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Abstract
When testing a statistical hypothesis, is it legitimate to deliberate on the basis of initial data about whether and how

to collect further data? Game-theoretic probability’s fundamental principle for testing by betting says yes, provided that
you are testing the hypothesis’s predictions by betting and do not risk more capital than initially committed. Standard
statistical theory uses Cournot’s principle, which does not allow such optional continuation. Cournot’s principle can be
extended to allow optional continuation when testing is carried out by multiplying likelihood ratios, but the extension
lacks the simplicity and generality of testing by betting.

Testing by betting can also help us with descriptive data analysis. To obtain a purely and honestly descriptive analysis
using competing probability distributions, we have them bet against each other using the principle. The place of confidence
intervals is then taken by sets of distributions that do relatively well in the competition. In the simplest implementation,
these sets coincide with R. A. Fisher’s likelihood ranges.

keywords and phrases: Game-theoretic probability, Game-theoretic statistics, Optional continuation, Optional stop-
ping, Cournot’s principle, Fundamental principle of testing by betting, Ville’s inequality, Descriptive statistics, Kelly
betting, Likelihood, Probability forecasting, Convenience sample.

1. INTRODUCTION
Game-theoretic probability studies games in which an-

nouncements by Player I define rates at which Player II can
bet on outcomes. The games can have one or many rounds.
Player I’s announcements can take various forms. One pos-
sibility is that Player I announces a probability distribution
and Player II is authorized to buy any payoff for its expected
value.

A probability distribution for a discrete-time stochastic
process can be used as a strategy for Player I; it tells Player
I what probability distribution for the nth outcome to an-
nounce after seeing the first n − 1 outcomes. When Player
I is required to follow a particular strategy of this form,
strategies for Player II define martingales. Theorems about
discrete-time stochastic processes become theorems in game
theory [52, 54].

The betting intuition brought to the fore by game-
theoretic probability has proven productive for statistical
theory, sometimes helping mathematical statisticians find
more efficient or more powerful methods [43]. More impor-
tantly, game-theoretic probability can help us go beyond
today’s standard mental framework for mathematical statis-
tics, where we begin with a collection of probability distribu-
tions and test whether one of these distributions could have
“generated” our data or try to decide which one did so. This

arXiv: 2308.14959

article discusses two ways in which game-theoretic probabil-
ity goes beyond the standard framework to help make data
analysis more flexible and more honest.

Considered purely as mathematics, game-theoretic prob-
ability generalizes standard probability theory, because it
does not assume that any of the players are required to
follow a strategy specified in advance.1 This allows us to
authorize, in a simple and explicit way, deliberation on the
basis of initial data about (1) whether and how to collect
further data and (2) how to use it in statistical testing. We
already see such deliberation in practice, but squaring it
with standard probability theory is not so simple and lim-
its the tests authorized to those used in the game-theoretic
picture. I discuss this point in detail in Section 2.

In Section 3, I consider a second way game-theoretic prob-
ability can help us improve data analysis. Ever since sta-
tistical testing began to be widely used in the early 19th
century, its greatest abuse has been unjustified and often
clearly erroneous assumptions of randomness. Sometimes
the assumption is that successive observations are chosen
randomly from a population. Sometimes the assumption is
that the deviations of successive observations from a model
are random – i.e., independent of each other and of the ex-
1Game-theoretic probability also allows Player I to make more lim-
ited betting offers, such as those considered in the theory of imprecise
probabilities [2, 56] or more comprehensive betting offers, such as those
considered by [57]. I do not study these aspects of game-theoretic prob-
ability’s flexibility in this paper.
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planatory variables in the model. In some cases, practition-
ers acknowledge that the assumptions are unjustified but
claim that their analyses are nevertheless interesting as de-
scriptions of data. Because the statistical language being
used is at least implicitly causal, this usually sounds like
double talk. The betting picture can help here by provid-
ing a language that is clearly descriptive rather than causal.
We rank the probability distributions in a model by having
them bet against each other’s predictions. This produces a
set of distributions that did best in the competition. This
set is not a confidence set. There is no suggestion that we
are confident about anything, and we are certainly not con-
fident that one of the distributions in the set “generated”
the data. The set is simply a set of distributions that pre-
dicted the data better than the other distributions in the
model. The betting language provides an intuitive scale for
this predictive success.

These two improvements in data analysis are not so much
improvements in what we do as improvements in how we un-
derstand and explain what we do. In practice, researchers
already deliberate about how to continue experimentation.
Some already use the descriptive sets we obtain in Section 3;
they are called “likelihood ranges”. Aside from setting aside
some types of testing that cannot be legitimately autho-
rized when we deliberate about continuation, the proposed
improvements concern how we can communicate data anal-
yses more clearly and more honestly to ourselves and to
others. But it is also notable and important that the bet-
ting language allows us to generalize seamlessly to the case
where predictions being tested or compared are not neces-
sarily produced by probability models. They may instead
be produced by algorithms of a very different kind — per-
haps neural nets, perhaps physical models like those used in
weather forecasting.

2. STATISTICAL TESTING WITH
OPTIONAL CONTINUATION

Statistical testing requires a mathematical theory of
probability together with a principle that specifies how prob-
abilities can be discredited by observations.

• The principle used to make traditional probability the-
ory into a theory of statistical testing is sometimes
called Cournot’s principle.2 This principle authorizes
a statistician to select an event to which a probability
distribution assigns small probability and to regard its
happening as evidence against the distribution.

2See [53] and [46, 51] for the history of Cournot’s principle. The
principle is sometimes ridiculed by philosophers; see for example [35,
p. 49] and [14, pp. 66–67]. But it has been articulated in one way
or another by a panoply of mathematicians and statisticians, includ-
ing Jacob Bernoulli, Antoine-Augustin Cournot himself, Émile Borel,
Richard von Mises, Andrei Kolmgorov, Abraham Wald, Joseph L.
Doob, William Feller, Harold Jeffreys, Charles Stein, and Philip Dawid.

• To make game-theoretic probability into a theory of
statistical testing, we can use a principle that I have
called the fundamental principle for testing by betting.3
This principle, which is related to but distinct from
Cournot’s principle, authorizes a statistician to inter-
pret success in betting against a probability distribu-
tion as evidence against the distribution.

Do these principles authorize optional continuation?
As the term is used here, optional continuation refers to

the practice of deliberating, after seeing some initial data,
about whether and how to continue collecting and analyz-
ing data. Such continuation may involve observations or
experiments not contemplated at the outset. It is distin-
guished from optional stopping, which refers in established
usage only to the possibility of adopting at the outset a plan
specifying circumstances under which we will curtail a fully
planned sequential experiment or observational study.

The fundamental principle for testing by betting asserts
the validity of optional continuation for the type of testing
it considers. Cournot’s principle, in its classical formulation,
does not. It can be extended to assert the validity of optional
continuation when testing is carried out by multiplying like-
lihood ratios, but as I will explain, the extension lacks the
simplicity and generality of the fundamental principle for
testing by betting.

