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0.1 Example and Visualization

An interpretation example. Let d = 3. GivenX and Y data, suppose thatH8PX is explicitly

computed to be
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Recall that SX consists of all but the first coordinate of the vector on the left. In this
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case, the vector SX has two notable entries, which decompose the non-uniformity of PX into

two orthogonal signals. The largest entry of SX in absolute value is −0.10, corresponding

to the third row of H8:

(
1 1 −1 −1 1 1 −1 −1

)
.

We can interpret this correspondence in the following way: the distribution ofX has a coarse

Venetian blind pattern relative to Y . The second largest entry of SX in absolute value is

−0.08, due to the seventh row of H8:

(
1 1 −1 −1 −1 −1 1 1

)
.

From this, we see that the X points are centrally concentrated relative to the points of Y .

We would expect the interquartile region of Y to contain over half of the points of X.

An example visualization. In practice, we may wish to visualize the largest imbalance

recorded in SX – one possible visualization at a depth of d = 3 is given in Figure 1. The

rationale for this plot is as follows: let R1, . . . , R8 be real intervals such that 1/2d = 1/8 of

the Y sample is contained in each Ri. These eight intervals correspond to the cells of PX : if

PX,i is large (small), we would expect Ri to contain more (less) than 1/8 of the X sample.

In the context of testing, the largest asymmetry in SX can be thought of as the primary

reason for rejection of the null. For the simulated X and Y data of Figure 1, the largest

asymmetry recorded in SX corresponds to the regions R3, R4, R7, and R8.
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Figure 1: Visualization of a symmetry statistic.
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0.2 Proofs on Subsampling and Computation

Here, we prove Theorem 1, Proposition 1, and Theorem 2 from the main paper.

Theorem 0.1. Let Y be a fixed vector of observed data, and let x be a real number. Consider

the following bootstrap method for computing a vector P ∗(x) using K subsamples from Y .

1. Take bootstrap subsamples Y ∗
k of size 2d+1 − 1 from Y without replacement, for sub-

samples 1 ≤ k ≤ K.

2. Compute F̂Y ∗
k
(x), for subsamples 1 ≤ k ≤ K.

3. Set P ∗
i (x) = #

{
k : F̂Y ∗

k
(x) ∈

[
i−1
2d

, i
2d

)}
/K, for coordinates 1 ≤ i ≤ 2d.

It follows that

pr
(
lim

K→∞
P ∗(x) = P (x)

)
= 1,

where the probability is taken over the randomness of the subsampling.

Proof. As Y is assumed to be deterministic for the purposes of this theorem, all randomness

is due to resampling. Referring to the discussion above the theorem statement, we know

Pi(x) = P

(
F̂Y ∗(x) ∈

[
i− 1

2d
,
i

2d

))

for a random resample Y ∗ of length 2d+1 − 1 from Y . We can rewrite P ∗
i (x) as an average

of K independent indicator variables

P ∗
i (x) =

∑K
k=1 I

(
F̂Y ∗

k
(x) ∈

[
i−1
2d

, i
2d

))
K

.

By the law of large numbers, P ∗
i (x) → Pi(x) almost surely as K → ∞. As P (x) has finitely

many coordinates, this convergence holds for every 1 ≤ i ≤ 2d almost surely.
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Proposition 0.1. Suppose X and Y satisfy maxi{Xi} < minj{Yj}. Then cos(θ) = −(2d−

1)−1, where θ is the angle between SX and SY as vectors in R2d−1.

Proof. As every X value is smaller than every Y value, F̂Y ∗(Xi) = 0 and F̂X∗(Yj) = 1 for

every resample X∗ and Y ∗ and every i and j. Hence, PX = e1 and PY = e2d , where ek is

the vector of length 2d with a 1 in coordinate k and a 0 everywhere else.

Let H̃2d denote H2d without its first row

(
1 1 . . . 1

)
. In particular, this means that

SX = H̃2dPX and SY = H̃2dPY . The 2
d× 2d matrix (H̃2d)

T H̃2d is equal to 2d− 1 along the

diagonal and −1 everywhere else. In addition, H̃2dPX and H̃2dPY are equal to either 1 or

−1 in every coordinate. As a result, we have

cos(θ) =
e1(H̃2d)

T H̃2de2d

∥H̃2dPX∥2∥H̃2dPY ∥2

=
−1

2d − 1
.

Theorem 0.2. There exists an algorithm for calculating the test statistic S that requires

O((m+ n) log(m+ n)) elementary operations.

