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Abstract
Analyzing health effects associated with exposure to environmental chemical mixtures is a challenging problem in epi-

demiology, toxicology, and exposure science. In particular, when there are a large number of chemicals under consideration
it is difficult to estimate the interactive effects without incorporating reasonable prior information. Based on substantive
considerations, researchers believe that true interactions between chemicals need to incorporate their corresponding main
effects. In this paper, we use this prior knowledge through a shrinkage prior that a priori assumes an interaction term
can only occur when the corresponding main effects exist. Our initial development is for logistic regression with linear
chemical effects. We extend this formulation to include non-linear exposure effects and to account for exposure subject to
detection limit. We develop an MCMC algorithm using a shrinkage prior that shrinks the interaction terms closer to zero
as the main effects get closer to zero. We examine the performance of our methodology through simulation studies and
illustrate an analysis of chemical interactions in a case-control study in cancer.

keywords and phrases: Chemical mixture, Interaction, Shrinkage, Collapsed Gibbs.

1. INTRODUCTION
Assessing the health effects of environmental chemical

mixtures is an important challenge in environmental epi-
demiology. It is quite difficult to find the relationship be-
tween exposure variables and a health outcome when the
effects may be non-linear, interaction effects are present and
may be subject to detection limits. In the past decade, there
have been numerous approaches for analyzing this type of
data. Hwang et al. [12] and Zhang et al. [21] proposed a
latent class approach that links the exposure profile with
disease severity with latent variables. Bobb et al. [3] em-
ployed Bayesian kernel machine regression that allows for
flexible non-linear estimation of chemical effects on disease
outcomes. Further, Carrico et al. [4] proposed a weighted
quantile sum approach that generalizes using cumulative
chemical exposure for predicting disease outcomes. Herring
et al. [11] proposed a Bayesian regression approach that es-
timates linear main and interactive effects using a Dirichlet
process prior and incorporates detection limits for the chem-
ical exposures.

In this paper, we propose a Bayesian approach that in-
corporates non-linear exposure, interaction effects, and de-
tection limits in a flexible way that does not require para-
metric assumptions on the exposure distributions. When the
number of parameters are moderately large, the inclusion of
all pairwise interaction terms results in sparsity that in turn
results in poor estimation with maximum-likelihood estima-
tion. We propose a shrinkage prior approach for estimating
∗Corresponding author.

interactions. First, we investigate a shrinkage prior where
interactions are treated the same as main effects, and no
relationship between the two is incorporated. In a second
approach, we propose a shrinkage prior that incorporates
a relationship between the interaction and main effects to
increase performance in sparse data situations. The hierar-
chical principle in linear models specifies that interactions
will only be examined in situations where the corresponding
main effects are sizable [15]. Models with interactions with-
out main effects place restrictions on the parameter space
that are not natural. We will show how incorporating this
additional structure will provide efficiency gain when study-
ing the interactions in chemical mixtures. Additionally, we
show how to extend the shrinkage prior approach to situa-
tions where multiple parameters are used to model the effect
of each chemical component on disease risk. This later ex-
tension can be used to model non-linear exposure effects
as well as to provide a flexible approach for dealing with
detection limits in mixtures. We propose a shrinkage prior
approach that incorporates the hierarchical principle for the
estimation of interactions for linear and nonlinear exposures
as well as for exposures subject to detection limits.

In our paper, we describe our methodology in detail in
Section 2. Next in Section 3, we discuss our prior specifica-
tions and posterior computations. In Section 4 we describe
how to extend our model from linear where the relationship
of an exposure has a single parameter to the situation where
multiple parameters are associated with that exposure (e.g.,
nonlinear exposures or detection limits). In Section 5 we
show the efficiency of our proposed method by simulation
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studies and results. Finally, we applied our methodology to
the NCI-SEER NHL study and described our findings in
Section 6.

2. MODEL
Let Y = (Y1, Y2, . . . , YN )′ denotes the binary health re-

sponse for N individuals and Xi = (Xi1, Xi2, . . . , Xip)
′ be

the corresponding p-dimensional vector of continuous chem-
ical exposures. For p chemicals we have p(p− 1)/2 two-way
interactions. We consider a logistic regression model with
linear effects in their corresponding interactions of the fol-
lowing form:

logitP (Yi = 1|Xi) = Ui
′α+

p∑
j=1

Xijβ
∗
j

+

p∑
j=1

p−1∑
k=j+1

XijXikγ
∗
jk, i = 1, 2, . . . , N,

(2.1)

where logit a = log a
1−a , Ui denotes q-dimensional covariate

vector which includes an intercept, α is the corresponding
regression coefficient vector, β∗

j denotes the main effect re-
gression coefficient of the jth chemical, and γ∗

jk denotes the
interaction effect regression coefficient of the jth and kth
chemicals. We consider a latent variable approach [1] and
approximate equation (2.1) using a robit link [14]. Let’s con-
sider ω = (ω1, ω2, . . . , ωN )′ be N -dimensional latent vector
such that

Yi =

{
1 ωi > 0,

0 otherwise,
(2.2)

where, ωi=Ui
′α+

∑p
j=1 Xijβ

∗
j +

∑p
j=1

∑p−1
k=j+1 XijXikγ

∗
jk+

εi. If εi ∼ Ftv , where Ftv is a cumulative distribution func-
tion of student t-distribution with v degrees of freedom, it
is called robit(v) regression [13], i.e.