2.1 Optional Continuation in Practice and
Theory

Optional continuation has long been part of statistical
practice. It is implicit, for example, in the idea of meta-
analysis. But it has proven difficult to bring it under the
purview of statistical theory.

The term “optional continuation” with the meaning used
here first appeared in print in Allard Hendriksen’s master’s
thesis at the University of Leiden, written under the super-
vision of Peter Grünwald [33]. Hendriksen wrote on page 3
of the thesis,

“Optional continuation” is the practice of combining ev-
idence of studies that were done because of promising
results of previous research on the same subject.

The term has subsequently been used in other work by Gün-
wald’s machine-learning research group at CWI in Amster-
dam [32, 31]. But as of June 13, 2023, it had not yet appeared
in any of the 34 statistics journals in JSTOR.

The older term “optional stopping” was introduced by the
Duke mathematician Joseph Albert Greenwood [29]. Green-
wood sought empirical adjustments to account for the way
Joseph Rhine’s laboratory was conducting and analyzing its
experiments on extra-sensory perception. Rhine stopped ex-
3Vovk and I have used various other names for this principle. In 2001,
we called it the fundamental interpretative hypothesis of probability
[52, pp. 5, 14, 62]. In 2019, we called it the game-theoretic version of
Cournot’s principle [54, pp. 226–227].
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perimenting with each subject when a success rate thought
to be statistically significant was achieved, then combined
the z-scores achieved by successive subjects.

Greenwood’s problem was brought to wider attention in
mathematical statistics by William Feller’s critiques of the
ESP work [20, pp. 272, 286–292], [19, pp. 140, 190, 197].
In subsequent work in probability, “optional stopping” has
referred to stopping rules that can be adopted in advance
without annulling a desired property of a stochastic process,
usually the property of being a martingale [16].

In his book on sequential analysis [59], Abraham Wald
considered only “sequential sampling plans” chosen in ad-
vance. While allowing early stopping when there was enough
evidence to make a decision, these plans specified whether
or not to stop and how to continue if stopping was not
mandated, all as a function of outcomes so far. In a review
of the book, George Barnard wrote that sequential analy-
sis marked “the entry of statistical considerations into the
very process of experimentation itself” [3]. We know that
the process of experimentation often involves not only plans
adopted in advance but also opportunistic changes in plans,
based on new insights and unexpected information.

Barnard seems not to have followed up on his insight con-
cerning the role of statistics in the process of experimenta-
tion; he did not discuss it, for example in his major article on
statistical inference [4]. But in a subsequent article entitled
“Sequential experimentation”, R. A. Fisher wrote about the
need for sequential deliberation in these terms [21, p. 183]:

The present use of the term sequential is intended to be of
a broader import than the formal use of the word as asso-
ciated with the systematic procedure known as sequential
analysis. The experimenter does not regard his material as
wholly passive but instead looks to what may be learnt
from it with a view to the improvement and extension
of the enquiry. This willingness to learn from it how to
proceed is the essential quality of sequential procedures.
Wald introduced the sequential test, but the sequential
idea is much older. For example, what is the policy of a
research unit? It is that in time we may learn to do better
and follow up our more promising results. The essence of
sequential experimentation is a series of experiments each
of which depends on what has gone before. For example,
in a sample survey scheme, as explained by Yates, a pilot
survey is intended to supply a basis for efficiently plan-
ning the subsequent stages of a survey. . . .

Until the recent work on optional continuation, this insight
about statistical practice has remained outside the ambit of
statistical theory.

2.2 A Betting Game with Optional
Continuation

The simplest game used in game-theoretic probability
has three players: Forecaster makes probability predictions,
Skeptic bets against them, and Reality announces the out-
comes. The game is a perfect-information game, meaning
that the players move in turn and see each other’s moves.
We can vary the rules of the game, but we need not impose

any further condition on what information any player might
have or acquire in the course of the game, or on how the
players might collaborate. Forecaster and Skeptic might be
the same person. Forecaster and Reality might be the same
person.

If Forecaster keeps forecasting, Skeptic can keep betting.
Forecaster need not follow a plan or strategy about what
to forecast next or how to forecast it.4 Even if Forecaster
follows a strategy known to Skeptic, Skeptic need not have a
plan or strategy for when or how to bet against the forecasts.
Thus optional continuation is built into the game, for both
Forecaster and Skeptic. Skeptic can decide whether and how
to continue selecting from Forecaster’s betting offers, but
Forecaster can decide what experiments or observations to
make and what forecasts (perhaps probabilities) to give for
them.

Vovk and I have used the example of quantum me-
chanics to illustrate game-theoretic probability’s capacity
for optional continuation; see [52, pp. 189–191] and [54,
pp. 215–217]. In this example, we split Forecaster into two
players, Observer and Quantum Mechanics. Observer selects
the experiment, and Quantum Mechanics makes the prob-
ability forecast. Formally, the game continues indefinitely,
and both Observer and Skeptic can effectively stop it by
making null moves.

Although optional continuation is built into the game, we
need this principle to use the game in statistical testing:

Principle 1 (Fundamental principle for testing by betting).
Successive bets against a forecaster that begin with unit cap-
ital and never risk more discredit the forecaster to the extent
that the final capital is large.5

In one sense, this says it all. But some elaboration may be
useful:

1. The principle is fundamental, not the consequence of
some more extensive philosophy or methodology. We do
not begin by saying that the forecaster’s probabilities
are or should be objective, subjective, personal, “fre-
quentist”, or whatever. We are testing the forecaster
qua forecaster, and so we are testing his forecasts qua
forecasts; the question is only whether they are good
forecasts, relative to the knowledge and skill of who-
ever is doing the testing.

2. The forecaster may give a probability for a single event
A, a probability distribution for an outcome X, or
something less than a probability or a probability dis-
tribution:

• If the forecaster gives a probability, you may bet
on either side at the corresponding odds.

4To see how probability’s limit theorems can be generalized to accom-
modate Forecaster’s freedom, see [54, §7.5].
5I first formulated the principle in these words in my SIPTA lectures
[49].
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• If the forecaster gives a probability distribution
for X, you may buy or sell any payoff S(X) for its
expected value.

• If the forecaster gives only an estimate E of X,
you may buy or sell X for E.

• If the forecaster repeatedly gives a new probability
for A or new estimate for X, say daily, you may
buy or sell tomorrow’s price for today’s price.

• If the forecaster gives upper and lower previsions,
you may buy at the upper or sell at the lower.

3. You begin with unit capital only for mathematical con-
venience. The discredit is measured by the ratio (final
capital)/(initial capital), which I call the betting score.6

4. If you make several bets against the same forecaster (or
the same theory or closely related theories), each start-
ing with its own capital, then you are not allowed to
report only the cases where you discredited the fore-
caster. Instead, you must report the overall result, the
sum of your final capital over all the bets divided by
the sum of your initial capital over all the bets.

