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Abstract
The notion of an e-value has been recently proposed as a possible alternative to critical regions and p-values in statistical

hypothesis testing. In this paper we consider testing the nonparametric hypothesis of symmetry, introduce analogues for
e-values of three popular nonparametric tests, define an analogue for e-values of Pitman’s asymptotic relative efficiency,
and apply it to the three nonparametric tests. We discuss limitations of our simple definition of asymptotic relative
efficiency and list directions of further research.

keywords and phrases: Hypothesis testing, Nonparametric hypothesis testing, E-values, Pitman’s asymptotic relative
efficiency.

1. INTRODUCTION
The study of the efficiency of nonparametric tests that

started in the late 1940s is often regarded as a success story
in statistics. Some nonparametric tests, such as Wilcoxon’s
signed-rank and rank-sum tests, are highly efficient even
when used in the framework of popular parametric models,
such as the Gaussian model. Theoretical results mostly con-
cern asymptotic efficiency of those tests, but there is also
empirical evidence for their finite-sample efficiency. While
some nonparametric tests (such as Wilcoxon’s) became very
popular after their high efficiency had been discovered, oth-
ers (such as Wald and Wolfowitz’s run test) were gradually
discarded from the statistical literature after their low effi-
ciency had been demonstrated [16, Introduction].

The usual approach to hypothesis testing is based on crit-
ical regions or p-values, but in this paper we replace them
with their alternative, e-values (see, e.g., [22, 20, 7]). We
show that some of the old results about the efficiency of non-
parametric tests carry over to hypothesis testing based on e-
values. To distinguish our notions of power, tests, etc., from
the standard notions, we add the prefix “e-”. (The prefix
“p-” is sometimes added to signify standard notions based
on p-values, but in this paper we rarely need it since the key
notion that we are interested in, Pitman’s asymptotic rela-
tive efficiency, is defined in terms of critical regions rather
than p-values.)

We explain basics of e-testing in Sect. 2, and in partic-
ular, we state an analogue of the Neyman–Pearson lemma
in e-testing. In the following section, Sect. 3, we give a sim-
ple example of a parametric e-test, one for testing the null
hypothesis N(0, 1) against an alternative N(θ, 1) in an IID
situation.

In Sect. 4 we give the first, and in some sense most pow-
erful, of the three examples of nonparametric e-tests that we
∗Corresponding author.

discuss in this paper. It was introduced by Fisher in his 1935
book [5]. Our nonparametric null hypothesis is that of sym-
metry around 0 (and for simplicity we consider independent
observations coming from a continuous distribution).

The material of Sects. 2–4 is standard. After that (Sect. 5)
we define the asymptotic relative efficiency of e-tests in the
spirit of Pitman’s definition [17]. We regard our definition
of asymptotic relative efficiency as a direct translation of
the classical definition. Then in Sect. 6 we compute the
Pitman-type asymptotic relative efficiency of the Fisher-
type test discussed in Sect. 4. This is complemented by sim-
ilar computations for e-versions of the sign test in Sect. 7
and Wilcoxon’s signed-rank test in Sect. 8. Our results for
all three tests agree perfectly with the classical results. This
is just a first step, and in Sect. 9 we discuss limitations of
our approach (which are considerable) and list natural di-
rections of further research.

2. GENERAL PRINCIPLES OF E-TESTING
Let P be a given probability measure on a sample space Ω

(a measurable space). Our null hypothesis is {P}; it is simple
in the sense of containing a single probability measure.

We observe ω ∈ Ω and are interested in whether ω was
generated from P . An e-variable for testing P is an [0,∞]-
valued random variable E such that

∫
E dP ≤ 1. In order

to be used for testing, we need to choose E before we ob-
serve ω. By Markov’s inequality, E can be large only with a
small probability (for any threshold c > 1, P (E ≥ c) ≤ 1/c);
therefore, observing a large E casts doubt on ω being gen-
erated from P .

In the classical Neyman–Pearson approach to hypothesis
testing, in addition to P we also have an alternative hy-
pothesis Q. The e-power of an e-variable E is then defined
as

∫
logE dQ. This is an analogue of the usual notion of
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power, but it only works in regular cases. One of such regu-
lar cases will be discussed in the next section. The following
lemma is very well known (see, e.g., [20, Sect. 2.2.1] and the
references therein), and we provide a simple proof.

Lemma 1. For given null and alternative hypotheses P and
Q, respectively, such that Q � P , the largest e-power is
attained by the likelihood ratio dQ/dP : for any e-variable E,∫

logE dQ ≤
∫

log
dQ

dP
dQ. (2.1)

And if Q � P is violated, the largest e-power is ∞.

The likelihood ratio dQ/dP in Lemma 1 is understood to
be the Radon–Nikodym derivative of Q w.r. to P .

Proof of Lemma 1. If Q � P is violated, there is an event
A ⊆ Ω such that P (A) = 0 and Q(A) > 0. Then the e-power
of the e-variable

E(ω) :=

{
∞ if ω ∈ A

1 otherwise

is ∞.
It remains to consider the case Q � P . In this case, let

q be a probability density function of Q w.r. to P . In terms
of q, we can rewrite (2.1) as∫

q logE dP ≤
∫

q log q dP, i.e.,
∫

q log
E

q
dP ≤ 0.

