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Abstract
Cancer is the second leading cause of death in the world. Diagnosing cancer early on can save many lives. Pathologists

have to look at tissue microarray (TMA) images manually to identify tumors, which can be time-consuming, inconsistent
and subjective. Existing automatic algorithms either have not achieved the accuracy level of a pathologist or require
substantial human involvements. A major challenge is that TMA images with different shapes, sizes, and locations can
have the same score. Learning staining patterns in TMA images requires a huge number of images, which are severely
limited due to privacy and regulation concerns in medical organizations. TMA images from different cancer types may share
certain common characteristics, but combining them directly harms the accuracy due to heterogeneity in their staining
patterns. Transfer learning is an emerging learning paradigm that allows borrowing strength from similar problems.
However, existing approaches typically require a large sample from similar learning problems, while TMA images of
different cancer types are often available in small sample size and further existing algorithms are limited to transfer
learning from one similar problem. We propose a new transfer learning algorithm that could learn from multiple related
problems, where each problem has a small sample and can have a substantially different distribution from the original one.
The proposed algorithm has made it possible to break the critical accuracy barrier (the 75% accuracy level of pathologists),
with a reported accuracy of 75.9% on breast cancer TMA images from the Stanford Tissue Microarray Database. It is
supported by recent developments in transfer learning theory and empirical evidence in clustering technology. This will
allow pathologists to confidently adopt automatic algorithms in recognizing tumors consistently with a higher accuracy
in real time.
keywords and phrases: Tissue image scoring, Transfer learning, Small training sample, Multiple auxiliary sets.

1. INTRODUCTION
Cancer continues to affect millions of people, yet many

types of cancers, e.g. pancreatic cancer, mesothelioma, gall-
bladder cancer, brain cancer etc, have very low survival
rates. This has left treatments such as surgery, chemother-
apy, and radiation therapy as the main options. As early
cancer treatment significantly improves survival rates, the
need for early diagnosis is imperative. Despite the impor-
tance and necessity of early diagnosis, it can take up to
weeks before pathology reports are delivered.

The tissue microarray (TMA) is an emerging technology
to analyze tissue samples. It uses thin slices of tissue core
samples that are arranged in an array format in paraffin
blocks [16]. Biomarkers are applied and typically biomarker-
specific dark colors of yellow stains are shown when there is
presence of tumors. TMA images are then captured with a
high-resolution microscope. The scoring of TMA images is
based on the severity of tumors, and a common system for
scoring TMA images uses a scale from 0 to 3, where a score
of 0 indicates no tumors, and a score of 3 implies very severe
tumors which corresponds to late stages of cancer progres-
sion, for example, Stage IV in a common 4-stage (Stage I, II,

III, and IV) cancer grade system. TMA technology makes it
possible to efficiently analyze many tissue samples together,
thus normalizing conditions for comparative studies. These
benefits give TMA images the potential to be widely used as
an effective technique for diagnosis and prognosis oncology
[20, 25]. A valuable source to explore TMA images is the
Stanford TMA image database [23], publicly available from
https://tma.im/tma_portal/, and work presented here is
based on TMA images from this database.

The diagnosis for tumors—identifying tumors from stain-
ing patterns in tissue images—manually is time-consuming
and can easily be inconsistent [7, 32]. Although struc-
tured procedures have been proposed, manual scoring can
still be fairly subjective [33, 4], and the same pathol-
ogist may score differently at different sessions for the
same image. Because of these issues, a number of algo-
rithms, including ACIS, Ariol, TMALab, AQUA [6] and
TACOMA [33], have been developed to automate this
process. These algorithms, although transformative, are
not widely adopted due to limits in their capabilities.
They require substantial involvement of pathologists on
tasks such as TMA image background subtraction, fea-
ture segmentation, thresholds of hue or pixel intensity,

330

https://journal.nestat.org/
https://doi.org/10.51387/23-NEJSDS53
https://tma.im/tma_portal/


Automatically Score Tissue Images Like a Pathologist by Transfer Learning 331

Figure 1: The staining patterns vary highly across TMA
images. Images with the same score can look drastically dif-
ferent.

and the provision of representative TMA image patches
etc.