5. When betting against successive forecasts, each bet uses
only the cumulative capital remaining after the previ-
ous bet. You may not borrow or otherwise raise more
capital in order to continue betting. This is what never
risk more than the initial capital means.

6. When you stop, you must compare your initial capi-
tal with your final capital. You cannot claim to have
discredited the forecaster because you had reached a
higher level of capital in the interim. You do not have
the money if you kept betting and lost it.7

I have stated the fundamental principle for testing by
betting in 26 words, then taken a page to explain it. Is the
principle simple? In any case, it is coherent and teachable.
In contexts where the forecasts are only single probabilities
or estimates, the principle can be taught even to those who
have never studied mathematical probability. Moreover, the
principle builds on ideas about betting that most people
acquire before ever studying mathematical probability. Too
many predictions contradicted by experience discredit the
person making them. If you lose too much money betting
on something, you are not much of an expert about it. Etc.

2.3 Cournot’s Principle in Classical Form
What principles must we add to traditional probability

theory to allow optional continuation?
Before addressing this question, I discuss a more basic

question: How are we authorized to discredit a probability
6The alternative name e-value, designed to resemble p-value and avoid
reference to betting, has recently become popular [58, 43].
7The anonymous 13th-century author who left us with the earliest
surviving calculation of the chances for a throw of three dice warned
us [34, p. 172]: “Addeque, quod lusor se continuare lucrando nescit,
perdendo nescit dimittere ludum.” Not knowing how to maintain his
luck when winning, the gambler does not know how to quit when losing.

distribution P using observations? As I have already men-
tioned, the classical answer is Cournot’s principle: we select
an event E that has small probability P (E) (call E our
test event). The probability distribution P is discredited if
E happens; we prefer to believe that the probabilities are
incorrect rather than think that this improbable event hap-
pened.

Principle 2 (Cournot’s principle). If we specify an event
E in advance, and E happens, then we may take α, the
probability of E, as a measure of evidence against P . The
magnitude of discredit is measured by how small α and thus
how large 1/α is.

We may call 1/α our test score:

test score =

{
1/α if E happens
0 if E does not happen.

(2.1)

Cournot’s principle can be considered a special case of the
fundamental principle for testing, because 1/α is the capital
that would result from E’s happening if you bet unit capital
on E. The test score (2.1) is also a betting score.

Although Cournot’s principle has long been fundamental
to statistical theory, current philosophical fashion has made
it difficult to teach. A frequent objection is that some event
of small probability always happens. When we hear this ob-
jection, we emphasize “specified in advance”, which requires
less emphasis when testing by betting, because a bet must
be made in advance.

In some cases, we say “simple to describe” instead of or in
addition to “specified in advance”. Simplicity is also implicit
to some extent when testing by betting, because a bet can-
not be made and implemented unless the event is relatively
simple.

2.4 Extending Cournot’s Principle to Test
Variables

This extension of Cournot’s principle does not require us
to specify in an advance a goal 1/α for the strength of the
evidence.

Suppose S is a nonnegative random variable, chosen in
advance and so not too hard to describe, with expected value
EP (S) = 1 (call S our test variable). Our next principle says
that a realized value s of S discredits P to the extent that
s is much larger than 1.

Principle 3 (Authorization to test with a test variable). If
we specify a test variable S in advance, then we may take s,
the observed value of S, as a measure of evidence against P .
We interpret s (our test score) on the same scale as we use
in Cournot’s principle. In other words, when s = 1/α, it has
the same force against P as the happening of a pre-specified
event E when P (E) = α.

Cournot’s principle is the special case of Principle 3 where
S is given by (2.1). Principle 3 adds to Cournot’s principle
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the possibility of a more graduated report on the strength
of the evidence against P . The test scores it provides can
be compared with p-values, which also provide a graduated
report. A p-value p discredits P to the extent that it is small
or 1/p is large. But a given value of 1/p carries less force
than the same value s of a test score from a test variable.
See §2.8.

It might seem that the greater flexibility offered by a test
variable S comes at a price. When s is the realized value,
the events {S = s} and {S ≤ s} happen, and Markov’s
inequality tells us that our score 1/P (E) would have been
at least as great, often greater, had we chosen one of these
events as our test event E. But of course we could not have
made these choices, because we did not know s in advance.

Like the classical form of Cournot’s principle, Principle 3
can be considered a special case of the fundamental princi-
ple for testing by betting. The observed value s of the test
variable S is the capital that would result from buying S for
its expected value. The test variable S is our bet, and s is
our betting score.

2.5 Extending Cournot’s Principle to Test
Martingales

Now suppose we want to test a probability distribution
P for a stochastic process X := X1, X2, . . . , and we observe
the Xt successively. We use a test martingale, a nonnegative
martingale S1, S2, . . . with EP (S1) = 1, again chosen in ad-
vance and hence relatively simple. The value st of St may be-
come known to us only when we have observed X1, . . . , Xt.
To interpret st, we adopt this principle:

Principle 4 (Authorization to test with a test martingale).
If we specify a test martingale S1, S2, . . . in advance, then at
all times t we may take st, the observed value of St, as the
current measure of evidence against P . We interpret each st
(each test score) on the same scale as we use in Principles 2
and 3. In other words, when st = 1/α, it has the same force
against P as the happening of a pre-specified event E with
P (E) = α.

Principle 3 is the special case of Principle 4 where all the St

for t ≥ 2 are equal to the constant 1.
Like Cournot’s principle and our previous extensions of

it, Principle 4 can be considered a special case of the fun-
damental principle of testing by betting. For each t, st is
our capital after observing Xt if we first buy S1 and then,
for each time u > 1, invest all our capital after observing
Xu in Su+1. But we are still testing a mathematical object,
a probability distribution P . Forecaster is following a fixed
strategy, which tells him to use P ’s successive conditional
probabilities as forecasts, and Skeptic’s strategy (the test
martingale) is also specified in advance. Neither Forecaster
nor Skeptic have any discretion after the process of begins.
So Principle 4 is not a principle of optional continuation in
the sense of this article. It allows optional stopping only in

Doob’s sense; before the process begins, Skeptic can modify
a proposed test martingale by adopting a plan for stopping.

Although the statement of Principle 4 does not mention
betting, I do not recall seeing the principle explained with-
out a betting story. I do not know any other way to motivate
it.