P
(
Yi = 1|α,β∗,γ∗) = 1− P

(
Yi = 0|α,β∗,γ∗)

= Ftv

(
Ui

′α+

p∑
j=1

Xijβ
∗
j +

p∑
j=1

p−1∑
k=j+1

XijXikγ
∗
jk

)
,

(2.3)

where β∗ = (β∗
1 , β

∗
2 , . . . , β

∗
p) and γ∗ = (γ∗

11, γ
∗
12, . . . ,

γ∗
p(p−1)/2). As v → ∞, the robit(v) model becomes the pro-

bit regression model. Liu et al. [14] suggested that the robit
link with v = 7 degrees of freedom closely approximates
the logit link with βj = β∗

j /1.5484 and γjk = γ∗
jk/1.5484.

Moreover, we use the fact that the t-distribution can be
represented as a scale mixture of normal distribution by in-
troducing a mixing variable λi, such that εi|λi ∼ N(0, 1

λi
)

and λi ∼ G(v2 ,
v
2 ), where N(μ, σ2) denotes a normal dis-

tribution with mean μ and variance σ2 and G(c1, c2) de-
notes the gamma distribution with mean c1/c2 and vari-
ance c1/c

2
2 to formulate the likelihood. For simplicity, let

consider for the ith individual the interaction term be-
tween two exposure variables Xij and Xik is defined by
Zijk = XijXik and Zi = (Zi11 , Zi12 , . . . , Zip(p−1)/2

)′. Hence
ωi|λi ∼ N(Ui

′α+X′
iβ +Z′

iγ,
1
λi
) and λi ∼ G(v2 ,

v
2 ) where

β = (β1, β2, . . . , βp) and γ = (γ11, γ12, . . . , γp(p−1)/2). From
equations (2.1) and (2.2) the complete data likelihood can
be written as:

L(Y |X,w)

=

N∏
i=1

[
yi1{wi > 0}+ (1− yi)1{wi ≤ 0}

]

× (2π)−
1
2λ

1
2
i exp

(
−λi

2

(
wi −U ′

iα−X′
iβ −Z′

iγ
)2)

×
(ν2 )

ν
2

Γ(ν2 )
λ

v
2−1
i exp

(
−λiv

2

)
. (2.4)

3. PRIOR & POSTERIOR DISTRIBUTION
For linear models with interactions, the hierarchical prin-

ciple implies that interactions should only be included if the
corresponding main effects are non-zero [7, 9]. Hence, we
consider a dependence structure between the main and in-
teraction effects such that the inclusion of interaction effects
depends on the inclusion of the corresponding main effects.
To this end, we consider the following prior distributions:

βj ∼ N
(
0,

1

aηj

)
, γjk ∼ N

(
0,

1

bηjηkθjk

)
,

ηj ∼ G(a1, b1), θjk ∼ G(a2, b2). (3.1)

In the prior distribution in equation (3.1), a controls
the global shrinkage towards the origin for the main ef-
fect regression coefficient βj , j = 1, 2, . . . , p, and η =
(η1, η2, . . . , ηp)

′ is the predictor specific local shrinkage pa-
rameter that allow deviations in the degree of shrinkage be-
tween predictors. a1, a2 defines the shape parameter and b1,
b2 defines the scale parameter of the gamma distributions.
We consider a G(a1 = 1, b1 = 1) distribution as a prior
choice for ηj with mean and variance 1 to induce some vari-
ability between the ηj ’s. In this formulation, larger values of
ηj ’s will induce more shrinkage towards zero, while smaller
values of ηj result in minimum shrinkage to zero. This spec-
ification is based on global-local shrinkage framework [17],
where typical recommendation is to consider a heavy tail
distribution for the local shrinkage parameter to avoid over-
shrinking large signals, and the global shrinkage parame-
ter should have substantial mass near zero. Similarly, for
the interaction effect regression coefficients γjk, the global
shrinkage parameter b shrinks all parameter towards zero.
In contrast, the predictor specific local shrinkage parameter
θ = (θ1, θ2, . . . , θp(p−1)/2)

′ captures the interaction specific
shrinkage effects. We consider a G(a2 = 1, b2 = 1) prior
for θjk. Note that, to share the information between main
and interaction effects, the prior variance of γjk is also domi-
nated by the term ηjηk. The parameter γjk is shrunk to zero
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if at least one of ηj , ηk or θjk is large. Consistent with the
hierarchical principle, an interaction term will tend to be
small if either βj or βk is small or θjk is large. Furthermore,
we also consider a G(1, 1) prior on both global shrinkage
parameter a and b, and a vague prior N(0, 102) for the re-
gression coefficient αj . The posterior distribution based on
the complete data is given by

π(α,β,γ,w|X,Y)

∝
N∏
i=1

[
yi1{wi > 0}+ (1− yi)1{wi <= 0}

]

× λ
1
2
i exp

(
−λi

2

(
wi −U ′

iα−X′
iβ −Z′

iγ
)2)× λ

v
2−1
i

× exp

(
−λiv

2

)
× |Λ|− 1

2 exp

(
−1

2
β′Λ−1β

)
× |Ω|− 1

2

× exp

(
−1

2
γ′Ω−1γ

)
× |Ψ|− 1

2 exp

(
−1

2
α′Ψ−1α

)

×
(

p∏
j=1

ηa1−1
j exp[−ηjb1]

)

×
(

p−1∏
j=1

p∏
k=j+1

θa2−1
jk exp[−θjkb2]

)

×
(
aa3−1 exp[−ab3]

)(
ba4−1 exp[−bb4]

)
. (3.2)

In equation (3.2), we define β = (β1, β2, . . . , βp)
′, γ =

(γ12, γ13, . . . , γp(p−1))
′, Λ = diag(1/aη1, 1/aη2, . . . , 1/aηp),

Ω = diag(1/bη1η2θ12, 1/bη1η3θ13, . . . , 1/bηp−1ηpθ(p−1)p) and
Ψ = 102Iq, where Iq represents the q× q order identity ma-
trix.