The variability of staining patterns in TMA images and
the scarcity of training samples make it particularly chal-
lenging to develop an automatic algorithm. Staining pat-
terns in TMA images can have very different sizes, locations,
shapes, and colors, despite having the same score. Figure 1
demonstrates the variability of staining patterns in the TMA
images. The high variability in the staining patterns also
increases the need for larger sample sizes in training algo-
rithms. Having more images would allow the algorithm to
capture more variability in the staining patterns, leading to
more consistent results. However, the number of TMA im-
ages is severely limited due to privacy and regularization
concerns in medical organizations. Moreover, the TMA im-
ages currently available are for over 100 different types of
cancers, with very few numbers of TMA images available
for each individual cancer type. In recent years, deep learn-
ing [14] has become the method of choice for many image
recognition tasks. However, that is not feasible for TMA im-
age scoring due to the small sample size available for a given
cancer type.

This work aims to develop an automatic algorithm for
the scoring of TMA images at the accuracy level of patholo-
gists by augmenting the training sample with transfer learn-
ing [8]. The key observation is that, some of the TMA im-
ages of a different cancer type may look similar (i.e., have
a similar staining pattern) to those of the given cancer type
and with the same score, thus making it possible for trans-
fer learning. However, usual algorithms for transfer learning
(many based on deep neural networks [29]) are not applica-
ble since we do not have a large dataset from similar prob-
lems as the basis for knowledge transfer—while there exist
many different cancer types, the number of TMA images
of each individual type is small. This gives rise to a new
transfer learning setting: there are multiple similar learning

problems around but each has only a small training sample,
and we wish to design an algorithm that could effectively
transfer knowledge from all the similar learning problems.
The approach we take is instance-based transfer learning
[8], where we propose to selectively include TMA images of
other cancer types with similar staining patterns as the can-
cer type of interest. With an enlarged training set, we can
expect to improve accuracy on the scoring of TMA images
of the original cancer type. Given the huge success of trans-
fer learning in application domains such as natural language
processing and image recognition, we expect that it would
enable the automatic evaluation of cancer tumors in TMA
images at the level of pathologists.

The remaining of this paper is organized as follows. In
Section 2, we describe our approach and algorithms design.
Experiments and results are presented in Section 3, along
with a discussion of connections of our algorithm to re-
cent theoretical developments in transfer learning. Finally
we conclude in Section 4.

2. METHODS
We formulate the scoring of TMA images as a classifica-

tion problem. Our approach can be summarized as follows.
A type of tumor-specific spatial histograms is used to cap-
ture key features characterizing the staining patterns in tis-
sue images, then transfer learning is adopted to increase the
training sample size by selectively including images of other
cancer types. The enlarged training set is input to Random
Forests (RF) [2] classifier to re-fit the classification model
and results reported. The goal is to achieve or exceed the
accuracy level of pathologists. A detailed description about
spatial histogram, RF, transfer learning, and the algorith-
mic implementation of our approach will be presented in
Sections 2.1, 2.2, 2.3, and 2.4, respectively.

Figure 2 shows the overall flow of our approach. Note
that here for illustration purpose, we use ‘ER’, the name of

Figure 2: Illustration of the overall flow of the proposed
algorithm. The ‘+’ sign stands for combining images from
multiple sources. ER is the name of biomarker associated
with the target cancer type and we use it to indicate the
corresponding TMA images, while NMB, CK56 and CD117
are those for other cancer types.
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a biomarker for breast cancer, to indicate the cancer type
of interest, while using ‘NMB’, ‘CK56’, or ‘CD117’ for other
cancer types. One major challenge in the automatic scoring
of TMA images is the variability in the staining patterns,
which may have different shapes, sizes, and locations despite
having the same score. The staining patterns are encoded by
spatial histograms, following work in [33]. The spatial his-
togram also helps to greatly reduce the data dimensionality,
another challenge in the automatic scoring of TMA images
which is caused by large image sizes (i.e., 1504×1410). RF is
used as the classifier for its strong built-in feature selection
capability. To implement transfer learning, our main effort
lies in evaluating whether an image of other cancer types
is conformal to the hypothesis (or decision rule) induced by
images of the original cancer type.

2.1 The Spatial Histogram
The staining patterns on TMA images can vary highly,

even for those with the same score. Thus, it is desirable
to look for image features that are relatively stable across
images of the same score. The feature we use is a spatial
histogram matrix (or gray level cooccurrence matrix in the
remote sensing literature [17]), which is commonly used for
textured images. It is a suitable image feature because TMA
images belong to one of the two major classes of textured
images—images taken from very far away in the sky (for
example, remote sensing images) and those taken under a
high resolution microscope. Indeed, the spatial histogram
has been used in literature for TMA images [33] and fares
well.