2.6 Improvised Testing (Optional Continuation
for Skeptic)

Principle 4 authorizes the statistician to use a test mar-
tingale specified in advance. Improvisation is not yet au-
thorized. For this, we need some further principle. As with
Principle 4, we are testing a probability distribution P for
a stochastic process X := X1, X2, . . . , and we observe the
Xt successively. When x1, . . . , xt−1 are possible values of
X1, . . . , Xt−1, we call a nonnegative variable S(Xt) a round-t
test variable given x1, . . . , xt−1 if EP (S(Xt)|x1, . . . , xt−1) =
1; when t = 1, this reduces to EP (S(X1)) = 1. We can
formulate a principle for improvisation in testing as follows:

Principle 5 (Authorization to improvise when testing).
Suppose we set s0 = 1, specify a round-1 test variable, say
S1(X1). Then, beginning with t = 1,

1. we observe Xt’s value xt,
2. we set st := st−1St(xt), and
3. we specify a round-(t+1) test variable given x1, . . . , xt,

say St+1(Xt+1).

Suppose we continue so long as we still want to continue and
stop whenever we please (after step 2 for some t). Then at
all times t until after we stop, we may take st as the current
measure of evidence against P . We interpret st on the same
scale as we use in Principles 2, 3, and 4.

Principle 5 generalizes Principle 4, and like Principle 4,
it can be considered a special case of the fundamental prin-
ciple for testing by betting. Skeptic is now a free player, not
constrained to follow a strategy specified in advance.

2.7 Improvised Probabilities (Optional
Continuation for Forecaster)

Principle 5 authorizes a statistician testing a probabil-
ity distribution to improvise. But this still does not bring
us to R. A. Fisher’s vision, where a statistician helps con-
struct over time not only a test but also the probabilities
being tested. In this vision, the statistician brainstorms with
other scientists to design an experiment with outcome X1,
to which they assign probabilities based on some theory they
want to test, and after observing X1 = x1, they brainstorm
again about what they have learned and design a possibly
unanticipated experiment with outcome X2, and so on.

It is tempting to try to square traditional probability with
Fisher’s vision by imagining that this collaboration defines a
probability distribution P progressively. on the first step we
define a probability distribution P1 for X1. On the second,



220 G. Shafer

we define a probability distribution P2 for X2, and so on.
We are tempted to say that we are testing the product P1×
· · · × Pk, where k is where the research team stops. But
the statistician did not set out to test P1 × · · · × Pk. She
and her colleagues waited to design the second experiment
and its X2 and P2 until they had seen x1. Had x1 come
out differently, their subsequent brainstorming might have
produced a different X2 and P2, and so on. If there is a single
comprehensive probability distribution being tested, it is not
P1 × · · · × Pk; instead it must give conditional probabilities
for each Xt given all the different ways the previous xs might
have come out and all the different ways the research team’s
information and thinking might evolve while the previous
experiments were being performed and analyzed.

Several decades ago Philip Dawid [12, 13] bravely argued
that these dependencies should not matter—that we can
design significance tests, confidence intervals, and Bayesian
procedures that are unaffected by probabilities, somehow
true or somehow invented, involving the might-have-beens.
As these might-have-beens do not matter, we can just pre-
tend that we have the desired independence. This is Dawid’s
prequential model. Although some statisticians (including
myself) found it appealing, others found it confusing. What
are we really testing? Are we testing a huge and not fully
specified probability distribution P whose unspecified prob-
abilities include probabilities for actions of the research team
doing the testing? In my experience, some mathematicians
say yes, but the formulation has a complicated and para-
doxical air that hardly lends itself to communication with
scientists and their public.

Leaving aside the problem of communication, can we for-
mulate a principle that authorizes us to use Dawid’s insight
to construct test scores? Here’s a try.

Principle 6 (A prequential testing principle). Suppose we
set s0 = 1, construct an experiment that will produce a vari-
able X1, select a probability distribution P1 for X1, and se-
lect a test variable S1 for P1. Then, beginning with t = 1,

1. we observe Xt’s value xt,
2. we set st := st−1St(xt), and
3. we construct an experiment (perhaps newly conceived)

that will yield a variable Xt+1, a probability distribution
Pt+1 for Xt+1, and a test variable St+1 for Pt+1.

Suppose we continue so long as we still want to continue and
stop whenever we please (after step 2 for some t). Then at
all times t until after we stop, we may take st as the current
measure of evidence against the Pt we have constructed so
far all being valid. We may interpret st on the same scale
as we use in Principles 2, 3, 4, and 5.

Principle 5 is a special case of Principle 6. And Princi-
ple 6, like our preceding extensions of Cournot’s principle,
can be considered a special case of the fundamental principle
for testing by betting. Now both Forecaster and Skeptic are
free agents, not constrained to follow any strategy specified
in advance.

The principle’s consistency with testing in the game-
theoretic framework is not surprising, as that framework
was partly inspired by Dawid’s prequential model.

2.8 The Role of Ville’s Inequality
Ville’s inequality says that if S1, S2, . . . is a test martin-

gale, then

P

(
sup
t≥1

St ≥
1

α

)
≤ α

for every α > 0. Some people (including myself) have some-
times said that Ville’s inequality authorizes optional con-
tinuation. This is a careless formulation. First because a
theorem is never more than mathematics; it cannot autho-
rize anything. Second because the principle Ville’s inequal-
ity suggests is not an optional continuation principle in the
sense developed in this article. It begins with the choice of
a test martingale and so does not help us understand op-
tional continuation for Skeptic or optional continuation for
Forecaster.

Recall that a random variable W satisfying P (W ≤ α) ≤
α for all α > 0 is called a p-variable, and that a realized
value of a p-variable is called a p-value.8 Ville’s inequality
tells us that 1/ supt≥1 St is a p-variable, and so 1/ supt≥1 st
is a p-value. Well, almost. It is at least implicit in the notion
of a p-value, as statisticians understand and use the term,
that we have observed it and know we have observed it.
We do not expect this for 1/ supt≥1 st. But we do observe
upper bounds. At time t, we have observed the upper bound
1/ sup1≤i≤t si, and an upper bound on a p-value is a p-
value. So most statisticians who use p-values would probably
accept this principle:

Principle 7 (The dynamic p-value principle). At any time
t as we observe a sequence S1, S2, . . . that is a martingale
under P , we may interpret 1/ sup1≤i≤t si as evidence against
P just as statisticians usually interpret a p-value.

Principle 7 can be called an optional stopping principle.
It is not an optional continuation principle in the sense of
this article, because it does not authorize us to change the
test martingale or later experiments and the probabilities
for their Xs.

Because the 1/ sup1≤i≤u si for u < t are no smaller than
1/ sup1≤i≤t si, these earlier 1/ sup1≤i≤u si still have the force
of a p-value against P when we give 1/ sup1≤i≤t si the force
of a p-value against P . This observation is related to the
concept of a confidence sequence, which goes back to [11].

