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Abstract
Non-inferiority (NI) clinical trials’ goal is to demonstrate that a new treatment is not worse than a standard of care by a

certain amount called margin. The choice of non-inferiority margin is not straightforward as it depends on historical data,
and clinical experts’ opinion. Knowing the “true”, objective clinical margin would be helpful for design and analysis of
non-inferiority trials, but it is not possible in practice. We propose to treat non-inferiority margin as missing information.
In order to recover an objective margin, we believe it is essential to conduct a survey among a group of representative
clinical experts. We introduce a novel framework, where data obtained from a survey are combined with NI trial data, so
that both an estimated clinically acceptable margin and its uncertainty are accounted for when claiming non-inferiority.
Through simulations, we compare several methods for implementing this framework. We believe the proposed framework
would lead to better informed decisions regarding new potentially non-inferior treatments and could help resolve current
practical issues related to the choice of the margin.

keywords and phrases: Incomplete data, Margin justification, Multiple imputation, Non-inferiority, Survey.

1. INTRODUCTION
While the number of non-inferiority (NI) clinical trials

continues to grow, design and analysis of such trials remains
challenging. Unlike superiority trials, where the goal is to
show that a new treatment is better than a control, NI trials
seek to demonstrate that a new treatment is not worse than
a standard therapy by an acceptable margin [10]. In order
to offset such acceptable loss of standard treatment effect, a
non-inferior agent is expected to offer other benefits, such as
less severe adverse events, improved drug adherence and/or
lower costs. NI trial design is usually considered when using
placebo is unethical, as delaying treatment with standard
care would cause irreversible health damage or death.

The choice of NI margin is not straightforward as it relies
heavily on both historical data, and clinical experts opinion
[5, 18]. As described by [10], at the first step, one needs to
determine the standard treatment effect over placebo (M1),
using usually a meta-analysis of historical data. Then, a clin-
ically acceptable margin (M2), which has to be strictly lower
than M1 is chosen by clinical experts. A common analysis
strategy for a NI trial is carried out using 95%–95% confi-
dence interval (CI) approach. The first 95% CI corresponds
to the lower/upper bound of the standard treatment effect
over placebo from meta-analysis of historical trials, while
the second 95% CI represents a comparison between the
new non-inferior treatment and standard of care in the cur-
rent NI trial [10]. The lower/upper bound of the later 95%
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CI is the one compared to M2 in order to determine non-
inferiority. This strategy is also called a “fixed margin” ap-
proach, due to the fact that the margin is set during the
design stage, and is used for the final inference of the study.

Although the determination of the margin has been ex-
tensively discussed in the literature [17, 14, 15, 24, 16, 13,
22], the reasons for choosing a specific margin remain poorly
reported in practice. According to systematic reviews of
published NI and equivalence trials, margin justification was
mentioned by 45.7%, 23%, 45%, 42.1% and 38% as reported
by [39, 34, 28, 2, 25] respectively. These findings underline
challenges associated with the choice of a margin for NI tri-
als. Obviously, just determination of M1 is very complex,
since historical data carries publication bias and the pre-
viously observed treatment effect embeds some level of un-
certainty. However, even if the standard treatment effect is
maintained in the current NI study and the study has assay
sensitivity, it is not clear how to choose one number M2, so
that it will be clinically acceptable. A legitimate question
that arises here is the degree of subjectivity of the margin
choice. Would it be sufficient to discuss the margin with only
one clinical expert? What if an investigator who conducts
an NI study reaches out to five clinical experts and they all
provide different opinions, how should these opinions be in-
corporated into the current practices of design and analysis
of the study?

If we can obtain opinions regarding a clinically acceptable
margin from all clinical experts, these will constitute to a
margin population. Within the margin population, there is
a “true”, objective M2, which for example, could be set as a
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mean opinion across all clinical experts. Knowing the “true”,
objective M2 would be extremely helpful for design and anal-
ysis of NI trials, however since the “true” margin cannot be
observed, we propose to treat it as missing information. We
believe that in order to make a proper inferences regarding
non-inferiority of the new treatment compared to a standard
of care, while minimizing subjectivity of the margin choice
it is imperative to conduct a survey upon clinical experts
in this regard. Such survey data can be used to make an
informed decision regarding NI of the new treatment.