Proof. Referring to Algorithm 3, note that lines 1-4 take O(m + n) operations. With any

efficient sorting algorithm, line 5 has an average case of O((m + n) log(m + n)) operations.

Line 6 is constant in n and m, and the loop spanning lines 7-21 iterates m + n times and

executes each iteration in constant time. The vector and matrix operations in lines 22-24

have running time independent of n and m. Thus, line 5 is the bottleneck, and the overall

running time has leading term O((m+ n) log(m+ n)).
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Algorithm 3 AUGUST+(X,Y , d)

1: Define m = length(X), n = length(Y ), and r = 2d+1 − 1
2: Initialize empty matrix M of dimension 2× (m+ n)
3: Assign the first row of M to the concatenated vector (XT ,Y T )
4: Assign the second row of M to a row vector with m entries equal to 1 followed by n

entries equal to 0
5: Sort the columns of M ascending by the entries in the first row of M
6: Initialize integers cx, cy = 0 and vectors PX ,PY = 02d

7: for i = 1 to (m+ n) do
8: if M2,i = 1 then
9: cx = cx + 1
10: for j = 1 to 2d do
11: k = 2j − 2

12: PX,j = PX,j +

(
cy
k

)(
n−cy
r−k

)(
n
r

) +

(
cy
k+1

)(
n−cy
r−k−1

)(
n
r

)
13: end for
14: else
15: cy = cy + 1
16: for j = 1 to 2d do
17: k = 2j − 2

18: PY ,j = PY ,j +

(
cx
k

)(
m−cx
r−k

)(
n
r

) +

(
cx
k+1

)(
m−cx
r−k−1

)(
m
r

)
19: end for
20: end if
21: end for
22: Assign PX = PX/m and PY = PY /n
23: Assign SX = (H2dPX)−1 and SY = (H2dPY )−1

24: Return the test statistic S = −ST
XSY
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0.3 Proofs on Limiting Distributions

The remainder of the supplementary materials is dedicated to proving Theorem 3 from the

main paper, which appears here as Theorem 0.7.

Lemma 0.1 (Orthogonality of the projection). Let U ∈ Rp be a random vector, and let

{Wi}Ni=1 be a collection of N independent observations. Define the projection Û = E[U ] +∑N
i=1 E[U − E[U ]|Wi]. Then

E[(U − Û)ÛT ] = 0p×p

Proof. This follows from expressing (U − Û)ÛT entry-wise and cancelling terms using prop-

erties of conditional expectation.

Lemma 0.2 (Closeness of the projection). Let {Wi}∞i=1 be an independent collection of

random variables. Let {UN}∞N=1 be a sequence of non-degenerate random vectors of length

p. For each N , define the projection ÛN = E[UN ] +
∑N

i=1 E[UN − E[UN ]|Wi]. Let Σ1,N =

Cov(UN) and Σ2,N = Cov(ÛN). If Σ1,NΣ
−1
2,N → I as N → ∞, then

Σ
− 1

2
1,N (UN − E[UN ])−Σ

− 1
2

2,N

(
ÛN − E[ÛN ]

)
p→ 0.

Proof. Note that the difference above has expectation 0. To show convergence in L2, it is

enough to show that the covariance matrix of this difference converges to 0. We have

Cov
(
Σ

− 1
2

1,N (UN − E[UN ])−Σ
− 1

2
2,N

(
ÛN − E[ÛN ]

))
= 2I −Σ

− 1
2

1,NCov(UN , ÛN)Σ
− 1

2
2,N −Σ

− 1
2

2,NCov(ÛN ,UN)Σ
− 1

2
1,N

= 2I −Σ
− 1

2
1,NΣ2,NΣ

− 1
2

2,N −Σ
− 1

2
2,NΣ2,NΣ

− 1
2

1,N (Lemma 1 and E[UN ] = E[ÛN)]

→ 0.
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Theorem 0.3. Let N = n +m, and assume that n,m → ∞ in such a way that m/N → λ

for some λ ∈ (0, 1). Define the cross-covariance matrices

ξi,j = Cov

(
k(X1, . . . ,Xr,Y1, . . . ,Ys),

k(X1, . . . ,Xi,X
′
i+1, . . . ,X

′
r,Y1, . . . ,Yj,Y

′
j+1, . . . ,Y

′
s )

)
.

If Σ = r2ξ1,0/λ+ s2ξ0,1/(1− λ) is invertible, then

√
N (U − θ)

d−→ N(0,Σ).