As an optional stopping principle for martingales, Princi-
ple 7 can be compared with Principle 4. Neither is stronger
than the other. Principle 4 authorizes us to use st as a mea-
sure of our evidence against P and to continue doing so if
8See [55, p. 88] for an explanation of how this definition of p-value
is equivalent to the traditional definition in terms of test statistics.
In many branches of theoretical and applied statistics, the distinction
between p-variable and p-value is ignored; both are called p-values.
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we stop. But it does not allow us to continue using st if
we do not stop and hence does not authorize us to use the
sometimes larger sup1≤i≤t si [55]. But it gives 1/st the force
of a fixed significance level, which is greater than the force
of a p-value. When we observe a p-value p, we are observing
the happening of the event W ≤ p, which has probability
p or less. But we did not specify this event in advance; we
only specified the p-variable W .

Ville’s inequality and Principle 7 have generalizations in
game-theoretic statistics, where they use game-theoretic def-
initions of upper and lower probability and expected value
[54, Exercise 2.10].

2.9 Conclusion
We have discussed how Cournot’s principle, the tradi-

tional principle for testing a probability distribution, can be
extended so that it fully accommodates optional continu-
ation and yet does not explicitly use game-theoretic prob-
ability or ideas about betting. Is this extension worth the
trouble?

The clear message of the exercise is that the fundamental
principle of testing by betting, coupled with game-theoretic
probability, provides a theoretical basis for optional continu-
ation that is simpler, clearer, and more general. Readers will
judge for themselves, but I submit that Principle 6 is overly
complex, ill-motivated, and impossible to teach without ref-
erence to betting. It remains, moreover, less general than
the fundamental principle of testing by betting, because it
requires Forecaster’s moves on each round of a forecasting
game to be a probability distribution.

Our exercise has also illustrated the new clarity brought
to statistical theory by game-theoretic probability’s distinc-
tion between Forecaster and Skeptic. This distinction has
helped us see the complexity of the notion of optional con-
tinuation. Optional continuation for Forecaster is a step fur-
ther than optional continuation for Skeptic.

3. GAME-THEORETIC DESCRIPTIVE DATA
ANALYSIS

Researchers often construct statistical models that can-
not be taken seriously as anything more than descriptions
of their study populations — the populations for which they
have data. Unfortunately, our methodology and terminology
for constructing such models (estimation, significance tests,
confidence intervals, credible regions, etc.) can only be un-
derstood in terms of inferences about larger populations or
observations not yet made.

A study population is often merely a convenience sample
(examples we managed to find). Sometimes it is an entire
population (perhaps the eight highly industrialized nations,
or the five hundred corporations in the S&P 500 index). De-
scribing such populations means summarizing — identifying
general features rather than details.

When a study population is merely a collection of num-
bers, we may be able to summarize it by giving a few de-
scriptive statistics, such as the average y and the standard
deviation s. But confusion arises as soon as we ask about
the precision of these statistics. If y = 5.346, then is 5 just
as good a description? What about 6 or 4? Maybe. If the
numbers are very spread out, then saying that 0 is in the
middle might be just as good as saying that 5.346 is in the
middle. Our usual response to this difficulty is to replace y
with a confidence interval, such as y±1.96s/

√
n, but then we

are pretending to make an inference to a theoretical mean
or a larger population.

The first thesis of this section is that when our goal is
merely to describe a study population, we should talk about
prediction, not about inference. The average of a collection
of numbers can be used to predict each number, and asking
whether alternatives to the average predict the numbers in
the collection as well or nearly as well does not sidetrack
us into thinking about inference to some larger population.
The predictions considered here are probability distribu-
tions. Following [54], I will call them probability forecasts
or simply forecasts.

The second thesis is that betting can give us a scale for
comparing probability forecasts that has intuitive meaning
without recourse to inferential ideas. The key is to have the
different probability distributions in a model (or different
algorithms that produce probability forecasts) bet against
each other. The factor by which one distribution or algo-
rithm multiplies the money it risks betting against another
is a measure of how much better it did as a forecaster, a
measure that has an intuitive meaning even for those not
trained in probability theory.

3.1 Theory
As explained in Section 2, game-theoretic probability uses

probability distributions as forecasting strategies. It recasts
the notion of independent observations as a property a fore-
casting strategy might have: the strategy always makes the
same forecast or uses the same forecasting rule. The question
whether given observations are random with respect to a
probability distribution is replaced by the question whether
such a forecasting strategy withstands bets against its fore-
casts.

In addition to serving as a forecasting strategy, a prob-
ability distribution can also serve as a strategy for bet-
ting against a probability forecaster. This was explained by
John L. Kelly Jr. [37], and the strategy has been called Kelly
betting; see also [54, Ch. 10] and [50]. In the simplest case,
Kelly betting produces a likelihood ratio as the payoff of a
gamble.

The duality in the way probability distributions can be
used — as forecasting strategies and as strategies for betting
against forecasts, is key to the simple idea I am proposing
here: Choose a statistical model (i.e., a collection of prob-
ability distributions), have them bet against each other’s
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forecasts for the study population, and take the distribu-
tion or distributions that do best in the competition as our
description of the study population. The result is purely de-
scriptive; it does not suppose that the winners will forecast
well in other data, and it does not even make any claims
about the model we have chosen being best for the study
population. The choice may be purely conventional.

3.1.1 From Probability Forecasts to Description

Any method of description requires relatively arbitrary
choices and conventions. Here we begin by choosing variables
that have values for each individual in our study population:
a variable Y (the target variable) and variables X1, . . . , XK

(the forecasting variables). Inferential statistical theory has
accustomed us to think of these choices as causal modeling,
but when description is our goal, Y and the Xk are simply
what we want to describe. For whatever reason, we want to
know how they are related in the study population.

Next we choose a family of algorithms (Pθ)θ∈Θ, where
each algorithm Pθ uses the Xk to give probability distribu-
tions for Y . The Pθ are our forecasters, and the probability
distributions they give are our forecasts.

We will want to limit the complexity of the Pθ. In inferen-
tial statistics, simplicity is said to be a virtue because com-
plex forecasters are likely to overfit — i.e., fail to generalize
beyond the study populations. When are goal is description
rather than inference, either because we are uninterested in
other populations or because we cannot make assumptions
that would justify inference to other populations, a more
immediate virtue of simplicity is salient. Description is de-
scription only when it is simple enough to be understood.

Being familiar and conventional is another virtue of a
descriptive forecasting family. Description requires conven-
tion, and it can only be communicated to those who know
the convention.

Once the variables and the forecasting family are chosen,
we can evaluate the θ according to their relative forecasting
success within the study population. Let ΘD be the subset
of Θ consisting of θ whose forecasts perform reasonably well
in our judgment; we may call it the description range. Its
elements are the descriptive forecasters of Y . Often we will
be most interested in some particular aspect of the descrip-
tive forecasters. When θ = (μ, σ2), for example, we might
be interested in μ. In other cases, we might be interested
in the difference YA − YB when values of the Xk for two
individuals A and B are given. In general, the range of h(θ)
when θ ranges over ΘD is our description range for h(θ).