In this paper, we present a general framework for com-
bining results from a clinical experts survey and NI study.
Ideally, the clinical experts survey should consists of a rep-
resentative sample of clinicians. Obviously, such assumption
could be violated in practice by either surveying a very small
number of clinicians, and/or by obtaining opinions of, for in-
stance, more conservative experts. If clinicians conservatism
or lack of thereof in respect to a clinical margin is related to
other data for the representative sample (professional or de-
mographic characteristics of the clinicians), such data could
then be utilized to achieve an objective NI decision. In or-
der to reach this goal, we propose to use multiple imputation
(MI) approach [30, 21] within the above framework.

MI is a principled approach and is known to handle well
incomplete data, a comprehensive review and general im-
plementation of MI can be found in [33, 12, 27]. Within our
framework, unobserved clinical experts opinions correspond
to incomplete data, while professional or demographic char-
acteristics correspond to the information used to impute the
unobserved opinions. If clinical experts opinions are indeed
related to their professional or demographic characteristics
then MI is expected to produce reliable inferences about the
parameter of interest, and therefore lead to an objective NI
decision.

In the Section 2 we present our novel framework, along
with simulation set-up for assessing performance of several
methods within the framework. Section 3 shows results of
the simulation, while Section 4 provides discussion and con-
clusions.

2. METHODS
2.1 Fraction Preservation as a Random

Variable
Let Yij ∼ Bernoulli(pi) be an occurrence of a favorable

event (such as healing from a disease) for subject j, in a
treatment group i. j = 1 . . . Ni, where Ni is a sample size
of group i and i = C, T represents control (or standard),
and new treatment respectively. pi is the true proportion of
favorable events in group i. The hypothesis of interest is of
the following form:

H0 : pC − pT ≥ M2 vs H1 : pC − pT < M2, (2.1)

where M2 is a clinically acceptable margin, which usually
constitutes a fraction of the previously observed control

treatment effect over placebo M1. In other words: M2 =
(1− λ)M1, where λ is the fraction of the control treatment
effect which clinical experts consider justifiable. We assume
that M1 has been determined based on historical studies
and is fixed at the time the non-inferiority trial is being de-
signed, and λ follows some distribution F with mean μλ and
variance σ2

λ. While for a known distribution F , any function
of random variable λ can be used to construct the null and
alternative hypotheses to test non-inferiority, we will focus
on μλ throughout this article, since population mean is a
commonly used parameter of interest in many practical sit-
uations. Following the notation above we can re-write the
hypothesis in (2.1) as:

H0 : pC − pT ≥(1− μλ)M1 vs H1 : pC − pT <(1− μλ)M1.
(2.2)

For a known population distribution F , we demonstrate
how the value of the margin could significantly impact study
design in terms of sample size calculation. A sample size
per treatment arm (n) can be calculated using the following
formula [3, 7, 19], while assuming 1:1 allocation ratio:

n =
(z1−α + z1−β)

2(pC(1− pC) + pT (1− pT ))

(pC − pT − (1− λ)M1)2
, (2.3)

where z1−α, z1−β are 1 − α, 1 − β quantiles of standard
normal distribution respectively. Specifically, α, 1− β rep-
resents desired levels of target type-I error and power respec-
tively. Under H0 in 2.1 and assuming equality for the true
proportions for both treatment groups pC = pT , given the
same type-I error and power, the difference between sample
size calculations for some value of λ = λ∗ and μλ will be
proportional to 1

(1−λ∗)2M2
1
− 1

(1−μλ)2M2
1
. This means that for

example, if pC = pT = 0.8, α = 2.5%, 1 − β = 85% and
μλ = 0.7, the sample size per arm using (2.3) for λ = μλ is
593, while for λ = 0.71 it would be 634, which correspond
to additional 82 subjects to be recruited to a study.

The scenario presented here, where the F and its parame-
ters are known is of course hypothetical and cannot happen
in practice. We use it in order to motivate the readers to
think about the fraction of the standard treatment effect as
of random variable. Next we discuss how F and it’s param-
eters could be estimated from a survey of clinical experts.

