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Abstract
We consider the problem of developing flexible and parsimonious biomarker combinations for cancer early detection in

the presence of variable missingness at random. Motivated by the need to develop biomarker panels in a cross-institute
pancreatic cyst biomarker validation study, we propose logic-regression based methods for feature selection and construc-
tion of logic rules under a multiple imputation framework. We generate ensemble trees for classification decision, and
further select a single decision tree for simplicity and interpretability. We demonstrate superior performance of the pro-
posed methods compared to alternative methods based on complete-case data or single imputation. The methods are
applied to the pancreatic cyst data to estimate biomarker panels for pancreatic cysts subtype classification and malignant
potential prediction.

AMS 2000 subject classifications: 62P10.
keywords and phrases: Biomarker, Logic regression, Missing data.

1. INTRODUCTION
Biomarkers that can help detect cancers in early stage

hold great potential to enhance the practice of precision
medicine. The vast number of candidate biomarkers discov-
ered nowadays and the close collaboration between labs pro-
vide rich opportunities for researchers to combine multiple
markers across laboratories for improved diagnostic perfor-
mance compared to the use of a single marker. The research
in this paper is motivated by such a cross-lab collaborative
study: the Pancreatic Cyst Biomarker Validation (PCBV)
study. It is a collaborative effort among six research insti-
tutes that aims to validate biomarkers measured from cystic
fluid for pancreatic cysts subtype classification and malig-
nant potential prediction [16].

The task of developing biomarker panels for cancer early
detection is often complicated by missing data that might
arise due to study design or random mechanisms. As will
be described below, in the PCBV study there exists a
non-monotone missingness [15] with respect to the multi-
ple biomarkers, caused by the limited specimen available
from study participants. There is a critical need for efficient
methods to handle such a complex missingness in biomarker
panel development.

1.1 Motivating study
Pancreatic ductal adenocarcinoma (PDAC) occurs

through a progression of histologic precursor lesions that
can be microscopic (pancreatic intraepithelial neoplasia) or
∗Corresponding author.

macroscopic (mucinous pancreatic cysts), culminating in in-
vasive adenocarcinoma. Treatments against PDAC are more
effective when the disease is localized to the pancreas, and
therefore, resectable. This progression happens gradually
over time, spanning a period of 10 years in some cases. How-
ever, a large proportion of patients (∼85%) discover the dis-
ease only after it has spread outside of the pancreas, which
makes treatment options difficult.

The late detection of PDACs is due to a lack of effective
detection methods. Most current diagnostic evaluation for
PDAC occurs at the onset of symptoms suggestive of the
disease, a point at which the cancer has typically progressed.
Screening for PDAC among individuals without symptoms
is not a viable strategy because of the high false-positivity
rate, and the potential for administering treatments that are
not necessary.

Current efforts have thus focused on identifying a subset
of the population at an increased risk for preinvasive dis-
ease using a low-cost test using biomarkers. Thus, molecular
biomarkers with high specificity and sensitivity can be used
for early-stage pancreatic cancer detection, which can be fol-
lowed by a confirmation test using a (higher-cost) imaging
test in a two-stage strategy. The overall strategy would be
to use a combination of clinical, laboratory, and molecular
factors to select individuals that are eligible for surveillance,
and then to assay biomarker(s) at relatively low cost that
can be easily acquired from blood, saliva, or urine. Aside
from assessing individual biomarkers, it is also crucial to as-
sess the complementarity of disparate biomarkers. Two or
more biomarkers might work well together in combination,
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but to find such a relationship, the markers must be run
together on the same sample set.

While many cyst-fluid biomarkers have been retrospec-
tively evaluated on various patient cohorts, a comprehen-
sive and rigorous comparison of the top candidates has not
been performed. Hence, the Early Detection Research Net-
work (EDRN) has sponsored a large validation study with
the intention to advance pancreatic cyst biomarker develop-
ment to clinically available assays. This study makes use of
a reference set of cyst-fluid specimens that was assembled
using specimens from four different centers. All centers had
followed an EDRN SOP and contributed the samples to a
central site, from which aliquots were distributed blinded to
six laboratories that each ran their own biomarker assays.
This study can provide invaluable information about the
performance of the various cyst-fluid biomarkers that have
shown promise in previous studies.

Patients with mucinous pancreatic cysts are considered
separately because they have an identified precursor lesion,
and because mucinous pancreatic cysts are genetically dis-
tinct from the solid precursor lesions of pancreatic intraep-
ithelial neoplasia. Thus, we are interested in two different
analyses, analysis 1, which focuses on separating mucinous
from non-mucinous cysts, and analysis 2, which focuses on
separating cysts with advanced neoplasia from those with-
out.