The last inequality follows from log x ≤ x− 1.

According to Lemma 1, which is an analogue for e-values
of the Neyman–Pearson lemma, the optimal e-variable for
testing a null hypothesis P against an alternative Q � P is
the likelihood ratio dQ/dP . The maximum e-power is

KL(Q ‖ P ) :=

∫
log

dQ

dP
dQ

(cf. [20, Sect. 2.3] and [7, Theorem 1]). This is simply the
Kullback–Leibler divergence [12] of the alternative Q from
the null hypothesis P ; we will call it the optimal e-power.

We will sometimes refer to logE as the observed e-power
of E; the e-power is then the expectation of the observed
e-power w.r. to the alternative hypothesis Q.

The notion of e-power is very close to Shafer’s [20] implied
target, the main difference being that the implied target only
depends on the null hypothesis P and the e-variable E.

As a short detour, let us check that our notion of e-power
enjoys a natural property in testing with multiple e-values.
Denote by ΠQ the function

ΠQ : E 	→
∫

logE dQ (2.2)

that maps an e-variable to its e-power. Independent e-
variables E1, . . . , EK can be combined into one e-variable

using a merging function, the most common choices being
convex mixtures of the product functions

FM : (e1, . . . , eK) 	→
∏
k∈M

ek,

where M is a subset of {1, . . . ,K}, with F∅ set to 1. Denote
by M the convex hull of all functions FM . Useful elements
of the class M are U-statistics with product as kernel, sym-
metric merging functions discussed in [22, Sect. 4].

Proposition 1. Let E = (E1, . . . , EK) be a vector of inde-
pendent e-variables.

(i) For all F ∈ M, F (E) is an e-variable.
(ii) If ΠQ(Ek) > 0 for each k = 1, . . . ,K, then

ΠQ(F (E)) > 0 for all F ∈ M \ {F∅}.
(iii) If ΠQ(Ek) ≥ 0 for each k = 1, . . . ,K, then

ΠQ(F (E)) ≥ 0 for all F ∈ M.

Proof. Part (i) follows from the fact that the product of in-
dependent e-variables is an e-variable, and a convex mixture
of e-variables is an e-variable. Next we prove (ii). For all M
other than M = ∅, we have

ΠQ
(
FM (E)

)
=

∑
k∈M

ΠQ(Ek) > 0,

and ΠQ(F∅(E)) = 0. Note that the mapping (2.2) is concave
on the set of nonnegative random variables. Since F (E) is
a convex mixture of FM (E) for M ⊆ {1, . . . ,K}, we get
ΠQ(F (E)) ≥ 0, and the inequality is strict unless F = F∅.
This proves (ii). The case (iii) is similar to (ii).

Proposition 1 shows that e-power remains positive when
combining independent e-values with positive e-power us-
ing a large class of merging functions. As a special case of
Proposition 1 applied to only one e-variable, if ΠQ(E) > 0,
then ΠQ(1−λ+λE) > 0 for all λ ∈ (0, 1]. The operation of
changing E to 1−λ+λE is common in building e-processes;
see, e.g., [24].

3. A PARAMETRIC E-TEST
We start our discussion of specific e-tests from a very sim-

ple parametric case, that of the Gaussian statistical model
Qθ := N(θ, 1), θ ∈ R, with the variance known to be 1. We
observe realizations of independent Z1, . . . , Zn ∼ N(θ, 1).
The null hypothesis P is N(0, 1), and we are interested in
the alternatives Q = Qθ = N(θ, 1) for θ �= 0.

For observations z1, . . . , zn and a given alternative
N(θ, 1), the likelihood ratio of the alternative to the null
hypothesis is

Eθ(z1, . . . , zn) :=
exp(−1

2

∑n
i=1(zi − θ)2)

exp(−1
2

∑n
i=1 z

2
i )

= exp

(
θ

n∑
i=1

zi −
1

2
nθ2

)
. (3.1)
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The corresponding optimal e-power is∫
logEθ dQθ = θnθ − 1

2
nθ2 =

1

2
nθ2. (3.2)

The interpretation of the optimal e-power (3.2) usually
depends on the law of large numbers and its refinements
(such as the central limit theorem and large deviation in-
equalities). The presence of log in the definition

∫
logE dQ

of the e-power of E under the alternative Q reflects the fact
that a typical e-value is obtained by multiplying compo-
nents coming from the individual observations zi. This can
be seen from (3.1) (and also expressions (4.4), (7.2), and
(8.3) below, which are typical). Taking the logarithm leads
to a much more regular distribution, which is, e.g., approx-
imately Gaussian under standard regularity conditions. In
the case of (3.1), the key component of the logarithm is∑n

i=1 zi, and we can apply, e.g., the central limit theorem
to see that the observed e-power is between the narrow limits
1
2nθ

2 ± c
√
nθ with probability close (in this particular case,

even exactly equal) to Φ(c) − Φ(−c), where c > 0 and Φ is
the standard Gaussian cumulative distribution function.
Remark 1. To get the full idea of the power of E under Q,
we need the whole distribution of the observed e-power logE
under Q, and replacing it by its expectation is a crude step.
(The next step might be, e.g., complementing the expecta-
tion with the standard deviation of logE under Q.) We leave
such more realistic notions of power for future research.

