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Abstract
Two-sample testing is a fundamental problem in statistics. While many powerful nonparametric methods exist for both

the univariate and multivariate context, it is comparatively less common to see a framework for determining which data
features lead to rejection of the null. In this paper, we propose a new nonparametric two-sample test named AUGUST,
which incorporates a framework for interpretation while maintaining power comparable to existing methods. AUGUST
tests for inequality in distribution up to a predetermined resolution using symmetry statistics from binary expansion.
Designed for univariate and low to moderate-dimensional multivariate data, this construction allows us to understand
distributional differences as a combination of fundamental orthogonal signals. Asymptotic theory for the test statistic
facilitates p-value computation and power analysis, and an efficient algorithm enables computation on large data sets. In
empirical studies, we show that our test has power comparable to that of popular existing methods, as well as greater
power in some circumstances. We illustrate the interpretability of our method using NBA shooting data.
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1. INTRODUCTION

1.1 Addressing the Two-sample Testing
Problem

Two-sample tests are one of the most frequently used
methods for statistical inference. While rooted in classi-
cal statistics, the two-sample problem is relevant to numer-
ous cutting-edge applications, including high-energy physics
[11], computer vision [14], and genome-wide expression anal-
ysis [36].

We begin with two samples X and Y , which may be
either univariate or multivariate. In the nonparametric set-
ting, we make minimal assumptions regarding the distribu-
tions F and G used to generate X and Y , as we test the null
hypothesis F = G. In Section 1.2, we discuss the landscape
of existing methods.

While we face no shortage of effective two-sample tests,
certain factors may hinder their real-world applicability. For
one, we find some nonparametric tests to be more parsimo-
nious than others against the range of potential alternatives.
Relatively speaking, a method may excel at detecting loca-
tion and scale shifts but struggle to catch bimodality when
mean and variance are held constant, as one example. We
explore this phenomenon in Section 5, showing that the rel-
ative performance of well-known univariate tests at detect-
ing a location shift can be reversed by a suitable choice of
distribution family. This is unintuitive, as one might expect
power against location alternatives to be nearly independent
of family.
∗Corresponding author.

Furthermore, many tests offer non-transparent rejections
of the null hypothesis. While data visualizations and sum-
mary statistics offer some degree of explanation for a test,
such analyses do not quantify the contribution of various
data features to the test’s rejection. For multivariate tests,
this problem is compounded, as distributional alternatives
may easily exceed human intuition for higher dimensions.

Here, we formulate a new nonparametric two-sample test
called AUGUST, an abbreviation of Augmented CDF for
Uniform Statistic Transformation. Our method explicitly
tests for multiple orthogonal sources of distributional in-
equality up to a predetermined resolution d, giving it power
against a wide range of alternatives. Upon rejection of the
null, both resolution control and decomposition into orthog-
onal signals allow for interpretation of how equality in dis-
tribution between X and Y has failed. To promote ease
of use, we provide asymptotic theory as well as algorithmic
optimizations.

1.2 Relatives and Further Reading
Some well-known rank-based tests are designed for the

univariate context, including [13, 27, 33]. Other approaches
explicitly refer to a distance between the empirical cumu-
lative distribution functions of X and Y . For instance,
[1, 12, 15, 26] are all widely known. The recent test of [16]
somewhat combines [1] and [15].

For nonparametric multivariate methods, the range of ap-
proaches is quite broad. Tests based on geometric graphs,
including [9, 10, 18, 39], have had considerable success [5].
Ball divergence [3, 36] and energy distance [2, 42] are also
popular names. Among the family of kernel-based tests are
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[11, 20, 21, 22, 25, 41, 44], while [4, 24, 35, 40] use general-
ized ranks. Additional recent work includes [6, 7, 28, 31].

As for interpretable methods, one line of work [25, 44]
proposes feature selection in the framework of maximum
mean discrepancy [21]. Similar in principle is [34]. The test
of [31] inherits the interpretability of the classifier on which
the test is based. These methods provide a global type of
interpretability, compared to the study of local significant
differences [17, 23]. To put AUGUST in context, we propose
that our method is more geometrical than feature-selecting
tests, but more global than local significant difference meth-
ods.

Regarding methodological relatives, the use of subsam-
pling has been considered for the two-sample location and
scale problems [32, 37, 38]. In addition, our method builds
on the binary expansion framework [45, 46], which has appli-
cations to resolution-based nonparametric models of depen-
dency [8]. Using an underlying binary expansion framework,
we furnish substantial methodological and algorithmic inno-
vations to yield a practical test in the two-sample context.

2. DERIVATION OF A STATISTIC

2.1 Motivation from the Probability Integral
Transformation

We begin by introducing our procedure in the context of
univariate data. Given independent samples {Xi}mi=1 and
{Yi}ni=1, where Xi ∼ G and Yi ∼ F , we are interested in
testing

H0 : F = G vs. Ha : F �= G.