2.2 Estimating Fraction Preservation Though
a Survey

The distribution F and it’s parameters μλ, σ2
λ are con-

sidered unknown and ought to be estimated ideally from a
clinical experts survey conducted at the design stage of the
trial. We assume that in total K values of λ were collected
from clinicians: λ1, . . . , λK .

Assuming independence between the clinical expert sur-
vey data and the outcome variable in the non-inferiority
trial, a maximum likelihood estimates of pC , pT , and μλ
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are p̂C = 1
NC

∑NC

j=1 YCj , p̂T = 1
NT

∑NT

j=1 YTj and μ̂λ =
1
K

∑K
k=1 λk respectively.

Given a sufficiently large sample size per treatment arm,
the following approximate result holds:

p̂C − p̂T ∼ N

(
pC − pT ,

pC(1− pC)

nC
+

pT (1− pT )

nT

)
, (2.4)

where pC(1−pC)
nC

+ pT (1−pT )
nT

is the variance term, that can be
estimated by replacing pC , pT with p̂C , p̂T respectively.

Similarly, for a sufficiently large clinical experts survey,
the following approximate result holds too:

μ̂λ ∼ N

(
μλ,

σ2
λ

K

)
, (2.5)

where the variance term can be estimated by σ̂2
λ =

1
K−1

∑K
k=1(λk − μ̂λ)

2.
Using the above derivations, one can test the hypothesis

in (2.2) at α level, by comparing the bound UB of the upper
(1− α)100% CI with zero:

UB = p̂C − p̂T − (1− μ̂λ)M1

+ z1−α

√
p̂C(1− p̂C)

nC
+

p̂T (1− p̂T )

nT
+

M2
1 σ̂

2
λ

K
. (2.6)

If the quantity in (2.6) is smaller than zero, the null
hypothesis in (2.2) will be rejected and the new treat-
ment will be declared non-inferior to the standard of care.
This approach is in essence synthesis of the information be-
tween clinical experts opinions and the data in a new non-
inferiority trial. It corresponds to an objective determination
of new treatment’s non-inferiority, as it takes into account
opinions of the multiple clinical experts and the variability
associated with such.

The apparent issue with the above approach is that in
practice, it is reasonable to assume that K is small. There-
fore the sample of the observed clinical experts responses
might not be representative of the clinical experts popula-
tion, and the normal approximation in (2.5) may not hold.

Although it might be challenging to survey a large num-
ber of clinicians to obtain their opinion about λ, other in-
formation related to clinical experts opinions could be more
accessible (for example, number of years of treating a dis-
ease of interest or number of patients treated), and will be
determined as X for the rest of this paper. In general, X
can be a vector, here for simplicity we will assume that it
contains only one random variable. As a result we have a
dataset which contains a fully observed X and a partially
observed λ. This resembles a missing data problem, which
is thoroughly discussed in the next section.

2.3 Treating Fraction Preservation as Missing
Data

Observing all the values of λ from a representative sam-
ple of experts would be extremely helpful and would allow

proper use of (2.5), however such observation is unlikely to
happen in practice. As a result we propose to treat unob-
served values of λ as missing information. Given additional
variable X, which is observed for all the experts from a rep-
resentative sample, we can use MI procedure to properly
estimate μλ and σλ, which can then be used in (2.6).

For MI purposes, we define a quantity of interest Qλ =
μλ. We assume that for completely observed values of λ,
(Qλ − Q̂λ) ∼ N(0, Uλ), where Q̂λ is an estimate of Qλ and
Uλ is the variance of (Qλ− Q̂λ). Following a maximum like-
lihood approach: Q̂λ = μ̂λ and Uλ =

σ̂2
λ

K .
Following the classification and regression trees (CART)

imputation method developed by [4], we use completely ob-
served values of X to impute the incomplete data L times.
CART was chosen over a normal model imputation model
[30] due to its tendency to produce small mean squared er-
rors [1]. The imputations were produced using multiple im-
putation chained equations (MICE) [37]. As a result we have
L completed datasets, from which we calculate L pairs of es-
timates (Q̂

(l)
λ , U

(l)
λ ), (l = 1, . . . , L). Using Rubin’s rules, we

can then combine the L pairs of estimates to receive the
overall point estimate Q̄λ = 1

L

∑L
l=1 Q̂

(l)
λ , and variance esti-

mate Tλ = Ūλ+(1+ 1
L )Bλ, where Ūλ = 1

L

∑L
l=1 U

(l)
λ is within

imputation variance, and Bλ = 1
L−1

∑L
l=1(Q̂

(l)
λ − Q̄λ)

2 is
between imputation variance. Following this procedure, we
have (Qλ − Q̄λ)/

√
Tλ ∼ tνλ

, where νλ = (L − 1)(1 +
Ūλ

Bλ(1+1/L) )
2.