We regard the family (3.1) of e-variables as a test (an
e-test) of the null hypothesis N(0, 1). While for several im-
portant statistical models there are uniformly most powerful
p-tests (see, e.g., [14, Chap. 3]), this is not the case for e-
tests, and the e-tests considered in this paper are always
families of e-variables.

The fact that the e-variable (3.1) depends on the un-
known alternative parameter θ is a disadvantage. A natural
way out is to integrate it under the prior distribution N(0, 1)
over θ, which gives us the e-variable

1√
2π

∫
exp

(
θ

n∑
i=1

zi −
1

2
nθ2 − 1

2
θ2

)
dθ

=

√
1

n+ 1
exp

(
1

2n+ 2

(
n∑

i=1

zi

)2)
(3.3)

(cf. Remark 2 below). Notice that the operation of integra-
tion makes the e-variable “two-sided”: while (3.1) is mono-
tone in

∑
i zi, (3.3) is monotone in |

∑
i zi|. The remaining

disadvantage of the e-variable (3.3) is that it is valid only
under the simple Gaussian null hypothesis N(0, 1). In the
following sections we will replace this simple null hypothesis
with a composite nonparametric one.
Remark 2. In our computations in this paper we often use
the formula∫

exp
(
−Ax2 +Bx

)
dx =

√
π

A
exp

(
B2

4A

)
,

where A > 0 and B ∈ R. Equations (3.1) and (3.3) are
simple calculations, and they appear in the context of mix-
ture martingales, which date back to, at least, the work of
Robbins (e.g., [19]); see also the more recent [10] and the
references therein.

4. FISHER-TYPE NONPARAMETRIC
E-TEST OF SYMMETRY

Let Z1, . . . , Zn be continuous IID random variables. We
are interested in the null hypothesis that their distribution is
symmetric around 0. This is an example of a nonparamet-
ric hypothesis, since the distribution of Z1, . . . , Zn is not
described in a natural way by finitely many real-valued pa-
rameters. Intuitively, we are interested in two alternatives:
the one-sided alternative that Zi, even though IID, are not
symmetric but shifted to the right; and the two-sided alter-
native that Zi are shifted to the right or to the left.

A typical case in applications is where Zi := Yi −Xi, Xi

is a pre-treatment measurement, and Yi is a post-treatment
measurement, and we are interested in whether the treat-
ment has any effect. Assuming that raising Xi is desirable,
the one-sided alternative is that the treatment is beneficial.

We will formalize our null hypothesis in a way simi-
lar to repetitive and one-off structures [23, Sects. 11.2.4
and 11.2.5]. However, we will not need general definitions
and will adapt them to our special case.

The symmetry model for a sample size n is the pair (t, b),
where t : Rn → Σ is the mapping

t : (z1, . . . , zn) 	→
(
|z1|, . . . , |zn|

)
from the sample space R

n to the summary space [0,∞)n,
and b is the Markov kernel that maps each summary
(z1, . . . , zn) ∈ [0,∞)n to the uniform probability measure
on the set

t−1(z1, . . . , zn)

=
{
(j1z1, . . . , jnzn) | (j1, . . . , jn) ∈ {−1, 1}n

}
. (4.1)

An e-variable for testing the null hypothesis of symmetry is a
function E : Rn → [0,∞] such that

∫
E db(t(z1, . . . , zn)) ≤ 1

for all z1, . . . , zn. It is admissible if ≤ holds as = for all
z1, . . . , zn; in other words, if it ceases to be an e-variable (w.r.
to the symmetry model) as soon as its value is increased at
any point.
Remark 3. The definition of admissibility that we give is
adapted to our current context; see [18, Sect. 9] for a more
general discussion.

In this section we define the first of our three e-tests for
testing symmetry. We are interested in the e-variables of the
form

Eλ(z1, . . . , zn) := exp
(
λS(z1, . . . , zn)− C

)
, (4.2)
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where S(z1, . . . , zn) :=
∑n

i=1 zi, λ > 0 is a positive param-
eter, and C is chosen to make E an admissible e-variable,
i.e.,

C = C
(
λ, t(z1, . . . , zn)

)
:= log

∫
exp(λS)db

(
t(z1, . . . , zn)

)
(in other words, C := logE exp(λS), the expectation being
under the null hypothesis, i.e., under the symmetry model).
Lemma 2 will give a convenient formula for computing C.

The form (4.2) for our e-variables can be justified by the
analogy with the e-variable (3.1) that we obtained in the
Gaussian case. The expression for the normalizing constant
C will, however, be different and will be derived momentar-
ily.

The justification of the symmetry model from the point
of view of standard statistical modelling is that, under the
null hypothesis of symmetry, t is a sufficient statistic giving
rise to b as conditional distribution.

For simplicity, we will assume that z1, . . . , zn are all dif-
ferent (under our assumption that the random variables
Z1, . . . , Zn are continuous, the realizations will be all dif-
ferent almost surely).

