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Abstract
We consider a formal statistical design that allows simultaneous enrollment of a main cohort and a backfill cohort of

patients in a dose-finding trial. The goal is to accumulate more information at various doses to facilitate dose optimization.
The proposed design, called Bi3+3, combines the simple dose-escalation algorithm in the i3+3 design and a model-based
inference under the framework of probability of decisions (POD), both previously published. As a result, Bi3+3 provides
a simple algorithm for backfilling patients to lower doses in a dose-finding trial once these doses exhibit safety profile in
patients. The POD framework allows dosing decisions to be made when some backfill patients are still being followed
with incomplete toxicity outcomes, thereby potentially expediting the clinical trial. At the end of the trial, Bi3+3 uses
both toxicity and efficacy outcomes to estimate an optimal biological dose (OBD). The proposed inference is based on a
dose-response model that takes into account either a monotone or plateau dose-efficacy relationship, which are frequently
encountered in modern oncology drug development. Simulation studies show promising operating characteristics of the
Bi3+3 design in comparison to existing designs.
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1. INTRODUCTION
In an oncology phase I dose-finding trial, a binary dose-

limiting toxicity (DLT) outcome is used as the primary end-
point to assess the toxicity of ascending doses of a new in-
vestigation therapeutics. Toxicity is assumed to be mono-
tonically increasing with dose levels. The primary goal is to
establish the toxicity profile of the therapeutics and identify
the maximum tolerated dose (MTD), which is defined as the
highest dose with a toxicity probability no more than a pre-
specified target rate, say 0.3. Patients are enrolled in cohorts
and sequentially treated at different doses. A statistical de-
sign is used to guide the sequential patient enrollment and
dosing decisions that specify the dose for the next patient
cohort. An appropriate design is expected to achieve two
goals simultaneously, first to allocate as many patients to
safe and potentially efficacious doses and second to quickly
learn the safety profile of the therapeutics and identify the
MTD. Over the past three decades, a large number of effec-
tive statistical designs have been developed that drastically
improved the quality and efficiency of phase I trials. For ex-
ample, the continual reassessment method (CRM) [12] ap-
plies model-based inference to estimate the MTD whenever
new toxicity outcomes become available. Subsequent model-
based designs such as mTPI [7] and mTPI-2 [5] attempt to
simplify the statistical models and utilize up-and-down deci-
sion rules to generate simple and transparent decision tables
for practical trials. More recent design development aims to
further simplify the decision and modeling framework, lead-
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ing to model-assisted designs like CCD [6] and BOIN [10],
as well as model-free designs like i3+3 [9].

The FDA Project Optimus [4] advocates for a more thor-
ough and comprehensive exploration of doses in early-phase
oncology drug development. Across many new concepts in
the project, an overarching message is to encourage designs
that gather more information about doses, especially those
less toxic but equally efficacious, thereby having a better
chance identifying an optimal biological dose in early-phase
clinical trials, which is defined as the dose level at which
the therapeutic intervention demonstrates maximum effi-
cacy in treating the target condition while minimizing unde-
sirable side effects or toxicity. Here, we consider a framework
that allows patients to be backfilled to lower doses during
a dose-finding trial once these doses exhibit safety profile
in patients. Backfill is useful in settings where efficacy of
a drug does not always increase with dose level, as seen
in many recent immune and targeted oncology drugs [14].
Therefore, backfilling patients at lower doses provides op-
portunities to further accumulate information (e.g., phar-
macology or efficacy data) at these doses while the trial
continues to explore higher doses. In this way, efficiency in
finding an optimal dose can be gained since more informa-
tion will be available at different doses. However, backfilling
raises a new logistic and statistical issue, as illustrated in
Figure 1. To see this, first note that once backfill cohorts
are enrolled at a lower dose and the trial continues to ex-
plore a higher dose, there are two cohorts of patients that
are enrolled and treated at different doses, the backfill co-
hort at the low dose and the main cohort at the high dose.
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Figure 1: A hypothetical dose-finding trial allowing patient
backfill. The main cohort patients are 1–6 and the backfill
cohort ones are 7–9. By the time patient 10 arrives, patients
1–7 have observed outcomes, and patients 8 and 9 are still
being followed without definitive outcomes. This figure is a
stylized example and should not be interpreted to mean that
only one dose is allowed for backfill. The dose for patient 10
is determined by the design algorithm in Section 2.2.