Similar to the conventional histogram, the spatial his-
togram is a collection of counting statistics about pairs of
adjacent (or neighboring) pixels in an image and represented
as a matrix. In generating a spatial histogram, we only con-
sider neighboring pixels that have a predefined spatial re-
lationship. That is, the two pixels need to have a pair of
given pixel values and are neighbors along a certain direc-
tion. A typical choice for the direction is the 45◦ direction in
the image grid. Figure 3 shows an example of such neighbor-
ing pixels where the pairs of pixels of interest are marked by
green rectangles and both have grey value 1. The counting
statistic is the total number of times such a pair occur in the
image grid along the 45◦ direction, and this gives the value
of the (1,1)-entry of the spatial histogram matrix. Similarly,
pairs of pixels along the same direction but with pixel values
i and j, respectively, would produce a counting statistic for
the (i, j)-entry of the matrix, and so on.

One can choose to use a different spatial relationship, like
pairs along a direction of 0◦ or 135◦ etc in the image grid,
and the difference in TMA image scoring would be small.
Also, one can extend the distance between the neighboring
pixels. The default distance is 1, indicating immediate neigh-
bors. The two pairs of example pixels in Figure 3 all have a
distance 1, while a distance of 2 or larger would indicate a

Figure 3: Illustration of a toy image and the spatial his-
togram matrix. The left panel stands for the original image
where the numbers are the gray values, and the right is the
resulting spatial histogram matrix with a dimension 4 × 4.
The two diagonally (i.e., along 45◦ direction) neighboring
pixels with both gray levels of 1 occur twice in the image, so
the (1, 1)-entry of the spatial histogram matrix has a value
of 2.

larger staining pattern. In this work, a spatial distance of 2
is used.

One nice feature about the use of spatial histogram is di-
mension reduction. The TMA images are large in size, and
those from the Stanford TMA image database [23] have a
size of 1504×1440. Directly working with such images would
require enormous computing power and memory, and worse
still, that will lead to the curse of dimensionality, as each
image would be treated as a huge vector of a dimension
more than 2 million (i.e., 1504 × 1440). As the gray value
of TMA image pixels have a range between 0 and 255, the
spatial histogram will reduce the data dimension to a value,
256× 256, much smaller than that from the original image.
One step further is to apply a quantization to the image gray
values. That will lead to an even smaller spatial histogram
matrix. We follow work in [33], and apply a linear quantiza-
tion to the gray values into 51 levels. That is, a gray value of
5 ·x+y for 0 ≤ x ≤ 50 and 0 ≤ y ≤ 4 will be transformed to
x+1 (255 is converted to 51 for simplicity). Thus the spatial
histogram matrix now has a dimension of 51×51, and a vec-
tor (of dimension 2601) formed by collapsing this matrix is
used as input to the RF classifier so that computation can
be done very efficiently. Importantly, this also makes the
resulting image features stable against small variations in
image pixel values due to varying physical conditions such
as lighting or illumination.

2.2 Random Forests
RF is used as the classification engine for our TMA im-

age scoring algorithm. RF is an ensemble of decision trees,
and each tree is grown by recursively splitting the data. At
each node split, RF randomly samples a number of features
(called number of tries) and selects one leading to their best
partition of that node, according to some criterion. Each



Automatically Score Tissue Images Like a Pathologist by Transfer Learning 333

tree progressively narrows down the decision for an instance.
The node split continues until there is only one point in the
node (for classification) or when the node is pure (i.e., all
the points in the node have the same label). At classifica-
tion, an instance receives a vote on its class label from each
tree in RF, and the final decision given by RF is a majority
vote on the class labels, according to the number of votes
that each label gets from all trees.

Many studies have reported excellent performances of RF
[2, 9]. For TMA image classification, previous studies [19, 33]
also show that RF outperforms competitors like SVM [10]
or boosting [13]. Compared to its competitors, RF scales
well against some main challenges in TMA image scoring,
including high dimensionality and label noise, thanks to its
strong feature selection ability and ensemble nature. RF is
easy to use with very few tuning parameters—often one just
need to set the number of trees and the number of tries at
each node split.