Lemma 2. The value of C in (4.2) is given by

C =

n∑
i=1

log
eλzi + e−λzi

2
. (4.3)

Proof. We find

eC = 2−n
1∑

j1=0

· · ·
1∑

jn=0

eλj1z1+···+λjnzn

= 2−n
n∏

i=1

(
eλzi + e−λzi

)
.

(Alternatively, we can see straight away that the average of
(4.4) below w.r. to b(t(z1, . . . , zn)) is 1.)

Plugging (4.3) into (4.2) gives the e-variable

Eλ(z1, . . . , zn) = e−C
n∏

i=1

eλzi =
n∏

i=1

eλzi

1
2 (e

λzi + e−λzi)
. (4.4)

This is an e-version of Fisher’s permutation test, which he
introduced and applied to Charles Darwin’s data [3, Chap. 1]
in his 1935 book [5, Sects. 21 and 21.1] on experimental
design.

Again, since there is no uniformly most powerful e-test,
we consider a family of e-variables. The e-variable (4.4) is,
of course, admissible.

The e-variable (4.4) dominates

E′
λ(z1, . . . , zn) :=

n∏
i=1

eλzi−λ2z2
i /2, (4.5)

Figure 1: The inequality (4.6) on the log scale.

in the sense E′ ≤ E. Therefore, E′ is also an e-variable, al-
beit inadmissible in general. To check the inequality E′ ≤ E,
it suffices to check that

1

2

(
ex + e−x

)
≤ ex

2/2. (4.6)

Expanding both sides into Taylor’s series shows that this
inequality indeed holds for all x. The inequality is not ex-
cessively loose, especially for small values of x (which will
be the case that we will be interested in when computing
the Pitman efficiencies): cf. Figure 1.
Remark 4. The fact that (4.5) is an e-variable was estab-
lished by de la Peña [4, Lemma 6.1]. Ramdas et al. [18,
Sect. 10] point out that it is inadmissible, and they define
several natural admissible alternatives to (4.4). Investigating
the asymptotic relative efficiency of those admissible alter-
natives is an interesting direction of further research.

In order to get rid of the dependence of (4.4) or (4.5) on
λ, we can integrate these expression over a prior distribution
on λ. This can be easily done explicitly (see Remark 2) in
the case of (4.5) and the prior distribution N(0, 1) on λ:

1√
2π

∫ n∏
i=1

eλzi−λ2z2
i /2−λ2/2 dλ

=

√
1

1 +
∑n

i=1 z
2
i

exp

(
(
∑n

i=1 zi)
2

2 + 2
∑n

i=1 z
2
i

)
. (4.7)

The right-hand side of (4.7) is close to the right-hand side
of (3.3) under N(0, 1) as the null hypothesis: this follows
from

∑n
i=1 z

2
i ≈ n (for large n and with high probability).

However (as noticed in [4]), this relatively small change dras-
tically changes the property of validity of the e-test: while
the right-hand side of (3.3) is an e-test of N(0, 1) only, the
right-hand side of (4.7) is an e-test of the nonparametric
hypothesis of symmetry.
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Table 1. Differences in eighths of an inch between cross- and
self-fertilised plants of the same pair (Table 3 in [5, Sect. 17]).

49 23 56
−67 28 24
8 41 75
16 14 60
6 29 −48

Results for Charles Darwin’s Data
In this subsection we will compute Fisher-type nonpara-

metric e-values for data used by Darwin [3, Chap. 1] to test
whether cross-fertilization of plants was advantageous to the
progeny as compared with self-fertilization. This was an im-
portant question from the evolutionary point of view, and
Darwin’s preliminary work had convinced him that cross-
fertilization was indeed advantageous; in particular, nature
went to great lengths to prevent self-fertilization [2].

Table 1 reports results for a small subset of Darwin’s
data, those for maize. This subset was analyzed for Dar-
win by Francis Galton (as Darwin describes in detail in [3,
Chap. 1]) and was reanalyzed by Fisher in [5, Chap. 3].
Fisher offered both parametric analysis (assuming the Gaus-
sian distribution) and novel nonparametric analysis, and his
finding was that Student’s t-test and Fisher’s nonparametric
test produce remarkably similar results.

Table 1 lists the differences in height between 15 pairs of
matched plants, with a cross- and self-fertilized plant in each
pair (meaning a plant grown from a cross- or self-fertilized
seed, respectively). A positive difference means that the
cross-fertilized plant is taller, which we a priori expect to
happen more often. Fisher was interested in two alternatives
to the null hypothesis of symmetry: the one-sided alternative
of positive observations being more common than negative
ones and the two-sided alternative of asymmetry (with pos-
itive observations being either more or less common than
negative ones).

Fisher’s p-value for testing the one-sided hypothesis is
2.634%, and his p-value for testing the two-sided hypothesis
is twice as large, 5.267%. Therefore, the one-sided p-value is
significant but not highly significant, whereas the two-sided
p-value is not even significant.

