure is
variance-adaptive so that we can detect the changepoint
efficiently without specifying the variance of observations.
Second, the nonasymptotic analysis of the new framework
makes it possible to choose an explicit detection boundary,
which is equal to log(1/α), to build a sequential change de-
tection procedure controlling the ARL by 1/α for any given
α ∈ (0, 1). In this example, we choose α = 10−3 to make
ARL is larger than at least 10 regular seasons of games.
The right plot in Figure 1 shows the log of e-detectors on
which we build the sequential change detection procedure.
The red horizontal line corresponds to the detection bound-
ary given by log(1/α). We can check the procedure detects
the changepoint of the Plus-Minus stat of the Cavaliers in
the middle of the 2014–15 season. See Section 5.2 for the
detailed explanation about how we construct the sequential
change detection procedure based on the general methodol-
ogy we introduce in the paper.

https://github.com/shinjaehyeok/e_detector_paper
https://github.com/shinjaehyeok/e_detector_paper
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Figure 1: Left: Plus-Minus of the Cavaliers from 2010–11 to 2017–18 seasons. Each horizontal red line corresponds to
the seasonal average. Right: The sample path of (the logarithm of) one of our e-detectors. The horizontal red line is the
threshold equal to log(1/α) controlling the ARL by 1/α = 1000. In this example, the procedure detects the changepoint in
the Plus-Minus of the Cavaliers at the end of 2014–15 season.

Paper Outline The rest of the paper is organized as follows.
In Section 2, we introduce a general framework about how to
build composite, nonparametric, and nonasymptotic sequen-
tial change detection procedures using e-detectors. Section 3
extends the previous framework to the case where we have a
set of e-detectors and explain how to use a mixture method
to combine multiple e-detectors effectively. In Section 4, we
introduce an exponential structure of e-detectors that makes
it possible to design a near-optimal detection procedure with
an explicit upper bound on worst average delays. Based on
the proposed framework, Section 5 presents two canonical
examples of Bernoulli (parametric) and bounded random
variables (nonparametric) cases with real data applications
of the Cavaliers 2011–2018 statistics. We conclude with a
discussion, and defer proofs to the supplement.

2. NONPARAMETRIC SEQUENTIAL
CHANGE DETECTION USING

E-DETECTORS
2.1 Problem Setup

Let P denote the set of possible pre-change distributions,
which could in general be a nonparametric class. We do not
assume the observations in the sequence to be independent
or identically distributed: each P ∈ P is a distribution over
an infinite sequence of random variables.

We will assume throughout that up to the unknown
changepoint ν, the observations X1, . . . , Xν follow a distri-
bution P ∈ P . The remaining observations Xν+1, Xν+2, . . .
are drawn from a distribution Q in a class of post-change
distributions Q. In this case, we let PP,ν,Q,EP,ν,Q and VP,ν,Q

denote probability, expectation and variance operators over
the entire data stream.

If there never is a change, we will use the notation
PP,∞,EP,∞ and VP,∞. Also, if a change occurs at the be-
ginning (ν = 0) then we use P0,Q,E0,Q and V0,Q. Note that
technically P0,Q = PQ,∞, but we use the former to denote
that Q is a post-change distribution and a changepoint has
occurred at the very start, and the latter to denote that Q
is a pre-change distribution and a changepoint never occurs.

Let F := {Fn}n≥0 be a filtration where we let F0 :=
{∅,Ω} for simplicity. Let M := {Mn}n≥0 be a nonnegative
adapted process with respect to the filtration F . If required,
we define M∞ := lim supn→∞ Mn and F∞ := σ(

⋃
n≥0 Fn)

[see, for example, 4]. It is common to consider the natu-
ral filtration Fn := σ(X1, . . . , Xn), but there are situations
where restricting the filtration could be advantageous (for
example, when there are nuisance parameters). There are
yet other situations when enlarging the filtration with ex-
ternal randomness can be useful.

Let T denote the set of all stopping times with respect to
F , but we will later see that it typically suffices to consider
finite stopping times, or those with finite expectation.
Remark 2.1. In our paper, the changepoint ν and the post-
change observations also do not need to be independent of
the pre-change observations, and they do not need to be
identically distributed. In other words, ν could be a stop-
ping time, and Q could itself depend on the pre-change
data. It may be helpful to imagine an adversary who adap-
tively decides at each step whether or not to “stop” the
pre-change data. If they choose to stop at time ν, there
are two options for post-change points: (a) then can pick
a distribution Q, draw a sequence Y1, Y2, . . . , from Q, and
reveal Xν+i = Yi sequentially, or (b) the pick a distribu-
tion Q and draw Xν+1, Xν+2, . . . from Q | Fν . In situations
without a common reference measure, setting (b) may be
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tricky to formally define (especially if the pre-change data
have probability zero under Q), so one may think of set-
ting (a). All of our results on ARL do not require any as-
sumptions on the changepoint ν or post-change distribution
of the data. When analyzing detection delay, we will typ-
ically assume that Xν+1, Xν+2, . . . are independent of the
pre-change data, and are drawn from Q as if the time ν
was reset to zero; we believe this can be relaxed in future
work. But for much of the paper, it is also okay to assume
that the post-change data is drawn a data-dependent Q (or
drawn from Q | Fν).

With the appropriate definitions and setup in place, we
can now define our central concept, an e-detector.

2.2 What Is an E-detector?
Definition 2.2 (P-e-detector). The process M is called an
e-detector with respect to the class of pre-change distribu-
tions P if it satisfies the property

EP,∞[Mτ ] ≤ EP,∞[τ ], ∀τ ∈ T , ∀P ∈ P . (2.1)

For brevity, we refer to M as “an e-detector for P”, or if P
is understood from context, then simply “an e-detector”. If a
stopping time τ has a nonzero probability of being infinite,
then inequality (2.1) is trivially satisfied. Thus, the condi-
tion is only really required to hold for stopping times with
finite expectation under some P . This latter set of stopping
times depends on P , and so in order to not complicate no-
tation, we continue to simply consider all stopping times T .
(Also note that the condition can only be satisfied if pro-
cess M is integrable under any P ∈ P , so this is implicitly
assumed to be the case in what follows.)

By the linearity of expectation and Tonelli’s theorem, an
average (or “a mixture”) of e-detectors is also an e-detector.
More formally, if {Ma}a∈A is a set of e-detectors (where
a is a tuning parameter), then so is

∫
Madμ(a) for any

fixed probability distribution μ over A. Later in this pa-
per, we will in particular use finite mixtures of the form
(M1 + M2 + · · · + MK)/K in order to adapt to the un-
known post-change distribution. (In fact, we will develop
more sophisticated mixtures whose number of components
grows slowly with time.) For later reference, we state the
above as a proposition:

Proposition 2.3. Let {Ma}a∈A be a set of e-detectors.
Then for any probability measure μ on A, the mixture of
e-detectors,

∫
Madμ(a) forms a valid e-detector.

An e-detector provides a quantification of evidence for
whether a changepoint has occurred or not, and may be con-
tinuously monitored, stopped and easily interpreted – e.g,
a steep and steady increase of the process in recent times
should be taken as an indication that a change has taken
place. The following theorem shows how one can immedi-
ately obtain a sequential change detection procedure from
an e-detector M .

Theorem 2.4. For any α ∈ (0, 1) and e-detector M , if we
declare a changepoint at the stopping time

N∗ := inf{n ≥ 1 : Mn ≥ 1/α}, (2.2)

then we have

inf
P∈P

EP,∞N∗ ≥ 1/α. (2.3)

That is, the sequential change detection procedure in (2.2)
controls the ARL at level α.

The informal proof is one line long: dropping subscripts,
the definition of an e-detector implies that EN∗ ≥ EMN∗ ,
but by definition of N∗, we know that MN∗ ≥ 1/α if N∗

is finite. (If N∗ is not almost surely finite, the claim holds
anyway.) The full proof is in Appendix A.1.

2.3 Constructing an E-detector Based on a
Sequence of E-processes

The central building block of our e-detector is called an
e-process. E-processes are newly-developed tools that have
been shown to play a fundamental role in sequential hy-
pothesis testing, especially in composite, nonparametric set-
tings. E-processes are generalizations of nonnegative martin-
gales and supermartingales, and in particular, e-processes
are nonparametric and composite generalizations of likeli-
hood ratios. They have strong game-theoretic roots, and
have found utility in the meta-analysis, as well as for the
purposes of anytime-valid inference in the presence of con-
tinuous monitoring [28, 29, 7, 11, 12]. The properties of e-
processes have not yet been explored in changepoint analy-
sis, and we undertake this effort here.

To understand their definition, we briefly forget about se-
quential change detection and consider testing the null hy-
pothesis that X1, X2, . . . ∼ P for some P ∈ P . An e-process
for P , called a P-e-process, is a sequence of nonnegative ran-
dom variables (Et)t≥1 such that for any P ∈ P and any stop-
ping time τ , we have EP [Eτ ] ≤ 1. As before, the underlying
filtration can be that of the data or that of (Et), or some
enlargement of these. The value of Et measures evidence
against the null (larger values, more evidence). A level-α se-
quential test can be obtained by rejecting the null as soon
as Et exceeds 1/α; this is a consequence of Ville’s inequal-
ity [42, 11].

As a result of the optional stopping theorem, non-
negative P-martingales (i.e., the process is a nonnegative
P -martingales simultaneously for every P ∈ P) and P-
supermartingales are examples of e-processes. However, e-
processes are a distinct and more general class of processes.
In fact, there exist natural classes P for which the only P-
martingales are constants, and the only P-supermartingales
are decreasing sequences, but there are e-processes for P
that can increase to infinity when the data are not from P .
See [29] for one such example, arising from sequentially test-
ing exchangeability of a binary sequence, and [6] for another
example arising from testing log-concavity.
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In this subsection, we show how to leverage e-processes
to build e-detectors.

Definition 2.5 (ej-process). For any j ≥ 1, Λ(j) :=

{Λ(j)
n }n≥1 is called an ej-process for P if it is a nonnega-

tive adapted process such that Λ
(j)
1 = · · · = Λ

(j)
j−1 = 1, and

sup
P∈P

EP,∞
[
Λ(j)
τ | Fj−1

]
≤ 1, ∀τ ∈ T . (2.4)

When j = 1, the ej-process is simply a standard e-
process, which tests whether the data distribution is dif-
ferent from the proclaimed null (pre-change) distribution.
For j > 1, each ej-process can be viewed as an e-process
that begins at time j, and tests whether the data occurring
after time j are well explained by the null hypothesis.

Definition 2.6 (SR and CUSUM e-detectors). Based on a
sequence of e-processes {Λ(j)}j≥1, define SR and CUSUM e-
detectors MSR and MCU, respectively by MSR

0 = MCU
0 := 0

and for each n ≥ 1,

MSR
n :=

n∑
j=1

Λ(j)
n , and MCU

n := max
j∈[n]

Λ(j)
n . (2.5)

It is not hard to check that the above processes are indeed
e-detectors, meaning they satisfy (2.1).
Remark 2.7. If each e-process starts with an initial weight
smaller than 1 such that the sum of all initial weights
is less than or equal to 1, then corresponding SR and
CUSUM procedures control the probability of the false
alarm, supP∈P PP,∞(τ < ∞) ≤ α, which is a much more
stringent error metric than the ARL. The price to pay is
that if there is a change at time ν, then the detection de-
lay will no longer be independent of ν, and will typically
increase logarithmically with ν (so that the worst average
delay is unbounded).

2.4 Constructing Computationally Efficient
E-detectors Using Baseline Increments

In general, it may take O(n) time to update the afore-
mentioned e-detectors at time n. In order to construct e-
detectors that can be updated online in sublinear time and
memory (or even near-constant time and memory), it turns
out to be computationally convenient to use a common
“baseline” increment in order to build the underlying ej-
processes, as we do below. Effectively, this amounts to using
ej-processes that are P-supermartingales, which is a special
case of particular interest.

Definition 2.8 (Baseline increment). A nonnegative,
adapted process L := {Ln}n≥1 is called a baseline incre-
ment if for each n ≥ 1, we have

sup
P∈P

EP,∞[Ln | Fn−1] ≤ 1. (2.6)

It is easy to check that if L1 and L2 are baseline incre-
ments, and A1 and A2 are nonnegative and predictable pro-
cesses (meaning that A1

n and A2
n are both Fn−1-measurable)

such that A1 + A2 is strictly positive, then the mixture
(A1L1+A2L2)/(A1+A2) also forms a baseline increment. In
short, “predictable mixtures” retain the baseline increment
property.

Comparing (2.6) to (2.4), we see that a baseline increment
L is not itself an ej-process, because the expectation in (2.6)
applies only at fixed times n, with the conditioning being on
the previous step n− 1, but (2.4) calculates expectations at
any stopping time, and conditions on j−1. It is best to think
about the baseline increment as the multiplicative increment
that forms the ej-process, as follows.

Definition 2.9 (Baseline ej-process). For a given baseline
increment L := {Ln}n≥1, we define the corresponding “base-
line ej-process” Λ(j), for each j, n ∈ N, as below:

Λ(j)
n :=

{
1 if n < j∏n

i=j Li otherwise.
(2.7)

Under any pre-change distribution P ∈ P , each Λ(j) is
a nonnegative supermartingale by definition of the baseline
increment Li. Therefore, a straightforward application of the
optional stopping theorem implies that each Λ(j) satisfies
condition (2.4), and thus is a valid ej-process.

As an example of a baseline ej-process, consider the case
where we have iid observations X1, X2, . . . from a distribu-
tion pθ parameterized by θ ∈ Θ, and the pre-change distri-
bution is given by θ0. Then, for any post-change distribution
pθ1 with θ1 
= θ0, the likelihood ratio between two distribu-
tions, Ln := pθ1(Xn)/pθ0(Xn) yields a baseline increment
process with the inequality in (2.6) being replaced by the
equality. Then, each Λ

(j)
n is the likelihood ratio based on

Xj , . . . , Xn. Further, instead of using a fixed post-change pa-
rameter θ1, we can also plug-in a running MLE or any other
online nonanticipating estimator that is based on the previ-
ous history Fn−1 only, say θ̂n−1, into the likelihood ratio. In
this case, although the value Ln := p

̂θn−1
(Xn)/pθ0(Xn) at

time n of the resulting process may depend on the previous
history Fn−1, the inequality in (2.7) will be satisfied as an
equality, yelling a valid baseline ej-processes.
Remark 2.10. While baseline increment processes provide
a natural and computationally convenient way to construct
ej-process, we emphasize that any e-detector, even one that
does not use baseline increments, will automatically con-
trol the ARL by Theorem 2.4. To elaborate, baseline ej-
processes are composite P-supermartingales (meaning P -
supermartingales for every P ∈ P), but there exist other P-
e-processes—which are not P-supermartingales—that nat-
urally arise and these can be used to form e-detectors; for
example using universal inference [47, Section 8].

Definition 2.11 (Baseline SR and CUSUM e-detectors).
When an SR or CUSUM e-detector is constructed using a
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sequence of baseline ej-processes (2.7), we call it a “baseline
SR or CUSUM e-detector”.

Each baseline SR or CUSUM e-detector can be computed
recursively like their classical analogs:

MSR
n = Ln ·

[
MSR

n−1 + 1
]
, (2.8)

MCU
n = Ln ·max

{
MCU

n−1, 1
}
, (2.9)

with MSR
0 = MCU

0 = 0 for each n ∈ N. The above compu-
tational benefit is the primary reason to consider baseline
e-detectors, but as mentioned in Remark 2.10 and when in-
troducing e-processes, more general e-detectors are some-
times necessary for certain classes P .