3.1.2 The Betting Competition

For each ordered pair (θ1, θ2) of elements of Θ, we pit θ2
bet against θ1. Forecaster predicts Y with the distribution
Pθ1 ; Skeptic predicts Y with the distribution Pθ2 . Skeptic
has unit capital. Forecaster offers to sell Skeptic any non-
negative payoff S(Y ) for Eθ1(S), his expected value for S.
In deciding what nonnegative payoff S to buy, Skeptic can

use his distribution Pθ2 in different ways, but when he uses
Kelly betting he buys the payoff S given by

S(Y ) := Pθ2(Y )/Pθ1(Y ) (3.1)

at the price Forecaster requires:

Eθ1

(
Pθ2(Y )

Pθ1(Y )

)
, which is equal to 1.

This bet turns Skeptic’s initial unit capital into S(y) =
Pθ2(y)/Pθ1(y). This ratio, the betting score, provides a mea-
sure of θ2’s forecasting success relative to θ1.

For our descriptive purposes, Kelly betting can be con-
sidered one more convention. It does, however, have well
known optimization properties for Skeptic when Skeptic is
confident in Q as a forecast.9 An important alternative to
Kelly betting is fractional Kelly betting, which risks only a
fraction of one’s capital. Being more cautious, this penalizes
Skeptic less when Pθ2(y)/Pθ1(y) is low. This makes the com-
petition between forecasters less sensitive to individuals that
are unusual with respect to the whole study population.

The ratio Pθ2(y)/Pθ1(y) is familiar to statisticians under
the name likelihood ratio. We will usually chose our fore-
casting family so that a unique maximum of Pθ(y) always
exists. The value of θ that achieves the maximum, say θ̂, is
the maximum-likelihood estimate when y is observed, and
the likelihood ratio

L(θ) =
Pθ(y)

Pθ̂(y)

is a number between zero and one that measures θ’s fore-
casting performance.

Using cutoffs suggested by R. A. Fisher in 1956,10 we may
classify the performance of the θ according to their value of
L(θ) as follows:

Very good L(θ) ≥ 1/2
Good 1/2 > L(θ) ≥ 1/5
Satisfactory 1/5 > L(θ) ≥ 1/15
Unsatisfactory 1/15 > L(θ)

(3.2)

The names in (3.2) are my suggestions; Fisher did not pro-
vide names for the intervals. Whatever names and cutoffs
we choose will be arbitrary conventions, but no more arbi-
trary than the terminology and the cutoffs 5% and 1% used
for statistical inference. If equally accepted as conventions,
they can be equally serviceable. The meaning in terms of
betting will be readily understood by the public, including
those not trained in mathematical probability.

For Fisher, the intervals were inferences. A number of
other authors, beginning with A. W. F. Edwards [17] and
Richard Royall [45], have adopted Fisher’s proposal to use
9See [8]. For more on Kelly betting, see [18, Chapter 10] and [60]. For
other roles Kelly betting can play in statistical theory, see [50] and
[58].
10See [22, p. 71] or page 75 of the posthumous third edition (1973).



Improving Data Analysis by Testing by Betting 223

L(θ) for inference. These authors have developed methods
for computing, tabulating, and displaying L(θ), intervals
of its values, and other summaries for a large variety of
models. I will not attempt to review this very extensive
work, but it is obviously an asset for the descriptive
proposal I am making here.

Fisher called L(θ) the likelihood of θ. This name has en-
dured for a century, and no mathematical statistician will
be able to put it out of mind while reading the rest of this
paper. Yet I will avoid it as much as possible, because its in-
ferential connotation cannot be circumvented. On the other
hand, I am using the familiar notation: θ̂, L(θ), and also l(θ)
for ln(L(θ)).

3.2 Examples
I offer three very simple examples. The first is purely

formal and about as simple as possible: the forecast is a
single probability, always the same probability. The second
involves a classic convenience sample. The third, a fictional
instantiation of a problem of current interest, involves an
entire population.

3.2.1 Forecasting with a Single Probability

Suppose we observe successive trials of an event, and each
algorithm in our forecasting family has a fixed probability
that it uses each time as its forecast. Formally, Θ = [0, 1],
and Forecaster θ always gives θ as its forecast.

If we observe 100 trials, and the event happens 70 times,
then θ̂ = 0.7, and

L(θ) :=

(
θ

0.7

)70 (
1− θ

0.3

)30

.

Our scheme for rating the forecasters yields these approxi-
mate description ranges:

Very good 0.64 < θ < 0.76
Good 0.61 < θ < 0.78
Satisfactory 0.59 < θ < 0.80

The forecaster θ = 1/2 may have been of particular interest,
and we may want to emphasize that its performance was
unsatisfactory.

Not surprisingly, Fisher’s categories are roughly consis-
tent with inferential practice. The standard error of the
maximum-likelihood estimate 0.7 is 0.046, suggesting a 95%
confidence interval of (0.61, 0.79). Like this confidence inter-
val, our description ranges do not contain 1/2. But unlike
the confidence interval, the description ranges merely de-
scribe; they merely tell us which constant forecasts perform
relatively well in the data. This does not involve attribution
of independence in any sense to the trials themselves.

3.2.2 Fourier’s Masculine Generation

The calculation of error probabilities from statistical data
was first made practical by Laplace’s central limit theorem,

and the calculation was explained to statisticians by Joseph
Fourier (1768–1830). Fourier had been an impassioned par-
ticipant in the French revolution and an administrator under
Napoleon. After the royalists regained power, a prominent
royalist who had been Fourier’s student, Chabrol de Volvic,
rescued him from impoverishment with an appointment to
the Paris statistics bureau. This assignment left him time
to perfect the theory of heat diffusion for which he is best
known, but as part of his work at the statistics bureau, he
published two marvelously clear essays on the use of proba-
bility in statistics, in 1826 and 1829. According to Bernard
Bru, Marie-France Bru, and Olivier Bienaymé, these were
the only works on mathematical probability read by statis-
ticians in the early 19th century.11

To illustrate Laplace’s asymptotic theory, Fourier stud-
ied data on births and marriages gleaned from 18th-century
parish and governmental records in Paris. He was particu-
larly interested in the length of a masculine generation —
the average time, for fathers of sons, from the father’s birth
to the birth of his first son. On the basis of 505 cases, he es-
timated this average time to be 33.31 years. In his bureau’s
report for 1829 [24, Table 64, p. 143ff], he gave the bounds
on the estimate’s error shown in Table 1.

Laplace’s theory is applicable, of course, only if the 505
cases are a random sample, and they are not. They are a con-
venience sample, consisting of 18th-century fathers of sons
in Paris for which the needed parish records could be found.
This convenience sample is of interest, but Fourier’s infer-
ential analysis of it is unjustified. A descriptive analysis is
needed.