2.3 Transfer Learning
Transfer learning [8] is an emerging learning paradigm

to address the problem of insufficient training data when
there is a large set of auxiliary data (called auxiliary
set) that entails knowledge helpful in solving the original
problem. Transfer learning algorithms can be classified as
instanced-based, mapping-based, representation-based, or
feature-based transfer learning [29]. Instance-based transfer
learning [11] transfers knowledge in the form of enlarging
the original training set by finding instances in the auxil-
iary set that are consistent with the hypothesis learned on
the original training set (such instances are called transfer-
able). Mapping-based transfer learning [31] learns seman-
tically sensible invariant representation across the original
and auxiliary sets. Feature-based approaches [22] learn fea-
tures that would help the learning of the original problem.
Representation-based [15, 24] tries to find representations
that can be transferred. Recently, deep transfer learning [14]
has become very popular and achieves impressive perfor-
mance in a number of domains, for example, large natural
language processing systems such as BERT [12] and GPT-
3 [3], and pre-trained image models [30]. The literature on
transfer learning is enormous, and we can only mention a
few here. More discussion can be seen in [26, 29, 1] and
references therein.

The lack of a large auxiliary dataset makes transfer learn-
ing particularly challenging for the problem of TMA image
scoring. The big family of deep neural networks based trans-
fer learning algorithms are not applicable here due to the
reliance on the training of large deep networks, which in-
evitably requires a huge training set. In the scoring of TMA
images, there are multiple auxiliary sets available as images
from a number of other cancer types can look very similar
to those of the cancer type of interest. However, none of the
auxiliary sets is large enough for the typical deep neural net-
works based approaches to be feasible. Thus, we now have

Figure 4: Illustration of transfer learning. ER is the name
of biomarker associated with the target cancer type, while
NMB, CK56 and CD117 are those for other cancer types.

a new problem setting for transfer learning, and we wish
to enable knowledge transfer from multiple small auxiliary
sets.

The approach we take is instance-based transfer learning,
and Figure 4 is an illustration of the algorithm. We first fit
a prediction model (called original hypothesis) using RF on
the original training set. Then from the auxiliary set, we try
to identify TMA images that are consistent with the original
hypothesis. Clearly we do not require a large auxiliary set
to achieve this. We can add those transferable images to
enlarge the original training set. For a small training set,
increasing its size will likely improve performance on the
test set. In Figure 5, the left 3 columns show example images
for the target cancer type—breast cancer (indicated by ER)
where each row corresponds to a different score. The right
columns are example images from a different cancer type
(marked by NMB, CK56 and CD117, respectively) that look

Figure 5: Example transferable images from other cancer
types. The left 3 columns of images are TMA images for
breast cancer and indicated by the associated biomarker es-
trogen receptor (ER). The right 3 columns are TMA im-
ages for cancer types indicated by biomarkers NMB, CK56
and CD117, respectively, which have a similar appearance
as those for ER with the same label.
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similar (to certain extent) to the breast cancer images with
the same score.

2.4 An Algorithmic Description
In our algorithm, transfer learning is implemented as

function, tmaTransfer(), which finds transferable images
from a given auxiliary set. The main function, tmaScore(),
calls tmaTransfer() to obtain transferable images from
other cancer types, fits model on the enlarged training set
via RF, and then reports final results on the test set.

tmaTransfer() is implemented as follows. We first fit
a classification model, M0, by RF on the original training
set T0. Then we apply M0 to the set of auxiliary images, W .
If the predicted label for an image, W ∈ W , is the same as its
given label (note the label for these images in the auxiliary
set are known since they come with the TMA images in the
Stanford database), then we say image W (along with its
label) is consistent with the original model hypothesis M0.
As there might be label noise for image W , we only transfer
images that are predicted more confidently. The confidence
in prediction can be estimated from the number of votes
W receives on different class labels (or scores) from trees in
RF. If the majority class gets substantially more votes than
other classes, then we say the instance is predicted with high
confidence. Here, the majority class is the one that receives
the most votes. An easy way to estimate the confidence is
to use the difference in the fraction of votes received for the
top and the second majority class (the class that receives
the second most number of votes). Let n1(W ) and n2(W )
be number of votes W gets on the top and second majority
class, and T be the number of trees in RF. We can estimate
the confidence in predicting instance W as follows

β(W ) =
n1(W )− n2(W )

