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Abstract
Random forests are a powerful machine learning tool that capture complex relationships between independent variables

and an outcome of interest. Trees built in a random forest are dependent on several hyperparameters, one of the more
critical being the node size. The original algorithm of Breiman, controls for node size by limiting the size of the parent node,
so that a node cannot be split if it has less than a specified number of observations. We propose that this hyperparameter
should instead be defined as the minimum number of observations in each terminal node. The two existing random forest
approaches are compared in the regression context based on estimated generalization error, bias-squared, and variance of
resulting predictions in a number of simulated datasets. Additionally the two approaches are applied to type 2 diabetes
data obtained from the National Health and Nutrition Examination Survey. We have developed a straightforward method
for incorporating weights into the random forest analysis of survey data. Our results demonstrate that generalization error
under the proposed approach is competitive to that attained from the original random forest approach when data have
large random error variability. The R code created from this work is available and includes an illustration.
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1. INTRODUCTION
The prominence of the random forest (RF) algorithm as

a machine learning tool is due to its ability to accurately
model large and complex datasets and availability in many
software packages. The non-parametric model is determined
by three user specified parameters, one of the more critical
being the stopping criterion node size. The node size regu-
lates the model complexity of each tree in the forest and has
implications on the statistical performance of the algorithm.

The original RF model introduced by [4] defines the node
size parameter as the minimum number of observations re-
quired to further split the data, e.g., minimum size of par-
ent nodes. We advocate that the node size should instead
be defined as the minimum number of observations in the
final subgroups, e.g., minimum size of the leaf nodes. The
proposed approach guarantees that predictions from a tree
within the forest are the mean outcome of at least node size
observations. In contrast, the original RF allows for sub-
groups to contain as few as a single observation.

Most recent developments on the RF have been exten-
sions of the original algorithm for specified analysis. De-
spite this, the original algorithm remains widely used for
many health care and other applications. The popularity
of the algorithm warrants further investigation into the ef-
fect of its hyperparameters on predictive performance, in
particular node size. There has been some attention in the
literature on the tuning of certain RF hyperparameters, in
∗Corresponding author.

particular the node size and the maximum number of nodes
as discussed in [14].

The multiplicity of new RF methods has been reviewed by
[14]. Specifically, the authors highlight the need for further
investigation on the effects of tuning hyperparameters for
the RF, which is reviewed in greater depth by [16]. The im-
portance among hyperparameters for various machine learn-
ing methods including the RF algorithm are explored in [17].
Their results show that node size and mtry are the two most
influential hyperparameters for the RF algorithm, in partic-
ular the effect on the variability between trees in the RF
model. The authors note an important distinction between
the two differing definitions of node size:

At first sight, the minimal samples per split and minimal
samples per leaf hyperparameters seem quite similar, but
at closer inspection they are not: logically, minimal sam-
ples per split is overshadowed by minimal samples per
leaf. (p. 6)

In this work we investigate the effect of the two defini-
tions of node size on the predictive performance of the RF
model. Specifically, defining the node size as minimal sam-
ples per split versus minimal samples per leaf, and propose
the later approach. Section 2 provides background on the
regression framework. In Section 3 the bias-variance decom-
position and corresponding estimators used to evaluate the
performance of the competing approaches are detailed. The
type 2 diabetes example obtained from The National Health
and Nutrition Survey (NHANES) data is then introduced in
Section 4 along with analysis and results of the data. The
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section also includes description of the survey design which
[5] discuss in greater depth. Due to the survey design, this
work modifies the two competing RF algorithms for the in-
clusion of individual participant weights. Section 5 details
the simulation study consisting of 14 simulated datasets and
results obtained from the simulation analysis. Section 6 sum-
marizes the results from our analysis and the advantages and
limitations of each approach.

2. BACKGROUND
An overview of the regression framework utilized in

this paper is now discussed. Let the available dataset
be denoted by T = {Tn, Tκ}, such that T =
{(x1, y1), . . . , (xn+κ, yn+κ)}. The portion of the sample T
used for model testing and tuning of the random forest (RF)
model is denoted as Tκ = {(xn+1, yn+1), . . . , (xn+κ, yn+κ)}
and is of size κ. The remaining sample Tn is the propor-
tion of the data used to train the RF model. The training
sample is denoted as Tn = {(x1, y1), . . . , (xn, yn)} and is of
size n. The input covariates are {x1, . . . ,xn+κ}, and each
is a vector of size p assumed to lie in �p. The continuous
dependent variable y = {y1, . . . , yn+κ} are assumed to be
generated by a model yi = f(xi) + εi, i = 1, . . . , n+ κ. The
random errors εi, i = 1, . . . , n + κ are assumed to be inde-
pendent and identically distributed random variables with
mean zero, E(εi) = 0, and constant variance, V ar(εi) = σ2,
i = 1, . . . , n+κ. [2, pg. 2502] showed that when the function
f = E[Y |X = x] is almost everywhere continuous in x the
random forest estimator is consistent. The aim of the RF
algorithm is to estimate the unknown mean function f for
a new observation having covariate vector x0, specifically
f(x0) = E[Y |X = x0]. For a detailed overview of the RF
modelling technique see [3].

The random forest algorithm is governed by three user
selected hyperparameters: M which is the number of trees
in the forest, mtry which is the number of randomly se-
lected features used to split each node, and node size which
is the minimum size of nodes required for further splitting.
The model complexity is primarily determined by mtry and
node size. The recommended values for these hyperparam-
eters in the regression framework are M = 500, mtry = p

3 ,
node size = 5. In particular these are the default values im-
plemented in the RF statistical package, randomForest in
R software.

The documentation of randomForest states that the
node size hyperparameter is the minimum size of the ter-
minal nodes, e.g., leaf nodes (see [8]). We created two al-
gorithms in R software, one implementing the original RF
(that defines node size as the size of the parent node) and
the other defining node size as the size of the leaf node.
Results from the application of the two algorithms on a col-
lection of simulated data sets suggests that the stopping
criteria in randomForest package is defined by the size of
the parent node. This misspecification prompted our inves-
tigation into the comparison of these two RF approaches in

the regression context, based on their respective predictive
performances for health care and simulated data.

As we shall demonstrate, this difference in node size
definition has important implications on predictive perfor-
mance. The node size hyperparameter controls the complex-
ity of each tree in the forest by its depth. Smaller values of
node size result in deeper trees allowing for predictions that
usually attain smaller bias-squared. Larger values of node
size result in shallower trees with larger bias-squared but
smaller variability of resulting predictions. The original RF
algorithm allows for sparse nodes that may contain as few
as a single observation. The proposed definition of node size
is the minimum number of observations defining the final
nodes of each tree. The proposed stopping criterion is im-
plemented in certain packages, including randomForestSRC
by [7] in R software for the analysis of survival data.

For implementing the RF algorithm, Tn is the data that
is randomly sampled with replacement in the construction
of each tree in the forest. We apply a hold-out approach in
which observations in the testing set, Tκ are used to obtain
the generalization error performance. For the remainder of
this paper, we will refer to the original RF approach (as
implemented in the randomForest package) as the ‘parent
approach’ and the proposed method as the ‘leaf approach’.
Development of the generalization error decomposition and
predictive metrics used to assess the performance of the two
competing algorithms are now be presented.