The six laboratory centers, and the respective biomarkers
measured at each laboratory are given below:

1. John Hopkins University (JHU): Telomerase and
Methylated DNA

2. Stanford: Glucose and Amphiregulin
3. University of California at San Francisco (UCSF): Mean

Fluorescence Ratio GA Test
4. University of Pittsburgh Medical Center (UPMC): Mu-

cinous call, DNA sequencing assay (for example, Pan-
creaSeqV1, PancreaSeqV2)

5. Van Andel Institute: MUC3AC:WGA, MUC5AC:WGA
6. Washington University at St. Louis (WashU): mAb

Das-1

Measuring all biomarkers would require 1.1 ml cystic fluid
per person, but only 0.35 to 1.1 ml is available from each
participant in PCBV. Volume of cystic fluid available from
60% study participants is less than 1.1 ml. To accommo-
date this limited specimen volume issue, statisticians from
the EDRN Data Management and Coordinating Center de-
signed a random sample allocation scheme to randomly se-
lect a subset of labs to receive the participant’s specimen
for each participant with less than 1.1 ml cystic fluid. This
random specimen allocation algorithm results in missing-
ness in biomarker measurement among labs selected to not
receive the specimen. The resulting biomarker data has a
non-monotone missingness pattern (i.e. there is no “nested
pattern of missingness” — meaning observing a variable Xk

implies observing Xj for any j < k) [15]; Among the 321

study participants, only ∼18% of participants have all mark-
ers measured. A naive panel development using the subset
with complete data would have substantial information loss
and potential bias by discarding samples with partial mea-
surements. Non-monotone missingness also creates a unique
challenge in developing coherent models and practical esti-
mation procedures for the missingness mechanism.

While missing data has long plagued association stud-
ies, research is fairly limited for evaluating a biomarker or
panel’s classification performance. We consider a missing-
ness at random (MAR) [15] mechanism in this paper that re-
quires the missingness depends only on observed data. MAR
in cancer early detection setting can happen due to sam-
pling scheme (e.g. case/control sampling to save cost) and
specimen allocation scheme to handle limited specimen vol-
ume. Missingness in the motivating PCBV application falls
into the latter category; MAR is a reasonable assumption in
PCBV since the probability of measuring a biomarker from
an individual depends on that individual’s specimen volume.
Most existing research addresses the evaluation of a single
biomarker when missingness occurs for only one variable.
Weighting and multiple imputation are common strategies
for handling MAR. In the weighting paradigm, the inverse
probability weighted (IPW) [12] and the augmented IPW
(AIPW) [22] estimators have been proposed for biomarkers
obtained in two-phase sampling designs [3, 21, 13, 26] and
for handling verification bias [11, 29, 19, 23]. However, IPW
(AIPW) weighting based on participants with complete in-
formation is not efficient for handling general missingness,
especially non-monotone missingess, by discarding informa-
tion from participants with partially measured data.

We therefore in this paper propose methods for biomarker
panel development based on the multiple imputation (MI)
framework [28, 10]. In MI, multiple complete datasets are
imputed based on modeling of the missing data conditional
on observed variables; parameter estimates are obtained
from each imputed dataset and then combined. MI has
been utilized in many existing works on evaluating classi-
fication performance of a biomarker when a univariate vari-
able (marker or disease status) is missing (e.g. [18, 9, 5]).
For panel development based on features selected from mul-
tiple biomarkers with missing data, MI has been used for
development of linear marker combinations utilizing step-
wise [27] or penalized [4, 25, 17, 30] approaches. However,
most cancers (including pancreatic cancer) are heteroge-
neous: The increased variability in cases vs. controls cannot
be accounted for by simple linear marker combinations. An
alternative framework often considered in the applied liter-
ature for combining biomarkers in a binary test is the use of
logic rules [1, 6, 14], e.g. the “OR/AND” rules that consider
the combination to be the set of “or-and” combinations of
positivity of each marker [7]. In particular, to declare an
individual as disease positive, the OR combination of two
markers requires either marker test to be positive whereas
the AND combination of two markers requires both marker
tests to be positive.
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In the PCBV application, a set of binary tests based on
individual biomarker values have been provided by each lab
based on pre-specified threshold values. One question the
team wanted to address is whether these cross-lab binary
tests interact and complement each other in differentiating
mucinous from non-mucinous cysts and in determining ma-
lignant potential of cysts. In particular, it is of interest to de-
velop parsimonious logic rules based on the multiple binary
markers/tests from PCBV study. To achieve this objective,
we propose new methods for feature selection and construc-
tion of logic rules with many candidate binary markers in the
presence of general missingness. Built on the MI framework
for dealing with missing data, our methods use the logic
regression [24] as the building block for combining binary
markers. Logic regression is an adaptive regression method-
ology that attempts to construct predictors as Boolean com-
binations of binary covariates in the entire space of such
combinations in order to optimize a performance measure
such as minimizing the misclassification rate. To estimate
a parsimonious model, we propose feature selection extend-
ing a bootstrap imputation and stability selection [17] idea
that was proposed earlier for deriving linear marker combi-
nations. Next we present details of the propose methods. We
then evaluate and compare the methods through simulation
studies and apply the proposed methods to developing logic
biomarker panels using the PCBV data.