For our purposes, we will assume that F and G are ab-
solutely continuous functions. We adopt boldface type in
{Xi}mi=1 and {Yi}ni=1 to indicate that these are collections
of random quantities. In addition, we use blackboard bold
P(A) to refer to the probability of an event A.

To begin, imagine a one-sample setting where we test
H0 : Xi ∼ F , with F known. It is a well-known result that
Xi ∼ F if and only if the transformed variables {F (Xi) : i ∈
[m]} follow a Uniform(0, 1) distribution. Given this fact, we
can test the goodness-of-fit of F by testing of the uniformity
of the collection {F (Xi) : i ∈ [m]}. Moreover, examining
how {F (Xi) : i ∈ [m]} fails to be uniform indicates why F
does not fit the distribution of X.

Returning to the two-sample setting, the same intuition
holds true: we might construct transformed variables that
are nearly uniform in [0, 1] when F = G, and that are not
uniform otherwise. When the distributions of the two sam-
ples are different, the way that uniformity fails should be
informative.

Given the fact that the transformed variables {G(Xi) :
i ∈ [m]} follow a uniform distribution, an intuitive choice
would be {F̂Y (Xi) : i ∈ [m]}, where F̂Y is the empirical

cumulative distribution function of Y :

F̂Y (t) =
1

n

n∑
i=1

I(Yi ≤ t).

The binary expansion testing framework introduced in [45]
provides a way to test {F̂Y (Xi) : i ∈ [m]} for uniformity
up to a given binary depth d, which is equivalent to testing
multinomial uniformity over dyadic fractions {1/2d, . . . , 1}.
In particular, we define the random vector P of length 2d

such that, for 1 ≤ i ≤ 2d,

Pi =

#

{
k : F̂Y (Xk) ∈

[
i−1
2d

, i
2d

)}

m
.

That is, P counts the number of transformed observations
falling in dyadic intervals of width 1/2d. The associated
vector S = H2dP is said to contain symmetry statistics,
where H2d is the Hadamard matrix of size 2d according
to Sylvester’s construction. As the top row of H2d con-
tains only ones, the first coordinate of S is always equal
to

∑2d

i=1 Pi = 1, and we may as well restrict our attention
to S−1, dropping the first component. As shown in [45], S−1

is a sufficient statistic for uniformity in the one sample set-
ting, and the binary expansion test based on S−1 achieves
the minimax rate in sample size required for power against
a wide variety of alternatives.

We can think of S−1 in a signal-processing context: the
Hadamard transform maps the vector of cell probabilities
P in the physical domain to the vector of symmetries S−1

in the frequency domain. This transformation is advanta-
geous since, in the one sample setting, the entries of S−1

have mean zero and are pairwise uncorrelated under the
null. As a result, fluctuations of S−1 away from 02d−1 un-
ambiguously support the alternative, and the coordinates
of S−1 are interpretable as orthogonal signals of nonunifor-
mity. Moreover, the vector P always satisfies

∑2d

i=1 Pi = 1,
meaning that the mass of P is constrained to a (2d − 1)-
dimensional hyperplane in R

2d . In contrast, the vector S−1

is non-degenerate and summarizes the same information
about non-uniformity with greater efficiency. We elaborate
on the interpretability of S−1 in Section 2.4.

One possible choice of test statistic is the quantity S =
‖S−1‖22. A test based on S is essentially a χ2 test and has
decent power at detecting F �= G. However, we can sub-
stantially improve the power by modifying our construction
of P .

2.2 An Augmented Cumulative Distribution
Function

For our testing purposes, recall that we are only inter-
ested in the uniformity of {F̂Y (Xi), i ∈ [m]} up to bi-
nary depth d. The range of F̂Y (x) as a function of x com-
prises n + 1 possible values, namely, 0, 1/n, . . . , 1. How-
ever, in our construction of cell counts P , the collection
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{F̂Y (Xi), i ∈ [m]} is binned across 2d-many dyadic inter-
vals of depth d. Whenever 2d < m, some distinct values in
the range of F̂Y (·) correspond to the same dyadic interval
by the pigeonhole principle, which indicates that a coarser
transformation than F̂Y (·) should work at least as well, and
possibly better. Our approach is to consider transformed
variables F̂Y ∗(Xi) based on a small, random subsample Y ∗

of some size r from Y . The following discussion makes this
alternate process explicit. In addition, we comment on the
success of this approach in Section 4, and we include empir-
ical power comparisons against the non-subsampled trans-
formation F̂Y (·) in the supplementary materials.

Let Y ∗ be a random subsample from Y of size r =
2d+1 − 1. We explain this choice of r momentarily. For any
x ∈ R and integer 1 ≤ k ≤ 2d, let pk(x) be the probability,
conditional on Y , that either 2k − 2 or 2k − 1 elements of
Y ∗ are less than or equal to x. The probabilities pk(x) are
essentially hypergeometric and simple to compute:

pk(x) =

(
#{i:Yi≤x}

2k−2

)( #{i:Yi>x}
2d+1−1−(2k−2)

)
(

n
2d+1−1

)

+

(
#{i:Yi≤x}

2k−1

)( #{i:Yi>x}
2d+1−1−(2k−1)

)
(

n
2d+1−1

) .