Proof. We use as a template the notation and technique of Van der Vaart (2000), which

handles the case where k is a scalar function. We are unable to find a reference for the case

of a two–sample vector–valued U -statistic, though such work is very likely to have been done

somewhere. Define

k1,0(x) = E[k(x, . . . ,Xr,Y1, . . . ,Ys)]− θ

k0,1(y) = E[k(X1, . . . ,Xr, y, . . . ,Ys)]− θ.

Simplifying conditional expectations, the projection of U − θ has form

Û :=
m∑
i=1

E[U − θ|Xi] +
n∑

j=1

E[U − θ|Yj]

=
m∑
i=1

(
m−1
r−1

)(
m
r

) k1,0(Xi) +
n∑

j=1

(
n−1
s−1

)(
n
s

) k0,1(Yj)

=
r

m

m∑
i=1

k1,0(Xi) +
s

n

n∑
j=1

k0,1(Yj).

Define the auto-covariance matrices Σ1 := Cov(U) and Σ2 := Cov(Û). Observe that

Cov(k1,0(Xi)) = ξ1,0 and Cov(k0,1(Yj)) = ξ0,1. Then based on the expression above and the
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mutual independence of all Xi and Yj, we can compute Σ2 =
r2

m
ξ1,0 +

s2

n
ξ0,1. From this, we

see that NΣ2 converges to r2ξ1,0/λ+ s2ξ0,1/(1− λ) as N → ∞.

In addition, expanding Cov(U) and counting terms gives

Σ1 =
1(

m
r

)2(n
s

)2 r∑
i=0

s∑
j=0

(
m

r

)(
r

i

)(
m− r

r − i

)(
n

s

)(
s

j

)(
n− s

s− j

)
ξi,j

=
1(

m
r

)(
n
s

) r∑
i=0

s∑
j=0

(
r

i

)(
m− r

r − i

)(
s

j

)(
n− s

s− j

)
ξi,j.

Examining this expression of Σ1, we see that the terms of highest order correspond to

(i, j) = (1, 0) and (i, j) = (0, 1). (In particular, ξ0,0 = 0 by independence.) From the form

of these two leading terms, it follows that NΣ1 converges to r2ξ1,0/λ + s2ξ0,1/(1 − λ), the

same limit as NΣ2.

As a result, the hypothesis of Lemma 2 is satisfied. Lemma 2 and Slutsky imply that
√
N(U − θ − Û)

p→ 0. By the multivariate CLT,

√
NÛ

d→ N

(
0, r2ξ1,0/λ+ s2ξ0,1/(1− λ)

)
,

which gives the desired result.

Theorem 0.4. If Σ = r2ξ1,0/λ+ s2ξ0,1/(1− λ) has rank q ≥ 1, then

√
N (U − θ)

d−→ N(0,Σ).

Proof. Recall from the proof of Theorem 0.3 that ξ1,0 and ξ0,1 can be written as auto-

covariance matrices of certain random vectors. As a result, Σ is positive semi-definite, and

N(0,Σ) is a well-defined distribution supported on a q-dimensional subspace H ⊆ Rp.

Let B be a p× q matrix whose columns form an orthonormal basis for H. In particular,

note that the nullspace of Σ is H⊥, which implies BBTΣ = ΣBBT = Σ. Now, observe that

BTZ is a non-degenerate distribution in Rq for Z ∼ N(0,Σ). As a result, Cov(BTZ) =
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BTΣB is positive definite, and Theorem 0.3 gives

BT
[√

N (U − θ)
]

d−→ N(0,BTΣB).

By the continuous mapping theorem, we have

BBT
[√

N (U − θ)
]

d−→ N(0,Σ).

To conclude the proof, we must show that BBT
[√

N (U − θ)
]
is close to

√
N (U − θ).

Let VN =
√
N (U − θ) and ΣN = Cov(VN). Note E[VN −BBTVN ] = 0, and

E[(VN −BBTVN)(VN −BBTVN)
T ]

= E
[
VNV

T
N −VNV

T
NBBT −BBTVNV

T
N +BBTVNV

T
NBBT

]
= ΣN −ΣT

NBBT −BBTΣN +BBTΣNBBT

→ 0.

Thus, VN −BBTVN
L2

−→ 0.

Recall that d ∈ N is the fixed binary depth and h : R× R2d+1−1 → R2d be given by

hk(x,y) =


1 if #{j : yj ≤ x} = 2k − 2 or 2k − 1

0 otherwise.

The following key lemma explains how PX can be expressed using h.