3. PREDICTIVE PERFORMANCE CRITERIA
AND ESTIMATION

The generalization error based on the mean squared error
loss function is the mean squared prediction error (MSPE).
The comparison of the two random forest (RF) approaches
is based on three criteria: MSPE, bias-squared, and variance
of predictions for new observations. Assessment of the mod-
elling approaches from these criteria is facilitated by a simu-
lation study. A total of B simulated RF models are built and
used to estimate MSPE, bias-squared, and variance. In par-
ticular, estimation of bias-squared requires a known mean
function, necessitating a simulation study. Development of
the estimators for each of the criterion are derived from the
standard bias-variance decomposition of MSPE (see for ex-
ample [6]) further details of which are provided next.

3.1 Bias-variance decomposition of the
generalization error

To introduce the bias-variance decomposition of the
MSPE let f̂rf (x0) denote the prediction for a new obser-
vation with covariate vector x0, (in �p) from the RF model.
It follows that the MSPE of the RF model for a new obser-
vation x0 is,

MSPE[f̂rf (x0)] = σ2 +Bias2[f̂rf (x0)]

+ V ar[f̂rf (x0)].
(3.1)
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The last two terms in (3.1) are estimated from B sim-
ulated RF predictions, denoted by f̃ b

rf (x0), b = 1, . . . , B
and taken from independent sets of forests. The first term
is the intrinsic variance or the variance of the random er-
ror εi, i = 1, . . . , n + κ. The estimated prediction from
the mth tree in the bth simulated RF is denoted f̃ b

m(x0),
m = 1, . . . ,M , b = 1, . . . , B. The bth RF prediction f̃ b

rf (x0)
is the average of the M regression tree predictions, such that
f̃ b
rf (x0) =

1
M

∑M
m=1 f̃

b
m(x0).

Let the sample variance of any single randomly grown
tree for the new observation be φ2(x0). The trees in the RF
are identically distributed, but not independent. The sample
correlation between any two trees for the new observation is
assumed to be ρ(x0). To estimate the terms in (3.1) we begin
with the sample variance of any tree belonging to forest
which is,

φ2(x0) = V arTn

[
EΩ|Tn

{f̂(x0,Ω(Tn))}
]

+ ETn

[
V arΩ|Tn

{f̂(x0,Ω(Tn))}
]
.

(3.2)

This leads to the variance estimate,

φ̂2(x0) =
1

B − 1

B∑
b=1

[
f̃ b
rf (x0)−

1

B

B∑
b=1

f̃ b
rf (x0)

]2

+
1

B

B∑
b=1

[ 1

M − 1

M∑
m=1

(f̃ b
m(x0)− f̃ b

rf (x0))
2
]
.

(3.3)

Since the regression trees are identically distributed it
follows that the correlation between any pair is estimated
as,

ρ̂(x0) =
ĈovTn

[
EΩ|Tn

{f̂(x0,Ω(Tn))}
]

φ̂2(x0)

=

1
B−1

∑B
b=1

[
f̃ b
rf (x0)− 1

B

∑B
b=1 f̃

b
rf (x0)

]2
φ̂2(x0)

.

(3.4)

The RF prediction is the average prediction from the M
trees constituting the forest, that is the average of identi-
cally distributed random variables having correlation ρ(x0).
Therefore, the estimated variance of the RF prediction for
a new observation is,

V̂ ar
[
f̂rf (x0)

]
= ρ̂(x0)φ̂2(x0) +

[
1− ρ̂(x0)

] φ̂2(x0)

M
. (3.5)

The bias of the RF prediction is estimated by,

̂Bias
[
f̂rf (x0)

]
= f(x0)−

1

B

B∑
b=1

f̃ b
rf (x0). (3.6)

The bias-squared and variance are estimated from the
testing sample Tκ as,

̂Bias2 =
1

κ

n+κ∑
i=n+1

̂Bias2[f̂rf (xi)], (3.7)

V̂ ar =
1

κ

n+κ∑
i=n+1

V̂ ar[f̂rf (xi)], (3.8)

respectively. The estimated MSPE is the average over the
B simulated RF predictions, calculated as:

̂MSPEb[f̃
b
rf (xi)] =

1

κ

n+κ∑
i=n+1

[
yi − f̃ b

rf (xi)
]2
. (3.9)

We then average the B RF predictions for a fixed model
(with fixed hyperparameters), resulting in the estimated
MSPE,

̂MSPE =
1

B

B∑
b=1

(
̂MSPEb[f̃

b
rf (xi)]

)
. (3.10)

The type 2 diabetes application is now discussed.

4. NHANES APPLICATION AND
WEIGHTING APPROACH

The National Health and Nutrition Examination Survey
(NHANES) are large studies designed to assess the health
and nutrition of adults in the United States. Among med-
ical conditions prescribed for the analysis of the NHANES
data is type 2 diabetes. A recommended biomarker for the
study of diabetes from the NHANES is glycohemoglobin,
also known as Hemoglobin A1C as described in [11] and [10].
We aim to assess the predictive performance of the two ran-
dom forest (RF) models on the NHANES data for predicting
glycohemoglobin. Additionally, our analysis identifies risk
factors for diabetes amongst the United States population
20 years and older who have not been formally diagnosed
with the condition. Qualitative comparison of our results
with those of similar datasets is addressed in the analysis.

Data from NHANES are used to determine prevalence
and risk factors associated with certain diseases. The data
consist of information taken from participant interviews and
physical examinations. The most recent surveys are taken
over two-year periods. The interview portion of the survey
includes information on demographics, socio-economic sta-
tus, dietary habits, and general health-related questions.

The design of the sampling is intended to be representa-
tive of the United States population. However, certain demo-
graphics, including ethnic minorities and older individuals
are oversampled in order to increase the accuracy and pre-
cision of estimates associated with these sub-populations.
The sample design of the data consists of multi-year, strat-
ified, clustered four-stage samples. First stage of sampling
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Figure 1: Four-stage sampling of NHANES 2015–2018 data.

is principal sample units (PSUs) consisting of counties. The
second stage are blocks or segments within the counties. The
third stage are dwelling units, which are households. The fi-
nal sampling stage are individuals within the dwelling units.
Figure 1 depicts the four-stage sampling of the NHANES
sample design.

For our analysis we have utilized the cycles of 2015–2016
and 2017–2018, details of which are provided in [5]. The
2015–2016 data source is provided in [18] and 2017–2018
data source is provided in [19]. For these two cycles the
oversampled sub-populations are: hispanics; non-hispanic
blacks, non-hispanic non-black asians, non-hispanic whites
and persons of other races and ethnicities at or below 185%
of the federal poverty level; and non-hispanic whites and

other races and ethnicities aged 0–11 years or 80 years
and over. Weights are assigned to each participant in the
survey and correspond to the number of persons in the
United States population represented by each participant.
The weights provided by NHANES account for the probabil-
ities of selection, non-response in the survey, and differences
between sample distribution and the population distribu-
tion. More information on the 2015–2018 survey design is
detailed in [5].

Nineteen covariates are used in our analysis. Table 1 pro-
vides names of the variables and description provided by
NHANES. In Table 1 the input variables are the covari-
ates in the model. The outcome variable is glycohemoglobin
measured as a percentage. Only samples undiagnosed with
diabetes are utilized in the analysis, that is indicator of di-
abetes equal to one. The dataset used to train the RF algo-
rithm is the 2015–2016 cycle having 4292 sampled units. The
test dataset used to evaluate the predictive performance of
the algorithms is the 2017–2018 cycle having 4051 sampled
units.