We briefly verify below that the processes MSR and MCU

defined above are valid e-detectors. Indeed, for any stopping
time τ and pre-change distribution P ∈ P , if PP,∞(τ =
∞) > 0 then the condition of the e-detector in (2.1) holds
trivially. If not, then τ is finite almost surely, and we have
by linearity of expectation and the tower rule:

EP,∞MCU
τ ≤ EP,∞MSR

τ

= EP,∞

∞∑
j=1

Λ(j)
τ 1(j ≤ τ)

=
∞∑
j=1

EP,∞Λ(j)
τ 1(j ≤ τ)

=
∞∑
j=1

EP,∞
[
1(j ≤ τ)EP,∞

[
Λ(j)
τ | Fj−1

]]
≤

∞∑
j=1

EP,∞1(j ≤ τ) = EP,∞τ,

where the first inequality comes from the nonnegativity of
e-processes, and the second inequality comes from the defini-
tion of the e-process Λ(j) for each j ≥ 1. Note that this proof
is also applicable to general SR and CUSUM e-detectors.

2.5 Sequential Change Detection Procedures
by Thresholding E-detectors

The value of any e-detector process, like MSR or MCU, is
directly interpretable without specifying an explicit thresh-
old: a larger value signals an accumulation of evidence
of a changepoint. These can be monitored and adaptively
stopped. Nevertheless, to explicitly control the ARL at level
α, we define SR and CUSUM-style change detection proce-
dures, called “e-SR” and “e-CUSUM” procedures as follows.

Definition 2.12 (e-SR and e-CUSUM procedures). Given
SR and CUSUM e-detectors MSR and MCU, define e-SR
and e-CUSUM procedures by the stopping times

N∗
SR := inf

{
n ≥ 1 : MSR

n ≥ 1/α
}
, (2.10)

N∗
CU := inf

{
n ≥ 1 : MCU

n ≥ cα
}
, (2.11)

where cα is a constant chosen to control the ARL of the
e-CUSUM procedure by 1/α for some α ∈ (0, 1). By Theo-
rem 2.4, 1/α is a valid choice for cα.

We note cα = 1/α may be a very conservative choice
for the e-CUSUM procedure. Indeed, suppose we use the
trivial e-processes, that is, we set Λ

(j)
n := 1 for all j, n. In

this setting, the SR e-detector is given by MSR
n = n for

each n. In contrast, the CUSUM e-detector, MCU
n is equal

to 1 for all n. Therefore, any valid threshold we can choose
for the e-SR procedure must be larger than �1/α�. On the
other hand, any threshold above 1 makes N∗

CU = ∞, which
of course controls ARL by 1/α, but the true ARL is much
above the target. Building from this trivial example, it is
possible to construct nontrivial examples in which letting
α → 0 makes the gap between tight thresholds of e-SR and
e-CUSUM procedures arbitrarily different.
Remark 2.13. Unless we assume the pre-change distribution
is time-stationary, known and parametric, or we can access a
good sample of the pre-change distribution or large enough
historical data, computing a tight or even valid threshold cα
can be a challenging task. In the application sections below,
we will mainly deal with non-stationary pre-change distri-
butions where pre-change observations may not be identi-
cally distributed and thus all observations before the change-
point may follow different distributions. In this case, setting
cα = 1/α seems to be the only reasonable choice, and we
recommend using the e-SR procedure rather than e-CUSUM
since if we use the same threshold for both procedures, the
former always detects the changepoint faster than the latter
while provably controlling the ARL at the same level.

2.6 Some Nontrivial Instantiations of
E-detectors

E-detectors can be thought of as a general reduction of
change detection to sequential testing. Given the recent ad-
vances in nonparametric, composite sequential testing us-
ing nonnegative supermartingales and e-processes, our e-
detectors now make new classes of change detection prob-
lems possible. We detail below some interesting nontrivial
examples of change detection problems that can now be
solved using e-detectors.

Example 1 (When Likelihood Ratios Are Well-defined).
Consider first the parametric case, when P ,Q have a
common reference measure and likelihood ratios are well-
defined. When the pre- and post-change distributions are
known (meaning P ,Q are singletons), then the standard
likelihood-ratio based CUSUM and SR processes from (1.4)
and (1.5) are both e-detectors. If Q is composite, then tak-
ing a mixture likelihood ratio yields e-detectors (using either
a non-anticipating predictable mixture or using a fixed mix-
ture distribution). If P is also composite, but maximum like-
lihood estimation is efficient over P , then e-processes can be
constructed that take the ratio of mixture likelihoods over
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the alternative to maximum likelihood under the null, as
done in universal inference [47, Section 8] or in [40]. If the
“reverse information projection” (RIPr) is computable (ana-
lytically or numerically), then one can use the method of [7],
though there are some subtleties: by default the method
produces e-values over blocks of observations, which can be
multiplied across independent blocks to produce a nonnega-
tive supermartingale (and thus e-process) to be used within
our framework. But sometimes, the sequence of RIPr’s over
increasing sample sizes (nested blocks) automatically pro-
duces an e-process, and when this happens, it is more pow-
erful than universal inference (see [7, 30] for details).

Example 2 (Change in Distribution). In this example, P
is the set of all iid product distributions over infinite se-
quences (or its convex closure, the set of all exchangeable
distributions), so P = {μ∞ for some probability distribu-
tion μ}. The conformal sequential change detection proce-
dures by [44, 43] are designed to test deviations from ex-
changeability, meaning that they develop a test martingale
(and thus an e-process) for P , meaning that their procedure
fits neatly into our framework. Importantly, their filtration
is restricted, and is smaller than the natural filtration of
the data. This allows nonparametric martingales to exist,
but the e-detector property only holds with respect to a
smaller class of stopping times. Nevertheless, thresholding
our e-detector at 1/α still controls the ARL at level α, as
the latter property is independent of the filtration used to
construct the e-detector. As a side note, if one wanted to
construct an e-detector that was valid at all stopping times
with respect to the natural filtration of the data, e-detectors
based on martingales provably do not suffice, but e-detectors
based on e-processes can be constructed using the techniques
from [29] (at least for categorical distributions).

Example 3 (Nonparametric Two-sample Testing). Sup-
pose we have two streams of (general multivariate) data:
X1, X2, . . . ∼ PX and Y1, Y2, . . . ∼ PY . For simplicity be-
low, assume that at time t, we observe one point from
each stream (Xt, Yt). Before the changepoint (if one ex-
ists), the distributions of Xt and Yt are equal, meaning that
P = {(PX , PY )

∞ : PX = PY }. This is a very nonparametric
class, since it specifies nothing about the distributions ex-
cept for the fact that they are equal before the changepoint.
After the changepoint, the streams have different distribu-
tions (maybe the distribution of X changes, or that of Y
changes, or both), thus Q = {(PX , PY )

∞ : PX 
= PY }. For
this very general nonparametric two-sample testing setup,
[34] construct test martingales for P that are provably con-
sistent against Q under minimal assumptions (in particular
not requiring any minimum separation between the different
distributions after the changepoint, since the tests automat-
ically adapt to the closeness of the unknown alternative).
These test martingales fit seamlessly into our e-detector
framework, yielding new and practicable e-detectors for de-
tecting a change from homogeneity to non-homogeneity be-
tween the streams.

Example 4 (Nonparametric Independence Testing). In this
problem setting, we observe a pair of random variables
(Xt, Yt) ∼ PXY at each step t, where Xt, Yt can each lie in
a general space. Before the changepoint (if one exists), the
data are independent, meaning that P = {P∞

XY : PXY =
PX × PY }. Beyond saying that the joint distribution fac-
torizes into the product of marginals, there is no further
structure assumed, making this a rich nonparametric com-
posite class. As before, after the changepoint, (X,Y ) become
dependent, meaning that Q = {P∞

XY : PXY 
= PX × PY }.
For this general nonparametric independence testing prob-
lem, [24] construct test martingales for P that are provably
consistent against Q under minimal, weak assumptions (as
before, not requiring any separation). Again as before, (in
the testing problem) the power of these tests automatically
adapts to the difficulty of the unknown alternative. When
plugged into our framework, it delivers a novel e-detector
for a change from independence to dependence.

We briefly remark that in the two preceding examples
(homogeneity and independence), we can move past the iid
assumption. The same methods work even when the distri-
bution is allowed to drift within P before the changepoint,
and drift within Q after the changepoint. We refer to the
original aforementioned papers for details.

Example 5 (Log-concavity). Here, the data before the
changepoint comes from a log-concave distribution (in a
general dimension d ≥ 1), so P = {μ∞ : μ has a
log-concave Lebesgue density}. This is a rich, nonparamet-
ric, shape-constrained class. The post-change class of distri-
butions Q consists of, for example, any distribution that has
a nonzero KL-divergence and Hellinger distance from every
distribution in P . For testing P against Q, [6] show that
there exists no nontrivial nonnegative supermartingales, but
they design a powerful (and computationally efficient) e-
process using universal inference. When plugged into our e-
detector, this yields a nontrivial procedure that can detect
a deviation from log-concavity.

Example 6 (Symmetry). Suppose P = {μ∞ : μ is
symmetric around 0} consists of the set of all distributions
(in a general dimension d ≥ 1) that are symmetric around
the origin, while Q consists its complement (that is, distri-
butions which are not symmetric around the origin). [28]
characterize all processes that are nonnegative martingales
for P . When used with our e-detector, these provide a clean
way to detect a change from symmetry to asymmetry.

Example 7 (Change in Mean). Suppose PC = {μ∞ :
EX∼μ[X] ≤ 0, X satisfies C} consists of the set of all uni-
variate distributions with mean less than or equal to zero
satisfying come constraint C, while QC = {μ∞ : EX∼μ[X] >
0, X satisfies C} consists of those with positive mean. [11]
provides a large variety of nonnegative supermartingales un-
der various conditions C, such as when X are subGaussian,
or bounded from above, or bounded from below, or have
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only two or three moments; see also [45] for heavy-tailed su-
permartingales. These can be plugged into the e-detector to
yield new nonparametric schemes for changes in mean.

Example 8 (Huber-robust Change Detection). As a final
example, suppose we wish to detect a change in mean of
heavy-tailed data (as above). But now, suppose that an ad-
versary can also arbitrarily corrupt an ε fraction of the data.
[46] develop Huber-robust supermartingales for this setting,
which can be plugged into e-detectors to yield a valid e-
detector in the presence of adversarial corruptions.

Note that in Examples 3, 4, 5 and 6, if P and Q were
swapped, the testing problem is much harder, and we are
not aware of any powerful test or change detection method.
However, if one was simply interested in detecting a change
in homogeneity or in dependence, i.e. from some distribu-
tion in P

⋃
Q to some other one, there are two possible

change detection methods that come to mind. First, an e-
detector based on the conformal change detection methods
in Example 2 would detect any change from any distribu-
tion to any other, though choosing the conformity score
may be tricky. As a second and more direct option, one
can choose a measure of homogeneity or dependence (like
the kernel maximum mean discrepancy or energy distance,
or the Hilbert Schmidt independence criterion or distance
covariance), construct a confidence sequence for that mea-
sure (see [19] for several specific, tight, constructions), and
plug it into the recent change detection scheme of [35].

Finally, it is worth noting that it is possible to define
e-detectors in cases where there is no common reference
measure amongst the pre-change and post-change distribu-
tions, and thus no easily-defined likelihood ratio process,
and also when there is no nontrivial martingale that can
be constructed. This is precisely the utility of e-processes,
which are nonparametric and composite generalizations of
likelihood ratios. We develop one more interesting nonpara-
metric example (not described above) in the simulations sec-
tion: detecting change in mean of a bounded random vari-
able.

2.7 Warm-up: Bounds on Worst Average
Delays for Baseline E-detectors, when Q is
Known

Recall that our objective is to minimize worst average
delays JL(N

∗) or JP (N
∗), given above in (1.2) and (1.3)

respectively, while controlling the ARL EP,∞(N∗) ≥ 1/α.
Note that worst average delays in (1.2) and (1.3) were de-
fined for a fixed pair of pre- and post-change distributions
implicitly. In our setting where the pre-change distribution
space could be composite, we take an additional supremum
over all pre-change distributions when defining both worst
average delays for each fixed post-change distribution.

To derive bounds on the worst average delays, we further
assume that the post-change observations Xν+1, Xν+2, . . .
are independent of the pre-change observations and form a

strongly stationary process. That is, we assume that, for any
finite subset I ⊂ N and any j ∈ N, the joint distributions of
{Xν+i}i∈I and {Xν+i+j}i∈I are equal to each other. About
the underlying baseline increment, we further assume that
there exist a function f and an integer m ≥ 0 such that
Ln = f(Xn, Xn−1, . . . , Xn−m) for each n. In this warm-up
section, assume that we know the post-change distribution
Q. Then, as we shall soon see, an optimal choice for Ln

would set m = 0, but if m is a strictly positive number
then we implicitly assume that we can access m observa-
tions X0, X−1, . . . , X1−m from the pre-change distribution
in order to build sequential change detection procedures.
Under these conditions, the following theorem provides an-
alytically more tractable upper bounds on worst average
delays for e-SR and e-CUSUM procedures.

Proposition 2.14. For a given α ∈ (0, 1), let N∗
SR and

N∗
CU be e-SR and e-CUSUM procedures using baseline e-

detectors. Under the settings described above, their worst
average delays are upper bounded as

JP

(
N∗

SR

)
≤ JL

(
N∗

SR

)
≤ E0,QN1/α +m, (2.12)

JP

(
N∗

CU

)
≤ JL

(
N∗

CU

)
≤ E0,QNcα +m, (2.13)

respectively, where Nc is the stopping time defined for any
c > 1 as Nc := inf{n ≥ 1 :

∑n
i=1 logLi ≥ log(c)}, and

cα ≤ 1/α is any threshold that ensures the e-CUSUM proce-
dure (2.11) has an ARL no smaller than 1/α. Furthermore,
if the post-change observations are iid and each Ln is a func-
tion of Xn only (i.e. m = 0) with E0,Q logL1 > 0, then

E0,QNc ≤
log(c)

E0,Q logL1
+

V0,Q logL1

[E0,Q logL1]2
+ 1. (2.14)

The proof can be found in Appendix A.1.
Remark 2.15. The stopping time N1/α delivers a level-α
sequential test for the null hypothesis H0 : P ∈ P . On
the other hand, the stopping time Ncα may not necessarily
control the type-1 error by α since the threshold cα can be
significantly smaller than 1/α as discussed earlier.

The expected stopping time in the upper bounds (2.12)
and (2.13) depends on the parameter m ≥ 0. When Q is
known, m = 0 suffices because (2.14) suggests that Li should
simply be chosen to maximize E0,Q logL1, which is identical
to the log-optimality criterion used for testing P against Q
(as discussed in many recent works, like [33, 7, 48]).

In applications when Q is unknown, the underlying base-
line increment may require a long enough sample history
(large m) in order to achieve a reasonably small expected
stopping time by “learning” Q or using an empirical distri-
bution plug-in for Q. Then, the above results suggest that
a reasonable way to choose the window size m is to pick
the one minimizing the upper bound on the worst average
delays. However, since the optimal choice of the window size
should depend on the unknown post-change Q, it remains
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difficult to minimize the upper bound directly. In our simu-
lations, we often encounter cases where a larger window size
is better. In this case, we would choose a window size as
large as possible while keeping the procedure computation-
ally tractable. However, the right way to handle unknown
Q is dealt with in detail next.

3. COMBINING BASELINE E-DETECTORS
USING THE METHOD OF MIXTURES

In the previous section, we discussed how one can con-
struct a valid e-detector and derive upper bounds on worst
average delays. However, in most composite and nonpara-
metric sequential change detection scenarios, there is no sin-
gle optimal e-detector but instead there are often several ap-
plicable e-detectors to choose from. In this section, we intro-
duce a practicable and computationally efficient strategy to
construct a good e-detector for minimizing the upper bound
on worst average delays in Proposition 2.14, especially for
the upper bound (2.14) in the m = 0 case.