2. METHODS
We consider a binary disease outcome D, with values 1

and 0 standing for diseased and non-diseased, respectively.
Let X = (X1, . . . , Xp) indicate biomarkers of dimension p.
In this paper, we consider X to be binary biomarkers as mea-
sured in the PCBV application. But the methods can be
straightforwardly extended to handle continuous biomark-
ers. We refer to Z = {D,X} as the complete-data unit. Sup-
pose there is missingness in the data with respect to Z and
let Δ = (Δ0, . . . ,Δp) ∈ {0, 1}p+1 be the missing data indi-
cator with Δ0 = 1 implying outcome is observed and Δj = 1
implying biomarker Xj is observed. Suppose a missingness
at random (MAR) assumption [15] holds such that the
missingness depends only on observed data, i.e. P (Δ|Z) =
P (Δ|Zobs), where Zobs = (Δ0D,Δ1X1, . . . ,ΔpXp). Our
goal is to develop logic-rule based biomarker panels con-
ditional on X to predict outcome D.

We adopt a logic regression model [24] for risk of D con-
ditional on X.

logitP (D = 1|X) = α0 + β1L1(X) + · · ·+ βqLq(X), (2.1)

which can be represented as the combination of q trees,
each corresponding to a Boolean function Lk(X), k =
1 . . . , q of X. This model allows interactions between
biomarkers to impact the risk of outcome. Boolean ex-
pression L combines the values and variables through
operations

∧
(AND),

∨
(OR), and c(NOT), e.g. L =

(X1

∧
X2)

∨
(X3

∧
X4)

∨
(Xc
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∧
X6). As presented in [24],

the fitting algorithm of logic regression requires pre-
specifying the number of trees (i.e. q), and more generally
one can select the number of trees with the data using tech-
niques such as cross-validation or randomization tests. In
this paper, we consider a single logic tree (i.e. q = 1) for
interpretability as investigators in PCBV study are inter-
ested in learning simple mechanisms about the interactions
between biomarkers on pancreatic cancer risk.

2.1 Bootstrap imputation and stability
selection

The process of measuring biomarker can be costly and/or
invasive, making it desirable to have a parsimonious set of
biomarkers with satisfactory performance. When a large of
candidate markers are present, we propose to first conduct
a bootstrap imputation and stability selection procedure to
pre-select a set of biomarkers from the candidates for con-
structing the logic rule.

Given a training data, our proposed procedure for select-
ing variables and constructing the logic tree is described as
following:

1. Generate M bootstrap datasets {Z(b)
obs, b = 1, . . . ,M}

based on the observed data Zobs, using nonparamet-
ric bootstrap that samples each participant’s data with
replacement stratified on case control status.

2. Conduct imputation for each bootstrap dataset Z
(b)
obs

using the Multiple Imputation by Chained Equations
(MICE) algorithm [10]. This leads to M bootstrap-
imputed dataset {Z(b) = (D(b),X(b)), b = 1, . . . ,M}.

3. Using the bth bootstrap imputed dataset Z(b), b =
1, . . . ,M , we apply the logic regression (R package
LogicReg) based on (2.1) with q = 1 and λ ∈ Λ to
construct a logic tree, with λ a tuning parameter indi-
cating the maximum number of leaves in a tree. This
step is repeated for all b = 1, . . . ,M bootstrap imputed
datasets and a grid of λ ∈ Λ. In our numerical studies,
we specify the range Λ so as to allow for 1–9 tree leaves
when p = 10, and around 1–12 tree leaves for p larger
than 10.