The proposed methodology can be easily extended to
incorporate other prior distributions such as horseshoe,
Cauchy, and Dirichlet-Laplace prior.

3.1 Computational Development
We present a detailed development of the Markov chain

Monte Carlo (MCMC) sampling algorithm. The condi-
tional posterior distributions are derived from the equa-
tion (3.2) and inference is performed through MCMC meth-
ods. We define XN×p = (X1,X2, . . . ,XN )′, ZN× p(p−1)

2 =
(Z1,Z2, . . . ,ZN )′. Based on the joint posterior distribution,
we derive the full conditional posterior distribution of all
parameters and thus get the Gibbs samples by iterating the
following sampling steps:

1. We sample wi from the conditional posterior distribu-
tion ωi|λi, β, γ, η, θ, a, b, which is a truncated normal
distribution with mean U ′

iα+X′
iβ+Z′

iγ, variance λ−1
i ,

for all i = 1, 2, . . . , N .
2. For i = 1, 2, . . . , N , sample λi independently from its

conditional posterior distribution λi|ωi, β, γ, η, θ, a, b
which follows G(1+v

2 , 1
2 (v+(wi−U ′

iα−X′
iβ−Z′

iγ)
2)).

3. Sample the covariates α from its conditional multi-
variate normal posterior distribution MVN(μα,Σα),

where the posterior mean is μα = (U ′Σ−1U +
Ψ−1)−1U ′Σ−1(w − X′β − Z′γ), posterior variance
Σα = (U ′Σ−1U + Ψ−1)−1 and Σ = diag(λ−1

1 , λ−1
2 , . . . ,

λ−1
N ).

4. We sample β from its conditional multivari-
ate normal posterior distribution MVN(μβ ,Σβ),
where posterior mean μβ = (X ′Σ−1X +
Λ−1)−1X ′Σ−1(w − U ′α − Z′γ) and posterior
variance Σβ = (X ′Σ−1X + Λ−1)−1.

5. Sample γ from its conditional posterior distri-
bution MVN(μγ ,Σγ), where μγ = (Z ′Σ−1Z +
Ω−1)−1Z ′Σ−1(w−U ′α−X′β) and Σγ = (Z ′Σ−1Z +
Ω−1)−1.

6. For j = 1, 2, . . . , p, sample ηj independently from its
conditional posterior distribution Gamma(a1 + p

2 , b1 +
1
2 (aβ

2
j +

∑
k �=j bηkθjkγ

2
jk)).

7. For j = 1, 2, . . . , p and k = j + 1, 2, . . . , p − 1 sam-
ple θjk from the conditional posterior distribution
Gamma(a3 + 1

2 , b3 +
1
2ηjηkγ

2
jk).

8. Sample a|β, η from Gamma(a3+ p
2 , b3+

1
2

∑p
j=1 ηjβ

2
j ).

9. Sample b|γ, η, θ from Gamma(a4 + p(p−1)
2 , b4 +

1
2

∑p−1
j=1

∑p
k=j+1 ηjηkθjkγ

2
jk).

4. MULTIPLE PARAMETERS PER
EXPOSURE

Previously in Section 2, we described our method in the
context of a linear exposure and outcome relationship. In
many realistic settings, more than one parameter will be
needed to model individual exposures in the mixtures (e.g.,
quadratic exposures). Hence, in this section, we extend our
methodology to capture those non-linear exposure-outcome
relationships using the following logistic regression model:

logitP (Yi = 1|Xij)

= U ′
iα+

p∑
j=1

gj(Xij) +

p∑
j=1

p−1∑
k=j+1

fjk(Xij , Xik). (4.1)

For modeling mixtures with nonlinear exposure relation-
ships, we can use a polynomial representation for the effect
of each exposure. Polynomial effects can be incorporated in
the main and interaction terms by using equation (4.1) with
functions gj(Xij) = X′

ijβj and fjk(Xij , Xik) = Z′
jkγjk and

the logistic regression can be written in the following form:

logitP (Yi = 1|Xi,Zi)

= U ′
iα+

p∑
j=1

X′
ijβj+

p∑
j=1

p−1∑
k=j+1

Z′
jkγjk, i=1, 2, . . . , N,

(4.2)

where, Xij = (Xij , X
2
ij)

′ and Zjk = (XijXik, X
2
ijXik,

XijX
2
ik, X

2
ijX

2
ik)

′ and the regression coefficients βj =
(βj1, βj2)

′ and γjk = (γjk1, γjk2, γjk3, γjk4)
′.
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Individual components of chemical mixtures may be sub-
ject to lower detection limits where the measurements are
censored below these limits. Chiou et al. [6] and Ortega et
al. [16] proposed a two-component exposure model for lower
detection limits where the effect has one component indicat-
ing whether the exposure is above the detection limit and
the other reflecting the value of the measurement if the ex-
posure is above the detection limit. These authors showed
that this parameterization does not make the unverifiable
modeling assumptions inherent in treating lower detection
limits as left censored in a parametric exposure distribu-
tion. We can incorporate detection limits into the mixture
analysis by using equation (4.1) with:

fjk(Xij , Xik)