In detail, suppose we have a set of baseline increments
{Lλ}λ∈Π parametrized by λ ∈ Π. Then, under the additional
condition assumed in the second part of Proposition 2.14
(namely, that m = 0 and the post-change observations are
from an iid sequence), an ideal choice of the parameter λop

for a post-change distribution Q is given by

λop(Q) = argmax
λ∈Π

E0,Q logL
(λ)
1 , (3.1)

minimizing the first term of the upper bound in (2.14),
which often becomes a leading term especially for small
enough α. In turn, this term is inversely proportional to

E0,Q logL
(λop)
1 := D(Q||P), (3.2)

where the second argument P in D(Q||P) explicitly refers to
the dependency of the baseline increment Lλop to the class
of pre-change distributions P . For the rest of the paper, we
will assume that the set of baseline increments, {Lλ}λ∈Π is
rich enough such that D(Q||P) > 0 for all Q ∈ Q. As we
observe later, in many canonical cases, we have D(Q||P) =
infP∈P KL(Q||P ) where KL(Q||P ) is the Kullback-Leibler
(KL) divergence from Q to P .

Generally, computing λop is not feasible since it depends
on the unknown post-change distribution Q. Next, we show
how to build a mixture of baseline e-detectors that can de-
tect the changepoint nearly as quickly as the one with λop,
when known lower and upper bounds λL and λU on λop are
available.

Notice that an average of e-detectors is also a valid e-
detector, in the sense of satisfying condition (2.1). Therefore,
for any mixing distribution W supported on [λL, λU ], we
can define mixtures of e-SR and e-CUSUM procedures by
following stopping times:

N∗
mSR := inf

{
n ≥ 1 :

∫ n∑
j=1

n∏
i=j

L
(λ)
i dW (λ) ≥ 1/α

}
, (3.3)

N∗
mCU := inf

{
n ≥ 1 :

∫
max
j∈[n]

n∏
i=j

L
(λ)
i dW (λ) ≥ cα

}
, (3.4)

where cα > 1 is a fixed constant which controls the ARL for
some α ∈ (0, 1). Since the mixture of e-CUSUM procedure is
based on a valid e-detector, we can always set the threshold
cα to be equal to 1/α as same as the threshold of the mixture
of e-SR procedures.
Remark 3.1. Instead of using mixtures, one may be tempted
to consider swapping the above integral with a supremum
over λ ∈ [λL, λU ]. However, this does not in general yield a
valid e-detector.

3.1 Computational and Analytical Aspects of
Mixtures of Baseline E-detectors

Though any mixing distribution yields a valid e-detector,
for computational efficiency, we only consider discrete mix-
tures where the support of mixing distribution has at most
countably many elements. To be specific, let {ωk}k≥1 be
a set of nonnegative mixing weights with

∑
k≥1 ωk = 1 and

let {λk}k≥1 be the corresponding supporting set. For ease of
notation, we denote L(λk) := L(k) for each k ≥ 1. Based on
the set of nonnegative mixing weights and the correspond-
ing set of baseline increments, we define mixtures of SR and
CUSUM e-detectors as MmSR

0 = MmCU
0 := 1, and for each

n ∈ N,

MmSR
n :=

∞∑
k=1

ωk

n∑
j=1

n∏
i=j

Li(k) :=
∞∑
k=1

ωkM
SR
n (k), (3.5)

MmCU
n =

∞∑
k=1

ωk max
j∈[n]

n∏
i=j

Li(k) :=

∞∑
k=1

ωkM
CU
n (k). (3.6)

Let K := |{k : ωk > 0}| be the number of nonzero mixing
weights.

Finite Mixtures If K < ∞, we may for simplicity assume
that the first K weights ω1, . . . , ωK are the only nonzero
values. In this case, we can compute mixtures of SR and
CUSUM e-detectors by

MmSR
n =

K∑
k=1

ωkM
SR
n (k), and MmCU

n =

K∑
k=1

ωkM
CU
n (k),

(3.7)

where MSR
n (k) and MCU

n (k) are computed recursively as

MSR
n (k) = Ln(k) ·

[
MSR

n−1(k) + 1
]
, (3.8)

MCU
n (k) = Ln(k) ·max

{
MCU

n−1(k), 1
}

(3.9)

with MSR
0 (k) = MCU

0 (k) = 0 for each k ∈ [K] and n ∈ N.
Therefore, if each computation of Ln(k) has constant time
and space complexities, then the evaluation of mixtures of
SR and CUSUM e-detectors at each time n requires O(K)
time and space complexity.
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Infinite Mixtures, Scheduling Functions and Adaptive Re-
weighting If K = ∞ or if K is to be chosen adaptively
as an increasing function of n we modify our strategy as
follows. We first choose an increasing function K : N → N,
and let K−1 : N → N be the generalized inverse function
of K defined by K−1(k) := inf{j ≥ 1 : K(j) ≥ k} for each
k ∈ N. Note that K−1 is also an increasing function. We call
such function K as a scheduling function. We intentionally
overload notation: in what follows, K(n) plays the same role
as the constant K in the case of finite support. Note that
K−1(k) ≤ n for any k ≤ K(n); we will use this simple fact
below when defining nested summations.

Based on a scheduling function K and its generalized in-
verse K−1, we define adaptive SR and CUSUM e-detectors,
MaSR

n and MaCU
n , respectively, as

MaSR
n =

K(n)∑
k=1

ωk

n∑
j=K−1(k)

γj

n∏
i=j

Li(k) :=

K(n)∑
k=1

ωkM
SR
n (k),

(3.10)

MaCU
n =

K(n)∑
k=1

ωk max
K−1(k)≤j≤n

γj

n∏
i=j

Li(k) :=

K(n)∑
k=1

ωkM
CU
n (k),

(3.11)

where each γj := 1/
∑K(j)

k=1 ωk ≥ 1 is the adaptively re-
weighting factor at time j, ensuring that the mixing weights
always sum to one at each time. Here, we restrict not only
the space over the index k from [1,∞] to [1,K(n)] but also
the space over the index j from [1, n] to [K−1(k), n]. This
choice makes it possible to compute both MaSR

n and MaCU
n

efficiently since each MSR
n (k) and MCU

n (k) have following
recursive representations

MSR
n (k) = Ln(k) ·

[
MSR

n−1(k) + γn
]
, (3.12)

MCU
n (k) = Ln(k) ·max

{
MCU

n−1(k), γn
}
, (3.13)

for each n ≥ K−1(k) and MaSR
n (k) = MaCU

n (k) = 0 for all
n = 0, 1, . . . ,K−1(k)− 1. Therefore, if each computation of
Ln(k) has constant time and space complexities then the
computations of adaptive SR and CUSUM e-detectors at
each time n have O(K(n)) time and space complexities as
well. For the purpose of implementing an online algorithm,
we are typically interested in the case K(n) = O(log(n)).
Remark 3.2. Both mixtures of SR and CUSUM e-detectors
can be viewed as special cases of their adaptive counterparts
where the scheduling function K is understood as a constant
function. In this case, we have γj =

∑K
k=1 ωk = 1 for each

j, and thus MaSR
n = MmSR

n and MaCU
n = MmCU

n for each
n ∈ N.

Unlike finite mixtures, the mixing distribution deployed
in the adaptive SR and CUSUM e-detectors vary over time.
Hence, we cannot simply apply Proposition 2.3 to check
whether this adaptive scheme yields valid e-detectors. The

following proposition formally states the validity of adap-
tive SR and CUSUM e-detectors. The proof can be found in
Appendix A.2.

Proposition 3.3. For any mixing weights {ωk}k∈N and a
scheduling function K, adaptive SR and CUSUM e-detectors
defined in (3.10) and (3.11) form valid e-detectors satisfying
the condition (2.1).

Now, based on MaCU
n and MaSR

n , the adaptive e-SR and
e-CUSUM procedures are defined by the stopping times:

N∗
aSR := inf

{
n ≥ 1 : MaSR

n ≥ 1/α
}
, (3.14)

N∗
aCU := inf

{
n ≥ 1 : MaCU

n ≥ cα
}
, (3.15)

where α ∈ (0, 1) is a fixed constant and cα is a positive
value controlling ARL of the adaptive e-CUSUM procedure
by 1/α. Similar to the usual e-CUSUM procedure case we
discussed before, we can always set cα = 1/α. In this case,
from the fact N∗

aSR ≤ N∗
aCU, which is implied by MaSR

n ≥
MaCU

n , we have

EP,∞N∗
aCU ≥ EP,∞N∗

aSR ≥ 1/α, (3.16)

where the last inequality comes from Theorem 2.4 with the
fact that MaSR is a valid e-detector. However, the thresh-
old cα for the adaptive e-CUSUM procedure can be cho-
sen to be a significantly smaller value if we have enough
knowledge about the pre-change distribution, as discussed
in Section 2.5.

3.2 Worst Average Delay Analysis for Adaptive
Mixtures of E-detectors

We now derive general upper bounds on worst average
delays of the adaptive e-SR and e-CUSUM procedures. As
we did before, we further assume that post-change obser-
vations Xν+1, Xν+2, . . . are independent of the pre-change
observations and form a strong stationary process. Also, we
further assume that there exist a function fk and an in-
teger m ≥ 0 such that Ln(k) = fk(Xn, Xn−1, . . . , Xn−m)
for each k and n. Again, if m is a strictly positive number
then we implicitly assume that there exist m observations
X0, X−1, . . . , X1−m from the pre-change distribution we can
use to build sequential change detection procedures. Under
this additional condition for worst average delay analysis,
the following theorem provides analytically more tractable
upper bounds on worst average delays for N∗

aSR and N∗
aCU.

Theorem 3.4. Under additional conditions described
above, worst average delays for N∗

aSR and N∗
aCU can be upper

bounded as follows:

JP

(
N∗

aSR

)
≤ JL

(
N∗

aSR

)
≤ min

j>m

[
E0,QN1/α(j) + j − 1

]
,

(3.17)
JP

(
N∗

aCU

)
≤ JL

(
N∗

aCU

)
≤ min

j>m

[
E0,QNcα(j) + j − 1

]
,

(3.18)
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where, for j ∈ N and c > 0, Nc(j) is the stopping time

Nc(j) := inf

{
n ≥ 1 :

K(j)∑
k=1

ωk

n∏
i=1

Li(k) ≥ c

}
. (3.19)

Here, cα is the same threshold used to build the adaptive e-
CUSUM procedure in (3.15). Note that for mixtures of the
SR and CUSUM e-detectors where the scheduling function
K is a constant function, the stopping times in the upper
bounds do not depend on the index j, and thus the upper
bounds can be reduced as

JP

(
N∗

mSR

)
≤ JL

(
N∗

mSR

)
≤ E0,QN1/α +m, (3.20)

JP

(
N∗

mCU

)
≤ JL

(
N∗

mCU

)
≤ E0,QNcα +m, (3.21)

where, for c > 0, Nc is the stopping time

Nc := inf

{
n ≥ 1 :

K∑
k=1

ωk

n∏
i=1

Li(k) ≥ c

}
. (3.22)

The proof of upper bounds on worst average delays can
be found in Appendix A.2.

Unlike the baseline e-detector case, however, due to mix-
ing weights, it is nontrivial to get further simplified upper
bounds on worst average delays as we did in Section 2.7.
Next, we present specific adaptive e-SR and e-CUSUM pro-
cedures based on exponential baseline increments where we
can compute both procedures efficiently and derive upper
bounds on worst average delays in explicit forms.

4. EXPONENTIAL BASELINE
E-DETECTORS AND THEIR MIXTURES

Building upon recent advances in time uniform concentra-
tion inequalities and sequential testing developed in [11] and
[36], below we consider an exponential structure on baseline
e-detectors. We show that, in this setting, it is possible to
approximate the “oracle” e-SR and e-CUSUM procedures
based on the knowledge of the optimal (but unknown) λop by
adaptive procedures built using a mixture of carefully cho-
sen set of baseline increments {Lλk}k≥1 with mixing weights
{ωk}k≥1.

To be specific, assume there exists an extended real-
valued convex function ψ on R that is finite and strictly
convex on a set Π ⊂ R containing 0 in its interior Πo. Fur-
thermore, assume ψ is continuously differentiable on Πo with
∇ψ(0) = 0 = ψ(0). Then define the “exponential baseline
increment” as follows.
Definition 4.1 (Exponential baseline increment). For each
n ∈ N and λ ∈ Π, define

Lλ
n = exp

{
λs(Xn)− ψ(λ)v(Xn)

}
, (4.1)

where s is a real-valued function and v is a positive func-
tion on the sample space. Lλ := {Lλ}n≥1 is called an ex-
ponential baseline increment if it satisfies condition (2.6) in
Definition 2.8.

Above, s and v are mnemonics for sum and variance. For
each Q ∈ Q, define

μ(Q) :=E0,Qs(X1), σ
2 := E0,Qv(X1) and Δop(Q) :=

μ(Q)

σ2(Q)
,

(4.2)
where we assume that all expectations are finite. The
following proposition provides an explicit expression for
D(Q||P) := maxλ∈Π E0,Q logL

(λ)
1 and a sufficient condition

to have D(Q||P) > 0 when the underlying baseline incre-
ments have the form specified in (4.1).

Proposition 4.2. For a fixed Q ∈ Q, suppose there exist
λop ∈ Πo such that Δop(Q) = ∇ψ(λop). Then,

D(Q||P) = E0,Q logL
(λop)
1 = ψ∗(Δop(Q)

)
σ2(Q) ≥ 0, (4.3)

where ψ∗ is the convex conjugate of ψ. Thus, if Δop(Q) 
= 0,
we have D(Q||P) > 0.

The proof of Proposition 4.2 can be found in Ap-
pendix B.1. For the rest of the section, we assume that{

λ ∈ R : Δop(Q) = ∇ψ(λ), Q ∈ Q
}
⊂ Π,

Δop(Q) 
= 0, ∀Q ∈ Q.

Then, Proposition 4.2 implies D(Q||P) > 0 for all Q ∈ Q.
Also, for ease of notation, we will drop the dependency of Q
from related parameters and simply write λop, μ, σ2 and Δ.

The exponential structure of the baseline increment in
(4.1) results in a simple form of λop such that

λop = (∇ψ)−1
(
Δop

)
= ∇ψ∗(Δop

)
, (4.4)

where the second equality comes from the fact that λ =
∇ψ∗ ◦∇ψ(λ) for each λ ∈ Π. Although λop still depends on
the unknown post-change distribution Q via Δop, in many
cases, we can find upper and lower bounds on Δop. In this
section, we explain how to use the knowledge of the range of
Δop to build a mixture of exponential baseline e-detectors
that has explicit upper bounds on worst average delays.

4.1 Separated Pre- and Post-change
Distributions

Suppose we have knowledge of upper and lower bounds
on the parameter Δop given in (4.2), i.e. we know a pair
(ΔL,ΔU ) such that ΔL < Δop < ΔU . It then follows that
λL < λop < λU , where λL = ∇ψ∗(ΔL), λop = ∇ψ∗(Δop)
and λU = ∇ψ∗(ΔU ). To simplify presentation, we only con-
sider the one-sided and well-separated case: 0 < λL < λU .

Let 1/α be the target level of the ARL control for a fixed
α ∈ (0, 1). Let {L(k)}k∈[K] and {ωk}k∈[K] be K exponen-
tial baseline increments and mixing weights whose specific
values will be defined later in this subsection. Since each
Ln(k) is a function of the n-th observation Xn for each
k ∈ [K], Theorem 3.4 implies that, if the post-change ob-
servations form a strong stationary process then the worst
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average delays for mixtures of e-SR and e-CUSUM proce-
dures, N∗

mSR and N∗
mCU can be upper bounded by E0,QN1/α

and E0,QNcα , respectively, where Nc is the stopping time
defined in (3.22). Furthermore, as we can always set the
threshold for the e-CUSUM procedure to be cα ≤ 1/α, we
have E0,QNcα ≤ E0,QN1/α. Therefore, in this subsection,
we construct a set of baseline increments for which we can
derive a tight bound on E0,QN1/α.

Algorithm 1 describes our methodology for computing
mixtures of e-SR procedures in detail. The inputs to the
algorithm are the upper and lower bounds ΔU and ΔL on
Δop and the maximal number of baselines processes Kmax.
Mixture of e-CUSUM procedures can be executed similarly
by replacing Line 9 by

MCU
n (k) ← exp

{
λks(Xn)− ψkv(Xn)

}
·max

{
MCU

n−1(k), 1
}
.