For description, we do not need Fourier’s implicit assump-
tion that the 505 cases were a random sample. We need a
conventional forecasting family. Let us use the most con-
ventional family, the normal family with mean μ and vari-
ance σ2. Here θ = (μ, σ2) and θ̂ = (y, s) = (33.31, 7.642),
where y is the average of the 505 ages, and s is their standard
deviation. Fourier did not report the data, but he reported
the average y = 33.31 years, and we can calculate the stan-
dard deviation s = 7.642 years from the error probabilities
he reported.

Writing l(θ) for ln(L(θ)), we have

l(μ, σ2) = n

(
ln(s)− ln(σ)− s2 + (y − μ)2

2σ2
+

1

2

)
, (3.3)

where n = 505. The values of (μ, σ2) for which (3.3) ex-
ceeds ln(1/2) constitute the very good description range for
(μ, σ2), those for which it exceeds ln(1/5) the good range,
those for which it exceeds ln(1/15) the satisfactory range.

Following Fourier, we are interested only in description
ranges for μ. So our question is what values of μ are included
11See [9, p. 198]. The annual reports issued by the bureau during
Fourier’s tenure list no editor on their cover pages. Fourier was no
doubt primarily responsible for editing them, and I identify him as the
editor in the references [23, 24].
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Table 1. Fourier’s error probabilities.
probability 1/2 1/20 1/200 1/2000 1/20000

error ±2.7528 ±7.9932 ±11.4516 ±14.2044 ±16.5480

level 50% 95% 99.5% 99.95% 99.995%
interval (33.1, 33.5) (32.6, 34.0) (32.4, 34.3) (32.1, 34.5) (31.9, 34.7)

The first two lines give the probabilities for errors in months that Fourier calculated for his estimate of 33.31 years. He gave 1/20, for example,
as the probability of the estimate erring by more than 11.4516 months. The second two lines translate this information into confidence intervals
in years. The 95% interval, for example, is 32.6 to 34.0 years.

Table 2. Description ranges for the masculine generation in
Fourier’s study population, calculated from (3.5).

C description range
2 Very good (32.9, 33.7)
5 Good (32.7, 33.9)
15 Satisfactory (32.5, 34.1)

in these three description ranges. So we maximize (3.3) for
each μ, by setting σ2 equal to s2 + (y − μ)2. This gives

l(μ, s2+(y−μ)2) = n

(
ln(s)− 1

2
ln(s2 + (y − μ)2)

)
. (3.4)

This is greater than ln(1/C) when μ is in the interval

y ± s
√

C2/n − 1. (3.5)

Here we have obtained the log-likelihood (3.4) for the pa-
rameter of interest μ by maximizing over the unwanted pa-
rameter σ2. In inferential likelihood theory, the result of such
a maximization is sometimes called a profile likelihood. The
inferential use of profile likelihoods is hard to justify and
sometimes misleading [45, p. 159], but their game-theoretic
descriptive use is unobjectionable. We want to know how
well each value of μ can perform in the betting competition.
Its performance depends on the value of σ2 it is paired with.
We pair it with the value of σ2 that enables it to do its best
to see how well it can perform.

Table 2 uses (3.5) to calculate description ranges. Com-
paring it with Table 1, we see that the width of Fourier’s 95%
confidence interval is between that of our good description
range and our satisfactory description range. The relation as
n increases between confidence intervals and the description
ranges given by (3.5) has been studied by [10] and [42].

3.2.3 A Fictional Survey of Perceptions

Some organizations in the United States have recently
surveyed their employees about perceptions of discrimina-
tion. To avoid the complexities involved in real examples,
consider the following fictional example.

An organization wants to know whether its employees of
different genders and racial identities differ systematically
in their perception of discrimination. Most of the employees

respond to a survey asking whether they have suffered dis-
crimination because of their gender or race. The employees
saying yes are distributed as shown in Table 3.

According to the usual test for the difference between
two proportions, the difference between the rows (male vs
female) and the difference between the columns (BIPOC vs
White) are both statistically significant at the 5% level. But
the 20 percentage-point difference between BIPOC males
and BIPOC females is not, as its standard error is√

1

3

2

3

(
1

20
+

1

10

)
≈ 0.18 = 18 percentage points.

These simple significance tests seem informative. The differ-
ences declared statistically significant seem general enough
to be regarded as features of the organization, but we hesi-
tate to say this about the difference declared not statistically
significant.

Yet the theory of significance testing does not fit the oc-
casion. Have the individuals in the study (or their responses
to the survey) been chosen at random from some larger pop-
ulation? Certainly not. For anyone who has been inside an
organization long enough to see its employees come and go,
seeing or guessing the reasons, the idea that they constitute
a random sample is phantasmagoria. Nor can we agree that
their responses are independent with respect to some “data-
generating mechanism”. Many of them see the same media
and talk with each other.

If we took the theory of significance testing seriously for
this example, we would also worry about multiple testing.
The 5% error rate we claim for our tests is valid under the
theory’s assumptions only when we make just a single com-
parison. We have made three comparisons and might make
more.

The theory’s assumptions are not met, and we have
abused the theory. But there is a larger issue. The theory is
irrelevant from the outset, because its goals are irrelevant.
The organization did not undertake the survey in order to
make inferences about a larger or a different population or
about some data-generating mechanism. The organization
wanted only to know about itself. It wanted to know how
its employees’ perceptions vary with gender and race. This
calls for a descriptive analysis.

For a descriptive analysis, we can use the obvious fore-
casting family, in which each cell in the 2 × 2 table has its
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Table 3. A fictional study.
Female Male Totals

BIPOC 8
10

= 80% 12
20

= 60% 20
30

≈ 67%

White 20
50

= 40% 20
120

≈ 17% 40
170

≈ 24%

Totals 28
60

≈ 47% 32
140

≈ 23% 60
200

= 30%

Numbers and proportions of positive responses, in a fictional study
of the employees of a fictional organization, to the question whether
one has experienced discrimination in the organization as the result
of one’s identity. Here BIPOC means Black, indigenous, and people of
color.

own forecast:

θ = (θbf, θbm, θwf, θwm),

where θbf is the forecast that a BIPOC female will say yes
to the survey, etc. According to the data in Table 3,

θ̂ =

(
8

10
,
12

20
,
20

50
,
20

120

)
,

and

L(θ) =

(
θbf

4/5

)8 (
(1− θbf)

1/5

)2 (
θbm

3/5

)12 (
(1− θbm)

2/5

)8

(
θwf

2/5

)20 (
(1− θwf)

3/5

)30 (
θwm

1/6

)20 (
(1− θwm)

5/6

)100

.

We found earlier that the 20 percentage-point difference
between BIPOC males and BIPOC females is not statisti-
cally significant. In this descriptive analysis, the question
can be reframed this way: what differences between BIPOC
males and BIPOC females within the study population are
forecast by very good forecasters? We can answer the ques-
tion by looking at all the θ = (θbf, θbm, θwf, θwm) that rank
as very good forecasters by having a value of L(θ) greater
than 1/2 and finding the range of their values for θbf − θbm.
The range is from a little more than 0 to about 0.4. We can
say that there are very good forecasters who give nearly the
same forecasts for the two groups.