Some of the input variables described in Table 1 have
missing values. To conduct the analysis a straightforward
imputation technique was applied. We created 14 subgroups
based on gender and age. The subgroups are defined by com-
binations of binary gender (male and female) and the follow-
ing age groups: [20–30), [30–40), [40–50), [50–60), [60–70),
[70–80), [80+]. For each of the subgroups, missing values
for any given variable were calculated as a function of non-
missing training set values.

Table 1. NHANES variables and description.
Input Variable Description
age continuous (years from birth)
cholesterol continuous (mg/dL)
diastolic continuous (mm Hg)
gender binary (0 = male, 1 = female)
glucose continuous (mg/dL)
income ordinal (1 to 15, annual household income grouped in intervals)
night urination discrete (how many times urinate in night?)
race nominal (1 = mexican american, 2 = other hispanic, 3 = non-hispanic white, 4 = non-hispanic black,

5 = other non-hispanic race)
risk for diabetes binary (ever been told you have health risk for diabetes? 0 = yes, 1 = no)
salt binary (doctor told you to reduce salt in diet? 0 = yes, 1 = no)
sedentary activity continuous (minutes of sedentary activity in typical day)
stroke binary (ever been told you had a stroke? 0 = yes, 1 = no)
systolic continuous (mm Hg)
tobacco binary (used any tobacco product in last 5 days? 0 = yes, 1 = no)
triglycerides continuous (mg/dL)
urination continuous (minutes between last urination)
weak kidneys binary (ever been told you had weak/failing kidneys? 0 = yes, 1 = no)
weight continuous (kg)
weight loss binary (doctor told you to control/lose weight? 0 = yes, 1 = no)
Outcome Variable Description
glycohemoglobin continuous (percentage)
Excluding Variable Description
indicator of diabetes binary (doctor told you that you have diabetes? 0 = yes, 1 = no)
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Missing values for any input variable in the 2015–2016
and 2017–2018 cycles were replaced by the corresponding
measure of centrality for that variable from the 2015–2016
cycle. For continuous input variables the mean was used.
The mode was utilized for binary and nominal variables,
and the median for ordinal and discrete independent vari-
ables. For example, consider sedentary activity, for each sub-
group the average sedentary activity is computed from the
2015–2016 dataset, the dataset used to construct the model.
This estimated value replaces all missing sedentary activity
values for the same subgroup. We refer the reader to the
Appendix for summary statistics of the diabetes data.

The analysis of the NHANES dataset requires adjust-
ment for individual participant weights. Rather than using
the usual sum of square error and mean squared prediction
error, we utilize weighted sum of squares for determining
the optimal input variable and its corresponding cut-point
for each node splitting in a regression tree. Additionally, for
the generalization error the weighted MSPE is used. We will
now detail the modifications for the weighted analysis.

4.1 Weighting random forest approach
We now describe how weighting is incorporated into the

two RF approaches for an application of survey data. To
begin let wi

C be the weight of ith participant in the train-
ing set belonging to node C of a regression tree, such that∑n

i=1 w
i = N , where N is the size of the population of in-

terest. The outcome of ith sample belonging to node C is
yiC , i = 1, . . . , n. The weights assigned to each observation
represent the number of units in the population which are
represented by the observation. For example, survey weights
provided by NHANES account for various factors so that the
sample data is representative of the United States popula-
tion. We refer to [5] for details. The average outcome of all
samples belonging to the same node is denoted by ȳC , and
the number of samples belonging to the node is nC . The
nodes produced from a split are noted as CL for left node
and CR for right node. Let the notation for weighted anal-
ysis be denoted by a W superscript.

Adjusting the RF algorithm to incorporate weights in-
volves three modifications. Firstly, we adjust the sum of
squares deviation criterion to a sum of squares weighted
deviation criterion, denoted as SSEW

C . The criterion is de-
fined as SSEW

C =
∑nC

i=1 w
i
C

(
yiC − ȳC)

2. Secondly, in the
usual RF algorithm the predicted value from a given tree in
the forest is the average of the outcomes from the training
set belonging to the same terminal node as specified in [4].
For the weighted RF algorithm, the average is replaced by
the weighted average,

∑nC
i=1 wi

Cyi
C∑nC

i=1 wi
C

.
The variable importance of an input variable in the RF

model represents the relative influence that variable has on
predicting the outcome. Larger values signify greater influ-
ence compared to smaller values. For the third modifica-
tion, the variable importances are calculated as a function
of the weighted sum of squares criterion rather than the

usual sum of squares criterion. Let the importance from a
single split for variable j and value cut-point k be denoted
as: τW (j)

C such that the reduction in the sum of squares is
τ
W (j)
C = SSEW

C − [SSEW
CL

(j, k) + SSEW
CR

(j, k)].
For a single tree the importance for variable j is the sum

of all τW (j)
C s corresponding to variable j, denoted as λ

W (j)
m ,

for m = 1 . . .M (m is the mth tree). Let λ̄W (j) denote the
average of the variable importances from all M trees in the
forest for the jth variable, defined as λ̄W (j) =

∑M
m=1 λW (j)

m

M .
The variable importance for variable j from the RF model
is made into a relative importance by the following scaling,
ΓW (j) = λ̄W (j)

∑p
j=1 λ̄W (j) .

The generalization error used to evaluate the model per-
formance is the weighted MSPE, a function of the testing set
outcome yi, its predicted value from the RF model f̃W

rf (xi),
and its associated weight wi, for i = n + 1 . . . , n + κ. The
final weighted MSPE based on the testing set is

̂MSPE
W
[f̃rf (xi)] =

∑n+κ
i=n+1 w

i
[
yi − f̃W

rf (xi)
]2

∑n+κ
i=n+1 w

i
. (4.1)

The weighted analysis prescribed in this section is ap-
plied to the NHANES diabetes data, described in the previ-
ous section. We now present the performance results for the
diabetes application.

4.2 Analysis of the diabetes NHANES data
The analysis of the National Health and Nutrition Ex-

amination Survey (NHANES) diabetes dataset follows. Per-
formance results for the diabetes dataset are based on the
estimated weighted MSPE. The use of a weighted RF ap-
proach is needed to account for the survey sampling as pro-
vided in Section 4.1. The weights utilized in the analysis
are from the NHANES dataset as discussed in beginning of
Section 4. The aim of our analysis is to predict presence
of diabetes in the United States population for persons 20
years and older who have been undiagnosed with the illness.
The diabetes biomarker glycohemoglobin is the outcome for
the analysis. The dataset used to train the weighted RF al-
gorithm is the 2015–2016 cycle data. The test dataset used
to evaluate the predictive performance of the algorithms is
the 2017–2018 cycle dataset. Description of the dataset, im-
putation for missing data, and weighted RF approach are
detailed in the beginning of Section 4.