(4.5)
Also, for the mixture of e-CUSUM procedures, we can re-
place the threshold 1/α with a smaller value cα if we have
enough information about the pre-change distribution. For
both e-SR and e-CUSUM, at each time n, updates of mix-
tures of e-detectors have O(Kα) time and space complexi-
ties, which do not depend on n.

Algorithm 1 relies critically on the function
computeBaseline in Line 1, which returns a set of
parameters and weights to compute a mixture of e-
detectors along with a threshold value gα > 0 that will
appear in the upper bound on worst average delays given
in Theorem 4.3 that will be explained below. The details
of computeBaseline are fairly technical and are given in
Algorithm 3 in Appendix B.1.

In the main result of this section, we provide bounds on
ARL and worst average delays for the mixtures of e-CP
procedures obtained with Algorithm 1 that is a function of
the parameter λop and the threshold value gα. The proof
can be found in Appendix B.1.
Theorem 4.3. Let N∗

mSR and N∗
mCU be the stopping times

corresponding to the mixtures of e-SR and e-CUSUM proce-
dures in Algorithm 1 and its variant, respectively. Then, both
procedures control the ARL by 1/α. If we further assume that
the post-change observations Xν+1, Xν+2, . . . are iid samples
from a post-change distribution Q, then the worst average
delays for N∗

mSR and N∗
mCU can be bounded as

max
{
JL

(
N∗

mSR

)
,JL

(
N∗

mCU

)}
≤ gα

D(Q||P)
+

V0,Q[logL
(λop)
1 ]

[D(Q||P)]2
+ 1.

(4.6)

The same bound holds also for JP (N
∗
mSR) and JP (N

∗
mCU).

In Proposition B.2 in Appendix B.1, we show that if
the number of baseline processes Kmax in Algorithm 1 is
chosen large enough, then the quantity gα returned by
computeBaseline is at most

inf
η>1

η

[
log(1/α) + log

(
1 +

⌈
logη

ψ∗(ΔU )

ψ∗(ΔL)

⌉)]
, (4.7)

which can be easily evaluated numerically. Expression
(B.15) in Appendix B.1 provides a precise formula for how
large Kmax needs to be in order for the above bound to be
in effect. In most practical cases, Kmax = 1000 is a large
enough choice. Also, in many canonical examples we will
present later, if we choose large enough Kmax satisfying the
condition (B.15) then the first term gα

D(Q||P) of the upper
bound of worst average delays in Theorem 4.3 become a
leading term. In this case, from the inequality (4.7), we
can check that this leading term is O(log(1/α)/D(Q||P))
as α → 0.
Remark 4.4. If there is only one pre-change distribution
P and one post-change distribution Q, both from a natu-
ral univariate exponential family, then their likelihood ra-
tio forms an exponential baseline increment. In this case,
the above upper bound becomes O(log(1/α)/KL(Q||P )) as
α → 0, matching the rate of the known lower bounds [18].

The bound on worst average delays in Theorem 4.3 is
obtained by analyzing an auxiliary stopping time

N̄g := inf

{
n ≥ 1 : sup

λ∈(λL,λU )

n∑
i=1

logL
(λ)
i ≥ g

}
, g > 1.

(4.8)
Using the same arguments as in the proof of Proposi-
tion 2.14, we immediately have that if the post-change ob-
servations are iid from Q, then for any g > 1,

E0,QN̄g ≤ g

D(Q||P)
+

V0,Q[logL
(λop)
1 ]

[D(Q||P)]2
+ 1. (4.9)

The bound (4.6) is finally established by showing that the
stopping time N̄gα obtained by using the threshold gα pro-
duced by Algorithm 3 is a deterministic upper bound to the
stopping times Ncα and N1/α corresponding to mixtures of
SR and CUSUM e-detectors. In detail, it holds that for any
stream of observations X1, X2, . . . ,

Ncα ≤ N1/α ≤ N̄gα . (4.10)

This nontrivial result is formally stated in Lemma B.1 in Ap-
pendix B.1. Its proof leverages geometric arguments used in
[36, Theorem 2] to analyze sequential generalized likelihood
ratio tests.

4.2 Non-separated Pre- and Post-change
Distributions

The previous subsection discussed how to build mixtures
of e-SR and e-CUSUM procedures with an explicit upper
bound on worst average delays when we have known and
positive boundary values, λL and λU on the unknown λop via
the knowledge of ΔL < Δop < ΔU . However, in many cases,
we may not be fully certain about the boundary values.
In this subsection, we discuss how we can generalize the
previous argument to the no separation case whereby we
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Algorithm 1: Pseudo-code of the mixture of e-SR procedures.
Input: ARL parameter α ∈ (0, 1), Boundary values 0 < ΔL < ΔU ,

Maximum number of baselines Kmax ∈ N.
Output: Stopping time N∗

mSR of the mixture of e-SR procedures.
Data: Data stream X1, X2, . . . (observed sequentially)

1 {λ0, λ1, . . . λKα}, {ω0, ω1, . . . , ωKα}, gα ← computeBaseline(α,ΔL,ΔU ,Kmax)
2 for k = 0, 1, . . . ,Kα do
3 MSR

0 (k) ← 0, ψk ← ψ(λk)

4 MmSR
0 ← 0, n ← 0

5 while MmSR
n < 1/α do

6 n ← n+ 1
7 Observe Xn

8 for k = 0, 1, . . . ,Kα do
9 MSR

n (k) ← exp{λks(Xn)− ψkv(Xn)} · [MSR
n−1(k) + 1]

10 MmSR
n ←

∑Kα
k=0 ωkM

SR
n (k)

11 N∗
mSR ← n

12 return The stopped time N∗
mSR

only know the sign of λop(> 0) but do not have specific
boundary values.

Recall that, for the well-separated case, we calibrated the
mixtures of finitely many exponential baseline e-detectors
using the stopping time N̄gα in (4.8), which is in turn based
on the maximum of underlying baseline increments over the
known upper and lower bounds of λop. Since we no longer
have knowledge of the boundary values λL and λU , we may
use similar stopping times where the range of maximum
and the threshold slowly increase over time. In this case, we
need an infinite sequence of baseline procedures {L(k)}k∈N

and mixing weights {ωk}k∈N to build adaptive e-SR and e-
CUSUM procedures.

The bound in Theorem 3.4 along with the fact γj ≥ 1
for all j ∈ N implies that, for any given scheduling function
K : N → N, if the post-change observations form a strong
stationary process then worst average delays for adaptive
e-SR and e-CUSUM procedures can be upper bounded by
minj≥1[E0,QN1/α(j)+j−1] and minj≥1[E0,QNcα(j)+j−1],
respectively, where we recall that Nc(j) is defined for c > 0
by

Nc(j) := inf

{
n ≥ 1 :

K(j)∑
k=1

ωk

n∏
i=1

Li(k) ≥ c

}
. (4.11)

Again, since we can set the threshold for the e-CUSUM
procedure in such a manner that cα ≤ 1/α (so that
E0,QNcα(j) ≤ E0,QN1/α(j)), in this subsection, we focus on
constructing a set of baseline increments on which we can
derive a tight upper bound on minj≥1[E0,QN1/α(j)+ j− 1].

To derive the set of baseline increments, we use a time-
varying boundary function g. Here, we intentionally overload
notation: the constant g in the previous subsection for the
well-separation case can be viewed as a constant function g
in what follows. Let g : [1,∞) → [0,∞) be a nonnegative

and nondecreasing continuous function such that the map-
ping t �→ g(t)/t is nonincreasing and limt→∞ g(t)/t = 0. For
a chosen positive number Δ0 > 0, let

D0 := ψ∗(Δ0) and V0 := inf{t ≥ 1 : D0 ≥ g(t)/t}.

Now, for any fixed η > 1 and j ∈ N, define Δ1 > Δ2 > · · ·
as positive solutions of the equations

ψ∗(Δk) =
g(V0η

k)

V0ηk
, k = 0, 1, 2, . . . . (4.12)

Finally, based on the sequence {Δk}k≥0, define

λk := ∇ψ∗(Δk),

and set ω0 := α−1e−g(V0)1(g(V0) > vminD0), ωk :=

α−1e−g(V0η
k)/η for each k ∈ N where vmin := minx v(x),

recalling the function v from Definition 4.1.
Based on the quantities defined above, we can construct

the stopping time N1/α(j) for each j. The following lemma
shows that we can upper bound the stopping time N1/α(j)
with another stopping time N̄g(j) from which we can derive
an explicit upper bound on its expected stopping time.

Lemma 4.5. For any fixed j ≥ 1, Δ0 > 0, and tuning
parameter η > 1, let N1/α(j) be the stopping time based on
the parameters defined above. Then, we have

N1/α(j) ≤ N̄g(j), (4.13)

where N̄g(j) is a stopping time defined by

N̄g(j)

:= inf

{
n ≥ 1 : sup

λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥ g

(
V0η

K(j)
)}

.

(4.14)
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Note that the chosen set of weights {ωk}k≥0 yields valid
adaptive e-SR and e-CUSUM procedures if

e−g(V0)1
(
g(V0) > vminD0

)
+

∞∑
k=1

e−g(V0η
k)/η ≤ α. (4.15)

Once the above condition is satisfied, we can use the worst
average delay analysis in Section 3.2 with the bound in
Lemma 4.5 to get an explicit upper bound on the worst
average delay of the adaptive e-SR and e-CUSUM proce-
dures.

In detail, let jop be the smallest integer satisfying
λK(jop) < λop and set Kop := K(jop). If we also have
λop < λ0 then Lemma 4.5 implies

E0,QN1/α

(
jop

)
≤ E0,QN̄g

(
jop

)
≤ E0,QNop, (4.16)

where the stopping time Nop is defined by

Nop := inf

{
n ≥ 1 :

n∑
i=1

logL
(λop)
i ≥ g

(
V0η

Kop)}
, (4.17)

and the expectation E0,QNop is typically on the order of
g(V0η

Kop

)/D(Q||P). Based on this observation, in the rest
of this subsection, we introduce a practical and interpretable
way to choose a boundary function g and related tuning pa-
rameters which minimize the leading term g(V0η

Kop

) while
satisfying the condition (4.15) on the set of mixing weights.

First note that, although we have no bounds on Δop in
the no separation case, we can still choose ΔL and Δ0 with
ΔL < Δ0 as tuning parameters that represent our initial
guess on the range of the unknown Δop. Since it is pos-
sible that the unknown parameter Δop of the post-change
distribution is outside of the boundary (ΔL,Δ0), instead of
assigning the entire α to the inside of the guessed interval,
we split it into two parts by rα and (1 − r)α, respectively
where r ∈ (0, 1) is another tuning parameter called the im-
portance weight. Roughly speaking, larger r implies we make
a higher bet on that the unknown Δop is inside of our chosen
boundaries (ΔL,Δ0).

Now, given tuning parameters ΔL,Δ0 and r, we com-
pute the set of {grα,KL, η} by executing the function
computeBaseline, just like in Algorithm 1, except that α is
replaced by rα. Then, we can extend the boundary function
g to accommodate the case in which the unknown Δop is
not inside the initial interval we had guessed. To be specific,
we use the boundary function

t ∈ [1,∞) �→ g(t) := grα + sη log

(
1 + logη

(
t

V0ηKL
∨ 1

))
,

(4.18)
where V0 := grα/D0 and s > 1 is a constant obtained as the

solution of the equation

ζ(s)− 1 :=

∞∑
k=1

1

(1 + k)s

= egrα/η
[
α−

{
e−grα1(grα > D0) +KLe

−grα/η
}]
.

(4.19)
Note that the right hand side of the above equation is ap-
proximately equal to (1− r)αegrα/η. Therefore,

s ≈ ζ−1
(
1 + [1− r]αegrα/η

)
. (4.20)

In Algorithm 2, we provide the detailed steps for the
adaptive e-SR procedure based on the boundary function in
(4.18). The algorithm can be easily modified for the adap-
tive e-CUSUM procedure by replacing the update in Line 14
with the rule

MCU
n (k) ← exp

{
λks(Xn)− ψkv(Xn)

}
·max

{
MCU

n−1(k), γ
}
.

(4.21)
Also, for the adaptive e-CUSUM procedure, we can replace
the threshold 1/α with a smaller value cα if we have enough
information about the pre-change distribution.

In term of computational complexity, in Algorithm 2 we
set the scheduling function K : N → N as

K(n) := KL + �m logη n�, (4.22)

where m ≥ 1 is a tuning parameter. Therefore, for both
adaptive e-SR and e-CUSUM procedures, updates of statis-
tics have O(m logη n) time and space complexities at each
time n. Although it is not a fully online algorithm, loga-
rithm time and space complexities make it feasible to run
adaptive e-SR and e-CUSUM procedures in most practical
online settings.

From Section 3.1, we know that both procedures control
the ARL by 1/α. The following theorem introduces explicit
bounds on the worst average delays for both procedures.

Corollary 4.6. Let N∗
aSR and N∗

aCU be stopping times cor-
responding to the adaptive e-SR procedures in Algorithm 2
and its and e-CUSUM variant, respectively. Then, both pro-
cedures control ARL by 1/α. If we further assume that post-
change observations Xν+1, Xν+2, . . . are iid samples from a
post-change distribution then the worst average delays for
N∗

aSR and N∗
aCU can be upper bounded as

max
{
JL

(
N∗

aSR

)
,JL

(
N∗

aCU

)}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

grα
D(Q||P)

ψ∗(Δop)
ψ∗(Δ0)

+
V0,Q[logL

(λ0)
1 ]

[D(Q||P)]2 [ψ
∗(Δop)

ψ∗(Δ0)
]2 + 1 if Δop ≥ Δ0

grα
D(Q||P) +

V0,Q[logL
(λop)
1 ]

[D(Q||P)]2 + 1 if Δop∈(ΔL,Δ0)

grα+sη log(1+Kop−KL)
D(Q||P)

+
V0,Q[logL

(λop)
1 ]

[D(Q||P)]2

+ [ ψ
∗(ΔL)

ψ∗(Δop)
grα+sη log(1+Kop−KL)

grα
]1/m if Δop ≤ ΔL.

(4.23)
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Algorithm 2: Pseudo-code of the adaptive e-SR procedures.
Input: ARL parameter α ∈ (0, 1), Tuning parameters ΔL < Δ0, importance weight r ∈ (0, 1), scheduling parameter m ≥ 1,

Number of baselines for the well-separated regime K0 ∈ N.
Output: Stopping time N∗

aSR of the adaptive e-SR procedure.
Data: Data stream X1, X2, . . . (observed sequentially)

1 Obtain {λ0, λ1, . . . λKL}, {ω0, ω1, . . . , ωKL}, {grα,KL, η,W} by executing computeBaseline(rα,ΔL,Δ0,K0) in
Algorithm 3.

2 s ← ζ−1(1 + [α−W ]egrα/η) /* ζ(s) ≈ 1 + [1− r]αegrα/η */
3 MSR

0 (k) ← 0 , ψk ← ψ(λk), ωk ← ωk
W
α
, ∀k = 0, 1, . . . ,KL

4 MaSR
0 ← 0, γ ← 1/

∑KL
k=0 ωk, n ← 0

5 while MaSR
n < 1/α do

6 n ← n+ 1
/* Occasionally add a new baseline increment. */

7 Kn ← KL + �m logη n�
8 if Kn > Kn−1 then
9 for k = Kn−1 + 1, . . . ,Kn do

10 Compute Δk as the solution of ψ∗(z) = gk
V0ηk with respect to z(> 0), where V0 := grα/D0 and

gk := grα + sη log(1 + k −KL).
11 MaSR

n−1(μk) ← 0, ψk ← ψ(λk), ωk ← α−1e−gk/η

12 γ ← (1/γ +
∑Kn

k=Kn−1
ωk)

−1

13 Observe Xn

14 MSR
n (k) ← exp{λks(Xn)− ψkv(Xn)} · [MSR

n−1(k) + γ], ∀k = 0, 1, . . . ,Kn

15 MaSR
n ←

∑Kn
k=0 ωkM

SR
n (k)

16 N∗
aSR ← n

17 return The stopped time N∗
aSR

Note that η, s > 1 and r ∈ (0, 1) do not depend on the
unknown Δop.