Figure 2 plots the Fisher-type admissible e-values (4.4)
(in blue) and the simplified e-values (4.5) (in red) for the
parameter λ in the range [0, 1]. The meaning of λ depends
on the scale of the numbers z1, . . . , z15 in Table 1, and in
order to make λ less arbitrary we normalize z1, . . . , z15 by
dividing them by the standard deviation of these 15 num-
bers. Jeffreys’s [11, Appendix B] rule of thumb is to consider
an e-value of 10 as being analogous to a p-value of 1% and
to consider an e-value of

√
10 ≈ 3.162 as being analogous

to a p-value of 5%. (See [22, Sect. 2] for a more detailed
discussion of relations between e-values and p-values.) This
makes Figure 2 roughly comparable to Fisher’s p-values, es-
pecially if we ignore the inadmissible simplified e-values. If

Figure 2: Results for the Fisher-type e-test applied to Dar-
win’s data.

we guess in advance that λ := 0.5 is a good parameter value,
we will get an e-value of 7.651. More realistically, averaging
the e-values for λ ∈ [0, 1] will give the one-sided e-value
5.149. Replacing λ ∈ [0, 1] by λ ∈ [−1, 1] gives the two-sided
e-value 2.633 not reaching the threshold of

√
10.

5. PITMAN-TYPE ASYMPTOTIC
RELATIVE EFFICIENCY

The following definition is in the spirit of Pitman’s def-
inition, which can be found in, e.g., [21, Sect. 14.3]. Let
(Qθ | θ ∈ Θ) be a statistical model, i.e., a set of probability
measures on the real line R, with the observations gener-
ated from one of those probability measures in the IID fash-
ion. We assume, for simplicity, that Θ = R and regard Q0

as the null hypothesis; informally, the alternative is either
one-sided, θ > 0, or two-sided, θ �= 0 (for specific e-tests,
we will have the same results for one-sided and two-sided
Pitman efficiency). By an e-variable we mean an e-variable
w.r. to Qn

0 . In our asymptotic framework we consider se-
quences of parameter values θν that depend on the “diffi-
culty” ν = 1, 2, . . . of our testing problem; in the one-sided
case we will assume θν ↓ 0 (the sequence is strictly decreas-
ing and converges to 0), and in the two-sided case we will
assume θν → 0.

Let En
1 and En

2 be families of e-variables on R
n; we are

interested in the case where En
1 is a family of interest to

us (a nonparametric e-test such as (4.4) above, or (7.3) or
(8.1) below) and En

2 is the baseline family of all e-variables
on R

n. The asymptotic relative efficiency of En
1 w.r. to En

2

is c if, for any β > 0 and any θν ↓ 0 (one-sided case) or
θν → 0 (two-sided case), we have nν,2/nν,1 → c, where nν,j ,
j = 1, 2, is the minimal number of observations n such that

∃E ∈ En
j :

∫
logE dQn

θν ≥ β.
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Figure 3: Assaying a non-parametric e-test.

For example, if the asymptotic relative efficiency is 0.5, the
best e-test in (En

1 ) requires twice as many observations n as
the best test in (En

2 ) to achieve the same e-power (if the best
e-tests exist).

The idea of using an auxiliary parametric statistical
model (Qθ), such as the Gaussian model, to assay the effi-
ciency of nonparametric e-tests is illustrated in Figure 3. We
are testing a nonparametric null hypothesis (the hypothesis
of symmetry in this paper), but we are afraid that for a pop-
ular parametric model (the Gaussian model Qθ := N(θ, 1) in
this paper, which plays the role of an assay statistical model)
our testing method loses a lot. We are interested in the case
where the intersection between the nonparametric null hy-
pothesis and the assay model contains only one probability
measure; we refer to this intersection as the parametric null
hypothesis in Figure 3 (in this paper, it is {N(0, 1)}). For
a given simple alternative hypothesis Q = Qθ in the assay
model (shown as the red dot in Figure 3), we are hoping to
show that the best e-power achieved for testing the simple
parametric null hypothesis vs Q is not much better than the
best e-power achieved for testing the composite (and usually
massive) nonparametric null hypothesis. Or, if Pitman-type
notion of efficiency is to be used (as in this paper), that the
same e-power is attained for numbers of observations that
are not wildly different.

Our use of the Gaussian model with variance 1 as as-
say model motivates using (4.2) with S(z1, . . . , zn) := z1 +
· · · + zn as a nonparametric e-test. The sign and Wilcoxon
versions will be natural modifications (corresponding to re-
laxing the symmetry assumption, as explained in Remark 6
below).

For all three nonparametric e-tests considered in this pa-
per (Sects. 6–8 below) we will need the number nν,2 of ob-
servations required by our baseline, which is, by Lemma 1,
the likelihood ratio dN(θν , 1)/dN(0, 1). By (3.2), achieving

an e-power of β requires approximately

2βθ−2
ν (5.1)

observations (namely, �2βθ−2
ν � observations).

Remark 5. In the context of regular statistical models such
as Gaussian, it is natural to set θν := cν−1/2. In this case the
“difficulty” ν (referred to as “time” in [21, Sect. 14.3]) be-
comes proportional to the number of observations required
to achieve a given e-power.