T
. (2.1)

So β(W ) has a value in the range [0, 1], and a TMA image W
in the auxiliary set is selected if it is classified with a confi-
dence larger than a predetermined level β0. The choice of β0

seeks to include TMA image instances that are valuable to
the original problem. Singh and his coauthors [28] study the
contribution of individual data points to algorithmic perfor-
mance in semi-supervised classification problem, and they
find that data points that are along the decision bound-
ary barely help, while the value of a data point increases
when the data point is slightly away from the boundary.
Our definition of confidence aims to avoid data points that
are along or very close to the decision boundary (such data
points would be classified with very low confidence), while
trying to include data points that are slightly away from
the decision boundary. Note that a too big value of β0 is not
desirable either, as that will cause the inclusion of only data
points far away from the decision boundary. Let F denote
the transferable set (which is the set of images transferred
from the auxiliary sets). The tmaTransfer() function is im-
plemented as Algorithm 1.

Algorithm 1 tmaTransfer(M0,W , T, β0).
1: Initialize the transferable set F ← ∅;
2: while W is not empty do
3: Pick an image W from W, and set W ← W \ {W};
4: Apply the original model M0 to W ;
5: if predicted label on W is different from its given label

then
6: Skip to the next round of the loop;
7: end
8: Calculate the prediction confidence β(W ) for image W ;
9: if β(W ) ≥ β0 then

10: Add W to the transferable set, F ← F ∪ {W};
11: end
12: end while
13: return(F);

To describe algorithm for the main function tmaScore(),
assume that the other cancer types for transfer learning
are associated with biomarkers NMB, CK56 and CD117
for simplicity of description. Let the set of auxiliary im-
ages for these cancer types be denoted by Wnmb, Wck56,
Wcd117, respectively. Function tmaScore() first fits a pre-
diction model, M0, from the original training set using RF.
Then, it identifies the transferable set from each auxiliary
set in {Wnmb,Wck56,Wcd117}. Add the transferable set to
the original training set T0, re-fit the prediction model, then
apply it to the test set and report results. The main function
is implemented as Algorithm 2.

Algorithm 2 tmaScore().
1: Let the number of trees in Random Forests be T ;
2: Apply RF to the original training set T0;
3: Let the fitted Random Forests model be M0;
4: Pick a predefined confidence level β0;
5: Initialize the transferable set F ← ∅;
6: for W in {Wnmb,Wck56,Wcd117} do
7: Apply transfer learning to image set W;
8: Ft ← tmaTransfer(M0,W, T, β0);
9: Add Ft to the transfer set F ← F ∪ Ft;

10: end for
11: Add transferable set F to original training set T0 and re-fit

RF;
12: Apply the re-fitted model to test set Ts and report accuracy;

3. EXPERIMENTS AND RESULTS
We conduct experiments using TMA images from the

Stanford TMA image database. The cancer type we choose
to work with is breast cancer, due to the fact that it is one
of the best understood cancer types to date. The associated
biomarker is estrogen receptor (ER). There are 690 images
in total for ER in the database, and the training and test-
ing sets are randomly split evenly. The reported results are
averaged over 100 runs.
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Figure 6: Transferable images from one instance of run.
NMB, CK56, and CD117 indicate the TMA images asso-
ciated with respective biomarkers.

TMA images in the Stanford TMA database are from
several dozens of different cancer types. One can use TMA
images from all other different cancer types, but we take a
more conservative approach. Transfer learning requires the
auxiliary set to be consistent to hypothesis entailed by the
original training set. We browse through the Stanford TMA
image database, and determine that TMA images associ-
ated with biomarkers NMB, CK56, and CD117 are visually,
to a certain extent, similar to TMA images for ER. Note
that the actual set of images that can be used as auxiliary
set, or images that are transferable, are broader that those
visually similar images. In other words, some of the trans-
ferable images may not look so “similar” to images in the
original training set. This can be seen from Figure 6. Part
of our goal in using the term ‘visually similar images’ is
for the purpose of describing our motivation with transfer
learning.

We use the R package randomForest for our experiments.
The number of tries at each node split is chosen among
{√p, 2

√
p}, where p is the input data dimension. For TMA

images as we work on the spatial histogram matrix, we have
p = 51 · 51 = 2601. The number of trees in RF is fixed at
T = 100, adopting the value used in [33]; indeed we find
the difference in results small when varying over a range
of choices {50, 100, 200, 500}. The confidence level β0 for
instance transfer is picked as 10%, implying that only in-
stances with the top majority class leading the second ma-
jority class by at least 10% votes (out of T = 100 trees) are
considered to be transferable.