Lemma 0.3. With h as defined above, it holds that

1(
n

2d+1−1

)∑
β

h
(
x,Yβ1 ,Yβ2 , . . . ,Yβ

2d+1−1

)
= Algorithm 1(Y , d, x).

10



Consequently,

1

m
(

n
2d+1−1

)∑
i

∑
β

h
(
Xi,Yβ1 ,Yβ2 , . . . ,Yβ

2d+1−1

)
= PX .

Proof. To see the first equality, fix k ∈ {1, . . . , 2d}, and consider the kth coordinate of

Algorithm 1(Y , d, x). By definition, this is equal to the probability that after choosing

2d+1 − 1 random elements from Y without replacement, exactly 2k − 2 or 2k − 1 of these

elements will be less than or equal to x.

For each combination Yβ1 , . . . ,Yβ
2d+1−1

of elements from Y , the kth coordinate of

h
(
x,Yβ1 ,Yβ2 , . . . ,Yβ

2d+1−1

)

is an indicator of the event that 2k−2 or 2k−1 components of the combination Yβ1 , . . . ,Yβ
2d+1−1

are less than or equal to x. Thus, the average

1(
n

2d+1−1

)∑
β

hk

(
x,Yβ1 ,Yβ2 , . . . ,Yβ

2d+1−1

)

over all combinations β is precisely the probability that a randomly chosen combination will

contain 2k − 2 or 2k − 1 elements that are less than or equal to x.

The second equality follows from the definition of the vector PX .

For intuition on this result, we can look to the classic urn model. Consider an urn with

n balls: one red ball for each Yi ≤ x, and one black ball for each Yi > x. Subsampling

2d+1−1 points from Y is equivalent to drawing 2d+1−1 balls from the urn. In this case, the

kth coordinate of h is an indicator of the event that exactly 2k − 2 or 2k − 1 red balls were

drawn. By averaging hk over every possible combination of balls from the urn, we compute

the probability of this event. Computing the probability this way is inefficient compared to

the obvious hypergeometric approach, but this form ultimately allows us to write

SX

SY

 as

11



a U -statistic.

Theorem 0.5. There exists a kernel function

k : R2d+1−1 × R2d+1−1 → R2d−1 × R2d−1

such that

1(
m

2d+1−1

)(
n

2d+1−1

)∑
α

∑
β

k(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

) =

SX

SY

 .

Proof. Let g1 : R2d+1−1 × R2d+1−1 → R2d be given by

g1(x1, . . . , x2d+1−1, y1, . . . , y2d+1−1) =
2d+1−1∑
i=1

h(xi, y1, . . . , y2d+1−1).

For each combination β, g1 has the important property that

∑
α

g1(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

)

=

(
m− 1

2d+1 − 2

) m∑
i=1

h(Xi,Yβ1 , . . . ,Yβ
2d+1−1

).

This is because each Xi appears in
(

m−1
2d+1−2

)
combinations of length 2d+1−1 of elements from

X. Consequently, we have by Lemma 0.3

1(
m

2d+1−1

)(
n

2d+1−1

)∑
α

∑
β

g1(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

)

=

(
m−1

2d+1−2

)(
m

2d+1−1

)(
n

2d+1−1

) m∑
i=1

∑
β

h(Xi,Yβ1 , . . . ,Yβ
2d+1−1

)

=
2d+1 − 1

m
(

n
2d+1−1

) m∑
i=1

∑
β

h(Xi,Yβ1 , . . . ,Yβ
2d+1−1

)

= (2d+1 − 1)PX .
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Defining g2 : R2d+1−1 × R2d+1−1 → R2d to be

g2(x1, . . . , x2d+1−1, y1, . . . , y2d+1−1) =
2d+1−1∑
i=1

h(yi, x1, . . . , x2d+1−1),

an identical argument shows that

1(
m

2d+1−1

)(
n

2d+1−1

)∑
α

∑
β

g2(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

)

= (2d+1 − 1)PY .

We define g to be the concatenation of g1 and g2, namely

g =

g1

g2

 .

By our work with g1 and g2, we obtain

1(
n

2d+1−1

)(
m

2d+1−1

)∑
α

∑
β

g(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

)

= (2d+1 − 1)

PX

PY

 .