If the subject level data is fully observed, the μ̂λ and σ̂2
λ

K in
(2.6) are then replaced with Q̄λ and Tλ respectively. In addi-
tion the z1−α in (2.6) is replaced with an appropriate cut-off
value from a sum of normal and Student’s t-distribution us-
ing general purpose convolution algorithm with Fast Fourier
Transformation (FFT) [20, 31].

When the subject level data are incomplete, a separate
MI procedure should be applied for that data. For simplicity
we assume that the incomplete data follow ignorable miss-
ingness. Ignorable missingness is based on the following two
assumptions: 1) the incompleteness of the subject level data
was either completely random or related to the observed
study information, and 2) the parameter of interest in the
NI trial is independent from the missingness process param-
eter [21, 35]. We will now define an additional quantity of
interest QY = pC − pT , so that for completely observed
data (QY − Q̂Y ) ∼ N(0, UY ), where Q̂Y = p̂C − p̂T and
UY = UC − UT with Ui =

p̂i(1−p̂i)
ni

for i = C, T . Using a lo-
gistic regression model with MICE and observed covariates,
the incomplete data is imputed D times. Similarly to the
margin imputation described above, we will end up with D

pairs of estimates (Q̂
(d)
Y , U

(d)
Y ), (d = 1, . . . , D), which then

can be used in Rubin’s rules to calculate Q̄Y and TY follow-
ing similar steps as described above for the margin imputa-
tion. As a result we have: (QY − Q̄Y )/

√
TY ∼ tνY

, where νY
has a similar form as νλ above. Now, in addition to replac-
ing μ̂λ and σ̂2

λ

K with Q̄λ and Tλ in (2.6) respectively, we will
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also replace the p̂C − p̂T and p̂C(1−p̂C)
nC

+ p̂T (1−p̂T )
nT

in (2.6)
with Q̄Y and TY respectively. Also the z1−α is replaced with
an appropriate cut-off value from a sum of two Student’s t
distribution using the FFT algorithm.

2.4 Rates of Missing Information
Schafer [32] recommends calculating rates of missing in-

formation, while pointing out that such quantities could be
useful when evaluating the effect of the incomplete data on
the inferential uncertainty of the parameter of interest. In
our case the missingness is due to unobserved clinical ex-
perts opinions regarding λ, as well as due to unobserved
subject level data when the patient data are incomplete.

We estimated rates of missing information due to unob-
served λ as: γλ = Bλ

Bλ+Ūλ
, and rates of missing information

due to unobserved subject level data as γY = BY

BY +ŪY
[11].

Since, we assume that the two data sources are indepen-
dent, and the MI is done for each dataset separately, rather
than conditionally, the total rate of missing information was
defined as γ = γλ + γY .

2.5 Simulations Details
2.5.1 Subject Level Information Is Fully Observed

Suppose the overall population of physicians consists of
1000 medical doctors (MDs), who treat a specific condition.
Further, we assume that 300 of these MDs, representative of
the overall population, come to a clinical conference (K =
300), and that it is feasible for us to survey only 3% of them
(9 MDs). Also, we assume that years of experience treating
the condition are known for all the MDs, who come to the
conference.

Following the above notation, λk is a fraction preservation
of the control treatment effect over placebo for kth clinical
expert, also let Xk be a number of years that clinical expert
has been treating a condition of interest. Without loss of
generality we will drop the index k from the following ex-
planation. Assume that for any (λ,X) ∼ N2(μλ = 0.7, μX =
20, σλ = 0.12, σX = 7, ρ), where ρ ∈ (0.4, 0.7). The positive
correlation between X and λ indicates that more experi-
enced clinical experts are prone to be more conservative with
respect to the clinical margin choice. For brevity and due
to similarity between the results, we only present results for
ρ = 0.4. Let Rλk

be an indicator variable for whether λk was
observed (Rλk

= 1 means that clinician k did not participate
in the survey). Two scenarios of participation were consid-
ered: more experienced clinicians are more likely to partici-
pate in the survey, and a random sample from the K clini-
cians above. For the first scenario, the observed/unobserved
values of λ were assigned using P (Rλk

= 1|X > 20) = 0.95
and P (Rλk

= 1|X ≤ 20) = 0.99, while for the second sce-
nario P (Rλk

= 1|X > 20) = P (Rλk
= 1|X ≤ 20) = 0.97.