= γjk1I(Xij ≥ Cj)I(Xik ≥ Ck)

+ γjk2(Xij − Cj)I(Xij ≥ Cj)I(Xik ≥ Ck)

+ γjk3(Xik − Ck)I(Xij ≥ Cj)I(Xik ≥ Ck)

+ γjk4(Xij − Cj)(Xij − Ck)I(Xij ≥ Cj)I(Xik ≥ Ck).
(4.3)

In equation (4.3), βj1 is the log odds of disease at the
value of the detection limit relative to the log-odds of dis-
ease below the detection limit. Further, βj2 is the log-odds
ratio of disease for a one unit change in exposure above the
detection limit. The parameter vector γjk. measure the in-
teractive effects between the jth and kth chemical. Specif-
ically, γjk1 measures the interactive effect of being above
the detection limit on both the jth and kth chemical, γjk4
measures the interactive effect of increasing Xij and/or Xik

when both markers are above the detection limit. Finally,
γjk2 and γjk3 are cross product interaction effects.

The shared shrinkage prior proposed in Section 3 can be
extended to the multiple parameter per exposure case using
the grouped shrinkage prior [5]. We show this for the non-
linear formulation (4.2), but it applies more generally to
other settings such as detection limits (4.3). Specifically,

ωi|λi ∼ N

(
U ′

iα+

p∑
j=1

X′
ijβj +

p∑
j=1

p−1∑
k=j+1

Z′
jkγjk,

1

λi

)
,

λi ∼ Gamma
(
v

2
,
v

2

)
,

βj ∼ MVNk1

(
0,

ηj
a
I2

)
,

ηj ∼ Gamma
(
k1 + 1

2
,
1

2

)
,

γjk ∼ MVNk2

(
0, ηjηk

θjk
b

I4

)
,

θjk ∼ Gamma
(
k2 + 1

2
,
1

2

)
,

α ∼ N
(
0, 102

)
, a, b ∼ Gamma(1, 0.1). (4.4)

Here k1 and k2 defines the dimension of the parameters
βj and γjk, respectively. In the non-linear case we share the

information between main effect and interaction effect sim-
ilarly as in linear hierarchical model in the equation (3.1).
Posterior calculation follows as in Section 3.1.

5. SIMULATION STUDY AND RESULTS
We perform a series of the simulation studies to inves-

tigate the performance of the proposed methodology. We
compare the proposed model with following two models.

1. Independent Vague Prior: We incorporate the
vague prior βj , γjk ∼ N(0, 102), where no dependence
is introduced between the main and the interaction ef-
fects. This approach is approximately a maximum like-
lihood approach.

2. Independent shrinkage prior: Under this approach
we do not share the information between main ef-
fects and interaction effects. We consider an indepen-
dent shrinkage prior on both interaction effect and
main effects regression coefficients. To that end, βj ∼
N(0, 1

aηj
), γjk ∼ N(0, 1

bθjk
). Hence in this model, the

inclusion of an interaction effect is not contingent on
the inclusion of main effects.

5.1 Simulation for Linear Exposure Effect
We conduct a simulation study for the linear hierar-

chical model in equation (3.1), where data are gener-
ated using model in equation (2.2) in Section 2. For each
ith individual we generate p chemical exposures Xi =
(Xi1, Xi2, . . . , Xip)

′ independently from a multivariate nor-
mal distribution with mean zero and covariance matrix Ip.
Thus we have our design matrix XN×p for chemical expo-
sure. Then we generate p(p − 1)/2 interaction effects for
each individual by multiplying the corresponding main ef-
fects, i.e. Zi = (Xi1Xi2, Xi1Xi3, . . . , XipXi(p−1))

′, where
l = 1, 2, . . . , p(p − 1)/2. Later we scaled each of the main
and interaction exposures by dividing their respective stan-
dard deviations to perform the analysis. We generate 200
datasets for each model, and for each data set we run the
MCMC chain for 50,000 iterations with a burn-in of 5000
iterations. We consider every 5th sample to reduce the auto-
correlation. We use those 9000 MCMC samples for posterior
inferences. We consider different simulation scenarios to ac-
cess the utility of our methodology in details.

• Simulation #1: N = 1000, p = 10: We generate data
under a model consistent with the hierarchical princi-
ple. We consider N = 1000 individual and 10 chemicals
(p = 10). We further consider 5 out of 10 main effects
have effect size 1 and 10 out of

(
10
2

)
= 45 interaction

terms has effect size 0.5 and rest are set to zero. The
intercept is set to 0.6 to have the overall prevalence rate
of approximately 50%.

• Simulation #2: N = 250, p = 10: In this settings,
we consider a smaller sample size N = 250 individual
and total number of chemicals p = 10. The main effect
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Table 1. Results from simulation #1: N = 1000, p = 10.