4. For each marker, we compute the probability the
marker was selected across the M bootstrap-imputed
dataset, for each λ ∈ Λ separately; those biomarkers
with maximum selection probability (across all λ ∈ Λ)
exceeding a threshold π ∈ (0, 1) would be included
in the final selected set. That is, let S

(b)
λ be the set

of markers included in the tree. We select the set
of biomarkers with selection probability exceeding π:
{j : maxλ∈Λ

∑M
b=1 I(j ∈ S

(b)
λ )/M ≥ π} out of the M

bootstrap-imputed data. Let’s denote the final selected
set of markers as Xπ.

5. Using the set of biomarkers selected in Step 4 and the M
bootstrap imputed datasets {Z(b)

π = (D(b),X
(b)
π ), b =
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1, . . . ,M}, we re-estimate a logic tree from each of these
bootstrap imputed datasets with default pruning.

6. The final classification is based on the classification
from the M new trees using the majority rule.

We call this method ‘MI w VS’.
Later in the simulation study, we will also consider a com-

parative method based on bootstrap imputed data without
prior stability selection, which we refer to as ‘MI w/o VS’. In
this comparative method, we generate M bootstrap imputed
datasets and then fit a logic regression to each dataset with
default pruning. Final classification is then based on the M
estimated logic trees using the majority rule.

Note that Step 4 of the proposed ‘MI w VS’ procedure re-
quires specification of a threshold parameter π for selection
probability. In a linear regression setting for stability se-
lection, [20] showed that stability selection results are very
similar for π ∈ (0.6, 0.9). In this work, we adopt a 5-fold
cross-validation procedure to select the optimal π from the
interval (0.4, 0.9). For a grid of values across this interval,
the following steps are repeated:

1. Data are randomly split into 5 groups stratified by
case/control status, 4 fold for training and the remain-
ing fold for testing.

2. The ‘MI w VS’ procedure is applied to the training
subset, and its performance is estimated in an imputed
version of the test subset.

3. Step 2 is then repeated over the different splits (5 in
total) of training and test data.

After repeating the above steps for all values of π in the grid,
the value π = πopt that obtains the best average perfor-
mance (based on Youden’s index) is chosen as the threshold
for applying the ‘MI w VS’ procedure to the full data.

2.2 Selecting a single representative logic tree
The ‘MI w VS’ method proposed above leads to a

biomarker panel based on ensemble trees. While ensemble
trees are generally expected to have better accuracy com-
pared to a single tree, the latter can be particularly appeal-
ing to lab researchers for its simplicity and interpretability.
We thus propose a further step at the end of the ‘MI w VS’
procedure to select a single logic tree from the M estimated
logic trees. In particular, for each of the estimated logic tree,
we compute its distance from the other M − 1 logic trees,
and we select the tree that has the smallest average dis-
tance from other trees as the “center” or representative of
the M trees. Classification result can then be directly ob-
tained from this selected tree.

One natural way to estimate the distance between two
logic trees is by calculating the Hamming distance [8] be-
tween their binary predictions for a given biomarker com-
bination (restricted to the features chosen as leaves in the
two trees), and then averaging over different combinations of
those biomarkers. In our case, we can use different combina-
tions of the selected biomarker measures, Xπopt , to calculate

the average distance. We consider two ways to average the
distance across various biomarker combinations: (i) For the
first method, we calculate the average across all possible
combinations of the final biomarker measures Xπopt , giving
equal weight to each biomarker combination. This procedure
does not require the use of observed data to characterize the
biomarker distribution, and we call this method ‘MI w VS-
Exhaustive’. (ii) For the second method, we compute the
average across observations of Xπopt in the actual data (af-
ter performing a single imputation step). Thus, it targets
weighting the distance according to the observed biomarker
distributions in the data, and we call this method ‘MI w
VS-Datadep’. In simulation studies, we have studied both
approaches for deriving the single logic tree.

This selected single logic tree will be useful to lab re-
searchers for understanding the interaction between differ-
ent biomarkers in affecting the risk of the outcome. Like in
Section 2.1, a 5-fold cross-validation procedure is first im-
plemented to identify the threshold π = πopt for optimal
prediction performance of ‘MI w VS-Exhaustive’ and ‘MI w
VS-Datadep’, and then we can apply these algorithms with
the chosen threshold πopt on the full data for constructing
a single logic tree.