For the analysis a total of 49 RF models were fit con-
sisting of 7 mtry values and 7 node size values. The mtry

values are: 3, 6, 9, 12, 15, 18, 19, the node size values are:
1, 3, 5, 7, 10, 15, 20, and the number of trees in each for-
est is M = 500. The estimated weighted MSPE, ̂MSPE

W
,

is provided in (4.1) and is computed for each of the 49 fit-
ted models of the parent and leaf approaches, respectively.
The resulting estimated weighted MSPE results for each of
the fitted models under the parent approach are reported
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Table 2. Weighted MSPE results from the weighted parent approach for the NHANES dataset.
node size mtry

3 6 9 12 15 18 19
1 0.16854 0.14938 0.14329 0.14148 0.14063 0.14077 0.14041
3 0.16917 0.14920 0.14313 0.14119 0.14025 0.14084 0.14043
5 0.16950 0.14811 0.14333 0.14080 0.14060 0.14025 0.14056
7 0.16815 0.14963 0.14388 0.14083 0.14018 0.14043 0.14078
10 0.16791 0.14977 0.14297 0.14029 0.14027 0.14067 0.14047
15 0.16930 0.15037 0.14337 0.14131 0.14054 0.14031 0.14097
20 0.16992 0.15010 0.14368 0.14196 0.14077 0.14118 0.14095

Table 3. Weighted MSPE results from the weighted leaf approach for the NHANES dataset.
node size mtry

3 6 9 12 15 18 19
1 0.1685 0.14938 0.14329 0.14148 0.14063 0.14077 0.14041
3 0.17188 0.15023 0.14312 0.14060 0.13986 0.14035 0.14020
5 0.17219 0.15045 0.14314 0.14049 0.14010 0.13996 0.14003
7 0.17182 0.15235 0.14403 0.14130 0.13994 0.14034 0.14034
10 0.17430 0.15390 0.14562 0.14178 0.14043 0.14076 0.14092
15 0.17935 0.15691 0.14968 0.14435 0.14272 0.14214 0.14224
20 0.18098 0.16344 0.15290 0.14816 0.14636 0.14561 0.14555

in Table 2, and Table 3 under the leaf approach. Results
obtained for both weighted RF approaches are calculated
from the algorithms we have programmed. The R code and
the NHANES data used are provided in the Supplementary
Material.

From the results, both approaches provide similar overall
predictive performance. In general, each method provides
greater performance for higher values of mtry and larger
node size values. When comparing the two models under
fixed hyperparameters the parent approach tends to outper-
form the leaf approach, especially as the node size increases
and the mtry value decreases. However, when considering
smaller node size and larger mtry values the leaf approach
tends to perform competitively or better. Specifically, when
the data have low to moderate random noise (evident from
the low ̂MSPE

W
) and model hyperparameters are the same

for both approaches, the parent approach outperforms the
leaf approach with regard to ̂MSPE

W
.

The main interest is to compare the two RF approaches
based on their respective optimal models, which are the
models selected for obtaining predictions. From the parent
approach the lowest estimated weighted MSPE occurs for
mtry equal to 15 and node size equal to 7. The leaf ap-
proach attains optimal performance for mtry equals 15 and
node size equals 3. The comparison of these two optimal
models is facilitated by the percentage difference, defined
as (θ̂P−θ̂L)100%

(
θ̂P +θ̂L

2 )
, such that θ̂P is the estimate from parent

approach and θ̂L is the estimate from leaf approach. The re-
sulting percentage difference of ̂MSPE

W
from the respec-

tive optimal models is 0.2292%, indicating that the optimal

model from the proposed leaf approach outperforms that
from the parent approach.

Additionally, the importance of diabetes as a serious
chronic disease has prompted our investigation into variable
importances. Typically, variable importances are calculated
based on the reduction of sum of square errors from each
split in the forest. For our analysis the associated weights of
each participant are accounted for by utilizing the weighted
sum of square errors, over the usual sum of squared errors
as detailed in Section 4.1.

From our analysis, the order of the nineteen variables in
regard to their predictive influence on glycohemoglobin are
largely the same between the two approaches. The exception
is that the leaf approach has salt and risk for diabetes as
the 15th and 16th most influential. In contrast the parent
approach has the rank of these two variables switched. The
relative influence based on the optimal model from the leaf
approach is provided in Figure 2, and that from the parent
approach is similar.

As one may expect glucose is the most influential input
variable in predicting glycohemoglobin of the United States
population over 20 years of age. This is followed by age,
weight, triglycerides, cholesterol and so on. A plot of pre-
dicted glycohemoglobin as a function of glucose for the test-
ing data is provided in Figure 3, where predictions are ob-
tained from the optimal leaf model and indicate a positive
relationship.

The variables identified as being most influential agree
with the literature on risk factors for diabetes. [12]
investigated the relationship between sedentary activity
and hemoglobin A1c using NHANES survey data from
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Figure 2: Variable importances for diabetes NHANES
dataset under the optimal leaf approach model.

Figure 3: Predicted glycohemoglobin from optimal leaf
model as a function of glucose from testing data.

2004–2005 and 2013–2014 and determined that prolonged
sedentary activity is associated with elevated hemoglobin
A1c levels. [13] analyzed NHANES data from 1999–2006
and found an association between increasing obesity and
increased hemoglobin A1C levels. Analysis of the Third Na-
tional Health and Nutrition Examination Survey (NHANES
III) by [15] concluded that men diagnosed with diabetes had
elevated odds of lower urinary tract symptoms. [1] note that

hypertriglyceridemia is common in patients diagnosed with
diabetes.

To summarize the results obtained for the NHANES
data, the leaf and parent algorithms both identify the same
variables as being most informative for predicting glycohe-
moglobin and the proposed leaf approach provides greater
predictive performance. Further, each tree in the optimal
leaf RF model uses at least three training set observations
to obtain a tree prediction. In contrast the optimal parent
model from the analysis does not have a minimum number
of observations used for constructing each tree prediction,
which may result in predictions based on only one training
observation.

5. SIMULATION ANALYSIS
We shall now provide the design of the simulation analysis

which will be used to compare the two competing random
forest (RF) modelling approaches based on overall predictive
performance, accuracy, and precision.

5.1 Design of simulation analysis
For the design of the simulation analysis a total of six

true mean functions were utilized and are as follows:

True mean function 1:

(X(1), . . . , X(20))
i.i.d.∼ Uniform(−5, 5)

f(X) = 1[X(1) ≥ 3] + 1[X(2) < 2.5] + 1[X(3) ≥ 1]

+ 1[X(4) ≥ 2.1] + 1[X(5) < −2] + 1[X(6) < −3.1]

+ 1[X(7) ≥ 4.3] + 1[X(8) ≥ 0.5] + 1[X(9) < −0.7]

+ 1[X(10) ≥ 1.8] + 1[X(8) ≥ 1.5 & X(10) < 3.6]

+ 1[X(9) < −0.5 & X(10) ≥ 4.3] + 1[X(15) < 3.6]

+ 1[0.5 ≥ X(15) < 4.6]

True mean function 2:

(X(1), . . . , X(10))
i.i.d.∼ Uniform(0, 1)

f(X) = 10sin(πX(1)X(2)) + 20(X(3) − 0.5)2 + 10X(4)

+ 5X(5)

True mean function 3:

(X(1), . . . , X(5))
i.i.d.∼ Normal(μ = 0, σ2 = 1)

f(X) = sin(2πX(1)) + cos(πX(2))

True mean function 4:

(X(1), . . . , X(10))
i.i.d.∼ Uniform(0, 1)

f(X) =

⎧⎪⎨
⎪⎩
3− 2X(1) if (X(2) ≥ 0.1)

3 +X(4) − 3X(2) else if(X(1) ≥ 0.3, X(2) < 0.5)

3 + 2X(5) +X(3) else
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True mean function 5:

(X(1), . . . , X(10))
i.i.d.∼ Normal(μ = 0, σ2 = 1)

f(X) = 2X(1) + (X(2))2 + 3(X(3))2 − 2X(4)

True mean function 6:

(X(1), . . . , X(5))
i.i.d.∼ Uniform(0, 1)

f(X) =

⎧⎪⎨
⎪⎩
2 X(1) ≤ 0.5 & X(2) ≤ 0.5

4 0.5 < X(1) ≤ 0.75 & 0.5 < X(2) ≤ 0.75

6 o.w.