When the individuals responding to a yes-no survey are
categorized in more than one way, or when other data is
collected about them, we may prefer to use a more sophis-
ticated forecasting family, such as logistic regression. The
logic will remain the same. For particular interesting values
of the forecasting variables, we can calculate the range of
forecasts given by good forecasters. We can similarly calcu-
late ranges for odds ratios. The computations involved are
not trivial, but software environments adequate to the task
would not be need to be more complex for the user than
those that now use logistic regression for nominally inferen-
tial analyses.

The descriptive approach can be compared with the infer-
ential approach used in 2016 by the University of Michigan’s

Diversity, Equity & Inclusion Initiative. Michigan sought in-
ferential legitimacy by using random samples. As they ex-
plained in their report on the faculty survey [41, p. 6],

Given the large faculty population at the University of
Michigan, this study used a sample survey approach
rather than a census of all faculty. A carefully selected
sample, with randomization, allows researchers to make
scientifically based inferences to the population as a
whole.

The second sentence of this quotation raises the question,
unanswered by the authors, of how they would have made
scientifically based inferences had they performed a whole
census. How would they then have decided which differences
were meaningful?

In any case, the authors chose 1,500 out of 6,700 fac-
ulty members at random to complete the survey. The survey
results were then analyzed using logistic regression, and a
number of differences were observed to be statistically sig-
nificant. It was found, for example, that female faculty were
130% more likely to feel discriminated against than male
faculty (i.e., the odds ratio for a positive response to the
question was equal to 2.3 and significantly different from 1).
The results of the survey were clearly meaningful, but the
inferential logic is problematic. As David A. Freedman [27]
has shown, randomization probabilities do not justify logis-
tic regression. Our descriptive theory is not affected by this
problem and is just as applicable to a complete census as to
a random or non-random sample.

3.3 Discussion
There is no need to document here the persistence and

prevalence over the past two centuries of the use of inferen-
tial methods with non-random samples. These abuses have
been repeatedly documented and deplored.12 There have
also been numerous efforts to promote descriptive alterna-
tives, but they have gained limited traction in the natural
and social sciences. Why can we hope that the proposal to
measure relative descriptive success by betting success might
fare better? Because, as I have been arguing, our culture al-
ready knows something about interpreting betting success.

What are the descriptive alternatives?

3.3.1 Refuse to Calculate Precision

One obvious alternative is to fit models — i.e., calcu-
late descriptive statistics such as means, standard devia-
tions, and regression coefficients — while de-emphasizing
the question of their precision and refraining from calculat-
ing significance tests or confidence intervals. This has of-
ten been the practice in fields, such as geodesy, that have
been more influenced by the Gaussian tradition than by the
Laplacean tradition.13 A surveyor’s customers, for exam-
ple, need a boundary line, not a confidence band. Efforts to
12See [28, pp. 212–217] for a particularly concise review. See also [1,
6, 9, 26, 39, 40, 48].
13Marie-Françoise Jozeau has documented the competition of the two
traditions in geodesy [36, 47].
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establish the same practice in the social sciences have usu-
ally had limited and ephemeral impact. During much of the
20th century, some sociologists avoided using significance
testing except for random samples, but this avoidance did
not endure. In a study of the use of significance testing in
two prominent sociology journals from 1935 to 2000 [38],
Erin Leahey found a shift around 1975 among authors who
had data on an entire population. Before that date, some of
these authors declined to use significance tests, afterwards
few did.

In 2004, in his Regression Analysis: A Constructive Cri-
tique [5], the sociologist Richard A. Berk gave three cheers
for a purely descriptive use of multiple regression: estimate
the regression coefficients, but do not calculate p-values or
confidence intervals. The book has been widely cited, but
so far as I know few researchers have followed this advice.
What use is a regression coefficient if you have no sense of
its precision?

John Tukey’s advocacy of data analysis was another ef-
fort to shift attention from inference to description [15]. But
Tukey’s distinction between exploratory data analysis and
confirmatory data analysis undermines the effort to promote
description to a goal in itself. The terminology suggests that
we explore in order to discover what we will then try to con-
firm.

3.3.2 Reinterpreting Inferential Quantities
In 1995, Richard A. Berk and his colleagues Bruce West-

ern and Robert E. Weiss proposed that the neo-Bayesian
philosophy could justify statistical modeling for entire pop-
ulations [7]. I have not been able to understand their argu-
ment.

Another notable effort to make inferential tools descrip-
tive was mounted earlier by [25]. In the simplest cases, their
proposal involves permuting residuals and interpreting a p-
value as a measure of how unusual the actual data is in the
population of alternative data thus generated. Along with
many other mathematical statisticians, I was very intrigued
by this proposal when it appeared, but I always found its
intuition elusive.

The most common justification of using inferential tools
with non-random samples is, of course, the argument that
assumptions are never exactly satisfied. George Box’s slo-
gan, “all models are wrong but some are useful” is evoked
to justify calculating p-values and confidence intervals. This
leaves unanswered, however, the question of what we are be-
ing asked to have confidence in. Any claim that the calcu-
lations are mere description is contradicted by the language
being used.

3.3.3 Other Justifications for the Likelihood Ratio?
I have proposed scoring relative success by the likelihood

ratio P1(y)/P2(y). This is hardly a new idea; it goes back
at least to Laplace. What this paper adds is a betting in-
terpretation. The ratio is the factor by which algorithm 1
multiplies its capital betting against algorithm 2.

The ratio P1(y)/P2(y) can also be understood in terms of
information theory. John L. Kelly Jr. entitled his 1956 paper
“A new interpretation of information rate”; for him Kelly
betting was merely an interesting sidelight to information
theory. The connection has been elaborated using the idea
of minimum description length [44, 30]. But these ideas too
have failed to gain traction in the natural and social sciences,
and we cannot expect that they will. As beautiful and simple
as they are for mathematicians, the ideas are not part of our
wider culture.

3.3.4 Other Loss Functions?

If we set the betting interpretation aside and change the
scale by taking logarithms, P1(y)/P2(y) becomes ln(P1(y))−
ln(P2(y)). As this makes clear, we are comparing the two
forecasts using log loss. There are many other loss functions.
Why shouldn’t we give others equal attention?

The answer, of course, is that we are not setting the bet-
ting interpretation aside. A vast amount of work has been
done, in decision theory and more recently in machine learn-
ing, on evaluating predictions using loss functions. But in
most fields of natural and social science, this work has gained
little to no traction. I think this is because the scales of mea-
surement have no meaning to the scientists and their larger
public. Even though the cutoffs and other conventions we
must use will be relatively arbitrary, the idea of measuring
relative success in prediction by success in betting and resis-
tance against betting does have meaning for scientists and
the publics with whom they want to communicate.
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