The value of M1 was set to be 0.23 which was assumed
to be known from a meta-analysis of the relevant historical
trials. In addition the subject level data was generated using

a combination of pC = 0.8, pT ∈ (0.775, 0.8, 0.825) and nC =
nT ∈ (250, 500), which resulted in total of 6 scenarios. The
values considered for the simulation are partially based on
completed NI trials [8, 9]. Each scenario was simulated 5000
times, i.e. both MDs population sample and NI trial data
were simulated 5000 times.

As stated previously non-inferiority of the new treatment
was determined using confidence interval in (2.6). The NI
decision was considered objective (OBJ) if it was based on
the representative sample of MDs (300 MDs). Other meth-
ods used for NI decision were: MI of the margin as described
in the previous section with X and L = 20, using only ob-
served λ values from the survey (OBS) (only 9 MDs), as well
as minimum and maximum values of λ from the representa-
tive sample of the K clinicians (MIN and MAX respectively)
(one MD each). Minimum and maximum values were con-
sidered in order to demonstrate how the NI decision could
be affected by consulting only one MD during the confer-
ence, who happens to be the least or the most conservative
clinician in that conference.

The methods’ performances were assessed by comparing
the rates of the NI decision to the OBJ decision rate. A de-
cision rate was calculated as a proportions of times NI was
inferred out of the 5000 simulations. The most favorable ap-
proach is the approach, for which the NI decision rate is the
closet to the OBJ NI decision.

2.5.2 Subject Level Information Is Incomplete

After comparing NI decision rates as described in the
previous section, where the subject level information was
considered completely observed, we turn to evaluation of NI
decision rates when such information is incomplete. For the
purposes of this evaluation, we only used survey data where
the more experienced MDs were more likely to participate
in the survey, a situation that is likely to appear in practice.
The incomplete primary outcome data was assumed to fol-
low ignorable missingness, including missing completely at
random (MCAR) and missing at random (MAR) processes
[29].

In order to impose both MCAR and MAR processes, a
variable Z was added to the NI trial simulation. Z was set
to have higher values for control treatment group and have
higher values for subjects experiencing an event of inter-
est in both groups. Specifically, Z|C, Y = 1 ∼ N(180, 20),
Z|C, Y =0 ∼ N(100, 20), Z|T, Y =1 ∼ N(130, 20), Z|T, Y =
0 ∼ N(80, 20). Z could be seen as a patient reported out-
come (PRO) measured during the study, and is positively
correlated with the outcome of interest.

Let RSij be an indicator variable for whether Yij was
observed (RSij = 1 means that outcome Yij was unobserved
for patient j in treatment i). The following logistic function
was used to determine observed/unobserved values of Y in
each treatment group:

P (RSij = 1) =
1

1 + exp(−θ0 − θ1iZij)
, (2.7)
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where θ0 = log( DO
1−DO )−θ1iZ̄i, Z̄i =

∑ni

j=1 Zij , θ1i represents
the effect of Z in group i on the missingness, and DO stands
for the overall drop-out rate, which was assumed to be the
same in both treatment groups and was set to 20% as a
reasonable upper bound for NI trials that encounter some
level of missingness [25]. The following two sets of values
were considered for θ1i: θ1C = θ1T = 0, which means that
PRO measure Z didn’t affect the drop-out of patient j in
treatment group i, and θ1C = −0.009, θ1T = 0.013, which
means that patients with lower values in Z were more likely
to drop out in the control group, whereas the opposite effect
was set in the new treatment group. As a result, the first set
of the values for θ1i specified above constituted to MCAR
process, while the later represented MAR process. Following
that, the difference between the two proportion pC − pT ,
was unbiased when estimated from the complete cases under
MCAR, and biased under MAR with observed difference
being more profound than it actually is.