5. APPLICATION TO REAL DATA AND
SIMULATION STUDY

5.1 Bernoulli Random Variables with
Dependent, Time-varying Means

Winning Rates of the Cavaliers To illustrate how sequen-
tial change detection procedures based on e-detectors work,
we revisit the example of the Cleveland Cavaliers, an Amer-
ican professional basketball team introduced in Section 1.2.
Instead of using Plus-Minus stats, in this example, we are
monitoring the performance of the Cavaliers by keeping
track of wins and losses over all the games. Let X1, X2, . . . ∈
{0, 1} be the sequence of win indicators during 2010–11 to
2017–18 regular seasons, where Xi = 1 if the Cavaliers won
game i. Though Figure 2 presents monthly and seasonal
averages for the purpose of visualization, we use the under-
lying binary sequence to build a sequential change detection
procedure.

Modeling Winning Probabilities as a Dependent Sequence
of Bernoullis To detect a significant improvement of the
performance of the Cavaliers, we assume that before an un-
known changepoint ν ∈ N∪{∞}, the conditional average of

winning probability given the sample history is less than or
equal to p0 := 0.49. That is, under any pre-change distribu-
tion P we have pn := EP,∞[Xn | Fn−1] ≤ p0. (For simplicity,
F is taken to be the natural filtration of the data.) Thus,
the pre-change class of distributions is

P :=
{
(p1, p2, . . . ) : pi ≤ p0, ∀i ≥ 1

}
,

where we parameterize each distribution P over binary se-
quences by the sequence of conditional probabilities.

Our objective is to build mixtures of e-SR and e-CUSUM
procedures tuned to quickly detect any significantly im-
proved win rate larger than q0 := 0.51 after the change-
point. This can be modeled by assuming that after some
changepoint ν, the distribution Q is such that EP,ν,Q[Xn |
Fn−1, n > ν] := qn ≥ q0. Thus, we may think of the post-
change class of distributions as being

Q :=
{
(q1, q2, . . . ) : qi ≥ q0, ∀i ≥ 1

}
.

In particular, this formalization allows for the winning prob-
abilities to fluctuate over time before and after the change-
point (accounting for factors like form, injuries, etc.).

Deriving Exponential Baseline Processes For each λ > 0,
define a baseline increment process L(λ) := {L(λ)

n }n≥1 as

L(λ)
n := exp

{
λ(Xn − p0)− ψB(λ)

}
, (5.1)
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where ψB(λ) := log(1 − p0 + p0e
λ) − λp0 is the Bernoulli

cumulant generating function. Note that each L(λ) is a valid
baseline increment as it satisfies the inequality (2.6) in Defi-
nition 2.8. That is, under any pre-change distribution P , we
have

EP,∞
[
L(λ)
n | Fn−1

]
= EP,∞

[
exp

{
λXn − log

(
1− p0 + p0e

λ
)}

| Fn−1

]
=

EP,∞[eλXn | Fn−1]

1− p0 + p0eλ
=

1− pn + pne
λ

1− p0 + p0eλ
≤ 1, ∀λ ≥ 0.

To derive exponential baseline processes, we first con-
sider a simplified post-change distribution Q where each
post-change observation is identically distributed with
E0,Q[X1] := q ≥ q0 > p0. In this case, the optimal choice of
λ ≥ 0 given by

λop := argmax
λ≥0

E0,Q exp
{
λ(X1 − p0)− ψB(λ)

}
. (5.2)

Since the baseline increment has the exponential structure,
by Proposition 4.2, we have that

D(Q||P) := E0,Q logL
(λop)
1 = ψ∗

B(q − p0) = KL(q||p0),
(5.3)

where KL(q||p0) is the Kullback-Leibler (KL) divergence of
Bernoulli distributions with parameters q and p0 written as

KL(q||p0) := q log
q

p0
+ (1− q) log

1− q

1− p0
, (5.4)

for q, p0 ∈ (0, 1). The appearance of the KL divergence in
(5.3) is not a coincidence as the baseline increment can be
viewed as a re-parametrized likelihood ratios between two
Bernoulli processes. However, the simple geometric struc-
ture of the baseline increment make it possible to utilize a
prior knowledge about the post-change distribution via Al-
gorithm 1 and 2.

For instance, suppose we know upper and lower bounds
of conditional means of the post-change distribution as qn ∈
(qL, qU ), ∀n > ν. Let N∗

mSR and N∗
mCU be stopping times of

mixtures of e-SR and e-CUSUM procedures in Algorithm 1.
In this case, derived sequential change detection procedures
do not rely on a specific choice of a post-change distribution
Q ∈ Q. However, these procedures can still perform almost
as well as the one optimized to a specific choice of the post-
change distribution within the same range (qL, qU ). Typi-
cally, if the post-change observations are iid samples from a
post-change distribution Q with E0,Q[X1] := q ∈ (qL, qU ),
then by Theorem 4.3, the worst average delays have the fol-
lowing explicit bound:

max
{
JL

(
N∗

mSR

)
,JL

(
N∗

mCU

)}
≤ gα

KL(q||p0)
+

q(1− q)[log( 1−p0

p0

q
1−q )]

2

[KL(q||p0)]2
+ 1.

Typically for small α � 1, from Proposition B.2, we can
simplify the above upper bound as

max
{
JL

(
N∗

mSR

)
,JL

(
N∗

mCU

)}
�

infη>1 η[log(1/α) + log(1 + �logη KL(qU ||p0)
KL(qL||p0)

�)]
KL(q||p0)

,

which matches the rate of the worst average delays,
O(log(1/α)/KL(q||p0)) of the oracle sequential change de-
tection procedure as α → 0.

Implementation of Algorithm 1 and Its Results The lower
bound qL can be chosen as q0 = 0.51 since it is the minimum
winning rate we consider as a significant improvement from
before the changepoint, when the rates are upper bounded
by p0 = 0.49. We can also safely assume that the win rate
cannot be too high given the competitiveness of the NBA, so
that the improved win rates cannot be larger than 0.9. In our
framework, these considerations can be encoded by setting
ΔL := q0 − p0 = 0.02 and ΔU := 0.41 as input parameters
of Algorithm 1. As in Section 1.2, we set α := 10−3 to
ensure that the ARL is at least 1/α := 103, which is more
than the total number of games over 12 years of regular
seasons. Finally, we set the maximum number of baselines
Kmax := 1000. In fact, the computeBaseline function of
Algorithm 3 returns only 69 baseline processes, and thus
the resulting mixtures of e-SR and e-CUSUM procedures of
Algorithm 1 can be computed efficiently in an online fashion.

The right plot in Figure 2 presents the log e-detector
values using mixtures of e-SR (red) and e-CUSUM (green)
procedures. Although there were a few months in which
monthly win rates were higher than p0, overall log e-
detectors remained at a stable level over the first four sea-
sons. However, after the 2014–15 season starts, the log e-
detectors increase rapidly and both procedures detect a
changepoint during the 2014–15 season, which is the sea-
son that marked the return of LeBron James to the Cava-
liers.

5.2 Mean-shift Detection in General Bounded
Random Variables

Plus-Minus of the Cavaliers Revisited We return to
the Cavaliers 2011–2018 example from Section 1.2. Let
X̃1, X̃2, . . . be the sequence of Plus-Minus stats from each
game. We assume that the average Plus-Minus of the team
is less than or equal to μ< := −1 before the changepoint (if
any), while after the changepoint it is greater than μ> := 1.
Here, the gap |μ> − μ<| between averages of Plus-Minus in
pre- and post-changes refers to the degree of improvement
we consider as significant.

For convenience, we first normalize the observed se-
quence. We assume that the absolute value of each Plus-
Minus is bounded by 80, meaning that no team beats an-
other by over 80 points (such an extreme game has never
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Figure 2: Left: Monthly win rates of the Cavaliers from 2010–11 to 2017–18 seasons (the raw data is Bernoulli, which is
harder to visualize). Each red line corresponds to the seasonal average. Right: Paths of log e-detectors (SR: red; CUSUM:
green). The horizontal line is the threshold (common to both procedures) equal to log(1/α), ensuring that the ARL is at
least 1/α = 103, larger than the number of games in 12 seasons (82 per season). The e-SR procedure detects a changepoint
during the 2014–15 season.

happened in NBA history). Accordingly, define the normal-
ized Plus-Minus, Xn := (X̃n + 80)/160 ∈ [0, 1] for each n.
Then, the pre-change observations have conditional mean at
most m := (μ< +80)/160 = 0.494 and the minimum gap to
detect is equal to δ := |μ> − μ<|/160 = 0.0125.
Modeling Plus-Minus Stats as a Bounded Sequence with
Time-varying, Dependent Means After the normalization
above, the Plus-Minus stats form sequence of bounded ran-
dom variables X1, X2, . . . on [0, 1]. Each observation may
have different distribution (due to seasonal effects, injuries,
form, etc.), but we assume that all observations before an
unknown changepoint ν have a mean less than or equal to a
known boundary m ∈ (0, 1), when conditioned on the past
sample history. That is, under any pre-change distribution
P , we have μn := EP,∞[Xn | Fn−1] ≤ m, ∀n ≥ 1. In other
words, we use

P := {P : μn ≤ m, ∀n ≥ 1},

where other characteristics about P (outside of its se-
quence of conditional means) are irrelevant. But after the
changepoint, all observations have (conditional) mean larger
than the boundary m with the minimum gap equal to δ.
Thus,

Q := {P : μn ≥ m+ δ, ∀n ≥ 1},
To build an e-SR or e-CUSUM procedure, we need to

choose a baseline increment. To derive it, we first consider
a simplified setting where both pre- and post-change obser-
vations are independently and identically distributed with
EP,∞[X] ≤ m and E0,Q[X] ≥ m + δ, respectively. In this
simplified case, we simply refer P and Q to marginal pre-
and post-change distributions and P and Q to their collec-
tions. Then, define KLinf(Q;m) := infP∈P KL(Q,P ) to be

the smallest KL divergence between Q and P . It is known
(see, e.g., [9, 10]) that KLinf has the following variational
representation:

KLinf(Q,m) = sup
λ∈(0,1)

E0,Q log

(
1 + λ

(
X

m
− 1

))
=: D(Q||P).

(5.5)

Accordingly, for each λ ∈ (0, 1), define the baseline incre-
ment Lλ := {Ln}n≥1 as

Lλ
n := 1 + λ

(
Xn

m
− 1

)
, (5.6)

for each n ∈ N. Though the baseline increment above has
been derived in the simplified iid setting, it can be checked
that Lλ is also a valid baseline increment for the general
time-varying, dependent means case since it is nonnegative
whenever Xn,m ∈ [0, 1] as assumed in our setup, and for
each pre-change distribution P ∈ P , we have

EP,∞
[
Lλ
n | Fn−1

]
= 1 + λ

(
EP,∞[Xn | Fn−1]

m
− 1

)
≤ 1,

where the inequality comes from the condition μn ≤ m for
any pre-change distribution.

Interestingly, the baseline increments in (5.6) correspond
to rescaled increments of the capital process used in [48] to
design test martingales for confidence sequences of means of
bounded random variables. Though the expressions are es-
sentially identical, ours was obtained via a variational rep-
resentation of the KL divergence between distributions of
bounded random variables, while the derivation presented
in [48] is based on a betting interpretation of hypothesis
testing.
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For any Q ∈ Q, let λop be the optimal choice of λ ∈ [0, 1]
given by

λop = argmax
λ∈[0,1])

E0,Q log

(
1 + λ

(
X

m
− 1

))
. (5.7)

Unfortunately, it is typically difficult to compute the opti-
mal λop since it depends on the unknown post-change dis-
tribution Q in a complicated way. In this case, we use a
sub-exponential lower bound from [5, 12], given by

L̃λ
n := exp

{
λ

(
Xn

m
− 1

)
− ψE(λ)

(
Xn

m
− 1

)2}
≤ 1 + λ

(
Xn

m
− 1

)
= Lλ

n,

(5.8)

where ψE(λ) := − log(1 − λ) − λ for λ ∈ (0, 1). For each
λ ∈ (0, 1), the process L̃λ is itself a valid exponential baseline
increment with s(x) := x/m− 1 and v(x) := (x/m− 1)2.

The lower bound in (5.8) also implies the lower bound

KLinf(Q,m) ≥ sup
λ∈[0,1]

{
λμ−ψE(λ)σ

2
}
= σ2ψ∗

E

(
Δop

)
, (5.9)

where ψ∗
E(u) := u − log(1 + u) is the convex conjugate of

ψE , while μ, σ2 and Δop from Section 4 are:

μ := E0,Qs(X) =
E0,QX −m

m
,

σ2 := E0,Qv(X) =
E0,Q(X −m)2

m2
,

Δop :=
μ

σ2
=

m[E0,QX −m]

E0,Q(X −m)2
.

Noting that ψ∗
E(u) ≈ u2/2 for small u, we see that for small

Δop � 1, one has

KLinf(Q,m) � [E0,QX −m]2

2E0,Q(X −m)2
. (5.10)

Note that the oracle Δop depends on the unknown post-
change distribution only via first and second moments.
Therefore, in contrast to the original set of baseline in-
crements {Lλ}λ∈(0,1), the exponential baseline increments
{L̃λ}λ∈(0,1) that lower bound them allow us to more eas-
ily set a range (ΔL,ΔU ) to build mixtures of the e-SR and
e-CUSUM procedures. For example, if we assume that the
post-change distribution has mean at least m+ δ for a pos-
itive δ then we can upper and lower bound Δop by

ΔL :=
mδ

(1−m)2
≤ Δop ≤ m(1−m)

δ2
=: ΔU . (5.11)

Now, given ΔL and ΔU , we can use Algorithm 1 to run
the mixture of e-SR or e-CUSUM procedure to detect the
changepoint based on the exponential baseline increments

{L̃λ}λ∈(0,1). It is also straightforward to build the corre-
sponding mixtures of e-SR and e-CUSUM procedures for
the original baseline increment {Lλ}λ∈(0,1) which is always
more sample-efficient.

Implementation of Algorithm 1 and Its Results Recall that
in the plus-minus stats running example, we use pre-change
mean m = 0.494 and the minimum gap δ = 0.0125, which
bounds Δop by ΔL := 0.024 and ΔU := m(1−m)

δ2 = 1600.
As before, we choose α = 10−3 to make the ARL larger
than 12 regular seasons and set the maximum number of
baselines Kmax = 1000. Based on these parameters, we can
build mixtures of e-SR and e-CUSUM procedures. Though
the difference between ΔL and ΔU may seem to be large,
the actual number of baselines returned by the function
computeBaseline in Algorithm 1 is 190, which is small
enough to update the procedure efficiently on the fly.

Figure 3 shows e-detectors (left) and their logarithms
(right). The horizontal line corresponds to the detection
boundary given by 1/α (left) and logα−1 (right). Similar
to the winning rate example, the log e-detectors remained
stable during the first four regular seasons, although the dif-
ference between SR and CUSUM e-detectors is larger than
before. After 2014–15 season started, both e-detectors in-
creased rapidly, and the e-SR procedure detects a change-
point during the 2014–15 season, but e-CUSUM detects the
changepoint only in the following season (as expected, since
both procedures use the same threshold).

5.3 Simulation-based Comparison with
Parametric Methods

In the Bernoulli example of Section 5.1, we showed that,
in the simple i.i.d Bernoulli setup, our mixtures of e-SR
and e-CUSUM procedures match the rate of the worst av-
erage delays O(log(1/α)/KL(q||p0)) of the oracle sequential
change detection procedure as α → 0. In this subsection, we
conduct a simulation study to compare the efficiency of our
e-SR procedure with the oracle CUSUM procedure with the
exact threshold [21, 31], given by

N∗
CU := inf

{
n ≥ 1 : max

0≤j<n

n∑
i=j

log
fp∗(Xi)

fp0(Xi)
≥ c∗α

}
,

(5.12)
where p∗ is the true post-change distribution parameter
(hence the oracle designation) and c∗α is the value of the
threshold so that the ARL is exactly 1/α. It is well known
that the oracle CUSUM procedure (with the appropriate
choice of the stopping threshold that controls ARL exactly)
minimizes the worst average delay.