Using the scalar function pk(·), we define the P : R → R
2d

such that, for each coordinate k,

Pk(x) = pk(x), for 1 ≤ k ≤ 2d.

It holds that F̂Y ∗(x) ∈
[
(k − 1)/2d, k/2d

]
when exactly 2k−

2 or 2k−1 subsampled elements in Y ∗ are less than or equal
to x. Therefore, we could equally say that for 1 ≤ k ≤ 2d,

Pk(x) = P

(
F̂Y ∗(x) ∈

[
k − 1

2d
,
k

2d

] ∣∣∣∣ Y
)
. (2.1)

It is in precisely this sense that P (x) can be considered an
augmented cumulative distribution function: instead of map-
ping x to a single value in the unit interval, x �→ P (x) maps
x to a distribution. Moreover, this characterization explains
the choice of subsample size r = 2d+1 − 1. Any r satisfy-
ing r = 2q − 1, q ≥ d, guarantees that the discrete random
variable F̂Y ∗(x) has the same number of point masses inside
every interval of the form

[
(k − 1)/2d, k/2d

]
. In Section 4,

we give further intuition behind the meaning of q, and in
the supplementary materials, we asses our default choice of
q = d+ 1 empirically.

To collect information about every Xi, we define the vec-
tor PX to be the average of all P (Xi):

PX =
1

m

m∑
i=1

P (Xi).

Given that the formula for pk(x) is computed from hyper-
geometric probabilities, we refer the coordinates of PX as

hypergeometric cell probabilities. Just as we expect the dis-
tribution of the transformed variables {F̂Y (Xi) : i ∈ [m]} to
be uniform under the null, we expect the mass of PX to be
nearly uniform over its coordinates. The vector of symme-
try statistics SX = (H2dPX)−1 quantifies non-uniformity
in PX .

Importantly, the cell probabilities in P (x) are computed
with reference to a subsampling procedure, but without ac-
tually subsampling. As the discussion above suggests, these
probabilities could indeed be approximated by a bootstrap
procedure: take many subsamples Y ∗ of size 2d+1 − 1 from
Y , compute F̂Y ∗(x) each time, and bin the results as cell
counts at intervals of 1/2d. The exact cell probabilities P (x)
derived above are the limiting values of this bootstrap pro-
cedure as the number of subsamples tends to infinity. The
following theorem makes this result explicit.

Theorem 1. Let Y be a fixed vector of length at least 2d+1,
and let x ∈ R. Consider the following bootstrap method for
computing a vector P ∗(x) using K subsamples from Y .

1. Take bootstrap subsamples Y ∗
k of size 2d+1 − 1 from Y

without replacement, for subsamples 1 ≤ k ≤ K.
2. Compute F̂Y ∗

k
(x), for subsamples 1 ≤ k ≤ K.

3. Set P ∗
i (x) = #

{
k : F̂Y ∗

k
(x) ∈

[
i−1
2d

, i
2d

)}
/K, for coor-

dinates 1 ≤ i ≤ 2d.
It follows that

P

(
lim

K→∞
P ∗(x) = P (x)

)
= 1,

where the probability is taken over the randomness of
the subsampling, and P (x) is the augmented cumulative
distribution function based on Y .

Theorem 1 shows that the hypergeometric cell probabil-
ities are equivalent to the limiting values of a certain boot-
strap procedure. Effectively, one could say that actual sub-
sampling is a valid way to approximate PX . In practice, it is
much faster to directly compute the limiting hypergeometric
probabilities. While the procedure described in this subsec-
tion is more complicated than the original approach from
Section 2.1, we achieve superior power using the augmented
cumulative distribution function introduced here, which we
illustrate empirically in the supplementary materials. In Sec-
tion 5, we provide comparisons of empirical power against
well-known nonparametric tests.

2.3 Distributional Difference as a Scalar
Quantity

To combine information on all forms of asymmetry, we
propose the statistic S = −ST

XSY , with SY defined analo-
gously to SX by reversing the roles of the two samples. First,
this choice of statistic has the advantage of treating the
X and Y samples symmetrically. This is desirable because
it would be counterintuitive for the value of S to change
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when the roles of X and Y are switched. In addition, this
statistic is a continuous function of the concatenated vec-
tor (ST

X ,ST
Y )T , and in Theorem 3, we state the asymptotic

distribution of (ST
X ,ST

Y )T in the case of univariate data.
For the multivariate AUGUST test, which is described in
Section 3.2, we use permutation for p-value calculation.

The negative sign in −ST
XSY comes from the fact that

SX and SY typically have opposite signs in the case of
distributional difference, and we wish the critical values of
S to be positive. The proposition below gives intuition for
this phenomenon in the context of a location shift.