The incomplete subject level data was multiply imputed
D = 20 times as described in Section 2.3, and consequently
used for NI decision based on MI approach. For OBS/MIN/
MAX approaches the complete cases from the NI trial were
used. The performance of the methods was carried out using
the same evaluation criteria as presented in Section 2.5.1.

All the simulations performed here were done using R.
Code is available on GitHub.1

3. RESULTS
For completely observed subject level data, MI approach

for NI decision was shown to be the closest to the OBJ
decision in most of the scenarios, with deviations between
0.14% and 4.8% (Figures 1, 2).

In general, the OBS approach was the second closet to
the OBJ, with deviations of between 5.8% and 24%. This
was followed by the MIN, which resulted with deviations
between 3.4% and 65%. The MAX resulted in the highest
deviations, that ranged between 22% and 71%.

When the subject level data was partially observed under
MCAR assumption, the MI based decision was the closest
to the OBJ decision in most of the scenarios, and deviated
by 2% to 7.2% from the OBJ rates (Figure 3). In case where
pT = 0.825, n = 500, the MIN approach performed similar
to MI. The decision rate for MIN was 100% (Table 1), which
means that all of the 5000 simulated studies concluded NI
of the new treatment. This result is not surprising, since in
this case the new treatment is actually superior by 2.5% to a
standard treatment, which means that it would be easier to
claim NI. Moreover, the MIN approach represents the least
conservative view of the margin, which again would make NI
claim easier to make. For the rest of the scenarios, MIN had
over 20% deviation from OBJ decision rates. OBS decision
rates deviated between 11% and 31%, while MAX deviation
ranged between 22% and 72%.
1See repositories: https://github.com/yuliasidi/ch2sim, https://
github.com/yuliasidi/m2imp, https://github.com/yuliasidi/bin2mi

Figure 1: Deviation from objective NI decision, when more
experienced MDs are more likely to participate in the survey,
subject level data are fully observed.

Figure 2: Deviation from objective NI decision, when MDs
participation in the survey is completely random, subject
level data are fully observed.

For MAR assumption for subject level data, the MI deci-
sion approach performed overwhelmingly better than the
OBS and the MAX approaches (Figure 4 and Table 2).

https://github.com/yuliasidi/ch2sim
https://github.com/yuliasidi/m2imp
https://github.com/yuliasidi/m2imp
https://github.com/yuliasidi/bin2mi
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Figure 3: Deviation from population based non-inferiority
decision, subject level data are MCAR.

Table 1. Percent of studies concluding NI by method, when
more experienced MDs are more likely to participate in the

survey, subject level data are MCAR.
pT n OBJ MI OBS MIN MAX

0.775 250 22.6 20.6 12.1 78.5 1.1
0.775 500 39.4 35.7 17.2 97.5 0.9
0.800 250 49.1 43.5 29.0 92.6 4.8
0.800 500 77.7 70.5 46.4 99.8 6.1
0.825 250 76.9 70.3 53.4 98.7 15.1
0.825 500 96.6 93.0 77.9 100.0 26.5

Moreover, the deviations from the OBJ decision rates in-
creased dramatically for OBS and MAX. This is reason-
able, since the apparent difference in proportions for MAR
is larger than it really is, which means that it is harder to
claim NI. The MIN approach, however showed similar re-
sults to MI for pT = 0.825 scenarios, as well as pT = 0.8,
n = 250 (Figure 4).

The rates of missing information due to unobserved λ
were between 30% and 35% for both ρ ∈ (0.4, 0.7) when
more experienced MDs were more likely to participate in a
survey, and between 27% and 33% when the survey partic-
ipation was completely random. It should be noted that, as
expected, in both cases higher rates of missing information
were observed for ρ = 0.4. For the incomplete subject level
data, the rates of missing information due to unobserved
patient data ranged between 5% and 6% for both MCAR
and MAR. As a result, the total rates of missing informa-
tion were between 35% and 40%. As can be seen, the main

Figure 4: Deviation from population based non-inferiority
decision, subject level data are MAR.