Parameters γ
Independent Vague Independent shrinkage Shared Shrinkage Relative*

γ̂ sd RMSE γ̂ sd RMSE γ̂ sd RMSE Efficiency

Interactions

γ12 = 0.5 0.892 0.040 0.472 0.546 0.023 0.169 0.533 0.022 0.151 1.252
γ13 = 0.5 0.883 0.040 0.462 0.539 0.022 0.162 0.529 0.022 0.152 1.136
γ14 = 0.5 0.904 0.041 0.470 0.553 0.023 0.154 0.533 0.022 0.160 0.925
γ15 = 0.5 0.914 0.040 0.494 0.563 0.022 0.179 0.528 0.021 0.152 1.387
γ16 = 0 0.003 0.024 0.195 0.001 0.013 0.113 0.009 0.011 0.104 1.179
γ17 = 0 −0.006 0.025 0.203 −0.004 0.014 0.123 0.005 0.011 0.098 1.575
γ18 = 0 0.005 0.024 0.184 0.003 0.013 0.106 0.009 0.011 0.091 1.357
γ19 = 0 0.000 0.024 0.174 −0.003 0.013 0.102 0.000 0.011 0.097 1.104
γ1,10 = 0 0.003 0.024 0.199 −0.001 0.013 0.114 −0.005 0.011 0.103 1.225
γ23 = 0.5 0.869 0.039 0.448 0.532 0.022 0.159 0.537 0.022 0.155 1.053
γ24 = 0.5 0.907 0.041 0.486 0.559 0.023 0.175 0.524 0.021 0.152 1.325
γ25 = 0.5 0.875 0.039 0.464 0.536 0.022 0.172 0.538 0.022 0.154 1.248
γ26 = 0 0.010 0.024 0.190 0.005 0.013 0.110 0.004 0.011 0.088 1.563

*Relative efficiency=Ratio of MSE of independent shrinkage prior and the MSE of shared shrinkage prior.
The geometric mean efficiency gain across all 45 interaction terms is 1.24.

Table 2. Results from simulation #2: N = 250, p = 10.

Parameters γ
Independent Vague Independent shrinkage Shared Shrinkage Relative*

γ̂ sd RMSE γ̂ sd RMSE γ̂ sd RMSE Efficiency

Interactions

γ12 = 0.5 3.949 1.546 4.300 0.563 0.068 0.284 0.565 0.068 0.273 1.082
γ13 = 0.5 3.930 1.574 4.348 0.584 0.074 0.300 0.540 0.066 0.248 1.464
γ14 = 0.5 3.895 1.554 4.266 0.568 0.070 0.283 0.548 0.068 0.260 1.184
γ15 = 0.5 4.185 1.617 4.596 0.595 0.073 0.327 0.562 0.069 0.280 1.364
γ16 = 0 −0.081 0.767 1.889 −0.013 0.040 0.208 0.005 0.032 0.169 1.515
γ17 = 0 −0.073 0.716 1.672 −0.009 0.040 0.187 0.012 0.031 0.162 1.331
γ18 = 0 0.087 0.760 1.784 0.007 0.041 0.210 −0.001 0.031 0.152 1.910
γ19 = 0 0.038 0.704 1.782 0.003 0.040 0.216 −0.002 0.032 0.161 1.800
γ1,10 = 0 −0.021 0.759 1.801 −0.001 0.040 0.195 0.017 0.033 0.174 1.256
γ23 = 0.5 4.084 1.621 4.523 0.597 0.073 0.323 0.521 0.063 0.255 1.605
γ24 = 0.5 3.955 1.478 4.236 0.584 0.072 0.341 0.558 0.068 0.305 1.252
γ25 = 0.5 4.077 1.669 4.431 0.589 0.070 0.295 0.540 0.067 0.278 1.126
γ26 = 0 −0.110 0.759 1.873 −0.019 0.040 0.214 −0.017 0.032 0.162 1.745

*Relative efficiency=Ratio of MSE of independent shrinkage prior and the MSE of shared shrinkage prior.
The geometric mean efficiency gain across all 45 interaction terms is 1.41.

parameters β and interaction effect parameters γ are
identical to simulation #1.

• Simulation #3: N = 1000, Main effects and no in-
teraction effects: In this settings, we consider a sam-
ple size of N = 1000 individual and a total number of
chemicals p = 10. We generate the data from a model
with the same main effect parameters β as in simula-
tion #1 and simulation #2, but the interaction effect
parameters γ are set to zero, i.e, we have main effects
but no interaction effects.

• Simulation #4: N = 1000, Interactions with no
main effects: We generate data from a model with no
main effects but with the same interaction effects as in
simulation #1 and simulation #2.

In this section, we compare the performance of the pro-
posed methodology with the model with an independent

vague prior and independent shrinkage model. Tables 1
and 2 show the mean standard deviation and root mean
square error (RMSE) for a few of the interaction terms in
simulation #1 and simulation #2 respectively. First the re-
sults show that using a vague prior result in poor estimation,
particularly for smaller sample size. Secondly, incorporating
the shared shrinkage prior result in a large efficiency gain
relative to the independent shrinkage prior. We computed
the geometric mean of the relative efficiencies comparing the
independent versus the shared shrinkage across all 45 inter-
action parameters. Shared shrinkage showed efficiency ad-
vantages in Table 1 and Table 2 with mean efficiencies of 1.25
and 1.42, respectively. As expected, the efficiency gains were
larger for the smaller sample size that has increased sparsity.

In simulation #3 (Table 3), we evaluated the situation
where there were main effects but no interaction effects
in the model; this situation is consistent with the shared
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Table 3. Results from simulation #3: No interaction effects; N = 1000, p = 10.