Proposition 1. Let m,n ≥ 2d+1, and suppose {Xi}mi=1

and {Yj}nj=1 satisfy maxi{Xi} < minj{Yj}. Then cos(θ) =

−(2d − 1)−1, where θ is the angle between SX and SY as
vectors in R

2d−1.

Informally, we could say the following: if X is to the left of
Y , then Y is to the right of X, and the symmetry statistic
detecting left/right imbalance will be positive in SX and
negative in SY . As shown in Section 5, the negative inner
product −ST

XSY gives good power against a wide range
of distributional alternatives. In addition, see Section 4 for
exploration of the asymptotic properties of (ST

X ,ST
Y )T .

2.4 Interpretation of the Results
One may use entries of SX and SY to interpret the out-

come of the AUGUST test based on S. With respect to SX ,
the sample Y serves as the reference sample, meaning that
information from SX allows us to make statements about
how points of X fall relative to the distribution of Y . Each
entry in the vector SX describes the non-uniformity of PX

with respect to a row of H2d . In particular, the largest en-
tries of SX in absolute value tell us the sources of greatest
asymmetry in PX .

Before performing the test based on S, we must first
choose some resolution d, which determines the scale on
which the test will be sensitive. For convenience, let H̃2d de-
note the Hadamard matrix of size 2d according to Sylvester’s
construction, without the first row, which is a row of all ones.
Now, the depth d = 1 is sensitive primarily left/right im-
balance. When d = 1, the 21 = 2 entries of PX roughly
correspond to the fraction of the X sample falling above
or below the median of Y . In this case, the only symmetry
statistic is the product of H̃2 =

(
1 −1

)
with PX , namely

the difference between the two components of PX .
For d = 2, both

(
1 1 −1 −1

)
and

(
1 −1 −1 1

)
are (necessarily orthogonal) rows of H̃4. When multiplied by
PX , the first of these rows produces a statistic for left/right
imbalance, similar to the d = 1 case, while the latter row
detects differences in scale. Larger values of d detect more
granular varieties of imbalance. We use a depth of d = 2 in
our real data example, and d = 3 in simulated power com-
parisons. (See the supplementary materials for an empirical
comparison across depths.) In [46], it is shown that a depth
of d = 3 is sufficient for a symmetry statistic-based test of

independence to outperform both distance correlation and
the F -test, which are known to be optimal, in detecting cor-
relation in bivariate normal distributions.

Higher depths d > 3 can be useful for alternatives that are
extremely close in the Kolmogorov–Smirnov metric but have
densities that are bounded apart in the uniform norm. As
one example, we may have X sampled from Uniform(0, 1)
and Y sampled from a high frequency square wave distribu-
tion with the same support. In Section 6, we use symmetry
statistics in visualizations of NBA shooting data. As an ad-
ditional example, a step-by-step interpretation on simulated
data is provided in the supplementary materials.

3. COMPUTATIONAL CONSIDERATIONS
3.1 Algorithms for the Univariate Statistic

Below, Algorithms 1 and 2 formalize the steps to calcu-
lating the AUGUST statistic outlined in earlier sections. In
terms of prior notation, Algorithm 1 computes the vector
P (x), and Algorithm 2 calculates the overall test statis-
tic S = −ST

XSY . Recall that we use H2d to refer to the
Hadamard matrix of size 2d according to Sylvester’s con-
struction, and for a matrix M, we use (M)−1 to refer to M
without its first row.

Algorithm 1 Augmented CDF(V, d, x).
Initialize zero vector P of length 2d

Set N = length(V ), n = 2d+1 − 1, K = #{i : Vi ≤ x}, k = 0
for i = 1, . . . , 2d do

k ← 2i− 2
Pi ←

(
K
k

)(
N−K
n−k

)
/
(
N
n

)
+

(
K

k+1

)(
N−K
n−k−1

)
/
(
N
n

)

end for
Return P

Algorithm 2 AUGUST(X,Y, d).
Initialize zero vectors PX , PY , V of length 2d

for i = 1, . . . , length(X) do
V ← Algorithm 1(Y, d,Xi)
PX ← PX + V/length(X)

end for
for i = 1, . . . , length(Y ) do

V ← Algorithm 1(X, d, Yi)
PY ← PY + V/length(Y )

end for
SX ← (H2dPX)−1

SY ← (H2dPY )−1

Return S = −ST
XSY

The two samples X and Y have sizes m and n, re-
spectively. Treating d as a constant, Algorithm 2 requires
O(mn) elementary operations. This is due to the calcula-
tion of K = #{i : Vi ≤ x} in the Algorithm 1, which
necessitates iterating over all entries of V each time that
Algorithm 1(V , d, x) is called.
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However, by first sorting the concatenated X and Y sam-
ples, it is possible to reduce the running time to O((m +
n) log(m+ n)) operations.

Theorem 2. There exists an algorithm for calculating the
exact test statistic S that requires O((m + n) log(m + n))
elementary operations.