3. SIMULATION STUDY
We consider a simulation study here that mimics the

PCBV study. We generate p ∈ {10, 20, 30} variables
(biomarkers), X1, X2, . . . , Xp ∼ Ber(0.5), and we let L =
(X1

∧
X2)

∨
(X3

∧
X4). The response D is generated as

D ∼ Ber(μ1) if L = 1 and D ∼ Ber(μ0) if L = 0. We
consider two scenarios:

1. High sensitivity scenario: with μ1 = 0.35 and μ0 = 0.01
2. High specificity scenario with μ1 = 0.98 and μ0 = 0.4

The prevalence rate of disease in the population is 0.66 when
μ1 = 0.98 and μ0 = 0.4, and is 0.16 when μ1 = 0.35 and
μ0 = 0.01. If the classification rule was based directly on
the knowledge of the oracle L, that is, predicting D = 1
when L = 1 and D = 0 when L = 0, we would have been
able to achieve a sensitivity of 96% and specificity of 66%
in Setting 1, and a sensitivity of 65% and specificity of 97%
in setting 2. Note that in the PCBV data (Section 1.1),
groups of biomarkers are evaluated together in a single lab-
oratory on a subset of trial participants, however, this subset
of evaluated participants differs between laboratories. Thus,
when considering biomarker data from different laborato-
ries together, we see that in the combined data, groups of
biomarkers are either available or missing jointly.

We consider a two phase study design in simulation,
where in phase 1, the response D is measured in everyone in
the trial consisting of 5000 participants, and then in phase
2, equal number N of cases (D = 1) and controls (D = 0)
are randomly sampled for biomarker measurement. Here,
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for phase 2 sampling of biomarker data, we consider differ-
ent scenarios of case-control sampling, such that N varies
between {50, 100, . . . , 250, 300}.

In our setup, biomarkers are evaluated at five different
laboratories, such that 20% of total biomarkers evaluated
are measured at a given laboratory (so 2 biomarkers mea-
sured together at each of the five laboratories when p = 10,
and 6 biomarkers measured together at each laboratory
when p = 30). In each of the first two labs, the biomarkers
measured at that lab are evaluated in 75% of total partici-
pants in phase two, and in each of the next three labs, they
are measured in 70% of total participants. Thus, as men-
tioned before, biomarker data measured in a given lab are
available together. We simulate in a way that on average, the
phase two data will contain 20% complete records, similar
to the PCBV data. The above constitutes our training data.
For evaluation of classification performance of our models,
we additionally simulate a test data with 5000 participants.

In this simulation study, we compared six different ap-
proaches for constructing the logic tree based panels. In
particular, we investigated the proposed multiple imputa-
tion based methods with feature selection, i.e. ‘MI w VS’,
‘MI w VS-Exhaustive’, and ‘MI w VS-Datadep’ methods for
π = πopt, as has been described in Section 2.

We also evaluated the comparative multiple imputation
based method without prior feature selection, i.e. ‘MI w/o
VS’. In addition, we applied logic regression (with default
tuning) to the data after a single imputation (called the ‘Sin-
gle imputation’ method) or to the complete data only (called
the ‘Complete Case’ analysis). We conducted 500 Monte-
Carlo simulations for each scenario, and recorded the classi-
fication performance of each method on the test dataset as
well as the feature selection performance of each method.

3.1 Results
In this section, we compare performance of the different

methods for the two settings, (i) Setting 1: high sensitivity
with μ1/μ0 = 0.35/0.01, (ii) Setting 2: high specificity with
μ1/μ0 = 0.98/0.4.

Classification performance results are presented in Fig-
ure 1 (for Setting 1) and Figure 3 (for Setting 2). We quan-
tify this performance in terms of (i) sensitivity (the top
panel), or probability of a positive prediction, conditioned
on truly being positive, and (ii) specificity (the bottom
panel), or probability of a negative prediction, conditioned
on truly being negative. Additionally, we present results for
feature selection performance of these methods in Figure 2
(for Setting 1) and Figure 4 (for Setting 2). We quantify
this performance also in terms of (i) sensitivity in feature se-
lection (top panel), probability that a variable (biomarker)
with true association with the outcome (X1, X2, X3 or X4 in
our simulation example) is correctly selected in the model,
and (ii) specificity in feature selection (bottom panel), prob-
ability that a variable (biomarker) with no association with
outcome (X5, . . . , Xp in our simulation example) is correctly

discarded from the model. We present these metrics as vary-
ing functions of N : N ∈ {50, 100, . . . , 250, 300}, the total
number of case-control units, separately for different values
of the covariate dimension p : p ∈ {10, 20, 30}. In all fig-
ures (Figures 1–4), we present error bars representing 95%
Confidence Intervals for the mean estimate of the respective
performance metric, assuming normal quantiles.