Parameters γ
Independent Vague Independent shrinkage Shared Shrinkage Relative*

γ̂ sd RMSE γ̂ sd RMSE γ̂ sd RMSE Efficiency

Interactions

γ12 = 0 −0.030 0.040 0.260 0.000 0.019 0.137 −0.008 0.013 0.102 1.804
γ13 = 0 −0.055 0.039 0.272 −0.008 0.019 0.137 −0.006 0.013 0.096 2.037
γ14 = 0 −0.027 0.040 0.271 0.005 0.019 0.138 −0.002 0.013 0.098 1.983
γ15 = 0 −0.035 0.040 0.264 0.012 0.018 0.140 0.009 0.013 0.097 2.083
γ16 = 0 0.008 0.039 0.249 −0.008 0.017 0.121 −0.004 0.011 0.082 2.177
γ17 = 0 −0.009 0.038 0.264 −0.018 0.017 0.129 0.002 0.011 0.079 2.664
γ18 = 0 −0.003 0.039 0.257 0.011 0.017 0.123 −0.007 0.011 0.078 2.486
γ19 = 0 −0.002 0.039 0.249 −0.001 0.017 0.119 0.003 0.011 0.085 1.960
γ1,10 = 0 −0.020 0.039 0.256 −0.012 0.017 0.107 0.015 0.011 0.089 1.445
γ23 = 0 −0.046 0.040 0.252 −0.003 0.019 0.140 −0.012 0.013 0.094 2.218
γ24 = 0 −0.003 0.041 0.261 0.010 0.019 0.131 −0.003 0.013 0.094 1.942
γ25 = 0 −0.044 0.040 0.287 −0.005 0.018 0.133 0.008 0.013 0.104 1.635
γ26 = 0 0.003 0.039 0.264 0.003 0.017 0.125 −0.009 0.011 0.085 2.163

*Relative efficiency=Ratio of MSE of independent shrinkage prior and the MSE of shared shrinkage prior.
The geometric mean efficiency gain across all 45 interaction terms is 2.10.

Table 4. Results from simulation #4: No main effects; N = 1000, p = 10.

Parameters γ
Independent Vague Independent shrinkage Shared Shrinkage Relative*

γ̂ sd RMSE γ̂ sd RMSE γ̂ sd RMSE Efficiency

Interactions

γ12 = 0.5 0.745 0.021 0.307 0.579 0.015 0.154 0.559 0.015 0.138 1.245
γ13 = 0.5 0.739 0.020 0.298 0.567 0.015 0.131 0.551 0.014 0.140 0.875
γ14 = 0.5 0.744 0.021 0.297 0.576 0.015 0.148 0.545 0.014 0.143 1.071
γ15 = 0.5 0.752 0.021 0.308 0.594 0.015 0.162 0.557 0.015 0.135 1.440
γ16 = 0 −0.001 0.012 0.126 −0.007 0.009 0.095 0.002 0.007 0.084 1.279
γ17 = 0 0.002 0.012 0.134 −0.001 0.009 0.096 −0.005 0.007 0.083 1.338
γ18 = 0 0.000 0.012 0.139 0.004 0.009 0.095 0.007 0.007 0.077 1.522
γ19 = 0 −0.011 0.012 0.119 0.003 0.009 0.095 −0.008 0.007 0.069 1.896
γ1,10 = 0 0.000 0.012 0.139 −0.009 0.009 0.100 −0.006 0.007 0.074 1.826
γ23 = 0.5 0.758 0.021 0.306 0.583 0.015 0.143 0.543 0.014 0.129 1.229
γ24 = 0.5 0.769 0.021 0.318 0.588 0.015 0.155 0.551 0.015 0.133 1.358
γ25 = 0.5 0.748 0.020 0.296 0.570 0.015 0.149 0.548 0.014 0.125 1.421
γ26 = 0 0.001 0.012 0.136 0.004 0.009 0.093 −0.016 0.007 0.075 1.537

*Relative efficiency=Ratio of MSE of independent shrinkage prior and the MSE of shared shrinkage prior.
The geometric mean efficiency gain across all 45 interaction terms is 1.36.

shrinkage prior specification. Table 4 shows the results for
simulation #3 where the average relative efficiency for the
shared versus independent shrinkage prior was 2.1. In simu-
lation #4, we generated data with no main effects but size-
able interaction effects. The results showed that even in the
situation that does not directly correspond to the shared
shrinkage prior, we found efficiency gains by using this more
general prior specification; we found an average efficiency
gain of 1.36 across all 45 interaction parameters (geometric
mean).

5.2 Simulation for Detection Limit Model
We performed a simulation study for the multi-parameter

exposure model that incorporates lower detection limits as
described in Section 4. For this case, we considered p = 10
main effects and 5 out of these main effects have sizable ef-
fect. We need to specify two parameters for each exposure

variable: (i) intercept term: βj1I(Xij ≥ Cj) and (ii) slope
term: βj2I(Xij ≥ Cj)(Xij − Cj). For the non-null main ef-
fects we consider the effect size βj1 = 0.2 and βj1 = 0.5 for
the simulation study. Similarly, for the interaction term of
any two main effects we have four parts:

1. γjk1I(Xij ≥ Cj)I(Xik ≥ Ck)
2. γjk2(Xij − Cj)I(Xij ≥ Cj)I(Xik ≥ Ck)
3. γjk3(Xik − Ck)I(Xij ≥ Cj)I(Xik ≥ Ck)
4. γjk4(Xij − Cj)(Xik − Ck)I(Xij ≥ Cj)I(Xik ≥ Ck).