Table 4. Simulation analysis scenarios defined by
combinations of f(X) and σ2.

Scenario f(X) σ2
̂V ar(f(X))

1 1 0.25 2.82
2 2 1.00 25.00
3 3 0.05 1.01
4 4 0.05 0.60
5 5 1.00 26.90
6 6 0.25 2.95
7 1 1.00 2.82
8 2 5.00 25.00
9 3 0.25 1.01
10 4 0.25 0.60
11 5 5.00 26.90
12 6 1.00 2.95
13 1 5.00 2.82
14 3 5.00 1.01

From these six true mean functions a total of 14 simu-
lated datasets are constructed, each using differing values
of intrinsic variance. The simulation analysis is designed to
investigate how differing levels of random error, i.e., vari-
ability of the random noise σ2, effect the performance of the
two approaches, such that εi

i.i.d∼ N(0, σ2), i = 1, . . . , n+ κ.
The first six scenarios consist of small values of intrinsic

variance and the second six consist of moderate values of the
intrinsic variance. In addition to low and moderate levels of
noise variability it is also of practical interest to compare
the two random forest approaches when the variability of
the random noise is larger than the variability of the true
mean function. The later scheme corresponds to the last two
scenarios. A table summarizing the scenarios as the combi-
nation of true mean function f(X) and intrinsic variance σ2

is shown in Table 4.
In Table 4 the estimated variance of the true mean

function, V̂ ar[f(X)], is computed from the entire dataset
T = {Tn, Tκ} such that n = 500 and κ = 1000. For each
of the scenarios a total of 18 models were fit and the op-
timal model was selected based on the minimum estimated
generalization error, MSPE defined by (3.10). A total of
M = 1000 regression trees were included each RF model.

Table 5. Hyperparameter combinations constituting 18
models fit for each scenario.

Scenario mtry values node size values
1 (5, 10, 15) (1, 3, 5, 10, 15, 20)
2 (3, 5, 10) (1, 3, 5, 10, 15, 20)
3 (2, 3, 5) (1, 3, 5, 10, 15, 20)
4 (3, 5, 10) (1, 3, 5, 10, 15, 20)
5 (3, 5, 10) (1, 3, 5, 10, 15, 20)
6 (2, 3, 5) (1, 3, 5, 10, 15, 20)
7 (5, 10, 15) (1, 3, 5, 10, 15, 20)
8 (3, 5, 10) (1, 3, 5, 10, 15, 20)
9 (2, 3, 5) (1, 3, 5, 10, 15, 20)
10 (3, 5, 10) (1, 3, 5, 10, 15, 20)
11 (3, 5, 10) (1, 3, 5, 10, 15, 20)
12 (2, 3, 5) (1, 3, 5, 10, 15, 20)
13 (5, 10, 15) (1, 3, 5, 10, 15, 20)
14 (2, 3, 5) (1, 3, 5, 10, 15, 20)

The 18 models constructed are based on a combination of
three mtry values and six node size values. A summary table
of the 18 models fit to each scenario is provided in Table 5.

For each of the fixed models in Table 5 a total of
B = 100 simulated models are generated to calculate the
criteria, ̂Bias2, V̂ ar, and ̂MSPE. Each of the B simulated
models only differs by the random seed value used to
generate it. The hold-out approach is used instead of the
out-of-bag error estimation approach in order to facilitate
a comparison in which the statistics reported are based on
the same dataset Tκ.

5.2 Results
In this section we provide the main results obtained from

implementing the two competing RF approaches on each
of the fourteen scenarios considered in Table 4. We first
begin with the results for optimal models attained under
each approach of the simulation study.

5.2.1 Comparison of the optimal models from the leaf and par-
ent approaches

For each scenario, 18 models were fit and ̂MSPE was cal-
culated. The optimal model is then selected as that which
provides the minimum ̂MSPE. The hyperparameters cor-
responding to the optimal parent and leaf models are pro-
vided in Table 6. The resulting estimates of MSPE, bias-
squared, and variance from each optimal model are reported
in Table 7 and Table 8 for the parent approach and leaf ap-
proach, respectively. The results for the parent approach are
attained by implementing the randomForest package in R
software. Estimates for the leaf approach are attained by
applying code we have developed form this work. The def-
initions of ̂Bias2, V̂ ar, ̂MSPE, are defined in (3.7), (3.8),
and (3.10), respectively.
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Table 6. Optimal hyperparameters for each scenario under
the parent approach and leaf approach.

Scenario Parent approach Leaf approach
node size mtry node size mtry

1 3 10 3 10
2 1 10 1 10
3 1 3 1 3
4 3 10 5 10
5 1 10 1 10
6 3 5 1 5
7 3 10 3 10
8 1 10 1 10
9 1 3 1 3
10 10 5 10 10
11 5 10 1 10
12 10 5 3 5
13 1 5 5 5
14 20 5 20 5

Table 7. Estimates of MSPE, bias-squared, and variance from
the optimal parent approach for each scenario.

Scenario ̂MSPE ̂Bias2 ̂V ar ̂Bias2 + ̂V ar

1 1.1609 0.8879 0.0037 0.8916
2 4.6453 3.5673 0.01556 3.5829
3 0.3284 0.2777 0.0012 0.2789
4 0.0672 0.0156 0.0001 0.0157
5 3.8382 2.9523 0.0146 2.9670
6 0.3485 0.1017 0.0012 0.1029
7 2.0202 0.9615 0.0053 0.9668
8 8.7899 3.6388 0.0235 3.6623
9 0.5652 0.3088 0.0016 0.3105
10 0.2949 0.0449 0.0005 0.0454
11 7.8723 3.2245 0.0218 3.2463
12 1.1685 0.1713 0.0023 0.1736
13 6.3454 1.1591 0.0153 1.1743
14 5.7438 0.5839 0.0066 0.5905

The first column of Table 6 are the scenarios correspond-
ing to Table 4. The optimal node size and mtry hyperpa-
rameters for the parent approach are reported in the second
and third columns, respectively. The optimal node size and
mtry hyperparameters for the leaf approach are reported in
the fourth and fifth columns, respectively. The optimal RF
model is defined by these hyperparameter combinations and
M = 1000 trees.

From Table 6, the optimal hyperparameters are the same
between the two RF approaches for scenarios 1, 2, 3, 5, 7,
8, 9, 14. From this subset of scenarios: 2, 3, 5, 8, and 9 are
identical models. This is because the later have the same
mtry values and have node size equal to 1 which results
in the same algorithm for the two approaches. For these
models any difference in the estimated criteria of MSPE,
bias-squared, and variance, reported in Tables 7 and 8, are
solely due to the randomness of the RF algorithm.