Our observations from Figure 1 (Classification perfor-
mance for Setting 1) are as follows:

1. In Setting 1, which is curated so that the models
show high sensitivity and relatively lower specificity,
we can see that sensitivity of the methods (proba-
bility of predicting a positive response among those
who are truly positive – shown in top panel in Fig-
ure 1) is highest (and nearly similar) for ‘MI w VS’,
‘MI w VS-Exhaustive’ and ‘MI w VS-Datadep’ (be-
tween 69%–96%), followed by ‘MI w/o VS’ (between
67%–96%), ‘Single imputation’ (between 65%–93%)
and ‘Complete case’ (between 53%–87%) respectively.
These differences are maintained for all values of p and
N , with the ‘Complete case’ analysis lagging behind
others quite considerably.

2. Prediction sensitivity of all methods increase with N
from 53%–75% for N = 50 to 80%–96% for N = 300.

3. The difference in sensitivity between the methods are
more pronounced for lower values of N , and slightly
more so for higher values of covariate dimension p, sug-
gesting that using multiple imputation with variable
selection is more effective when sample size is limited.

4. In Setting 1, specificity (probability of predicting a neg-
ative response among those who are truly negative –
shown in bottom panel of Figure 1) is lower than the es-
timated sensitivity for this setting for all methods and
all values of N and p (ranging between 54% to 69%
across methods and simulation scenarios).

5. For all methods except the ‘Complete case’ analysis,
specificity increases only slightly with N , but this in-
crease is slightly more pronounced for higher values
of p. At lower values of N (say N = 50), specificity
is lower for higher values of p (ranging from 65%–67%
for N = 50, p = 10, 60%–63% for N = 50, p = 30).
At higher values of N , variation is lower, and all four
methods perform similarly (around 66%–68%).

6. Specificity is particularly low for ‘Complete case’ anal-
ysis for lower values of N , but it increases gradually
with N , and performs similar to (and even slightly bet-
ter than) other methods for higher values of N , ranging
from 54%–58% at N = 50 to 68%–69% at N = 300.

In Setting 2, which is curated so that the models show
high specificity and lower sensitivity, the results are similar
as in Setting 1, however, for specificity instead of sensitivity.
In particular, we can observe the following from Figure 3
(Classification performance for Setting 2),
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Figure 1: High sensitivity setting, μ1/μ0 = 0.35/0.01 (Setting 1): Mean prediction performance and their 95%
Confidence Intervals (based on 500 Monte Carlo simulations) varying over different size of case-control sampling and
dimension of the Covariate space.

1. Performance (sensitivity and specificity) is similar for
‘MI w VS’ and ‘MI w VS-Exhaustive’, and ‘MI w VS-
Datadep’.

2. Specificity (shown in bottom panel of Figure 3) is con-
sistently higher for ‘MI w VS’, ‘MI w VS-Exhaustive’,
and ‘MI w VS-Datadep’ (ranging from around 70% for
N = 50, p = 30 to 78%–79% for N = 50, p = 10,
to around 97%–98% for N = 300 and all values of
p) followed by methods ‘MI w/o VS’ (68%–75% for
N = 50 to 96%–97% for N = 300), ‘Single imputation’
(66%–74% for N = 50 to 94%–96% for N = 300), and
finally ‘Complete case’ analysis (56%–60% for N = 50
to 80%–87% for N = 300).

3. The difference in specificity between MI with variable

selection methods (‘MI w VS’, ‘MI w VS-Exhaustive’,
and ‘MI w VS-Datadep’) and the rest is more pro-
nounced for moderate sizes of N ∈ {100, 250}, and less
so for lower values and higher values of N (N = 50 and
N = 300).

4. The complete case analysis yields the worst specificity
performance, which is more visible for smaller sample
size, but even persists for higher values of N .

5. Sensitivity of the methods (top panel of Figure 3) is
lower than the estimated specificity for this setting for
all methods and all values of N and p (ranging between
53% to 67% across methods and simulation scenarios).

6. For all methods except the ‘Complete case’ analysis, no
increase in sensitivity occurs with N for p = 10 (around
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Figure 2: High sensitivity setting, μ1/μ0 = 0.35/0.01 (Setting 1): Mean feature selection performance and their
95% Confidence Intervals (based on 500 Monte Carlo simulations) varying over different size of case-control sampling and
dimension of the Covariate space.

66%), and only slight increase is noted from N = 50 to
N = 100 for p = 20, 30 (ranging from 61%–64% for
N = 50 to 66%–67% for N = 100).

7. Methods ‘MI w/o VS’ and ‘Single imputation’ slightly
dominates the variable selection methods (‘MI w VS’,
‘MI w VS-Exhaustive’, and ‘MI w VS-Datadep’) in sen-
sitivity performance for p = 20, 30, but this difference
disappears for N > 200.