This improved algorithm, named AUGUST+, is stated
explicitly in the supplementary materials. The time com-
plexity is asymptotically equivalent to that of an efficient
sorting algorithm applied to the concatenated data. The
constant factor in this comparison depends on the resolu-
tion d, which is assumed constant in Theorem 2. In terms
of storage, the AUGUST+ algorithm defines only one array
whose length depends on m and n. This array has dimension
2× (m+ n), meaning the space requirement is linear in the
combined sample size. In Section 6, we use this algorithm
to perform our two-sample test on a large data set on the
order of 106 observations.

3.2 Multivariate Extension
With an appropriate transformation, we can extend the

univariate test to the problem of multivariate two-sample
testing. For the purposes of this subsection, let X =
{Xi}mi=1 be an independent sample from multivariate distri-
bution G, and let Y = {Yj}nj=1 be an independent sample
from multivariate distribution F , with F and G defined on
R

k and k ≥ 2. We adapt an approach that could be appro-
priately named mutual Mahalanobis distance.

Given a mean μ ∈ R
k and invertible k × k covariance

matrix Σ, recall that the Mahalanobis distance of x ∈ R
k

from μ with respect to Σ is

MD(x;μ,Σ) =
[
(x− μ)TΣ−1(x− μ)

]1/2
.

Let μ̂X and Σ̂X be the sample mean and sample covariance
matrix of X, where we assume Σ̂X is nonsingular. Consider
the transformed collections

X̃(X) =
{
MD(Xi; μ̂X , Σ̂X) : 1 ≤ i ≤ m

}

Ỹ (X) =
{
MD(Yj ; μ̂X , Σ̂X) : 1 ≤ j ≤ n

}
,

where the superscript (X) indicates that means and covari-
ances are estimated using the X sample. If X and Y come
from the same multivariate distribution, then the collections
X̃(X) and Ỹ (X) should have similar univariate distribu-
tions. As a result, at a given depth d, it is reasonable to
test the univariate samples X̃(X) and Ỹ (X) as an assess-
ment of the distributional equality of the multivariate sam-
ples X and Y . Our choice of Mahalanobis distance is also
motivated by the wide class of nonparametric tests based on
data depth, particularly Mahalanobis depth [5, 30].

From the univariate method, recall that vectors of sym-
metry statistics quantify regions of imbalance between the

univariate samples, as imbalances in distribution appear as
non-uniformity in the vector of cell probabilities. Under a
Mahalanobis distance transformation, cells in the domain of
X̃(X) and Ỹ (X) correspond to nested elliptical rings cen-
tered on μ̂X . This principle extends interpretability of sym-
metry statistics to the multivariate case.

As in the univariate case, it is desirable for the test statis-
tic to be invariant to the transposition of X and Y . To
achieve this, we can use the statistic

Smulti = max
(
AUGUST

(
X̃(X), Ỹ (X), d

)
,

AUGUST
(
X̃(Y ), Ỹ (Y ), d

))

wherein we use both possible Mahalanobis distance transfor-
mations for X and Y , compute two test statistics, and take
the maximum. Aside from ensuring transposition invariance,
the simultaneous use of the two test statistics is important
for detecting some asymmetric alternatives. As a contrived
example, take k = 2; suppose X comprises m indepen-
dent samples of the bivariate standard normal (Z1, Z2)

T ∼
N2(0, I2), while Y comprises n independent samples of
2−1/2(χ2, χ2)

T , where χ2 follows a chi distribution with two
degrees of freedom. In this case, both MD((Z1, Z2)

T ; 0, I2)
and MD(2−1/2(χ2, χ2)

T ; 0, I2) follow a chi distribution with
two degrees of freedom, which indicates that the test
based solely on AUGUST

(
X̃(X), Ỹ (X), d

)
is powerless.

(In this highly degenerate situation, the transposed statis-
tic AUGUST

(
X̃(Y ), Ỹ (Y ), d

)
is technically undefined, be-

cause Y has no variance in the (1,−1)T direction.)
In practice, we calculate p-values for the multivariate

statistic using permutation. While this current necessity sac-
rifices the computational advantage of the asymptotic result
Theorem 3, the multivariate method may nonetheless take
advantage of Theorem 2, as it is built upon the univariate
procedure. As we show in Section 5, a depth of d = 2 is suf-
ficiently large to detect common multivariate alternatives
with empirical power comparable to existing tests.

4. DISTRIBUTIONAL INSIGHTS
To simplify p-value calculation and simulation analysis,

we provide theoretical results regarding the univariate pro-
cedure outlined in Section 3.1. These asymptotic insights
follow from the adaptation of classical U -statistic theory.
For each k ∈ {1, . . . , 2d}, define the function pFk : R → [0, 1]
by

pFk (x) =

(
2d+1 − 1

2k − 2

)
F (x)2k−2(1− F (x))2

d+1−1−(2k−2)

+

(
2d+1 − 1

2k − 1

)
F (x)2k−1(1− F (x))2

d+1−1−(2k−1),

with pGk : R → [0, 1] defined analogously. These func-
tions can be thought of as theoretical analogs of the data-
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dependent probabilities pk(x) from Section 2.2. Further, de-
fine the integrated quantities

pF :G
k =

∫
pFk (x)dG(x), pG:F

k =

∫
pGk (x)dF (x).