3.1 Results
The evaluation metric is the test set accuracy, which is

the percent of test images with a predicted class label agree-
ing with the given one (that is, the label comes with the
database). The results are shown in Figure 7. The accuracy
achieved with transfer learning over auxiliary sets associ-
ated with NMB, CK56 and CD117 is 75.9%, outperforming

Figure 7: Comparison of accuracy. ‘T’ and ‘NT’ stand for
transfer learning and without transfer learning, respectively,
and ER, NMB, CK56, and CD117 indicate the TMA images
associated with respective biomarkers.

the algorithm without transfer learning (shown as the first
bar in the figure). The accuracy of pathologists is estimated
to be around 75–84% [33], so transfer learning allows our
algorithm to achieve the accuracy level of pathologists. It
should be noted that the gold standard of comparison vs
pathologists in this case would be through consensus scores
produced by a group of well-trained pathologists. However,
in the lack of consensus pathologists’ scores, estimation by
[33] could be viewed as giving the accuracy level of patholo-
gists (on the ER images). It is interesting to see that the
achieved accuracy increases progressively when we apply
transfer learning over more auxiliary sets, e.g., in the order
of over Wnmb only, over two auxiliary sets {Wnmb,Wck56},
and over three auxiliary sets {Wnmb,Wck56,Wcd117}. Note
that comparison with other popular classifiers such as sup-
port vector machines and boosting with the spatial his-
togram matrices as inputs was made previously in [33] for
which an accuracy at 65.24% and 61.28% were reported, re-
spectively. The reason why SVM and boosting substantially
underperformed is possibly due to the fact that these two
classifiers are not able to handle high dimensional and possi-
bly noisy (in labels) inputs well, while RF has strong built-in
ability in feature selection with high dimensional inputs and
is also remarkably resistant to label noises.

We also conduct experiments by simply combining the
training set of TMA images for ER with images in auxil-
iary sets Wnmb, Wck56 and Wcd117. This actually leads to
a decrease in accuracy compared to that without transfer
learning, as shown in the second through the fourth bars in
Figure 7. Although directly combining data from the auxil-
iary sets greatly increases the size of the training set, it also
makes the data a lot more heterogeneous thus more chal-
lenging for classification as we now have to accommodate
images of sub-models within the same class label. In com-
parison, transfer learning with our approach over images
from other cancer types, even with different distributions,
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allows to improve the accuracy if we can properly control
the confidence level.

3.2 Understanding the Transfer Learning
Scheme

We adopt instance-based transfer learning, and the par-
ticular scheme we propose improves the accuracy of TMA
image classification. Our algorithm could be understood
from recent theoretical developments in transfer learning,
and is also empirically supported by experiments.

Transfer learning typically requires similarity in the dis-
tribution between the original and the auxiliary set. Re-
cent work towards understanding of transfer learning focuses
mainly on relaxing this ideal condition along two lines. One
is the covariate-shift model where the marginal distribution
of the original and the auxiliary data are different but their
induced decision rules (or hypothesis) are similar. Here the
marginal distribution refers to the probability distribution
of the TMA images or their spatial histograms, while the
induced decision rule is the rule that decides which class la-
bel (score) a TMA image gets given the pixel values or the
spatial histogram of an image (i.e., the classification model
learned by RF in this work). Kpotufe and Martinet [21]
study, under the covariate-shift model, how much the target
performance is impacted by sample size and the difference
in the original and the auxiliary distribution. The other is
the posterior-drift model where the marginal distribution of
the original and the auxiliary data are similar but their in-
duced decision rules could be very different. Cai and Wei [5]
study how fast the estimated decision rule converges to its
limit in terms of the difference in the induced decision rules
between the target and auxiliary data. For the scoring of
TMA images, clearly the distribution of the original and the
auxiliary data are different, and so are the induced decision
rules. Our approach can be viewed as trying to satisfy the
assumption of the covariate-shift model, i.e., it tries to find
a subset of the auxiliary data such that the induced decision
rule agrees to that from the original data. This is achieved
by searching from the auxiliary set those TMA images with
the same label as the predicted one under the decision rule
learned from the original data (i.e., conformal to the origi-
nal hypothesis). This effectively overcomes the difficulty in
requiring a similar induced decision rule between the origi-
nal and the entire auxiliary data. Thus, our approach gives
a solution to the challenging problem of enabling knowledge
transfer from multiple small auxiliary sets with each induc-
ing a potentially different decision rule from that on the
original data.