8. Sensitivity is particularly low for ‘Complete case’ anal-
ysis for lower values of N , but it increases gradually
with N , and performs similar to the other methods for
higher values of N , ranging from 53%–59% at N = 50
to 67% at N = 300.

In Figures 2 and 4, we present the results of feature
selection performance of these methods for the aforemen-
tioned settings. The observations are similar for both set-
tings, which we summarize below:

1. In terms of sensitivity in feature selection (top pan-
els of Figures 2 and 4), ‘Single imputation’, ‘MI w
VS-Exhaustive’ and ‘MI w VS-Datadep’ are the best
performing methods overall. These methods perform
equally well in most settings, except for N = 50 for
p = 30, when ‘Single imputation’ slightly dominates
the other two, but the difference is negligible.

2. ‘MI w VS’ is the next best performing method with
respect to sensitivity, and performs similar to the
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Figure 3: High specificity setting, μ1/μ0 = 0.98/0.4 (Setting 2): Mean prediction performance and their 95% Confi-
dence Intervals (based on 500 Monte Carlo simulations) varying over different size of case-control sampling and dimension
of the Covariate space.

aforementioned three (‘Single imputation’, ‘MI w VS-
Exhaustive’, and ‘MI w VS-Datadep’) for N ≥ 150. All
four methods attain near perfect score of 1 for N ≥ 200.

3. Finally, the ‘Complete case’ analysis is the worst per-
former overall, although performance gets better with
increasing N .

4. In terms of feature selection specificity (bottom panel of
Figures 2 and 4), ‘MI w VS-Exhaustive’ and ‘MI w VS-
Datadep’ are the best performing methods, considering
all scenarios of N and p, followed closely by ‘MI w VS’,
which slowly slightly lower specificity than the other
two for N ≤ 150 and p = 10. All these three methods
achieve near perfect score of 1 for N > 150 for p = 10,
and for all N when p = 20, 30.

5. Single imputation is the next best performing method
with respect to specificity, followed by ‘MI w/o VS’.
Complete case analysis is again the worst performing
method overall, with regards to this metric.

Overall, across all simulation scenarios that we have ex-
plored in our simulation exercise, π = πopt (optimized by 5
fold cross validation) was used when considering both clas-
sification performance and feature selection performance for
‘MI w VS’, ‘MI w VS-Exhaustive’, and ‘MI w VS-Datadep’.
Thus, in our real data example that we present below, we
have also evaluated π = πopt using a 10-fold cross-validation
and used that as the threshold metric for methods ‘MI w
VS’, ‘MI w VS-Exhaustive’, and ‘MI w VS-Datadep’.
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Figure 4: High specificity setting, μ1/μ0 = 0.98/0.4 (Setting 2): Mean feature selection performance and their 95%
Confidence Intervals (based on 500 Monte Carlo simulations) varying over different size of case-control sampling and
dimension of the Covariate space.

4. REAL DATA ANALYSIS
In this section, we present results from our analysis of

PCBV data using logic regression. The candidate biomark-
ers include 13 binary tests measured from the six research
labs. For analysis 1 of differentiating mucinous from non-
mucinous cysts, there are 209 cases and 95 controls, with
35 cases and 20 controls having full biomarker information.
For analysis 2 of detecting mucinous cysts with advanced
neoplasia, there are 62 cases and 239 controls, with 12 cases
and 42 controls having full biomarker information.

As in the simulation example, we quantify the classifica-
tion performance of each method in terms of (i) sensitiv-
ity, or probability of a positive prediction, conditioned on

truly being positive, and (ii) specificity, or probability of
a negative prediction, conditioned on truly being negative.
We compute the classification performance of the 6 differ-
ent methods using 10-fold cross-validation. Cross-validation
helps to reduce overfitting assess how the results of the anal-
ysis generalizes to an independent data set. Particularly, in
10-fold cross validation, we divide the available data into 10
near-equal parts (or folds), stratified by case/control status,
and then in each iteration, 9 out of 10 folds are used to
train the model, and the 10th fold is used as the test sub-
set to compute the model’s classification performance. The
cross-validated (CV) performance is then computed as the
average of the 10 performance estimates. We also construct
a bootstrap confidence interval for the CV performance es-
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Table 1. 10-fold cross-validated classification performance estimate and the corresponding 95% Wald Confidence Intervals
based on bootstrap standard errors (in parentheses) for the PCBV analysis, (i) Analysis 1: mucinous vs non-mucinous cysts,

(ii) Analysis 2: cysts with advanced neoplasia vs those without.