6. ASYMPTOTIC EFFICIENCY OF THE
FISHER-TYPE E-TEST

In the classical case, the relative efficiency of Fisher’s test
is 1 [6, Chapter 7, Example 4.1], as first shown by Hoeffding
[9] (according to Mood [15]). Let us check that this remains
true for the e-version as well.

First we find informally a suitable e-variable in the fam-
ily (4.4) and then show that it requires the optimal number
(5.1) of observations to achieve an e-power of β. Under the
symmetry model, each observation zi is split into its mag-
nitude mi := |zi| and sign si := sign(zi). Given the magni-
tudes, the signs are independent and P(si = 1) = 1/2 under
the null hypothesis N(0, 1) and

P(si = 1) =
exp(−1

2 (mi − θν)
2)

exp(−1
2 (mi − θν)2) + exp(−1

2 (−mi − θν)2)

=
exp(θνmi)

exp(θνmi) + exp(−θνmi)

under the alternative hypothesis N(θν , 1). The conditional
likelihood ratio for the signs is

n∏
i=1

2 exp(θνzi)

exp(θνmi) + exp(−θνmi)

=

n∏
i=1

exp(θνzi)

1 + θ2νm
2
i /2 + o(θ2νm

2
i )
.

This is Fisher’s e-test (4.4) corresponding to λ := θν . Its
observed e-power is

n∑
i=1

(
θνzi − θ2νm

2
i /2 + o

(
θ2νm

2
i

))

= θν

n∑
i=1

zi −
(
1 + o(1)

)θ2ν
2

n∑
i=1

m2
i .

Since, under the alternative hypothesis N(θν , 1),

E

n∑
i=1

zi = nθν
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and

E

n∑
i=1

m2
i = E

n∑
i=1

z2i = n+ nθ2ν =
(
1 + o(1)

)
n,

the e-power is

nθ2ν −
(
1 + o(1)

)θ2ν
2
n ∼ 1

2
nθ2ν .

We obtain the optimal e-power (3.2) with θ = θν , and so
the asymptotic relative efficiency of Fisher’s e-test is 1.

7. SIGN E-TEST
In this and following sections we use (4.2) for different

statistics S, and with C still chosen to make Eλ an admissi-
ble e-variable. In this section we make the simplest choice of
S(z1, . . . , zn) in (4.2), which is the number k of positive zi
among z1, . . . , zn. This gives the sign e-test with parameter
λ > 0. The use of the signs for hypothesis testing goes back
to [1].

To obtain a useful alternative representation of the sign
e-test, let p ∈ (0, 1) be defined by the equation

p

1− p
= eλ

(so that λ becomes the log-odds ratio). The e-variable (4.2)
then becomes

Eλ(z1, . . . , zn) = eλk−C = pk(1− p)−ke−C

=
pk(1− p)n−k

2−n
. (7.1)

The last expression is the likelihood ratio of an alternative
to the null hypothesis, and so is an admissible e-variable.
This gives us the representation

Ep(z1, . . . , zn) :=
pk(1− p)n−k

2−n
(7.2)

of the sign e-test.
The equality between the last two terms in (7.1) gives an

explicit expression for C,

C = −n log
(
2(1− p)

)
= n log

1 + eλ

2
,

which in turn gives the alternative representation

Eλ(z1, . . . , zn) = eλk
(

2

1 + eλ

)n

(7.3)

of the sign e-test.
In view of our informal alternative hypothesis, we are

often interested in λ > 0, i.e., p > 1/2.

Remark 6. Notice that in this section we are actually testing
a wider null hypothesis than the symmetry model, since the
magnitudes of zi do not matter. Namely, the sign e-test is
valid for testing the hypothesis that the signs of Z1, . . . , Zn

are ±1 independently. A similar remark can also be made
about the nonparametric e-test discussed in the following
section, which in fact tests an intermediate null hypothesis.

As before, we have a dependence of the sign e-test (7.2)
on a parameter, p. To get rid of this dependence, we can,
e.g., integrate (7.2) over p ∈ [0, 1], obtaining

E(z1, . . . , zn) := 2nB(k + 1, n− k + 1),

where B is the beta function. For testing the one-sided hy-
pothesis we can integrate (7.2) over the uniform probability
measure on [0.5, 1], which gives

E(z1, . . . , zn) := 2n+1
(
B(k + 1, n− k + 1)

− B(0.5; k + 1, n− k + 1)
)
,

where the second entry of B stands for the incomplete beta
function.

Efficiency of the Sign Test
In this and next sections we consider the same assay para-

metric model and still assume that the null hypothesis is
N(0, 1) and the alternative is N(θν , 1). Suppose we only ob-
serve the signs si of zi, which is sufficient when testing the
null hypothesis with the sign e-test. By Lemma 1 the largest
e-power for an e-variable of this kind will be achieved by the
likelihood ratio for the signs.

The sign of Zi is 1 with probability 1/2 under the null hy-
pothesis and 1/2+θ̃ν/

√
2π under the alternative for θ̃ν ∼ θν ,

due to the first-order Taylor approximation of the standard
Gaussian cumulative distribution function Φ. With k being
the number of positive zi, the likelihood ratio for the signs
is

( 12 + θ̃ν√
2π

)k( 12 − θ̃ν√
2π

)n−k

(1/2)n

=

(
1 +

√
2

π
θ̃ν

)k(
1−

√
2

π
θ̃ν

)n−k

.