For the interactions terms that have non-null main effects
we consider γjk4 = 0.1 for simulation study. All other γjk1,
γjk2, and γjk3’s are set to zero. Similarly as before, we gen-
erate the chemical exposure Xij from a standard normal
distribution. For first 5 exposure variables we consider 20%
values are below the detection limit and for the rest 10% be-
low the detection limit. Lastly, we consider the overall mean
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Table 5. Results from simulation for two parameter detection limits model; N = 1000, p = 10.

Parameters γ
Independent Vague Independent shrinkage Shared Shrinkage Relative*

γ̂ sd RMSE γ̂ sd RMSE γ̂ sd RMSE Efficiency

Interactions

γ124 = 0.1 0.016 0.509 0.717 0.164 0.199 0.450 0.141 0.115 0.341 1.741
γ134 = 0.1 0.004 0.598 0.778 0.166 0.215 0.468 0.133 0.136 0.369 1.608
γ144 = 0.1 −0.039 0.577 0.770 0.111 0.204 0.451 0.116 0.146 0.382 1.394
γ154 = 0.1 −0.078 0.677 0.840 0.094 0.200 0.447 0.102 0.133 0.363 1.516
γ164 = 0 −0.366 3.252 1.836 0.055 0.362 0.603 0.039 0.181 0.427 1.994
γ174 = 0 −0.426 2.577 1.657 −0.036 0.320 0.565 0.022 0.164 0.404 1.996
γ184 = 0 −0.344 1.641 1.323 −0.036 0.321 0.566 0.006 0.164 0.404 1.963
γ194 = 0 −0.478 1.902 1.457 0.002 0.293 0.540 −0.006 0.163 0.403 1.795
γ264 = 0 −0.423 2.123 1.514 −0.042 0.369 0.608 0.013 0.202 0.448 1.842
γ274 = 0 −0.141 0.267 0.534 0.029 0.082 0.287 0.036 0.090 0.302 0.903
γ284 = 0 −0.115 0.309 0.567 0.040 0.089 0.342 0.054 0.115 0.300 1.300
γ294 = 0 −0.074 0.272 0.526 0.046 0.074 0.315 0.075 0.094 0.275 1.312
γ344 = 0 −0.128 0.283 0.546 0.052 0.078 0.318 0.045 0.099 0.283 1.263

*Relative efficiency=Ratio of MSE of independent shrinkage prior and the MSE of shared shrinkage prior.
The geometric mean efficiency gain across all 180 interaction terms is 1.37.

α = −2.1 to have a prevalence of 50%. We have a total of
201 parameters in this multi-parameter per exposure model.
As the number of parameters are higher than linear model
we consider N = 1000 observations for simulation study.

Table 5 shows the simulation results comparing the
shared shrinkage, independent shrinkage and vague prior.
Similar to the linear exposure model simulation, we show
for this simulation substantial efficiency gain in using shared
shrinkage for this more complex model. We also computed
the geometric mean efficiency gain of shared shrinkage ver-
sus independent shrinkage across all 180 interaction parame-
ters in this multi-parameter model. The mean efficiency gain
was 1.37, reflecting substantial gains for the shared shrink-
age prior in this sparse data structure.

6. NCI-SEER NHL STUDY
The NCI-SEER NHL study [18] is a population-based

case-control study (508 controls & 672 cases) of non-
Hodgkin lymphoma (NHL), was designed to determine
the associations between exposures of chemicals/pesticides
found in used vacuum cleaner bags and the risk of NHL.
Different epidemiological pieces of evidence confirm that ex-
posure to chemicals increases the risk of certain cancers in
humans [20]. Often chemicals enter the household from in-
door use or drift in from outdoor and may persist for months
and years in carpet and cushion furniture without being de-
graded by sunlight, rain, and extreme temperatures. Hence
carpet dust sampling provides a more objective basis for
exposure assessment as it contains integrated pesticide ex-
posure over a long period which is potentially more rele-
vant to disease risk than recent or current exposure. In this
study, the samples were collected from used vacuum cleaner
bags of 672 cases in Detroit, Iowa, Los Angeles, and Seattle
and were analyzed for pesticides [8]. Primarily the labora-
tory measurements contain missing data due to concentra-
tions being below the minimum detection level. The “fill-in”

Figure 1: Correlation plot of all chemicals.

approach [10, 8] was used for imputation where, for each
biomarker, measurements below the detection limit were im-
puted by first estimating maximum-likelihood estimators of
a log-normal distribution from the left-censored data and
then imputing values below the detection limit based on
this distribution.

Particularly for chemicals with a high percentage of val-
ues below their detection limits, results may not be robust to
misspecification of the parametric assumptions. The median
percent of observations below the detection limit was 61%
(across chemicals) with a range of (3% to 93%). Some of the
pesticides are highly correlated (> 0.9) and skewed. Figure 1
shows the correlation between the chemicals. In that case,
we chose to use only one of them for the analysis and log-
transformed the exposure data. In the final data set, we have
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Figure 2: Correlation plot of finally selected chemicals.

a total of p = 14 chemical exposures on N = 1180 individu-
als (508 controls & 672 cases). Figure 2 shows the correlation
between the selected chemicals for the analysis. We consid-
ered site, sex, education, and age as covariates [8] in all
models for our data application. First we estimated a main
effect model using a vague prior and an independent shrink-
age prior. Figure 3 shows only one chemical, Diazinon, had a
95% HPD interval that excludes zero, for all other chemicals
the 95% HPD interval contained zero. Figure 5 shows a ran-
dom subset of interaction effects estimated under all three
prior distributions. The 95% HPD intervals included zero
for all estimated interactions for all priors. The intervals for
the shared were narrower than the independence shrinkage,
and both were narrower than the vague prior.