Let H̃2d denote H2d without its first row

(
1 1 . . . 1

)
. Define the kernel function k

in terms of g with

k =
1

2d+1 − 1

 H̃2d 0(2d−1)×2d

0(2d−1)×2d H̃2d

 g.
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As SX = H̃2dPX and SY = H̃2dPY , it follows that

1(
n

2d+1−1

)(
m

2d+1−1

)∑
α

∑
β

k(Xα1 , . . . ,Xα
2d+1−1

,Yβ1 , . . . ,Yβ
2d+1−1

) =

SX

SY

 .

Theorem 0.6. Suppose that we have univariate iid observations {Xi}mi=1 and {Yj}nj=1 under

the null. Let N = n + m, and assume that n,m → ∞ in such a way that m/N → λ for

some λ ∈ (0, 1). Then

√
N

SX

SY

 d−→ N(0,Σ).

Defining the cross-covariance matrices

ξi,j = Cov

(
k(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1),

k(X1, . . . ,Xi,X
′
i+1, . . . ,X

′
2d+1−1,Y1, . . . ,Yj,Y

′
j+1, . . . ,Y

′
2d+1−1)

)
,

the auto-covariance matrix Σ is given by

Σ = (2d+1 − 1)2 (ξ1,0/λ+ ξ0,1/(1− λ)) .

Proof. The asymptotic normality and limiting covariance are immediate consequences of

Theorems 0.4 and 0.5, provided we argue that

E[k(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1)] = 0

under the null.

Because the samplesX and Y come from the same distribution, the vectors h(X1,Y1, . . . ,Y2d+1−1)
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and h(Y1,X1, . . . ,X2d+1−1) are uniformly distributed over their support, which is the stan-

dard basis of R2d . As a result,

E[h(X1,Y1, . . . ,Y2d+1−1)] =


1
2d

...

1
2d


and

E[h(Y1,X1, . . . ,X2d+1−1)] =


1
2d

...

1
2d

 .

From the definition of k and linearity of expectation, the equalities above imply

E[k(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1)] = 0.

Finally, the following result appears as Theorem 3 in the main paper.

Theorem 0.7. Suppose that we have univariate, independent observations {Xi}mi=1 and

{Yj}nj=1, where Xi ∼ G and Yj ∼ F . Let N = n +m, and assume that n,m → ∞ in such

a way that m/N → λ for some λ ∈ (0, 1). Then

√
N


SX

SY

− µ

→ N(0,Σ)
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in distribution, where µ is

µ =

 H̃2d 0(2d−1)×2d

0(2d−1)×2d H̃2d

pF,G,

for pF,G =
(
pF :G
1 , . . . , pF :G

2d
, pG:F

1 , . . . , pG:F
2d

)T
. Defining the cross-covariance matrices

ξi,j = Cov

(
k(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1),

k(X1, . . . ,Xi,X
′
i+1, . . . ,X

′
2d+1−1,Y1, . . . ,Yj,Y

′
j+1, . . . ,Y

′
2d+1−1)

)
,

where expectations are taken under the alternative, the auto-covariance matrix Σ is

Σ = (2d+1 − 1)2 (ξ1,0/λ+ ξ0,1/(1− λ)) .

Proof. For each k ∈ {1, . . . , 2d}, define the function pFk : R → [0, 1] by

pFk (x) =

(
2d+1 − 1

2k − 2

)
F (x)2k−2(1− F (x))2

d+1−1−(2k−2)

+

(
2d+1 − 1

2k − 1

)
F (x)2k−1(1− F (x))2

d+1−1−(2k−1),

and similarly define pGk : R → [0, 1] by

pGk (x) =

(
2d+1 − 1

2k − 2

)
G(x)2k−2(1−G(x))2

d+1−1−(2k−2)

+

(
2d+1 − 1

2k − 1

)
G(x)2k−1(1−G(x))2

d+1−1−(2k−1).
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Further, define the quantities

pF :G
k =

∫
pFk (x)dG(x)

and

pG:F
k =

∫
pGk (x)dF (x).

Theorems 0.4 and 0.5 do the heavy lifting, provided we show that

µ = E[k(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1)]

under the alternative.

Recall that we wrote k in terms of the function g in Theorem 0.5:

k =
1

2d+1 − 1

 H̃2d 0(2d−1)×2d

0(2d−1)×2d H̃2d

 g.