This is an instance of the sign e-test (7.2), corresponding to
p = 1/2 + θ̃ν/

√
2π. The observed e-power of this e-test is

k log

(
1 +

√
2

π
θ̃ν

)
+ (n− k) log

(
1−

√
2

π
θ̃ν

)

= (2k − n)

√
2

π
θ̃ν − 1

π
nθ̃2ν + o

(
nθ̃2ν

)
(we have used the second-order Taylor approximation). This
gives the e-power(

2

(
1

2
+

θ̃ν√
2π

)
n− n

)√
2

π
θ̃ν − 1

π
nθ̃2ν + o

(
nθ̃2ν

)
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Figure 4: Results for the sign e-test applied to Darwin’s
data.

=
1

π
nθ̃2ν + o

(
nθ̃2ν

)
∼ 1

π
nθ2ν .

To achieve an e-power of β, the sign e-test needs ∼ πβθ−2
ν

observations. Therefore, the asymptotic efficiency of the sign
e-test is 2/π ≈ 0.64, exactly the same as in the standard
case [6, Example 3.1]. (In the standard case the sign test
is usually compared with the t-test, but in this paper we
use an even more basic assay parametric model; namely, we
assume that the variance is known to be 1.)

Since the asymptotic efficiency is approximately 2/3, we
can say that the sign test wastes every third observation
in our Gaussian setting. This is the least efficient of the
three nonparametric e-tests considered in this paper when
efficiency is measured using the Gaussian assay model as
yardstick.

Sign Test for Darwin’s Data
It is interesting that the sign test gives the one-sided p-

value of 0.00369 and the two-sided p-value of 0.00739. In
contrast with Fisher’s p-test, both p-values are highly sig-
nificant, the reason being that the two negative numbers in
Table 1 are so large in absolute value.

Figure 4 is an analogue of Figure 2 for the sign test. The
attainable e-values are now much larger, and the average
over all p ∈ [0, 1] is 19.310. To use Jeffreys’s [11, Appendix B]
expressions, we have strong evidence against the null hy-
pothesis of cross- and self-fertilization being equally efficient.
The corresponding one-sided e-value, found as the average
over all p ∈ [0.5, 1], is 38.544, and in Jeffreys’s terminology it
provides very strong evidence (for cross-fertilization tending
to produce taller plants, in this context).

Table 1 comprises only small part of the overwhelming
evidence in favour of cross-fertilization collected by Dar-
win over 11 years. Darwin chose maize to illustrate his
and Galton’s statistical methods in [3, Chap. 1], but in [3,

Chaps. 2–6] he has 99 similar tables (with our Table 1 cor-
responding to Darwin’s Table 97). With this amount of evi-
dence, statistics is hardly needed to see that the evidence is
really overwhelming.

8. WILCOXON’S SIGNED-RANK E-TESTS
Wilcoxon’s signed-rank test [25] is based on arranging

the magnitudes |zi| of the observations in the ascending or-
der and assigning to each its rank, which is a number in
the range {1, . . . , n}: the observation zi with the smallest
|zi| gets rank 1, the one with the second smallest |zi| gets
rank 2, etc. Notice that the symmetry model (i.e., the uni-
form probability measure on (4.1)) implies that for any set
A ⊆ {1, . . . , n}, the probability is 2−n that the observations
with the ranks in A will be positive and all other obser-
vations will be negative. This determines the distribution
(conditional on the magnitudes |zi|) of Wilcoxon’s statistic
Vn defined as the sum of the ranks of the positive observa-
tions.

We will be interested in the nonparametric e-test (4.2)
with S := Vn, i.e.,

Eλ(z1, . . . , zn) := exp(λVn − C). (8.1)

The following lemma gives a convenient formula for com-
puting C.
Lemma 3. The value of C in (8.1) is given by

C =
n∑

i=1

log
1 + eλi

2
. (8.2)

Proof. Using Fisher’s conditional distribution (the uniform
probability measure on (4.1)), we can write C in the form

C = log

(
2−n

∑
A⊆{1,...,n}

exp
(
λ sum(A)

))
,

where sum(A) is the sum of all elements of A. Setting

Σi :=
∑

A⊆{1,...,i}
Λsum(A),

where Λ := exp(λ), and using the recursion

Σi = Σi−1 + ΛiΣi−1

(obtained by splitting all subsets of {1, . . . , i} into those that
do not contain i and those that do), we obtain

Σn =

n∏
i=1

(
1 + Λi

)
.