For reasons that will soon be apparent, we refer to pF :G
k and

pG:F
k as the limiting cell probabilities of AUGUST.

Theorem 3. Suppose that {Xi}mi=1 and {Yj}nj=1 are inde-
pendent univariate observations, where Xi ∼ G and Yj ∼ F
for continuous distributions G, F . Let N = n+m, and as-
sume that n,m → ∞ in such a way that m/N → λ for some
λ ∈ (0, 1). Then

N1/2

((
SX

SY

)
− μ

)
→ N(02d+1−2,Σ)

in distribution, where

μ =

(
H̃2d 0(2d−1)×2d

0(2d−1)×2d H̃2d

)
pF,G

for pF,G =
(
pF :G
1 , . . . , pF :G

2d , pG:F
1 , . . . , pG:F

2d

)T , and Σ is a
matrix depending on λ, d, F , and G.

Because the exact form of Σ is notation-intensive, we
state it in the supplementary materials. In light of the above
result, given distributions F , G, it is possible to compute the
limit in probability of the symmetry statistics (SX ,SY )

T .
This limit μ encodes asymmetry at the population level,
analogous to how (SX ,SY )

T encodes asymmetry between
the finite samples X and Y . Moreover, using this theorem,
one can efficiently simulate the test statistic S under the
alternative, yielding a benchmark against a predetermined
F �= G in large samples. In applications that require an a
priori power analysis, this approach could simplify the pro-
cess of determining the sample size necessary for detecting
a given effect.

Building on these ideas, the limit μ indicates a small
framework for understanding how symmetry statistics en-
code distributional differences. This principle helps explain
AUGUST’s power against alternatives at each depth d.

For convenience with inverse functions, we assume the
CDFs F and G are differentiable and strictly increasing on
R, though similar reasoning applies under weaker conditions.
Let E denote the CDF of the uniform distribution on [0, 1].
By a change of variables,

pF :G
K =

∫ ∞

−∞
pFk (x)g(x)dx =

∫ 1

0

pEk (u)
g(F−1(u))

f(F−1(u))
du,

wherein all information about F and G is contained in the
likelihood ratio on the right. Moreover, for any other differ-
entiable and strictly increasing CDF H, we have

g ◦ F−1

f ◦ F−1
= (G ◦ F−1)′ =

(
(G ◦H−1) ◦ (F ◦H−1)−1

)′
,

which shows that the limit μ is invariant to such transfor-
mations of F and G. That is, (F,G) and (F ◦H−1, G◦H−1)
are in an equivalence class of distribution pairs whose sym-
metry statistics have the same limit. Defining Q = G ◦F−1,
we arrive at

pF :G
K =

∫ 1

0

pEk (u)q(u)du.

Asymmetry for the equivalence class of (F,G) is charac-
terized by the deviation of Q from the uniform distribu-
tion E. Similar transformation invariance properties (per-
haps phrased differently) are common among distribution-
free tests; for AUGUST, we can be quite specific about the
implications for Q. From the beginning of this section, re-
call that the population-level probability pFk (x) is the sum
of two binomial-like terms, and compare with the following
result.

Theorem 4. Let t ≥ 1 be an integer, and assume the CDFs
F and G are differentiable and strictly increasing on R, with
Q = G ◦ F−1. The following are equivalent:

1.
∫ (

2t−1
k

)
uk(1 − u)2

t−1−kdQ(u) = 2−t for all integers
k = 0, . . . , 2t − 1.

2.
∫
ukdQ(u) = E[Uk] for all integers k = 0, . . . , 2t − 1,

where U ∼ Unif[0, 1].

The importance of this theorem is as follows. In Sec-
tion 2.2, we define the data-dependent function pk(x) to
be the probability that 2k − 2 or 2k − 1 elements of the
subsampled Y ∗ are less than or equal to x, which reflects
the choice of resample size r = 2d+1 − 1. In the language
of equation (2.1), both pk(x) and pFk (x) are a sum of two
probability terms because the interval [(k−1)/2d, k/2d] con-
tains exactly two point masses of F̂Y ∗(x). If we instead select
r = 2d−1, then each dyadic interval at depth d contains only
one point mass of F̂Y (x), and the limiting cell probabilities
are instead

pF :G
k =

∫ (
2d − 1

k

)
F (x)k(1− F (x))2

d−1−kdG(x)

=

∫ (
2d − 1

k

)
uk(1− u)2

d−1−kdQ(u).

Symmetry statistics are nonzero precisely when the under-
lying cell probabilities are imbalanced. By Theorem 4, when
r = 2d − 1, these limiting probabilities are balanced exactly
when the first 2d − 1 raw moments of Q match the corre-
sponding raw moments of the uniform distribution.