Table 8. Estimates of MSPE, bias-squared, and variance from
the optimal leaf approach for each scenario.

Scenario ̂MSPE ̂Bias2 ̂V ar ̂Bias2 + ̂V ar

1 1.1602 0.8867 0.0033 0.8899
2 4.6512 3.5706 0.0156 3.5863
3 0.3288 0.2780 0.0012 0.2792
4 0.0666 0.0155 0.0001 0.0155
5 3.8393 2.9527 0.0147 2.9674
6 0.3484 0.1017 0.0012 0.1029
7 2.0143 0.9563 0.0046 0.9609
8 8.7939 3.6391 0.0236 3.6628
9 0.5650 0.3087 0.0016 0.3104
10 0.2890 0.0385 0.0002 0.0388
11 7.8664 3.2157 0.0230 3.2388
12 1.1664 0.1716 0.00239 0.1739
13 6.3247 1.1428 0.0103 1.1531
14 5.6196 0.4953 0.0029 0.4982

Table 9. Percentage difference of estimated MSPE,
bias-squared, variance, and bias-squared plus variance from

the two approaches.

Scenario ̂MSPEpd
̂Bias2pd ̂V arpd (̂Bias2 + ̂V ar)pd

1 0.06445 0.1427 12.0032 0.1891
2 −0.1271 0.0922 −0.4865 −0.0939
3 −0.1204 −0.1373 −0.4537 −0.1387
4 0.9592 0.8804 34.9609 1.1081
5 −0.0288 −0.0135 −0.1020 −0.0140
6 0.0040 0.0586 −1.8965 0.0352
7 0.2951 0.5388 13.7005 0.6068
8 −0.0453 −0.0098 −0.5772 −0.0134
9 0.0315 0.0439 −0.7250 0.03982
10 2.0164 15.2582 72.4678 15.7669
11 0.0752 0.2711 −5.35903 0.2322
12 0.1791 −0.1415 −1.0484 −0.1537
13 0.3262 1.4178 38.5253 1.826
14 2.1854 16.4332 77.8676 16.9709

From comparing the results reported in Tables 7 and 8, it
is clear that the optimal models from each RF approach are
similar. In order to compare these results, the percentage
difference for each of the estimated criteria was determined
for each scenario. Let the percentage difference be defined
as (θ̂P−θ̂L)100%

(
θ̂P +θ̂L

2 )
, such that θ̂P is the estimate from parent

approach and θ̂L is the estimate from leaf approach. For
each of the scenarios the percentage difference of ̂MSPE,
̂Bias2, V̂ ar, and ̂Bias2+ V̂ ar are provided in Table 9. This
means that the percentage difference reported in Table 9 are
determined using the corresponding results in Table 7 and
Table 8.

In Table 9 the ̂MSPEpd is the percentage difference of
̂MSPE from the parent and leaf approaches. The ̂Bias2pd,
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V̂ arpd, and (̂Bias2 + V̂ ar)pd are similarly defined. For ex-
ample, ̂MSPEpd corresponding to scenario 1 is computed
as (1.160947−1.160199)100%

( 1.160947+1.160199
2 )

≈ 0.0645.
From the results in Table 9 the percentage difference of

̂MSPE is positive for all scenarios with the exception of
scenarios 2, 3, 5, and 8. As mentioned previously the op-
timal models for these scenarios are identical, so that any
differences are due to randomness of the algorithm. Scenar-
ios 1, 4, 6, 7, 10–14 do not result in identical models, and
these scenarios have positive percentage difference. Hence,
the comparison of ̂MSPE indicates that the proposed leaf
approach provides generalization error that is competitive
to or smaller than that from the parent approach.

The resulting estimates of the bias-squared are positive
for 10 of the 14 scenarios. In fact, from the scenarios for
which this quantity is negative, scenarios 3, 5, 8, and 12,
only scenario 12 does not result in the same exact algorithm.
Therefore, even with regards to the bias-squared criterion
the leaf approach tends to have similar or slightly better
performance compared to the original RF method.

The percentage difference results for the variability of pre-
dictions tend to be negative when the magnitude of the per-
centage difference is low. However, when the magnitudes are
larger, namely scenarios 1, 4, 7, 10, 13, 14, the parent ap-
proach results in considerably larger variability of the result-
ing predictions. Interestingly, the magnitude of V̂ arpd tends
to increase for a fixed mean function as the intrinsic variance
increases. This demonstrates that the difference in predic-
tion variability between the two RF approaches grows as the
intrinsic variance increases. Clearly there are scenarios for
which the prediction variability from the leaf approach is
substantially smaller than those from the parent approach.
Further, for any scenario, the magnitude of the percentage
difference is larger for variance compared to the percentage
difference of the bias-squared.

The results of the percentage difference pertaining to
̂Bias2 + V̂ ar show that all scenarios having negative per-
centage difference are cases when the models are identical
algorithms, with the exception of scenario 12. In particu-
lar the sign of the last column is in agreement with the
percentage differences of ̂MSPE in the first column, apart
from scenario 12. Therefore, the results of ̂Bias2 + V̂ ar (es-
timate of MSPE without intrinsic variance) are in good
agreement with the estimated MSPE. Further, the magni-
tude of the percentage difference of ̂MSPE and ̂Bias2+V̂ ar
for scenario 12 is near zero, indicating the performance of
the approaches is competitive for that scenario.

Summarizing the results in Table 9, the estimated
MSPE for the predictions is lower under the leaf approach
(omitting the scenarios for which the two algorithms are
identical) compared to the parent approach. For many sce-
narios the estimated bias-squared of predictions is also larger

Table 10. Suggested random forest modelling approach for
each scenario.

Scenario Approach
1 Either
2 Either
3 Either
4 Leaf
5 Either
6 Either
7 Leaf
8 Either
9 Either
10 Leaf
11 Either
12 Either
13 Leaf
14 Leaf

under the original RF algorithm. Furthermore, results from
six of the fourteen scenarios indicate that the proposed leaf
approach reduces prediction variability substantially.

To establish if the leaf algorithm provides substantial im-
provement over the parent algorithm one may take a con-
servative approach utilizing the results from Table 9. We
note that the amount of conservatism is at the discretion
of the analyst. All scenarios having V̂ arpd ≥ 10% and
̂Bias2pd ≥ 0.50% also have ̂MSPEpd ≥ 0.30%. Hence one
may in practice determine that there is substantial gain by
using the leaf approach when ̂MSPEpd ≥ 0.30%. We use
this conservative approach to determine when the leaf ap-
proach provides considerably better predictive performance
overall, the results are provided in Table 10.

After taking a conservative approach, the RF that uti-
lizes the leaf stopping criterion (based on the size of ter-
minal nodes) performs as well or favorably to the parent
stopping criterion (based on the size of the parent nodes).
Additionally, as mentioned in Section 2, the leaf approach is
also advantageous in ensuring that the resulting predictions
from the model are obtained by a minimum number of ob-
servations from each tree model. In the next section the two
approaches are compared under fixed models.