The proposed multi-parameter exposure model that in-
corporates detection limits does not make strong assump-
tions on the distributions and exposure effects for values
below the detection limit. Figures 4 and 6 show the re-
sults from fitting the multi-parameter model. These figures
show a random set of interaction effects corresponding to
the slope-slope interactions (corresponding to γjk4 parame-
ters). Unlike for the linear exposure models presented, we see
strong evidence for interactive effects. Figure 7 shows a con-
tour plot obtained from the estimated terms corresponding
to the interaction of D24 and Diazinon. The figure demon-
strates a very strong qualitative interaction where exposure
effects the risk of NHL only when an individual is exposed
to both agents. (note that the log-odds ratios are near zero
when either of the agents have exposure at or below their
detection limit).

7. DISCUSSION
In this paper we have proposed a shrinkage prior that

shares the information between the main effects and interac-

tion effects for estimating the complex relationship between
chemical mixtures and disease risk. We proposed a prior that
shrinks the interaction term closer to zero when there is a
little evidence of a corresponding main effect. This approach
is consistent with the hierarchical principle that argues that
one should only look for interactions when the corresponding
main effects are present. Through simulations, this approach
showed sizable efficiency gain in using the shared shrinkage
prior when the hierarchical principle holds. Interestingly, we
saw that even when there was no main effect, the shared
shrinkage prior showed efficiency over priors that did not
incorporate this shared information. We presume this is due
to the flexibility of the shared shrinkage prior. Bien et al. [2]
propose a penalized likelihood lasso approach for incorpo-
rating the hierarchical principle for parameter estimation.
However, there are advantages to using the Bayesian ap-
proach over the likelihood approach is that i) there is no
need to estimate the penalization constant, and ii) estimat-
ing measures of uncertainty are more straightforward using
MCMC. Bayesian kernel machine regression (BKMR, [3]) is
an alternative approach that can be used to identify two-
way interactions that do not impose an additive structure
in the model formulation. However, this approach does not
incorporate the hierarchical principle in the estimation of
interaction between mixture components. Further, BKMR
cannot be easily extended to flexibly incorporate detection
limits as discussed in Section 4.

A major contribution of this work is introducing the
shared shrinkage prior to the setting of chemical mixtures.
A major analytical issue in the analysis of chemical mixtures
is the presence of lower detection limits among the multi-
ple chemicals. We proposed two parameter exposure models
that incorporate these detection limits. Specifically for each
chemical, we include one parameter for the effect of being
above the detection limit and another parameter for the lin-
ear change (slope) when above this limit. At the expense of
adding additional parameters, the proposed approach makes
no assumptions about the exposure effects and chemical dis-
tributions below detection limits.

The analysis of the NHL mixture data provided interest-
ing insights into the methodology. When using a linear expo-
sure model that imputed values below the detection limits,
we found no interactive effects using the independence or
shared shrinkage prior. These analyses were based on an
imputation approach where chemicals were assumed to be
log-normally distributed and values were imputed in the tail
of this distribution. The percent of values below the detec-
tion limits varied across chemical but was generally very
high (median 61%). We would expect the inferences using
imputation and assuming a linear relationship to be highly
sensitive to the imposed parametric assumptions. Ortega et
al. [16] showed the lack of robustness of this type of impu-
tation for a single exposure. When we fit the two-parameter
exposure model that accounts for detection limits, we found
substantially more evidence for interactive effects. Most of
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Figure 3: Main effects estimation.

Figure 4: Plots for Intercept terms: I(Xij > Cij) and slopes terms: I(Xij > Cij)(Xij −Cj) for the NCI-SEER NHL data
set.
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Figure 5: Interaction effect with Diazinon from linear exposure model.

Figure 6: Comparisons between randomly chosen slope vs. slope (γjk4) interaction effects.

these interactions were with regard to D24. For example,
we showed a very strong positive interactive effect between
Diazinon and D24 (see Figure 7) that was missed with the
linear exposure with the imputation approach.

In the simulations, we considered the case where there
were 10 chemicals (p = 10); the example contained 14 chem-
icals in the final models. The analysis results were insensitive
to the chosen prior distributions. We used a Gamma(1, 1)
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Figure 7: D24 vs. Diazion Contour Plot.

for the local and global shrinkage priors, but results were
very similar when we used either Gamma(1, 0.5) with vari-
ance 2 or Gamma(1, 2) with variance 0.5 distributions. In
the simulation studies, with 10 chemicals we have a large
number of interactive effects (45 for linear exposure and
180 for two parameter exposure model). With these large
number of interactive effects, the simulations and example
showed the importance of using shrinkage priors rather than
a vague prior that is closely related to maximum-likelihood.
For a larger number of chemicals, even the shrinkage prior
approaches may have poor performance due to sparsity. In
this case, a Bayesian variable selection method [17] could be
used to a smaller number of chemical exposures to include
in the model.

We considered models with two-way interactions. Con-
ceptually, we could consider 3 or high-order interactions and
extend the shared shrinkage idea to this more complex sit-
uation. In the spirit of Stone’s generalized additive model
[19], the proposed hierarchical model could be extended to
include B-splines rather than polynomial effects. Such an
extension would be computationally intensive and is left for
future work.
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