From this perspective, fixing d while increasing r involves
higher moments of Q while nonetheless performing infer-
ence at a binary expansion depth of d. This would sug-
gest that with d fixed, increasing r gives superior perfor-
mance on more peculiar alternatives while overcomplicat-
ing simple cases, like location shift. We observe exactly
this phenomenon in empirical studies, which we include
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in the supplementary materials. Our standard choice of
r = 2d+1 − 1 represents a compromise between these two
competing forces.

We conclude by remarking that as a heuristic, this dis-
cussion is relevant to interpreting the multivariate version
of AUGUST, whose symmetry statistics measure imbalance
in the transformed collections X̃(X) and Ỹ (X). Alternative
transformations to Mahalanobis distance may yield more
suitable information for some applications, though building
off of the univariate test yields convenient intuition for the
parameters d and r.

5. EMPIRICAL PERFORMANCE
5.1 Univariate Performance

Here, we compare AUGUST to a sampling of other non-
parametric two-sample tests: Kolmogorov–Smirnov distance
[26], Wasserstein distance [15], energy distance [42], and the
recent DTS [16]. For these simulations, we use a sample size
of n = m = 128, and for our resolution-based test, we set
a depth of d = 3. For all tests, we use a p-value cutoff of
α = 0.05. Simulation results are graphed in Fig. 1.

The first two plots of Fig. 1 correspond to normal and
Laplace location alternatives, situations where differences in
the first distributional moment are most diagnostic. Third,
we have a symmetric beta versus asymmetric beta alterna-
tive, and fourth, we include a Laplace scale family. The last
two plots of Fig. 1 focus on families with identical first and
second moments: normal versus mean-centered gamma in
the fifth position, and standard normal versus symmetric,
variance-scaled normal mixture in the sixth. For this final
alternative distribution, samples are generated by first draw-
ing from a symmetric mixture of normals with unit variance
and then dividing by the theoretical standard deviation of
the mixture distribution.

For the location alternatives, the power of each method
depends on the shape of the distribution. DTS, Wasser-
stein, and energy distance tests perform slightly better
than ours for normal and beta distributions, and ours in
turn outperforms Kolmogorov–Smirnov. In contrast, for a
Laplace location shift, Kolmogorov–Smirnov outperforms
every test, with our test in second place and DTS last.
For the Laplace scale family, Kolmogorov–Smirnov performs
poorly, with DTS and our test leading. DTS has the edge
on the gamma skewness family, while we outperform all
other tests at detecting normal versus symmetric normal
mixture.

As expected, no single test performs best in all situa-
tions. Even for simple alternatives such as location families,
the precise shape of the distribution is highly influential
as to the tests’ relative performance. In fact, the perfor-
mance rankings of DTS, Wasserstein, energy distance, and
Kolmogorov–Smirnov in the Laplace location trials are ex-
actly reversed compared to the normal location trials. We
theorize that because the symmetry statistics SX and SY

Figure 1: Univariate comparison of power between AUGUST
in red, Kolmogorov–Smirnov distance in black, Wasserstein
distance in green, DTS in blue, and energy distance in
yellow. Our method performs comparably to existing ap-
proaches, with superior power in some circumstances.
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are weighted equally in every coordinate, AUGUST is very
parsimonious towards the range of potential alternatives. In
contrast, other univariate methods show relatively greater
sensitivity to location and scale shifts, but may be less ro-
bust against more obscure alternatives.

5.2 Multivariate Performance
In Fig. 2, we compare our multivariate resolution-based

test at depth d = 2 to some other well-known nonparametric
multivariate two-sample tests. We perform these simulations
in a low-dimensional context with k = 2, using sample size
n = m = 128 and cutoff α = 0.05. In particular, we again
consider the energy distance test of [42], as well as the clas-
sifier test of [31], the generalized edge-count method of [9],
and the ball divergence test of [36], where the choice of these
comparisons is inspired by [41]. For [9], we use a 5-minimum
spanning tree based on Euclidean interpoint distance.

We consider a variety of alternatives. In order:

1. N2(0, I2×2) vs. N2(center × 12, I2×2)
2. N2(0, I2×2) vs. N2(0, scale × I2×2)

3. N2

(
0,

(
1 0
0 1

))
vs. N2

(
0,

(
1 cov

cov 1

))

4. N2

(
0,

(
1 0
0 9

))
vs. RθN2

(
0,

(
1 0
0 9

))
, where Rθ is

the 2× 2 rotation matrix through an angle θ
5. exp (N2(0, I2×2)) vs. exp (N2(μ× 12, I2×2))
6. N2(0, I2×2) vs. (Z,B), where Z ∼ N(0, 1) and B in-

dependently follows the bimodal mixture distribution
from Section 5.1.

In Fig. 2, we see that the energy and ball divergence tests
dominate the other methods when mean shift is a factor
(i.e. in the normal location and log-normal families). On a
scale alternative, AUGUST has the best power, with ball
divergence at a close second. In contrast, for correlation,
rotation, and multimodal alternatives, the edge-count test
has superior power, with ball divergence and energy distance
coming at or near last place.