We also compare our method with a version of the GLR
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Figure 3: Left: E-detectors (SR: red; CUSUM: green) over eight seasons (82 games per season). Right: Logarithm of e-
detectors against date (the sharp rise of e-SR is simply due to the log scale). In both plots, horizontal lines are thresholds
equal to 1/α (left) and log(1/α) (right) controlling the ARL by 1/α = 103. The e-SR procedure detects a change during
the 2014–15 season, while e-CUSUM takes longer (as expected).

procedure based on the stopping time

N∗
GL := inf

{
n ≥ 1 : max

0≤j<n
sup
p

n∑
i=j

log
fp(Xi)

fp0(Xi)
≥ cα

}

= inf

{
n ≥ 1 : max

0≤j<n

n∑
i=j

log
fp̂j:n

(Xi)

fp0(Xi)
≥ cα

}
,

(5.13)
where each p̂j:n is the MLE of the post-change parameter
and the exact threshold cα is tuned to control ARL ex-
actly at 1/α (this is typically only possible in such simple
parametric settings, either by analytic derivations or simu-
lations). Unlike the oracle CUSUM procedure, the GLR pro-
cedure does not have an iterative update rule, as we need to
recompute the MLE of the post-change parameter at each
time. As a result, its computational cost at time n is O(n),
which makes an online implementation very costly. In prac-
tice, we may want to use a window-limited GLR procedure
to overcome the computational challenge. However, in our
study, we deploy the GLR procedure to avoid the additional
challenge of picking a window size.

Simulation Details Throughout this simulation, we draw
pre-change observations as iid Bernoulli random variables
with p0 = 0.5, and post-change observations using p1 = 0.6.
For non-oracle methods, we will only assume that the post-
change parameter is known to be in the interval [0.51, 0.99].
The e-SR and e-CUSUM procedures in Algorithm 1 will use
this range to set ΔL := 0.01 and ΔU := 0.49. For the GLR
procedure, the MLE of the post-change parameter is

p̂j:n := min
{
max{X̄j:n, 0.51}, 0.99

}
, (5.14)

where X̄j:n is the sample average over last n− j + 1 obser-
vations. Our ARL target is equal to 1/α := 500, and each

simulation is repeated 5000 times to estimate average delays.
The time of the changepoint ν varies in {0, 100, . . . , 500}. For
simplicity, each run will end no later than time n = 1000.

For the oracle CUSUM, GLR, and e-CUSUM procedures
(but not e-SR), we use the same simulation setup to find the
exact threshold value that controls the ARL exactly 1/α for
each method. For the e-SR procedure, we simply use the uni-
versal threshold of log(1/α) to demonstrate its efficiency. In
particular, practitioners are not required to resort to expen-
sive simulation to identify a good threshold value.

Figure 4 shows the average delays of oracle CUSUM,
GLR, e-CUSUM and e-SR procedures for each changepoint
ν ∈ {0, 100, . . . , 500} (each experiment has only one change
at ν). The vertical bar on each point represents 95% confi-
dence interval of the average delay. As the theory guaran-
tees, the oracle CUSUM procedure with an exact thresh-
old results in the smallest worst average delay (91.3± 1.7),
while surprisingly the GLR procedure with an exact thresh-
old shows the largest worst average delay (123.7 ± 2.7) de-
spite its high computational complexity. The two e-detectors
perform reasonably well, and the e-SR detector in particular
performs quite favorably overall despite using its conserva-
tive log(1/α) threshold.

As the value of the changepoint approaches the ARL
target of 500, the average delays tend to decrease sharply
for e-SR procedure, even falling below the oracle CUSUM
method. This is plausibly because e-SR sums the under-
lying e-processes, in contrast to the other CUSUM-style
procedures which take the maximum of the underlying e-
processes. We may also intuitively expect the oracle CUSUM
delay to be relatively flat across ν because it is known to be
minimax optimal, in the sense of minimizing the worst case
delay, and minimax procedures often have constant “risk
profiles”. Proving these fine-grained behaviors is beyond the
scope of the current paper.
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Figure 4: Average detection delay for each changepoint ν = 0, 100, . . . , 500 (each experiment has exactly one changepoint
at ν). Three of the methods use an exact threshold calculated via simulation (only possible in this simple, parametric
example). Only the Oracle CUSUM method knows the post-change distribution. Even though e-SR uses the conservative
log(1/α) threshold, its detection delay is excellent, often even better than the Oracle CUSUM method (which has optimal
average worst-case (across ν) delay).

Figure 5: Pre-change false alarm rates of detection methods for each changepoint ν = 0, 100, . . . , 500 (each experiment has
exactly one changepoint at ν). Three of the methods use an exact threshold calculated via simulation (only possible in this
simple, parametric example). Only the Oracle CUSUM method knows the post-change distribution exactly. e-SR has the
smallest false alert ratio (defined in the text).
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Figure 5 illustrates the “pre-change false alarm rate”: the
fraction of simulation runs in which the detection procedures
stopped before the changepoint at ν (if a change occurs at
ν = 0, then it is zero by definition). This is not a common
metric, since we provably control ARL at the target level.
However, it is an interesting metric, so we plot it. As the time
of the true changepoint ν becomes closer to the ARL target
of 500, false alarm rates increase across all methods. We
notice that the e-SR procedure with the log(1/α) threshold
results in the smallest false alarm rates in most cases.

6. DISCUSSION
6.1 Game-theoretic Interpretation of an

E-detector
We briefly mention here a game-theoretic interpretation

of an e-detector along the lines of the game-theoretic in-
terpretations of martingales and supermartingales as the
wealth of a gambler playing a fair game (well known since
the time of [42]). We first summarize the game-theoretic in-
terpretation of a P-e-process, as described in [29].

The standard game-theoretic setup of [33] involves three
players: a forecaster, a skeptic, and reality. The forecaster
claims at the beginning that P is a plausible model for the
yet-to-be-observed data; meaning that the observations are
in accordance with (or generated by) some P ∈ P . The skep-
tic plays (in parallel) a family of games indexed by P ∈ P
against nature and begins with one dollar in each game. The
objective of the skeptic in the P -th game is to sequentially
test whether P is a good explanation for the data by bet-
ting against P . At each time step, the skeptic places fair
bets (relative to P , in the P -th game) about the next out-
come. Then nature reveals the next outcome, and the skep-
tic’s wealth in every game is updated. The magnitude of the
skeptic’s wealth in the P -th game is direct evidence against
P being a good explanation; the higher the wealth, the more
unlikely the data came from P . Thus in each game, the gam-
bler places different bets, but nature’s moves (the outcomes)
are identical across all games. The skeptic’s overall evidence
against P is measured by their worst wealth across all the
games. If this evidence exceeds 1/α, it means that the skep-
tic multiplied their initial capital by at least 1/α in every
game, and if we reject P when this happens, Ville’s inequal-
ity implies that we have a valid level-α sequential test.

Since our e-detectors are constructed to be cumulative
sums of e-processes started at consecutive times, their game-
theoretic interpretation builds on the aforementioned one.
Informally, the forecaster not only claims that the data se-
quence follows P from the start, but that this will not change
after some amount of time. The skeptic now wishes to detect
a change, if one occurs, as soon as possible. To accomplish
this task, the skeptic is provided with one extra dollar ev-
ery day that they invest (using a P e-process) into testing
whether the data from that day onwards is still explained
well by P . E-detectors use the wealth in all these games

(one against each P ∈ P , starting at each time) as a mea-
sure of evidence against the forecaster’s claims. The SR e-
detector uses the sum (across time) of the minimum wealth
(across P at each time), though it could use the amount that
this wealth exceeds n, which is the total dollar amount in-
vested up to time n. The CUSUM e-detector uses the max-
min wealth; the maximum (across time) of the minimum
wealth (across P ). These are only two ways of constructing
e-detectors, and we leave other constructions to future work.

6.2 Viewing Lorden’s Reduction to Sequential
Testing as an E-detector

Lorden [18] proposed a simple method to construct a
change detection method with ARL control via a reduction
to sequential testing. We describe this below, first defining
a sequential test formally.

A sequential test φ is a mapping from increasing amounts
of data to a sequence of zeros and ones, where a one rep-
resents a rejection of the null hypothesis, and a zero means
“continue collecting data”. Formally, define the decision at
time t as φt : X t → {0, 1}, and let φ := {φt}t≥0 be the
collection of such decisions made one at a time based on the
first t datapoints, with φ0 = 0 by default. The sequence of
tests φ is called a level-α sequential test for P if

sup
P∈P

P
(
∃t ≥ 1 : φt(X1, . . . , Xt) = 1

)
≤ α,

i.e. if the probability of ever falsely rejecting the null is at
most α. By convention, if φt = 1, we set φs = 1 for s > t.
This is equivalent to requiring that, for each P ∈ P ,

P
(
φτ (X1, . . . , Xτ ) = 1

)
≤ α for any stopping time τ.

Let φ(j) denote a sequential test is started at time j; that
is, for φ(j), the first observation is actually Xj (and not X1),
but the test itself can depend on the first j− 1 observations
(for example, we can choose our betting strategy based the
first j − 1 points, even though our betting score will only
be evaluated from time j onwards). Note that φ(1) is simply
a standard sequential test as defined above. Ideally, these
tests are powerful against alternative Q.

Lorden’s change detection procedure is simple and works
as follows. At each time t, start a new sequential test
φ(t), in addition to the ones that are already running. In
other words, consider a sequence of level-α sequential tests
φ(1), φ(2), . . . , starting at consecutive times. Lorden declares
a change if any of those sequential tests rejects the null P :

NLorden := inf
{
n ≥ 1 : max

1≤j≤n
φ(j)
n (Xn−j+1, . . . , Xn) = 1

}
.

Lorden proved that this method controls the ARL at 1/α if
the data are iid, and if the same test φ(j) is deployed at each
j (i.e. apart from the delayed start, the tests are identical).

We first observe that Lorden’s method is a special case of
an e-detector. Indeed, with each level-α sequential test φ ≡
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{φt}t≥0, we can associate an e-process ΛLorden
t := 1(φt=1)

α =
φt

α . Note that Λ only takes on two values: 0, 1/α, and when
it reaches the latter, it stays there. Furthermore, note that
E[ΛLorden

τ ] ≤ 1 for any stopping time τ , which makes it an
e-process as claimed.

Last, note that if we form a “Lorden e-detector” using
either the SR or CUSUM methods in (2.5), then both e-
detectors start out at 0, and either e-detector jumps to level
1/α if and only if one of the (delayed start) sequential tests
rejects the null, and further our e-detector declares a change-
point at exactly the same instant that Lorden’s does. Thus,
Lorden’s procedure can be subsumed within our e-detector
framework without any loss of generality or performance.

There are two benefits to viewing Lorden’s method as
an e-detector. First, we can dispense with both the afore-
mentioned conditions that Lorden required to prove ARL
control: the iid assumption, and the condition that the un-
derlying tests φ(j) are identical across j. Indeed, our main
result guarantees ARL control for any e-detector no matter
what the underlying ej-processes are, or whether the data
are iid or not.

Second, this viewpoint allows us to see why e-detectors
could have much smaller detection delay than Lorden’s
method (that is, Lorden’s e-detector). In Lorden’s e-
detector, there is no sharing of evidence across different ej-
processes: each sequential test acts alone without help from
the others, and we need a single ej-process to reach 1/α be-
fore we can declare a change. When a general (say SR-type)
e-detector crosses 1/α, the reason it does so will usually be
because of a collaborative effect across various e-processes
(caused by the nontrivial sum of ej-processes in the defini-
tion of the e-detector), none of which have yet individually
reached 1/α. This will happen much sooner than any indi-
vidual one reaches that threshold, causing an earlier detec-
tion than Lorden’s method. In fact, every level-α sequential
test in some sense must be based on threshold an e-process
at level 1/α [28] and using our e-detector with those under-
lying e-processes will be more statistically efficient (shorter
delay) than directly using Lorden’s reduction.

For the sake of future reference, we summarize the above
observations below in a “generalized Lorden’s lemma”,
whose proof follows immediately from the properties of an
e-detector and the discussion above.

Lemma 6.1 (Generalized Lorden’s Lemma). Suppose the
data initially come from a distribution in the pre-change
class P and, if a change occurs, they later come from a
distribution in the post-change class Q (note the lack of any
iid assumption). For each j, let φ(j) denote a (one-sided)
level-α sequential test for P against Q that is started at time
j (but need not be identical or related in any way to any other
φ(k), for k 
= j). If we declare a change at the first time
when any one of these sequential tests rejects the null, the
resulting change detection procedure has ARL at most 1/α.
Further, this generalization of Lorden’s change detector is a
special case of an e-detector.

6.3 Future Directions
There remain a whole host of follow-up directions; we

mention only a few below. First, our sequential change de-
tection framework can be straightforwardly generalized to
the multi-stream setting where we are monitoring a large
number of data streams. In the classical parametric setting,
minimum or summation of local CUSUM statistics for multi-
stream data were proposed and their asymptotic optimality
was studied [8, 20]. Since either minimum or scaled summa-
tion (average) of e-detectors also forms a valid e-detector,
we can apply the framework in this paper to the multi-
stream setting seamlessly. It is interesting to investigate how
the framework can be even further generalized to structural
multi-stream settings [50, 51, 2].

The kernel sequential change detection is an important
class of sequential change detection methods [3, 16]. It is
an interesting open direction how to instantiate existing
kernel-based methods into our general framework to make
it possible to analyze kernel sequential change detection al-
gorithms in a nonasymptotic way. As it currently stands,
neither framework is more general than the other, because
the kernel methods often assume iid data before the change-
point, while we abstain from such strong assumptions.

Last, throughout this paper, we have only focused on de-
tecting whether a changepoint happened or not but have
not dealt with inferential questions surrounding when the
change occurred. Future work could study how to perform
such inference with e-detectors in our nonparametric set-
tings, either online or post-hoc.

7. SUMMARY
We have presented a general framework for sequential

change detection based on a new concept called e-detectors.
The proposed framework is nonparametric as it does not rely
on a parametric assumption on the data-generating distribu-
tion (though, when such assumptions are made, we recover
well-known parametric methods as special cases). Also, the
framework comes with nonasymptotic guarantees, since ev-
ery component of the framework can be chosen and analyzed
explicitly without any asymptotic approximations. By in-
troducing additional structures such as baseline increments
and exponential e-detectors on the top of the general frame-
work, we can construct computationally and statistically ef-
ficient online algorithms that have explicit upper bounds on
worst average delays. Finally, through examples involving
Bernoulli and bounded random variables, we explained how
one can apply the presented framework in practical settings,
with NBA data serving as a running case study.

APPENDIX A. MAIN PROOFS
A.1 Proofs for Statements in Section 2
Proof of Theorem 2.4 (ARL control). For any given α ∈
(0, 1) let N∗ be the stopping time defined by

N∗ := inf{n ≥ 1 : Mn ≥ 1/α}. (A.1)
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For any pre-change distribution P ∈ P , we may assume
N∗ < ∞ with probability one under P , without loss of gen-
erality. (If not, we have EP,∞N∗ = ∞, which immediately
proves the claim.) Then, from the definition of an e-detector,
we have

EP,∞[MN∗ ] ≤ EP,∞N∗, (A.2)

which implies that, for any P ∈ P ,

EP,∞N∗ ≥ EP,∞[MN∗ ]

= EP,∞
[
MN∗1

(
N∗ < ∞

)]
≥ EP,∞

[
1

α
1
(
N∗ < ∞

)]
(by definition of N∗)

=
1

α
PP,∞

(
N∗ < ∞

)
=

1

α
,

as desired.