Next, we conduct some experiments. We first produce a
visualization of the original training set (corresponding to
breast cancer) and that enhanced by transfer learning from
other cancer types, including those associated with NMB,
CK56 and CD117. Each image in the training set can be
viewed as a point in the high dimensional space, and the
points are plotted along the first and second component

Figure 8: The original and transfer learning enlarged train-
ing set visualized by their first and second principal direc-
tions via principal component analysis. The top panel is
for the original training set, and the bottom panel is for
training set enhanced by transfer learning. Different colors
correspond to TMA images with a different class label (or
score).

from a principal component analysis [18] of the data. From
Figure 8, it can be seen that for the enhanced training set,
the separation of points becomes larger. In particular, points
with color orange now become visible (previously they are
mostly hiding among points with other colors or labels);
some blue points are also better separated from the green
and red point clouds. A better separation between classes
would make the classification task easier, thus a higher ac-
curacy can be expected. Indeed, we can get a more precise
characterization of the amount of class separation by the
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class separation ratio

ρ =
∑

All pairs of classes i, j

(SSWi + SSWj)/SSBi,j , (3.1)

which is the ratio of the within-class sum of squared dis-
tances out of the between-class sum of squared distances
calculated over all pairs of classes, and SSWi and SSBi,j

are defined as

SSWi =
∑

a, b all with label i
distance2(a, b),

SSBi,j =
∑

a with label i, b with label j

distance2(a, b),

where distance(a, b) is the Euclidean distance between
points a and b. The class separation ratio ρ measures the
quality of clustering, so it gives hint on the difficulty in sep-
arating different classes. A smaller value of ρ indicates that
the within-class distances are small relative to the between-
class distances, thus a better separation of classes. The mean
class separation ratio is calculated as 15.6668 and 12.1379,
averaged over 100 runs on the original and transfer learning
enhanced training sets, respectively. This implies that, for
the enlarged training set, different classes are better sepa-
rated. This is consistent with our visualization and experi-
mental results, thus giving empirical support to the transfer
learning scheme we propose. Further experiments are ex-
pected to better understand this, which we leave for future
work.

4. CONCLUSIONS
An algorithm has been proposed for the scoring of TMA

images via transfer learning. By selectively including TMA
images with similar staining patterns from other cancer
types, the algorithm is able to achieve the accuracy level of a
pathologist. This algorithm is fully automatic and without
involvements from the pathologists. One desirable feature
of the proposed algorithm is that as more transferable can-
cer types are considered, the accuracy is improved further.
It is interesting to note that the accuracy would suffer if
we simply combine TMA images from other cancer types
without transfer learning. With this algorithm, pathologists
are expected to diagnose cancer patients faster, more accu-
rately, and consistently. Survival rates can be significantly
improved because diagnoses can now be made in real-time
and patients can be treated earlier.

It is worthwhile to note that we implement transfer learn-
ing in a nonstandard setting—the auxiliary set is small and
there are potentially multiple auxiliary sets available. It is
challenging as typical algorithms for transfer learning are no
longer applicable here, and also we wish to enable knowl-
edge transfer from as many auxiliary sets as possible. Our
algorithm has sound theoretical support from recent devel-
opments in transfer learning. It can be understood as try-
ing to carve out a portion of the auxiliary set so that the

covariate-shift model applies, i.e., the selected subset from
the auxiliary set is conformal to the original hypothesis.

Empirically, experiments have also been carried out to
understand the algorithm. Data visualization shows that our
algorithm increases the class separation, and a larger class
separation often makes the classification problem easier and
thus improved accuracy can be expected. This is corrobo-
rated by the empirical class (cluster) separation ratio, and
the enhanced training set leads to a better class separation.
One possibility of future work is to explore how to exclude
unnecessary parts (or patterns) in TMA images or finding
the most important features about TMA images to further
increase the accuracy. Additionally, different notions of con-
fidence may be explored for instance transfer, for example
those using the concept of conformal classification [27].
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