Method Analysis 1 Analysis 2
Sens. Spec. Sens. Spec.

Single imputation 0.904 0.817 0.477 0.921
(0.858, 0.949) (0.715, 0.92) (0.32, 0.633) (0.886, 0.956)

MI w/o VS 0.937 0.889 0.476 0.949
(0.901, 0.972) (0.809, 0.97) (0.304, 0.647) (0.928, 0.97)

MI w VS (π = πopt) 0.941 0.952 0.576 0.961
(0.901, 0.98) (0.865, 1) (0.393, 0.758) (0.941, 0.981)

MI w VS-Exhaustive (π = πopt) 0.922 0.944 0.576 0.954
(0.874, 0.97) (0.828, 1) (0.403, 0.75) (0.929, 0.98)

MI w VS-Datadep (π = πopt) 0.921 0.944 0.576 0.955
(0.872, 0.97) (0.832, 1) (0.406, 0.747) (0.929, 0.981)

Complete Case analysis 0.89 0.924 0.455 0.929
(0.81, 0.97) (0.817, 1) (0.175, 0.735) (0.846, 1)

Figure 5: Logic Tree fitted to classify mucinous vs non-
mucinous cysts using Method 4 (MI w VS-Exhaustive) on
observed PCBV data.

timate by enforcing an outer layer bootstrap stratified on
case/control status and repeat the process of CV perfor-
mance estimate for 500 times. We computed the bootstrap
standard error based on those 500 runs, and then construct
95% Wald Confidence Intervals.

The results are presented in Table 1. We summarize our
observations below:

1. ‘MI w VS’ is the best performing method overall for
both sensitivity and specificity across both analyses
(analysis 1 and 2).

2. ‘MI w VS-Exhaustive’ and ‘MI w VS-Datadep’ perform
similarly, but has slightly smaller sensitivity compared
to ‘MI w/o VS’ and ‘MI w VS’ for Analysis 1, and
slightly smaller specificity compared to ‘MI w/o VS’
and ‘MI w VS’ for Analysis 2. However, specificity for
these methods is considerably higher than ‘MI w/o VS’
for Analysis 1 (although slightly lower than ‘MI w VS’),
and similarly sensitivity for these methods is consider-
ably higher than ‘MI w/o VS’ for Analysis 2 (although
slightly lower than ‘MI w VS’).

3. Single imputation is the fifth best performing method,
with its classification performance slightly worse com-

Figure 6: Logic Tree fitted to classify cysts with advanced
neoplasia from those without using Method 4 (MI w VS-
Exhaustive) on observed PCBV data.

pared to all the multiple imputation methods.
4. Complete case analysis had worse sensitivity compared

to other methods for both Analysis 1 and 2; it also
had worse specificity compared to the multiple impu-
tation based methods for Analysis 2, and worse per-
formance than ‘MI w VS’ methods (‘MI w VS’, ‘MI w
VS-Exhaustive’, and ‘MI w VS-Datadep’) for Analy-
sis 1.

In each of Figures 5 and 6, we present the logic tree that was
fitted using ‘MI w VS-Exhaustive’ on the observed PCBV
data, as the single representative tree for the two classifica-
tion analyses: (i) Figure 5 showing the tree fitted for clas-
sifying mucinous vs non-mucinous cysts, and (ii) Figure 6
showing the tree fitted for classifying cysts with advanced
neoplasia from those without.

5. DISCUSSION
We have proposed new procedures for developing parsi-

monious logic-tree based nonlinear biomarker panels in the
presence of missing data under the MAR mechanism. Pan-
els developed using MI have better performance compared
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to using complete cases or single imputation; more impor-
tantly, while trees have an inherent feature selection ability
with pruning, an extra bootstrap imputation and stability
selection step can further improve performance with a more
parsimonious model. Moreover, we proposed two Hamming-
distance based procedures to select a single tree that best
represents the multiple trees based on the multiple imputed
dataset. The single tree selected has comparable classifi-
cation performance but greater interpretability, which can
help lab researchers to better understand the interactions
between different biomarkers as well as the mechanism of
their associations with the disease outcome, and thus help
guide the biomarkers’ further development.

Our methods in this paper utilize logic regression as
building block for handling binary tests and binary out-
come as needed in the motivating application. The pro-
posed framework can be extended to deal with continuous
biomarkers for either binary or linear outcome using other
tree-building algorithms such as the classification and re-
gression tree (CART) [2].
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