Proof of Proposition 2.14 (Bounds on worst average delay).
We first prove (2.12). Note that

N∗
SR = inf

{
n ≥ 1 :

n∑
j=1

n∏
i=j

Li ≥ 1/α

}

≤ min
j≥1

inf

{
n ≥ j :

n∏
i=j

Li ≥ 1/α

}
:= min

j≥1
Nj .

For each fixed P ∈ P and Q ∈ Q, since Nj |= Fν for all
j > ν +m, we have

EP,ν,Q

[[
N∗

SR − ν
]
+
| Fν

]
≤ min

j≥1
EP,ν,Q

[
[Nj − ν]+ | Fν

]
≤ min

j>ν+m
EP,ν,Q[Nj − ν | Fν ] (since Nj ≥ j > ν +m)

= min
j>ν+m

EP,ν,Q[Nj ]− ν (since Nj |= Fν , ∀j > ν +m)

= min
j>ν+m

EP,ν,Q

[
inf

{
n ≥ j :

n∏
i=j

Li ≥ 1/α

}]
− ν

= min
j−ν>m

E0,Q

[
inf

{
n ≥ j − ν :

n∏
i=j−ν

Li ≥ 1/α

}]

= min
j′>m

E0,Q

[
inf

{
n≥j′ :

n∏
i=j′

Li≥1/α

}]
(by j′ := j − ν)

= min
j′>m

E0,Q

[
inf

{
n ≥ 1 :

n∏
i=1

Li ≥ 1/α

}]
+ j′ − 1

= min
j′>m

E0,QN1/α + j′ − 1

= E0,QN1/α +m,

where the third equality comes from the fact that the distri-
bution of Xj−m, Xj−m+1, . . . under PP,ν,Q is equal to the
one of Xj−ν−m, Xj−ν−m+1, . . . under P0,Q provided that

j − m > ν, and the fifth equality is based on the strong
stationarity of the post-change observations. Since the last
term does not depend on P , ν or Fν , we obtain the claimed
result

JP

(
N∗

SR

)
≤ JL

(
N∗

SR

)
= sup

P∈P,ν≥0
esssupEP,ν,Q

[[
N∗

SR − ν
]
+
| Fν

]
≤ E0,QN1/α +m,

as desired.
To prove (2.13), first note that

N∗
CU = inf

{
n ≥ 1 : max

j∈[n]

n∏
i=j

Li ≥ cα

}

≤ min
j≥1

inf

{
n ≥ j :

n∏
i=j

Li ≥ cα

}
:= min

j≥1
Nj .

The remaining part of the proof for (2.13) is followed by the
same argument for (2.12).

Finally, to prove (2.14), it is enough to show the following
inequality holds:

E0,QN(g) ≤ g

E0,Q logL1
+

V0,Q logL1

[E0,Q logL1]2
+ 1, ∀g > 0,

(A.3)
where N(g) := inf{n ≥ 1 :

∑n
i=1 logLi ≥ g} for each g > 0.

The proof of the above upper bound (A.3) is based on the
Lorden’s inequality [17] which can be stated as follows:

Fact A.1 (Lorden’s inequality [17]). Suppose X1, X2, . . .
are i.i.d. samples with EX1 = μ > 0 and EX2

1 < ∞. For
each g > 0, set N(g) := inf{n : Sn :=

∑n
i=1 Xi ≥ g} and

Rg := SN(g) − g. Then, the following inequality holds:

sup
g>0

E[Rg] ≤
EX2

1

μ
= μ+

σ2

μ
, (A.4)

where σ2 = VX1.

Now, to prove the upper bound (A.3), fix a constant
g > 0. Since E0,Q logL1 > 0, we have E0,QN(g) < ∞. There-
fore, by Wald’s equation,

E0,Q logL1E0,QN(g) = E0,Q

[
N(g)∑
i=1

logLi

]
. (A.5)

For each g > 0, set Rg :=
∑N(g)

i=1 logLi − g. Then, from the
Lorden’s inequality, we have

E0,Q logL1E0,QN(g) = E0,Q

[
N(g)∑
i=1

logLi

]
≤ c+ sup

g>0
E0,Q[Rg]
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≤ g +
V0,Q logL1

E0,Q logL1
+ E0,Q logL1,

(A.6)

where the first inequality comes from the definition of N(g).
By multiplying 1/E0,Q logL1 on both sides of the inequal-
ity (A.6), we have the claimed upper bound, completing the
proof.

A.2 Proofs for Statements in Section 3
Proof of Proposition 3.3 (Validity of adaptive e-detectors).
To see adaptive SR and CUSUM e-detectors are actually
valid e-detectors, first note that MaCU

n ≤ MaSR
n for

each n ∈ N. Therefore, it is enough to show that
EP,∞MaSR

τ ≤ EP,∞τ for any stopping time τ and
pre-change distribution P ∈ P . If PP,∞(τ = ∞) > 0
then the above inequality holds trivially. Otherwise if
PP,∞(τ = ∞) = 0, we have that

EP,∞MaSR
τ = EP,∞

K(τ)∑
k=1

ωk

τ∑
j=K−1(k)

γj

τ∏
i=j

Li(k)

:= EP,∞

K(τ)∑
k=1

ωk

τ∑
j=K−1(k)

γjΛ
(j)
τ (k)

= EP,∞

τ∑
j=1

K(j)∑
k=1

γjωkΛ
(j)
τ (k)

=
∞∑
j=1

K(j)∑
k=1

γjωkEP,∞Λ(j)
τ (k)1(j ≤ τ)

=

∞∑
j=1

K(j)∑
k=1

γjωkEP,∞1(j≤τ)EP,∞
[
Λ(j)
τ (k) | Fj−1

]
≤

∞∑
j=1

K(j)∑
k=1

γjωkEP,∞1(j ≤ τ)

=

∞∑
j=1

EP,∞1(j ≤ τ)

= EP,∞τ,

as desired. Above, the sole inequality follows since each
Λ(j)(k) is an ej-process, and the following equality invokes
the definition of γj for each j.

Proof of Theorem 3.4 (Delay bounds for adaptive e-detectors).
We first prove the upper bound for the adaptive e-SR pro-
cedure in (3.17). Note that

N∗
aSR = inf

{
n ≥ 1 :

K(n)∑
k=1

ωk

n∑
j=K−1(k)

γj

n∏
i=j

Li(k) ≥ 1/α

}

≤ inf

{
n ≥ 1 :

K(n)∑
k=1

ωk

n∑
j=K−1(k)

n∏
i=j

Li(k) ≥ 1/α

}

= inf

{
n ≥ 1 :

n∑
j=1

K(j)∑
k=1

ωk

n∏
i=j

Li(k) ≥ 1/α

}

≤ min
j≥1

inf

{
n ≥ j :

K(j)∑
k=1

ωk

n∏
i=j

Li(k) ≥ 1/α

}
:= min

j≥1
Nj ,

where the first inequality follows because γj ≥ 1 for each j.
For each fixed P ∈ P and Q ∈ Q, since Nj |= Fν for all
j > ν +m, we have

EP,ν,Q

[[
N∗

aSR − ν
]
+
| Fν

]
≤ min

j>ν+m
EP,ν,Q[Nj − ν | Fν ] (since Nj ≥ j > ν +m)

= min
j>ν+m

EP,ν,Q

[
inf

{
n≥j :

K(j)∑
k=1

ωk

n∏
i=j

Li(k) ≥ 1/α

}]
− ν

(since Nj |= Fν , ∀j > ν +m)

= min
j−ν>m

E0,Q

[
inf

{
n≥j−ν :

K(j)∑
k=1

ωk

n∏
i=j−ν

Li(k)≥1/α

}]

= min
j′>m

E0,Q

[
inf

{
n ≥ j′ :

K(j′+ν)∑
k=1

ωk

n∏
i=j′

Li(k) ≥ 1/α

}]
(by setting j′ := j − ν)

= min
j′>m

E0,Q

[
inf

{
n ≥ 1 :

K(j′+ν)∑
k=1

ωk

n∏
i=1

Li(k) ≥ 1/α

}]
+ j′ − 1

≤ min
j′>m

E0,Q

[
inf

{
n ≥ 1 :

K(j′)∑
k=1

ωk

n∏
i=1

Li(k) ≥ 1/α

}]
+ j′ − 1

= min
j′>m

E0,QN1/α

(
j′
)
+ j′ − 1,

where the second equality comes from the fact that the
distribution of Xj−m, Xj−m+1, . . . under PP,ν,Q is equal to
the one of Xj−ν−m, Xj−ν−m+1, . . . under P0,Q provided by
j−m > ν and the forth equality is based on the strong sta-
tionarity of post-change observations. Since the last term
does not depend on P , ν nor Fν , we have the claimed re-
sult:

JP

(
N∗

aSR

)
≤ JL

(
N∗

aSR

)
= sup

P∈P,ν≥0
esssupEP,ν,Q

[[
N∗

aSR − ν
]
+
| Fν

]
≤ min

j>m

[
E0,QN1/α(j) + j − 1

]
,

as desired.
To prove the adaptive e-CUSUM procedure case in (3.18),
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first note that

N∗
aCU = inf

{
n ≥ 1 :

K(n)∑
k=1

ωk max
K−1(k)≤j≤n

γj

n∏
i=j

Li(k) ≥ cα

}

≤ inf

{
n ≥ 1 : max

j≤n

K(j)∑
k=1

ωk

n∏
i=j

Li(k) ≥ cα

}

≤ min
j≥1

inf

{
n ≥ j :

K(j)∑
k=1

ωk

n∏
i=j

Li(k) ≥ cα

}
:= min

j≥1
Nj ,

where the first inequality comes from γj ≥ 1 with the fact
K−1(k) ≤ j for any k ≤ K(j). The remaining part of the
proof of (3.18) follows the same argument used to obtain
(3.17).

APPENDIX B. REMAINING PROOFS
B.1 Proofs for Statements in Section 4
Proof of Proposition 4.2. To simplify notation, we drop the
subscripts {0, Q} and 1. The claim reduces to proving that

E logL(λop) = ψ∗(Δop
)
σ2, (B.1)

where logL(λop) := λops(X) − ψ(λop)v(X) and Δop =
∇ψ(λop). To prove the equality, first note that from the
definition of the convex conjugate ψ∗ of ψ, we have

ψ∗(Δop
)
:= sup

λ∈Π

{
λΔop −ψ(λ)

}
= λopΔop −ψ

(
λop

)
, (B.2)

which implies

E logL(λop) = λopμ− ψ
(
λop

)
σ2 = σ2

[
λopΔop − ψ

(
λop

)]
= σ2ψ∗(Δop

)
,

as desired.

Proof of Theorem 4.3. We first recall the definition of the
stopping time in (4.8):

N̄g := inf

{
n ≥ 1 : sup

λ∈(λL,λU )

n∑
i=1

logL
(λ)
i ≥ g

}
, g > 0.

(B.3)
Then, the same argument used in the proof Proposition 2.14
immediately implies that, i the post-change observations are
i.i.d. from Q, then, for any g > 0,

E0,QN̄g ≤ g

D(Q||P)
+

V0,Q[logL
(λop)
1 ]

[D(Q||P)]2
+ 1. (B.4)

The claim of the theorem follows from Lemma B.1, whose
statement and proof are given below.

Lemma B.1. Let N1/α and Ncα be stopping times where the
underlying mixing weights {ωk} and parameters of baseline
increments {λk} are chosen via Algorithm 3. Let N̄gα be the
stopping time defined in (4.8) with the threshold given by Al-
gorithm 3. Then, for any stream of observations X1, X2, . . . ,

Ncα ≤ N1/α ≤ N̄gα , (B.5)

deterministically, provided that 1 < cα < 1/α.

Proof of Lemma B.1 and Algorithm 3. Throughout this
proof, we set DL := ψ∗(ΔL) < ψ∗(ΔU ) =: DU . The first
inequality Ncα ≤ N1/α follows directly from the definition
of the stopping time in (3.22) along with the condition that
cα ≤ 1/α. To prove the second inequality N1/α ≤ N̄gα , we
will exploit on general geometric construction introduced
in [36] to analyze the performance of sequential generalized
likelihood ratio tests. To that effect, set μ̂n := Sn/Vn. Then,
for each fixed λ > 0 such that Δ = ∇ψ(λ), Proposition 4.2
and the identity λ = ∇ψ∗(Δ) imply that the function
μ̂n �→ V −1

n

∑n
i=1 logL

(λ)
i = λμ̂n−ψ(λ) = λ(μ̂n−Δ)+ψ∗(Δ)

is a mapping of μ̂n into the tangent line of the function
z �→ ψ∗(z) at z = Δ. Next, set VU := gα/DU and
VL := gα/DL, and define the set

R :=
{
(z, y) ∈ [0,∞)2 : y ≤ ψ∗(z)

}
. (B.6)

Then, the stopping event of N̄gα can be expressed as{
∃n ≥ 1 : sup

λ∈(λL,λU )

n∑
i=1

logL
(λ)
i ≥ gα

}

=

{
∃n ≥ 1 : Vn < VU ,

(
μ̂n,

gα
Vn

)
∈ H(ΔU )

}
∪
{
∃n ≥ 1 : Vn ≥ VU ,

(
μ̂n,

gα
Vn

)
∈ R \H(ΔL)

}
=

{
∃n ≥ 1 : Vn < VU ,

n∑
i=1

logL
(λU )
i ≥ gα

}

∪
{
∃n ≥ 1 : Vn ≥ VU , sup

λ>λL

n∑
i=1

logL
(λ)
i ≥ gα

}
,

H(ΔU ) and H(ΔL) are half spaces contained in and tangent
to R at (ΔU , gα/VU ) and (ΔL, gα/VL), respectively. See Fig-
ure 6 for an illustration of the stopping event of N̄gα .

Note that the first decomposition part {∃n ≥ 1 :

Vn < VU ,
∑n

i=1 logL
(λU )
i ≥ gα} is nonempty only if VU >

minx v(x) := vmin, which is equivalent to gα > vminDU . For
the second part, a straightforward extension of Lemma 1 in
the appendix of [36] implies that, for any fixed η > 1, the
second part can be further decomposed by sets of simple
events as follows:{
∃n ≥ 1 : Vn ≥ VU , sup

λ>λL

n∑
i=1

logL
(λ)
i ≥ gα

}
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Figure 6: Illustration of the stopping event of N̄gα defined in
(4.8), and related regions H(ΔU ), H(ΔL) and R. The stop-
ping time N̄gα is the first time when (μ̂n, gα/Vn) is located
in one of the colored areas.

⊂
K(η)−1⋃
k=1

{
∃n≥1:Vn∈ [VUη

k−1, VUη
k),

n∑
i=1

logL
(λk)
i ≥gα/η

}

∪
{
∃n ≥ 1 : Vn ≥ VUη

K(η)−1,

n∑
i=1

logL
(λK(η))

i ≥ gα/η

}
,

(B.7)

where K(η) is a positive integer defined by

K(η) :=

⌈
logη

(
DU

DL

)⌉
, (B.8)

and, for k = 1, . . . ,K(η) − 1, λk is given by λk := ψ∗(Δk),
with Δk the solution with respect to z > 0 of the equation

ψ∗(z) =
DU

ηk
, (B.9)

while ΔK(η) := ΔL. It can be checked that λU := λ0 >
λ1 > λ2 > · · · > λK(η) = λL. Decomposing the stopping
event of N̄gα , we can lower bound the stopping time N̄gα for
any η > 1 as:

N̄gα = inf

{
n ≥ 1 : sup

λ∈(λL,λU )

n∑
i=1

logL
(λ)
i ≥ gα

}

≥ inf

{
n ≥ 1 : e−gα

n∏
i=1

L
(λ0)
i 1(gα > vminDU )

+

K(η)∑
k=1

e−gα/η
n∏

i=1

L
(λk)
i ≥ 1

}

= inf

{
n ≥ 1 : α−1e−gα1(gα > vminDU )

× exp
{
λ0Sn − ψ(λ0)Vn

}
+

K(η)∑
k=1

α−1e−gα/η exp
{
λkSn − ψ(λk)Vn

}
≥ 1/α

⎫⎬⎭

:= inf

{
n ≥ 1:

K(η)∑
k=0

ωk(η) exp
{
λkSn − ψ(λk)Vn

}
≥1/α

}
:= N(η),

where ω0(η) := α−1e−gα1(gα > vminDU ) and ωk(η) :=
α−1e−gα/η for each η > 1 and k = 1, . . . ,K(η). As a quick
remark, note that ω0(η) does not depend on η and each
ωk(η) in fact does not depend on the index k but we use
this notation just for consistency.