Plugging (8.2) into (8.1), we obtain Wilcoxon’s signed-
rank e-test

Eλ(z1, . . . , zn) := exp(λVn)

n∏
i=1

2

1 + eλi
. (8.3)
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Efficiency of Wilcoxon’s Signed-Rank E-test
Our derivation in this subsection will follow [13, Exam-

ple 3.3.6]. The statistic

Tn := Vn/

(
n

2

)
, (8.4)

Vn being Wilcoxon’s signed-rank statistic defined at the be-
ginning of this section, is asymptotically normal both under
the null hypothesis N(0, 1),

Tn ∼ N

(
1

2
,
1

3n

)
, (8.5)

and under the alternative hypothesis N(θν , 1),

Tn ∼ N

(
1

2
+

θν√
π
,
1

3n

)
. (8.6)

The mean value 1/2 + θν/
√
π in (8.6) is found as the first-

order approximation to the probability of Z1+Z2 > 0, where
Z1 and Z2 are independent and distributed according to the
alternative hypothesis N(θν , 1) (see [13, (3.3.40)]). Namely,
it is obtained from Z1 + Z2 ∼ N(2θν , 2) and from the stan-
dard Gaussian density being 1/

√
2π at 0.

From (8.5) and (8.6) we obtain the asymptotic likelihood
ratio

exp(−1
2 (Tn − 1

2 − θν√
π
)2/ 1

3n )

exp(−1
2 (Tn − 1

2 )
2/ 1

3n )

= exp

(
3n

(
Tn − 1

2

)
θν√
π
− 3n

2

θ2ν
π

)
(8.7)

(of the form (8.1); see below). The observed e-power is ob-
tained by removing the exp, and then the e-power is ob-
tained by taking the expectation w.r. to Tn distributed as
(8.6). Therefore, the e-power is, asymptotically,

3n
θν√
π

θν√
π
− 3n

2

θ2ν
π

=
3n

2

θ2ν
π
.

The number of observations required for achieving an e-
power of β is, asymptotically,

2π

3
βθ−2

ν .

Comparing this with the baseline (5.1) gives the asymp-
totic relative efficiency of 3/π ≈ 0.955, as in the classical
case. Wilcoxon’s test wastes one observation out of about
22 (under the Gaussian model as compared with the e-test
optimized for that model).

The approximate e-test used in this calculation (given by
the right-hand side of (8.7)) is of the form (8.1) with

λ :=
3nθν(
n
2

)√
π

(obtained by expressing (8.7) in terms of Vn using (8.4)).
This, however, ignores the definition of C in (8.1). In prac-
tical application we should use, of course, the precise ex-
pression (8.3).

9. DIRECTIONS OF FURTHER RESEARCH
In the previous sections we mentioned several limitations

of our definitions. In this concluding section we will add
further details.

The Notion of E-power as Used in the
Definition of Efficiency

Our notion of e-power for an e-variable E is crude in that
it depends only on the expectation of logE, as explained in
Remark 1. This crudeness is inherited by our definition of
the asymptotic relative efficiency of e-tests. According to
our definition in Sect. 5, the asymptotic relative efficiency is
c if nν,2 ∼ cnν,1. This statement will be particularly useful
if, under the alternative hypothesis, the full distribution of
the original likelihood ratio, such as (3.1) for θ = θν and
nν,2 observations, is close, in a suitable sense, to the full
distribution of the e-test, such as (4.4), (7.3), or (8.3) (with
nν,1 observations and the corresponding value of the param-
eter). Therefore, a fuller treatment of asymptotic relative
efficiency will not use e-power directly (which will make it
more complicated).

Definition of Efficiency in Terms of Mixtures
Our definition of Pitman-type efficiency is close to being a

direct translation of the classical one. It considers the alter-
natives N(0, θν) that approach the null hypothesis N(0, 1)
as the difficulty ν increases. In the classical case, this works
perfectly for many popular assay models because of the ex-
istence of a uniformly most powerful test: the optimal size
α critical region does not depend on ν (assuming θν > 0).
In the e-case, on the contrary, the optimal e-variable does
depend on ν.

A possible alternative definition would be to replace
N(θν , 1) by a mixture

∫
N(θ, 1)μν(dθ) of N(θ, 1) w.r. to

a probability measure μν(dθ) that is increasingly concen-
trated around θ = 0 as ν → ∞. In a sense, the assay sta-
tistical model considered in this paper is “pure” in that it
consists of pure Gaussian distributions. Considering mix-
tures

∫
N(θ, 1)μν(dθ) would make the results more realistic

but would also make the definitions more complicated.

Other Assay Models
In our efficiency results, the Gaussian model can be re-

placed by other statistical models. It is particularly in-
teresting to compare nonparametric e-tests with the opti-
mal e-tests under those models; nowadays, comparison with
the t-test, which was done in many of the classical papers
(e.g., [8]), looks less convincing for non-Gaussian assay mod-
els.
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Our choice of the form (4.2) of the nonparametric e-tests
considered in this paper was motivated by the Gaussian as-
say model: see the likelihood ratio (3.1). Using other assay
models would lead to other nonparametric e-tests. There-
fore, varying the assay model may be a useful design tool
for nonparametric e-tests.

Other Notions of Efficiency
The Pitman-type notion of efficiency is “local”, in the

sense of being defined in terms of progressively more diffi-
cult alternatives that tend to the null hypothesis as ν → ∞.
It is the most popular notion of efficiency for nonparamet-
ric tests, but it would be interesting to develop e-versions
of other, non-local, notions of asymptotic relative efficiency
(see, e.g., [16, Chap. 1]).
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