As such, it is enough to show that

1

2d+1 − 1
E[g(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1)] =



pF :G
1

...

pF :G
2d

pG:F
1

...

pG:F
2d


.
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We proceed coordinate-wise. Fix k ∈ {1, . . . , 2d}. Using the definition of g, note that

1

2d+1 − 1
E [g(X1, . . . ,X2d+1−1,Y1, . . . ,Y2d+1−1)]k

=
1

2d+1 − 1
E

2d+1−1∑
i=1

hk(Xi,Y1, . . . ,Y2d+1−1)


= E[hk(X1,Y1, . . . ,Y2d+1−1)]

= P(#{i : Yi ≤ X1} ∈ {2k − 2, 2k − 1})

= EX1

[
P

(
#{i : Yi ≤ X1} ∈ {2k − 2, 2k − 1}

∣∣∣∣X1

)]
.

However, the conditional probability

P

(
#{i : Yi ≤ X1} ∈ {2k − 2, 2k − 1}

∣∣∣∣X1 = x

)

is precisely pFk (x), meaning that

EX1

[
P

(
#{i : Yi ≤ X1} ∈ {2k − 2, 2k − 1}

∣∣∣∣X1

)]
= EX1

[
pFk (X1)

]
= pF :G

k

= µk.

A similar argument holds for k ∈ {2d + 1, . . . , 2d+1} as well, giving the desired result.

0.4 Proof of Sensitivity to Non-uniform Moments

Here, we prove Theorem 4 from the main paper.

Theorem 0.8. Let t ≥ 1 be an integer, and assume the CDFs F and G are differentiable

and strictly increasing on R, with Q = G ◦ F−1. The following are equivalent:

1.
∫ (

2t−1
k

)
uk(1− u)2

t−1−kdQ(u) = 2−t for all integers k = 0, . . . , 2t − 1.
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2.
∫
ukdQ(u) = E[Uk] for all integers k = 0, . . . , 2t − 1, where U ∼ Unif[0, 1].

Proof. (2 ⇒ 1) For each k = 0, . . . , 2t−1, we know that
(
2t−1
k

)
uk(1−u)2

t−1−k is a polynomial

in u with degree 2t−1. Then by assumption, the integral of each monomial in the expansion

of
(
2t−1
k

)
uk(1−u)2

t−1−k is the same whether integrating with respect to dQ(u) or with respect

to the uniform measure on [0, 1]. Thus, for U following the uniform distribution,

∫ (
2t − 1

k

)
uk(1− u)2

t−1−kdQ(u) =

(
2t − 1

k

)
E[Uk(1− U)2

t−1−k]

=

(
2t − 1

k

)
Beta(k + 1, 2t − k)

=
(2t − 1)!

k!(2t − 1− k)!

k!(2t − 1− k)!

2t!

= 2−t.

(1 ⇒ 2) We proceed by strong induction in k, starting with the base case k = 2t − 1 and

working our way down. First, plugging in k = 2t−1, we immediately have
∫
u2t−1dQ(u) = 2−t

by assumption. Now, let v be a positive integer less than 2t − 1, and suppose we have∫
uwdQ(u) = E[Uw] for all integers v + 1 ≤ w ≤ 2t − 1. We wish to show that part 2 of the

theorem holds for the vth raw moment.

By assumption, we have
∫ (

2t−1
v

)
uv(1−u)2

t−1−vdQ(u) = 2−t. Expanding by the binomial

theorem, this means

2t−1∑
i=v

[
(−1)i−v

(
2t − 1

v

)(
2t − 1− v

i− v

)∫
uidQ(u)

]
= 2−t. (0.1)

For v + 1 ≤ i ≤ 2t − 1, we know
∫
uidQ(u) = E[U i]. Considering (0.1) as a linear system

with variable
∫
uvdQ(u), we see that the coefficient

(
2t−1
v

)
of
∫
uvdQ(u) is nonzero, so the

solution to (0.1) is unique. Moreover, by our work in the (2 ⇒ 1) direction of this proof, we

see that
∫
uvdQ(u) = E[U v] is a solution, and it must therefore be the unique solution.
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0.5 Additional Simulation Results

In this section, we provide additional empirical studies mentioned in the main text.

Figure 2: Comparison of power between AUGUST in red, Chen and Friedman (2017) in

green, energy distance in blue, Pan et al. (2018) in black, and Lopez-Paz and Oquab (2016)

in yellow. As found in lower dimensional studies, AUGUST’s power is generally lower at

location shift but higher at scale difference. Each method represents a tradeoff.
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Figure 3: Comparison of power between augmented CDF transformation versus standard

CDF transformation, both at a binary expansion depth of three.

Figure 4: Comparison of power by depth for two alternatives.
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Figure 5: Comparison of power for AUGUST across varying subsample sizes (r = 7, 15, 31),

all at a depth of d = 3.
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