Finally, set ηα := (DU

DL
)1/Kα where Kα is the integer de-

fined in (B.11) of Algorithm 3. It can be easily checked that
K(ηα) = Kα. Therefore, once we choose η = ηα then, from
the definition of the mixing weights in Algorithm 3, we con-
clude that N(ηα) ≥ N1/α provided that

W := e−gα1(gα > vminDU ) +Kαe
−gα/ηα ≤ α, (B.13)

where the constant gα is the constant used in Algorithm 3
and given by

gα := inf

{
g > log(1/α) : e−g1(g > vminDU )

+ min
k∈[Kmax]

k exp

{
−g

(
DU

DL

)−1/k}
≤ α

}
. (B.14)

By the definition of Kα, we can immediately check that the
inequality (B.13) holds, which proves the claimed inequality
N1/α ≤ N(ηα) ≤ N̄gα , as desired.

We conclude this section with a formal proof of the va-
lidity of the upper bound in (4.7).

Proposition B.2. Let Kmax be a large enough integer such
that

Kα = argmin
k∈{1,...,Kmax}

k exp

{
−gα

(
DU

DL

)−1/k}

= argmin
k∈N

k exp

{
−gα

(
DU

DL

)−1/k}
. (B.15)

Then, the quantity gα Algorithm 1 specified in (B.10) is such
that

gα < inf
η>1

η

[
log(1/α) + log

(
1 +

⌈
logη

ψ∗(ΔU )

ψ∗(ΔL)

⌉)]
. (B.16)

Proof of Proposition B.2. Once Kmax is large enough to sat-
isfy (B.15) then the constant gα can be written as

gα = inf

{
g > log(1/α) : e−g1(g > vminDU )

+ inf
η>1

⌈
logη

(
DU

DL

)⌉
e−g/η ≤ α

}
, (B.17)
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Algorithm 3: Pseudo-code of computeBaseline function.
Input: ARL parameter α ∈ (0, 1), Boundary values 0 < ΔL < ΔU ,

Maximum number of baselines Kmax ∈ N.
Output: Parameters of baseline increments λU = λ0 > λ1 > · · · > λKα = λL,

Mixing weights ω0, ω1, . . . , ωKα ∈ [0, 1],
Auxiliary values used to compute baseline increments {gα,Kα, ηα,W}.

1 Compute parameters for boundary values by λL := ∇ψ∗(ΔL) and λU := ∇ψ∗(ΔU ).
/* If the separation is large enough, use a single baseline. */

2 if log(1/α) ≤ vminψ
∗(ΔL) then

3 Set Kα := 1, λ1 := λL and ω1 := 1
4 return Parameter λ1 and mixing weight ω1

5 Compute the threshold gα > log(1/α) given by

gα := inf

{
g > log(1/α) : e−g1(g > vminDU ) + min

k∈[Kmax]
k exp

{
−g

(
DU

DL

)−1/k}
≤ α

}
. (B.10)

(See Algorithm 4 for an explicit way to compute it)
6 Compute the number of baselines Kα ∈ N by

Kα = argmin
k∈[Kmax]

k exp

{
−gα

(
DU

DL

)−1/k}
, (B.11)

where DL := ψ∗(ΔL) < ψ∗(ΔU ) =: DU .
7 Compute the spacing parameter ηα := (DU

DL
)1/Kα .

/* Compute parameters of baseline increments and mixing weights */
8 Set λ0 := λU and λKα := λL.
9 if Kα ≥ 2 then

10 for k = 1, . . . ,Kα − 1 do
11 Compute Δk as the solution of the equation ψ∗(z) = DUη

−k with respect to z > 0.
12 Compute the k-th parameter as λk := ∇ψ∗(Δk).

13 Set W := e−gα1(gα > vminDU ) +Kαe
−gα/ηα and compute mixing weights by

ω0 = W−1e−gα1(gα > vminDU ) and ωk = W−1e−gα/ηα , ∀k ∈ [Kα]. (B.12)

14 return {λ0, λ1, . . . , λKα}, {ω0, ω1, . . . , ωKα}, {gα,Kα, ηα,W}

because the following equality holds for each g > 0 and
DU > DL.

min
k∈N

k exp

{
−g

(
DU

DL

)−1/k}
= inf

η>1

⌈
logη

(
DU

DL

)⌉
e−g/η.

(B.18)
Finally, to prove the claimed bound in (B.16), first note that
from (B.17), we have gα ≤ g(η) where g(η) > 0 is given by

g(η) := inf

{
g > log(1/α) : e−g +

⌈
logη

(
DU

DL

)⌉
e−g/η ≤ α

}
≤ η

[
log(1/α) + log

(
1 +

⌈
logη

DU

DL

⌉)]
,

for each η > 1. By taking infimum over η > 1, we get the
upper bound in (B.16), as desired.

Proof of Lemma 4.5. The proof of Lemma 4.5 is similar to
the one of Lemma B.1 except the previous threshold gα be-
ing replaced with g(V0η

K(j)). Also note that, in this proof,

the terms Δ0 and V0 play a similar role of ΔU and VU in
the previous proof of Lemma B.1.

As same as the Lemma B.1 case, set Sn :=
∑n

i=1 s(Xi),
Vn :=

∑n
i=1 v(Xi), and μ̂n := Sn/Vn. Then, for each

fixed λ > 0 with Δ = ∇ψ(λ), the function μ̂n �→
V −1
n

∑n
i=1 logL

(λ)
i = λμ̂n − ψ(λ) = λ(μ̂n −Δ) + ψ∗(Δ) is a

mapping of μ̂n to the tangent line of the function z �→ ψ∗(z)
at z = Δ. Now, since the boundary function g is non-
decreasing, the stopping event of N̄g(j) can be bounded as{
∃n ≥ 1 : sup

λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥ g

(
V0η

K(j))}

⊂
{
∃n ≥ 1 : Vn < V0,

n∑
i=1

logL
(λ0)
i ≥ g(V0)

}

∪
{
∃n≥1 : Vn∈ [V0, V0η

K(j)), sup
λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥ g(Vn)

}

∪
{
∃n ≥ 1 : Vn ≥ V0η

K(j),

n∑
i=1

logL
(λK(j))

i ≥ g
(
V0η

K(j))}
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Figure 7: Illustration of the stopping event of N̄g(j) defined
in (4.14), and related regions H(Δ0), H(ΔK(j)) and R. The
stopping time N̄g(j) is the first time when (μ̂n, g(V

(j)

n )/Vn)

is located in one of the colored areas, where V
(j)

n :=
max{V0,min{Vn, V0η

K(j)}}.

=

{
∃n ≥ 1 : Vn < V0,

(
μ̂n,

g(V0)

Vn

)
∈ H(Δ0)

}
∪
{
∃n ≥ 1 : Vn ∈ [V0, V0η

K(j)),

(
μ̂n,

g(Vn)

Vn

)
∈ R

}
∪
{
∃n ≥ 1 : Vn ≥ V0η

K(j),

(
μ̂n,

g(V0η
K(j))

Vn

)
∈ H(ΔK(j))

}
=

{
∃n ≥ 1 : Vn < V0,

n∑
i=1

logL
(λ0)
i ≥ g(V0)

}

∪
{
∃n≥1 : Vn∈ [V0, V0η

K(j)), sup
λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥ g(Vn)

}

∪
{
∃n ≥ 1 : Vn ≥ V0η

K(j),

n∑
i=1

logL
(λK(j))

i ≥ g
(
V0η

K(j))},

where V0 := inf{t ≥ 1 : D0 ≥ g(t)/t} and the set R is
defined by

R :=
{
(z, y) ∈ [0,∞)2 : y ≤ ψ∗(z)

}
, (B.19)

and H(Δ0) and H(ΔK(j)) are half spaces contained in and
tangent to R at (Δ0,

g(V0)
V0

) and (ΔL,
g(V0η

K(j))
V0ηK(j) ), respec-

tively. See Figure 7 for an illustration of the upper bound of
the stopping event of N̄g(j).

Note that the first decomposition part {∃n ≥ 1 : Vn <

V0,
∑n

i=1 logL
(λ0)
i ≥ g(V0)} is nonempty only if V0 > vmin,

which is equivalent to g(V0) > vminD0. For the second part,
a straightforward extension of Lemma 1 in the appendix of
[36] implies that, for any fixed η > 1, the second part can
be further decomposed by sets of simple events as follows:{
∃n≥1 : Vn∈ [V0, V0η

K(j)), sup
λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥g(Vn)

}

⊂
K(j)⋃
k=1

{
∃n ≥ 1 : Vn ∈ [V0η

k−1, V0η
k),

n∑
i=1

logL
(λk)
i ≥ g

(
V0η

k
)
/η

}
, (B.20)

where each λk is given by λk := ψ∗(Δk) and each Δk is the
solution of the equation (4.12) for k = 1, . . . ,K(j).

From this decomposition of the stopping event of N̄g(j),
for any fixed η > 1, we can lower bound the stopping time
N̄g(j) as follows:

N̄g(j) = inf

{
n ≥ 1 : sup

λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥ g

(
V0η

K(j)
)}

≥ inf

{
n ≥ 1 : e−g(V0)

n∏
i=1

L
(λ0)
i 1

(
g(V0) > vminD0

)
+

K(j)∑
k=1

e−g(V0η
k)/η

n∏
i=1

L
(λk)
i ≥ 1

}

= inf

{
n ≥ 1 :

K(j)∑
k=0

ωk

n∏
i=1

L
(λk)
i ≥ 1/α

}
= N1/α(j),

which proves the claimed inequality.

Proof of Corollary 4.6. From Theorem 3.4 and Lemma 4.5,
worst average delays of adaptive e-SR and e-CUSUM pro-
cedures are upper bounded by maxν≥0 minj≥1[E0,QNG(j +
ν) + j − 1] where N̄g(j) is a stopping time defined by

N̄g(j) :=inf

{
n≥ 1: sup

λ∈(λK(j),λ0)

n∑
i=1

logL
(λ)
i ≥g

(
V0η

K(j)
)}

,

(B.21)
for each j ≥ 1. Now, let us first consider the case λop ≥ λ0.
In this case, we use the following simple upper bound:

min
j≥1

[
E0,QNG(j) + j − 1

]
≤ E0,QNG(1)

= E0,Q inf

{
n ≥ 1 : sup

λ∈(λK(1),λ0)

n∑
i=1

logL
(λ)
i ≥ g

(
V0η

K(1)
)}

≤ E0,Q inf

{
n ≥ 1 :

n∑
i=1

logL
(λ0)
i ≥ grα

}
.

Since E0,Q logL
(λ0)
1 = σ2(λ0Δ

op − ψ(λ0)) ≥ σ2(λ0Δ0 −
ψ(λ0)) = σ2ψ∗(Δ0), by the same argument of Proposi-
tion 2.14, the last term above can be further upper bounded
by

grα
D(Q||P)

ψ∗(Δop)

ψ∗(Δ0)
+
V0,Q[logL

(λ0)
1 ]

[D(Q||P)]2

[
ψ∗(Δop)

ψ∗(Δ0)

]2
+1. (B.22)

Since we are in the case λop ≥ λ0, we have ψ∗(Δop)
ψ∗(Δ0)

≥ 1,
which can be understood as a measure of inefficiency due to
the misspecified upper bound of the oracle λop.
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Now, consider the case λop < λ0 where we correctly spec-
ified the upper bound. In this case, let jop be the smallest
integer satisfying λK(jop) := λKop < λop < λ0. Then, we
can further upper bound the worst average delays by

min
j≥1

[
E0,QNG(j) + j − 1

]
≤ E0,Q inf

{
n ≥ 1 :

n∑
i=1

logL
(λop)
i ≥ g

(
V0η

Kop)}
+ jop − 1

:= E0,QNop + jop − 1.

By Equation (4.9), we have the following intermediate upper
bound on the worst average delays,

E0,QNop + jop − 1 ≤ g(V0η
Kop

)

D(Q||P )
+

V0,Q[logL
(λop)
1 ]

[D(Q||P )]2
+ jop.

(B.23)
Note that if jop = 1 then λK(1) = λL < λop. Thus, in this
case, we also correctly specified the lower bound, and the
above bound is reduced to the same upper bound on the
worst average delays in Theorem 4.3 of the well-separation
case except the ARL parameter α being replaced by rα.

Finally, to get an explicit upper bound on jop for the case
jop > 1, fist note that, from the definition of λK(jop−1) with
the fact λop < λ

(jop−1)
1 ⇔ Δop < ΔK(jop−1), we have

g(V0η
K(jop−1))

V0ηK(jop−1)
= ψ∗(ΔK(jop−1)) > ψ∗(Δop

)
. (B.25)

Also, the condition K(j) ≥ KL +m logη j implies

j ≤
[
η−KL

V0
V0η

K(j)

]1/m
, (B.26)

for each j ≥ 1. By combining two inequalities above, we

have

jop − 1 ≤
[
η−KL

V0
V0η

K(jop−1)

]1/m
<

[
1

V0ηKL

g(V0η
K(jop−1))

ψ∗(Δop)

]1/m
≤
[
ψ∗(ΔL)

ψ∗(Δop)

g(V0η
Kop

)

grα

]1/m
.

In sum, by combining all bounds above, we have

min
j≥1

[
E0,QNG(j) + j − 1

]

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

grα
D(Q||P)

ψ∗(Δop)
ψ∗(Δ0)

+
V0,Q[logL

(λ0)
1 ]

[D(Q||P)]2 [ψ
∗(Δop)

ψ∗(Δ0)
]2 + 1 if λop ≥ λ0

grα
D(Q||P ) +

V0,Q[logL
(λop)
1 ]

[D(Q||P )]2 + 1 if λop ∈ (λL, λ0)

grα+sη log(1+Kop−KL)
D(Q||P )

+
V0,Q[logL

(λop)
1 ]

[D(Q||P )]2

+[ ψ
∗(ΔL)

ψ∗(Δop)
grα+sη log(1+Kop−KL)

grα
]1/m if λop ≤ λL,

as desired.

APPENDIX C. AN EXPLICIT WAY TO
COMPUTE THE
THRESHOLD IN
ALGORITHM 3

The following pseudo-code describes how to compute the
threshold gα defined by

gα := inf

{
g > log(1/α) : e−g1(g > vminDU )

+ min
k∈[Kmax]

k exp

{
−g

(
DU

DL

)−1/k}
≤ α

}
. (C.1)

Algorithm 4: Pseudo-code of computeThreshold function.
Input: ARL parameter α ∈ (0, 1), Boundary values 0 < ΔL < ΔU ,

Maximum number of baselines Kmax ∈ N, Tolerance ε > 0.
Output: Threshold gα > 0 that is defined and used in Algorithm 3.

1 Set DL := ψ∗(ΔL) < ψ∗(ΔU ) =: DU and define a function f on R+ as

f(g) := min
k∈[Kmax]

k exp

{
−g

(
DU

DL

)−1/k}
. (B.24)

2 if f(vminDU ) ≤ α then
3 Compute gα := inf{g ∈ (log(1/α), vminDU ] : f(g) ≤ α} by using the bisection method to the function g �→ f(g)− α with

endpoints {log(1/α), vminDU} and tolerance ε.
4 else
5 Compute gα := inf{g ∈ (vminDU ,

DU
DL

log(2/α)) : e−g + f(g) ≤ α} by using the bisection method to the function
g �→ e−g + f(g)− α with endpoints {vminDU ,

DU
DL

log(2/α)}.
6 return gα > 0
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