Table 2. Percent of studies with non-inferiority decision by
method, subject level data are MAR.

pT n OBJ MI OBS MIN MAX
0.775 250 22.6 17.5 1.4 36.1 0.0
0.775 500 39.4 29.8 1.0 62.0 0.0
0.800 250 49.1 40.1 5.3 64.4 0.2
0.800 500 77.7 66.5 5.7 90.3 0.0
0.825 250 76.9 66.4 17.0 86.6 2.0
0.825 500 96.6 91.4 26.0 99.2 1.5

contributor to the overall rates of missing information is un-
observed clinical experts opinions.

4. DISCUSSION
With NI trial design being more frequently used in recent

years, it is imperative to address concerns raised by several
systematic reviews [39, 34, 28, 2, 25, 36]. One of the major
issues that was raised in these reviews is a lack of justifi-
cation for the clinically acceptable margin. A choice of the
margin is critical as it directly affects the design stage of a
NI study, as well as interpretation of the results once the
study is complete. Even if, other common issues related to
the NI design, such as availability of the historical data and
the consistency of standard treatment effect over placebo
are resolved, it is still not clear how to choose a clinically
acceptable margin. Two reviews [28, 23] suggested using sur-
veys to help set the non-inferiority margin, albeit using two
different populations: clinical experts and patients respec-
tively.
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The selected margin is a function of the context of the
trial setting (disease, current standard of care, treatment
costs, side effects, etc.), and the margin selection procedure
should take this context into account. Conducting a survey
at a conference or symposium focused on developing and
disseminating treatments for the disease under study would
be an ideal setting. At a symposium, the clinical experts
would be actively discussing the current standard of care,
and would be actively considering the context in which a
new treatment could be judged as non-inferior. Indeed, this
is borne out by [26], wherein the non-inferiority margin was
set more conservatively than initially due to clinical experts
surveyed responses.

We presented a novel framework, where we propose to
treat the margin as missing information and estimate it from
a small survey of clinical experts. This framework allows an
objective estimation of clinical margin and provides justifi-
cation for its choice. Furthermore, within the framework we
evaluated the performance of several methods by compar-
ing the NI decision rates from each method with the objec-
tive decision rates. Overall, we found that MI was the most
favorable method. Although, the least conservative margin
approach had similar results to MI in several scenarios, in
general, it had high deviations from the objective decision
rates in other scenarios. Also, the most conservative choice of
clinically acceptable margin was the least favorable method,
with largest deviations from the objective decision rates.
Both the most and the least conservative margin choices
show the implication and risk of consulting with only one
clinical expert, who might have extreme views regarding
margin choice.

The rates of missing information due to the unobserved
clinical experts opinions were the main contributor to the
overall rates of missing information. This underlines the im-
portance of considering uncertainty associated with the mar-
gin choice when it is observed for a small fraction of clinical
experts. In addition, it has implication on a study design
stage, when the allocation of study funds is discussed. Given
a limited study budget, an entity running the study might
consider allocating a considerable amount of funds toward
the design stage, including margin determination through a
clinical experts survey.

We would also like to point out several limitations of this
work. First, we only considered a limited number of scenar-
ios. If investigators have a specific scenario in mind which
differs from the ones presented here, including non-ignorable
missingness, they should assess it using the framework we
outlined. Multiple imputation can readily be used in non-
ignorable scenarios provided the imputation model considers
the missingness mechanism along with sensitivity analyses
[6, 41]. Second, the framework presented here is new and
have not been applied previously, therefore we cannot com-
ment towards possible logistic issues that might arose from
such data collection besides the ones specified within the
framework. Third, we only consider a binary outcome while

time-to-event analysis and designs have become more preva-
lent in non-inferiority trials [38]. Our proposed methodol-
ogy should be able to be extended to time-to-event analysis
through similar methods as discussed in Section 2 as mul-
tiple imputation has already been applied to time-to-event
analysis [40, 41].

Given the ongoing challenges with respect to NI margin
choice and justification, there is a need for a new, more ev-
idence based, and transparent approach, which takes into
considerations variability in clinical experts opinions about
such choice. The margin choice has direct implication on the
NI decision, which is important for both drug approval and
public health policy process. We believe that the above novel
framework presents a simple approach, which accounts for
uncertainty associated with non-inferiority margin choice.
We hope that use of this framework will allow an empiri-
cal justification of margin choice, and therefore could help
resolve current practical issues related to it.
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