5.2.2 Effect of hyperparameters on predictive performance
We now explore the implications of the two RF method

more broadly. Specifically, summary of all 18 models fit for
each scenario are reported, not only for the optimal model.
Based on the results from all scenarios, the estimates of
̂Bias2 + V̂ ar are dominated by ̂Bias2. When all hyperpa-
rameters are fixed, scenarios having small and moderate val-
ues of intrinsic variance σ2, have a bias-variance trade-off
between the two RF approaches. As the node size parame-
ter increases, the original RF approach provides predictions
that have smaller bias-squared and larger variability com-
pared to that obtained from the leaf approach.
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Figure 4: Scenario 3 results of ̂Bias2 + V̂ ar and V̂ ar under two RF approaches for 18 models as function of node size.

Figure 5: Scenario 9 results of ̂Bias2 + V̂ ar and V̂ ar under two RF approaches for 18 models as function of node size.

However, for the last two scenarios 13 and 14 which are
consistent with very noisy data (the variability of the error is
larger than that of the true mean function) the bias-variance
trade-off does not hold. Rather, the leaf approach provides
lower bias-squared and lower variance of predictions com-
pared to the parent approach when the model hyperparam-
eters are the same. Hence, the results indicate that the leaf
approach provides more accurate and more precise results
when applied to data with substantial error variance.

We present results for the third mean function corre-
sponding to scenarios 3, 9, and 14. These scenarios have
small, moderate, and large variance of the random noise,
respectively. Results of the remaining scenarios follow sim-
ilarly. The graphical results for scenarios 3, 9, and 14 cor-
respond to Figure 4, Figure 5, Figure 6, respectively. The

black trends are estimates obtained from the leaf approach
and red from the parent approach. For each approach 18
models are considered corresponding to the three values of
mtry and six values of node size provided in Table 5.

The variability of the true mean function corresponding
to these scenarios is 1.01, as reported in Table 4. The in-
trinsic variance for scenarios 3, 9, and 14 are 0.05, 0.25, and
5.00, respectively. The bias-variance trade-off as a function
of node size is present for scenarios 3 and 9, corresponding
to Figure 4 and Figure 5. For this particular mean func-
tion, larger values of mtry result in lower bias-squared and
variance of predictions.

Additional analysis was conducted on the resulting es-
timates of bias-squared and variance as a function of the
parameter mtry. Table 11 and Table 12 summarize the ef-
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Figure 6: Scenario 14 results of ̂Bias2 + V̂ ar and V̂ ar under two RF approaches for 18 models as function of node size.

Table 11. Summary of the effects of mtry on bias2+ variance
and variance for the parent approach.

Scenario ̂Bias2 + ̂V ar ̂V ar
smallest → largest smallest → largest

1 (10, 15, 5) (15, 10, 5)
2 (10, 5, 3) (10, 5, 3)
3 (3, 5, 2) (5, 3, 2)
4 (10, 5, 3) (10, 5, 3)
5 (10, 5, 3) (10, 5, 3)
6 (5, 3, 2) (5, 3, 2)
7 (10, 5, 15) (15, 10, 5)
8 (10, 5, 3) (10, 5, 3)
9 (3, 5, 2) (5, 3, 2)
10 (10, 5, 3) (10, 5, 3)
11 (10, 5, 3) (10, 5, 3)
12 (5, 3, 2) (5, 3, 2)
13 (15, 10, 5) (15, 10, 5)
14 (5, 3, 2) (2, 3, 5)

fect mtry on the bias2 + variance and variance of predictions
from the parent and leaf approach, respectively. The trends
for bias-squared are similar to those of bias2+variance, as
bias-squared dominates this quantity.

Each cell in Table 11 and Table 12 lists the sorted mtry

resulting in the smallest to largest value of the correspond-
ing criterion for each scenario. For example, consider the
estimate ̂Bias2 + V̂ ar for scenario 1 in Table 11, mtry = 10

results in the smallest ̂Bias2 + V̂ ar followed by mtry = 15,
and the largest estimate results from mtry = 5 for the par-
ent approach. What emerges from the results is that in all
but one scenario increasing mtry produces lower variance.
The exception is for scenario 14, corresponding to the true
mean function 3 and having large intrinsic variance. For this

Table 12. Summary of the effects of mtry on bias2+ variance
and variance for the leaf approach.

Scenario ̂Bias2 + ̂V ar ̂V ar
smallest → largest smallest → largest

1 (15, 10, 5) (15, 10, 5)
2 (10, 5, 3) (10, 5, 3)
3 (5, 3, 2) (5, 3, 2)
4 (10, 5, 3) (10, 5, 3)
5 (10, 5, 3) (10, 5, 3)
6 (5, 3, 2) (5, 3, 2)
7 (10, 15, 5) (15, 10, 5)
8 (10, 5, 3) (10, 5, 3)
9 (5, 3, 2) (5, 3, 2)
10 (10, 5, 3) (10, 5, 3)
11 (10, 5, 3) (10, 5, 3)
12 (5, 3, 2) (5, 3, 2)
13 (5, 10, 15) (15, 10, 5)
14 (5, 3, 2) (2, 3, 5)

scenario the smallest values of mtry provided the smallest
variability of predictions for both approaches.

In regard to ̂Bias2 + V̂ ar, the default to larger values
of mtry resulted in the lower estimates. For only one of the
scenarios, scenario 13, did the smallest value of mtry result
in a lower estimate of bias2+ variance. This scenario was
one of the two in the simulation study having large intrinsic
variance. Therefore, the general conclusion is that moderate
to large values of mtry result in lower prediction variability
and bias2, and this appears to hold for data having small and
moderate values of intrinsic variance. However, data having
large intrinsic variance appear to diverge from these trends.

The notion that a regression RF model may require a
larger mtry value compared to a classification RF has been
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noted by [4, pg. 27]. Our results support this statement gen-
erally for reasonable quality data that are not dominated by
random error. Considering that the MSPE of predictions
from the RF algorithm are largely due to the bias term one
may choose moderate to larger mtry values. Further, none
of the optimal models in Table 6 are defined by small values
of mtry.

6. CONCLUSION
The increasing popularity of the regression random for-

est (RF) algorithm necessitates examination of its predic-
tive performance based on the hyperparameters defining the
model. There has been relatively little investigation in the
literature thus far on the effect of the node size hyperparam-
eter in particular, despite the fact that it largely determines
the predictive performance of the algorithm as indicated by
[14]. In the present paper we have compared two existing
RF approaches with differing definitions of node size. Im-
portantly, we have presented an investigation on how the
definition of node size affects predictive performance.

In summarizing the comparison of the two approaches
under fixed hyperparameters, the original RF approach pro-
vides larger prediction variability and smaller predicted
squared bias than the proposed approach. This trend is ev-
ident as the node size hyperparameter increases and when
data have levels of random noise that are low to moderate in
comparison to the variability of the mean function. However,
our results indicate that the bias-variance trade-off does not
hold for poor quality data, defined as data with substan-
tial intrinsic variability. In these later scenarios the simu-
lation results indicate that the leaf approach outperformed
the original random forest approach in both variability and
squared bias.

In contrast, the bias-variance trade-off is not present
when comparing the two algorithms based on their respec-
tive optimal models. The estimated generalization error
from the optimal model of the parent approach was con-
sistently larger than that from the leaf approach in our
simulation analysis. Further, the bias-squared from the leaf
approach was often smaller than that obtained under the
original random forest. Additionally, when the prediction
variability was smaller under the leaf algorithm it tended
to be substantially so in comparison to scenarios for which
the prediction variability was smaller under the original al-
gorithm. Summarizing the results pertaining to the optimal
models, the predictive performance under the leaf approach
is increasingly competitive to that of the original approach
as the ratio of random noise variability to outcome variabil-
ity increases.