Overall, our test is robust against a wide range of pos-
sible alternatives, and it has particularly high performance
against a scale alternative, where it outperforms all other
methods considered. We theorize that, in part, this is be-
cause some of the other methods rely heavily on interpoint
distances. The scale alternative does not result in good sepa-
ration between X and Y , meaning that interpoint distances
are not as diagnostic as they would be in, say, a location
shift.

In the supplementary materials, we include additional
comparisons with k = 5 and k = 20, keeping the sample
size fixed with m = n = 128. Performance follows the same
general pattern as when k = 2: we lag against location al-
ternatives but are very strong at scale, with no universal
winner across all scenarios.

Figure 2: Multivariate comparison of power between AU-
GUST in red, [9] in green, energy distance in blue, [36] in
black, and [31] in yellow for two dimensions. Our method
has comparable power with existing methods, and it out-
performs all others against a scale alternative.



AUGUST: An Interpretable, Resolution-based Two-sample Test 9

6. A STUDY OF NBA SHOOTING DATA
We demonstrate the interpretability of AUGUST using

2015–2016 NBA play-by-play data.1 Consider the distribu-
tions of throw distances and angles from the net. Are these
distributions different for shots and misses? How about for
the first two quarters versus the last two quarters? To ad-
dress these questions, we acquired play-by-play data for the
2015-2016 NBA season. For each throw, the location of the
throw was recorded as a pair of x, y coordinates. These
coordinates were converted into a distance and angle from
the target net, using knowledge of NBA court dimensions.
This data processing yielded a data set on the order of 106
observations.

Data were split according to shots versus misses and early
game versus late game. Four separate AUGUST tests at a
depth of d = 2 were performed to analyze the distribution
of throw distances and angles. For shot vs. miss distance,
shot vs. miss angle, and early vs. late game distance, AU-
GUST reports p < 0.001, while for early vs. late game angle,
AUGUST returns p = 0.004. For comparison, Kolmogorov-
Smirnov yields the same result for the first three scenarios,
giving p = 0.086 for the fourth. DTS produces p = 0.033 for
the fourth.

To demonstrate interpretability, we provide visualizations
in Fig. 3 as alluded to in Section 2.4. Each histogram corre-
sponds to one of the two samples in the test: this reference
sample is indicated on the x-axis. The shaded rectangles
overlaid on these histograms illustrate the largest symmetry
statistic from the corresponding AUGUST test. For exam-
ple, the top plot corresponds to throw distance for shots ver-
sus misses. The histogram records the distribution of missed
throw distances.

Each plot in Fig. 3 yields a specific interpretation as to
the greatest distributional imbalance. From the top plot, we
see that successful throws tend to be closer to the net than
misses. Next, successful throws come from the side more
often than misses. Following that, throws early in the game
are more frequently from an intermediate distance than late
game throws. Finally, throws early in the game come more
frequently from the side than they do in the late game. The
second of these four is perhaps most counterintuitive, as
conventional wisdom suggests that throws from in front of
the net are more accurate than throws from the sides. This
apparent paradox comes from the fact that throws from the
sides are typically at a much closer range.

7. DISCUSSION
An important future direction involves refining the multi-

variate approach. The simulations of Section 2 speak solely
to low-dimensional contexts. We emphasize that other mul-
tivariate tests such as [9] enjoy remarkable power proper-
ties in growing dimensions. As such, accurate estimation
1Source: nbastuffer.com

Figure 3: Greatest asymmetries in NBA data. Successful
shots are closer to the net than missed shots and come from
more extreme angles. Shots in the early game come from a
more intermediate distance than in the late game, as well as
from more extreme angles.

of covariance matrices remains a hindrance to the mutual
Mahalanobis distance approach as the dimension k nears
a significant fraction of n. In a multivariate context, the
test of Section 3.2 serves as a useful starting point for fu-
ture multi-resolution methods [29], and future work will fo-

https://www.nbastuffer.com/
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cus on extending asymptotic theory in light of the Maha-
lanobis distance transformation, or other transformations.
Permutation, especially in the multivariate context, is fea-
sible but still costly. Repeated evaluations of the hypergeo-
metric probability mass function drive up the constant fac-
tor on the O((n + m) log(n +m)) running time, compared
to simpler methods of the same order, such as Kolmogorov-
Smirnov. Computational burdens could be eased by per-
forming inference across a carefully-selected range of bi-
nary depths. For example, as a multivariate test of de-
pendence, the coarse-to-fine sequential adaptive method of
[19] chooses a subset of available univariate tests at each
resolution using spatial knowledge of dependency struc-
tures.

The interpretability of our two-sample test also sheds
light on transformations of data from one distribution to the
other. This problem is a fundamental subject in transporta-
tion theory [43]. We plan to study this problem with recent
developments in multi-resolution nonparametric modeling
[8] to provide insights on the optimal transportation.

SUPPLEMENTARY MATERIAL
Supplementary material for AUGUST.
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