Additionally, our results suggest that the value of mtry

resulting in the lowest generalization error tends to range
from the default value or larger, confirming other research
on this hyperparameter. However, when the data have high
levels of noise these general trends may not hold. This re-

sult underscores the need for hyperparameter tuning of the
model used for prediction.

The application of data-driven algorithms, such as the
RF algorithms, to investigate health related research in the
presence of large and complex data is becoming increasingly
popular. Incorporating participant weights in the presence
of survey data was prompted by the analysis of the National
Health and Nutrition Examination Survey (NHANES) dia-
betes dataset. The application of the two approaches indi-
cates that there is marginal predictive performance gained
by application of the leaf approach over the parent ap-
proach. Our results demonstrate that both algorithms iden-
tify known risk factors of diabetes as most influential.

Our contribution from this work is two-fold. Firstly, we
have demonstrated that the leaf node size approach is in-
creasingly competitive to the original RF model with re-
spect to predictive performance as the ratio of random noise
variability to outcome variability increases. Conclusions are
based on three statistical criteria: accuracy measured by
bias-squared, precision measured by variance, and overall
predictive performance measured by the generalization er-
ror. Secondly, we have developed a straight-forward method
for incorporating participant weights in the presence of sur-
vey data, which is of considerable practical relevance for
application of the RF algorithm.

Results presented here pertain to the regression context
when number of input features is considerably less than the
number of sampled units in the dataset. Extensions of this
work can provide greater understanding on the complex re-
lationship between predictive performance of the regression
random forest model and its hyperparameters. Importantly
the sensitivity of the random forest algorithm to various im-
putation techniques for missing covariate values is a topic of
future research. In particular, one may consider comparison
of single and multiple imputation methods on the accuracy
and precision of the random forest algorithm. Additionally,
generalizations of the criteria for stopping regression tree
expansion may be considered. Some alternative node size
stopping criterion based on dispersion measures of the out-
come variable are explored in [9]. Another relevant exten-
sion for future work is the comparison of predictive perfor-
mances from competing regression random forest algorithms
on stratified sub-group analysis applications.

SUPPLEMENTARY MATERIAL
The supplementary material provides code in R software

for implementing the algorithms developed in this work. The
National Health and Nutrition Examination Survey data
utilized in the paper are also provided.

APPENDIX
In this appendix we include descriptive statistics of in-

put variables and the outcome glycohemoglobin from the
diabetes NHANES application, followed by plots for model
assessment.
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Table A.1. NHANES variables and summary statistics for
2017–2018 data.

Input
Variable

Measure of
centrality

Measure of
dispersion

% Missing

age 48.92 17.63 0.00
cholesterol 191.05 40.04 2.25
diastolic 72.41 13.33 10.98
income 9.00 3.00 9.08
gender 1.00 N/A 0.00
glucose 94.6617 20.54 2.30
night urination 1.00 1.00 6.74
race 3.00 N/A 0.00
risk for diabetes 1.00 N/A 0.00
salt 1.00 N/A 0.049
sedentary activity 323.86 196.17 0.67
stroke 1.00 N/A 0.12
systolic 125.21 19.03592 10.98
tobacco 1.00 N/A 6.44
triglycerides 139.57 109.99 2.30
urination 147.09 109.29 13.28
weak kidneys 1.00 N/A 0.15
weight 81.33 21.98 1.23
weight loss 1.00 N/A 0.02
Outcome
Variable

Measure of
centrality

Measure of
dispersion

% Missing

glycohemoglobin 5.52 0.59 0.00

Summary statistics
An overview of The National Health and Nutrition Ex-

amination Survey (NHANES) data for the prediction of the
diabetes biomarker glycohemoglobin percentage is provided
in Section 4 of the paper. For our analysis 19 input vari-
ables were utilized and described in Table 1 of the paper.
The dataset used to construct the model was the 2015–2016
cycle and for model assessment the 2017–2018 cycle was uti-
lized. The analyses conducted pertain to the United States
population who have been undiagnosed with diabetes and
are over 20 years of age. The following two tables are the
summary statistics for the input variables and outcome vari-
able for each cycle. The 19 input variables consist of con-
tinuous, discrete, ordinal, and nominal data (including bi-
nary data). The measure of centrality reported for contin-
uous data is the arithmetic mean, for discrete and ordinal
data it is the median, and for categorical data is the mode.
For measure of dispersion the standard deviation is used
for continuous variables, median absolute deviation (MAD)
for discrete and ordinal data. The estimated MAD is de-
fined as: median(|xi − q0.5|), such that q0.5 is the median of
xi, i = 1, . . . , n. Additionally, the percentage of missing data
are also reported in each table. The estimated quantities in
the following tables are based on data prior to imputation.

From the summary statistics reported in Table A.1 and
Table A.2 we find that the datasets used for training and
testing are largely similar.

Table A.2. NHANES variables and summary statistics for
2015–2016 data.

Input
Variable

Measure of
centrality

Measure of
dispersion

% Missing

age 47.25 17.44 0.00
cholesterol 195.71 41.92 0.96
diastolic 70.16 12.53 5.34
income 9.00 3.00 6.24
gender 1.00 N/A 0.00
glucose 95.75 22.81 0.89
night urination 1.00 1.00 9.67
race 3.00 N/A 0.00
risk for diabetes 1.00 N/A 0.00
salt 1.00 N/A 0.049
sedentary activity 367.38 196.44 0.93
stroke 1.00 N/A 0.07
systolic 124.33 17.92 5.34
tobacco 1.00 N/A 9.48
triglycerides 152.12 130.26 0.96
urination 143.81 99.24 9.41
weak kidneys 1.00 N/A 0.09
weight 80.36 21.04 0.75
weight loss 1.00 N/A 0.00
Outcome
Variable

Measure of
centrality

Measure of
dispersion

% Missing

glycohemoglobin 5.55 0.60 0.00

Figure A.1: Observed glycohemoglobin as a function of pre-
dicted glycohemoglobin from the optimal leaf model.

Graphical results
The optimal model for modelling the NHANES diabetes

data was the leaf approach having hyperparameter values:
M = 500, mtry = 15 and node size = 3. The following plot
shows the observed outcome glycohemoglobin as a function
of its predicted values from the optimal leaf model. Plot
for the optimal parent model is similar to that shown in
Figure A.1.

Clearly, predicted glycohemoglobin tend to range over a
shorter interval than the observations they estimate, a com-
mon result when applying random forest models. This is due
to the fact that the random forest algorithm estimates ex-
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Figure A.2: Residuals as a function of predicted glycohe-
moglobin from optimal leaf model.

treme values by the average outcomes, which are closer to
the mean response f . As a result, large values of the mean
function f tend to be underestimated while small values of
f tend to be overestimated. To further examine model fit
we provide the residual plot in Figure A.2.

As seen in Figure A.2, majority of the predicted values
tend to range from 5 to 6 with some values being larger. In
general, the condition of constant variance, homoscedastic-
ity, holds with the exception of one small predicted value
near 5.5 and one large value around 10.5.
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