The main cohort is usually enrolled first after which the
backfill cohort is enrolled. When patient outcomes from the
main cohort are recorded, a dosing decision must be made
to determine the dose for future patients in the next main
cohort. Such decision should utilize the information from the
patients in the main cohorts as well as the backfill cohorts.
However, since patients in backfill cohorts are enrolled after
the main cohort, it is possible that, at the time of dosing
decision, one or more patients (patients 8 and 9 in Figure 1)
in the backfill cohort might still be followed without a defini-
tive DLT outcome. In other words, there could be pending
patients with incomplete outcomes in the backfill cohorts.
These patients might have been followed for a while but no
definitive DLT outcomes can be assessed yet. This raises a
question of how the information in these patients could be
used in statistical modeling and inference for the dosing de-
cision. One solution is to wait and pause trial enrollment
until all the pending patients in the backfill cohort com-
plete follow-up and have their DLT outcomes recorded. The
proposed Bi3+3 design aims to provide a better solution to
this question that does not always require pausing enroll-
ment.

There are few formal statistical approaches for patient
backfill in real-world trials. In [11] the authors used a sim-
ple backfill algorithm under the 3+3 design to acquire ad-
ditional information on low doses during the trial. In [3]
the authors proposed a novel backfill framework using hy-
pothesis testing under a CRM. The authors propose to test
two hypotheses, one corresponding to the monotonically in-
creasing efficacy model and the other to the plateau efficacy

model under the framework of CRM. They allow a back-
fill cohort to be enrolled following every main cohort when
the main cohort reaches level 2 or higher. However, Backfill
CRM assumes the data in the backfill cohort do not in-
fluence the dosing decision for the main cohort. Here, we
consider a design that is slightly different. We assume that
some patients in the backfill cohorts are still being followed
without DLT outcomes and apply a time-to-event model to
incorporate information from these patients to allow dosing
decisions to be made with pending outcomes in the backfill
cohort. Designs that allow dosing decisions in the presence
of pending outcomes have been developed for dose-finding
trials. For example, TITE-CRM [2] is a pioneering time-to-
event (TITE) model under the CRM framework and has
been applied in various trials. Motivated by TITE-CRM, a
variety of TITE designs have been developed. In [1] the au-
thors incorporate TITE-CRM in a backfill design that is ca-
pable of making dosing decisions when there are late onsite
toxicities. Recently, a new framework based on probability
of decision (POD) has been proposed, represented by the
POD-TPI design [17], to calculate the probability of differ-
ent decisions by treating the pending outcomes of patients as
random quantities. The proposed Bi3+3 design adopts the
POD framework for the potential pending outcomes due to
backfill.

In addition to toxicity data, efficacy data of phase I tri-
als are collected and should be used for dose selection. For
cytotoxic drugs, the efficacy is assumed to increase with
doses and therefore MTD is also the optimal biological dose
(OBD) since it gives the highest efficacy among all tolera-
ble doses. However, new targeted and immune therapies are
often cytostatic in that the efficacy response rate may reach
a plateau and stay flat after certain dose level. When the
dose level with highest response is lower than the MTD, the
MTD is no longer the OBD, rendering selection of the MTD
for future studies suboptimal [14]. To this end, the proposed
backfill i3+3 design (Bi3+3) selects an OBD based on both
efficacy and toxicity data at the end of the trial. Specifically,
a change-point model is proposed for the dose-efficacy re-
sponse to capture the potential cytostatic relationship. The
remainder of the article is organized as follows. Section 2 in-
troduces the proposed design, and Section 3 shows how we
select MTD and OBD in the Bi3+3 design. Simulations will
be presented in Section 4, and discussion about our work is
in the last section, Section 5.

2. PROPOSED BI3+3 DESIGN
2.1 Notation

Assume a total of D ascending doses of a new therapeu-
tics is under investigation. At a given moment of the trial,
suppose nd patients have been allocated to dose d among
whom yd experience the DLT, d = 1, . . . , D. Let pd denote
the toxicity probability at dose d, and we assume

yd|nd, pd ∼ Bin(nd, pd).
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Table 1. The decision rules in the i3+3 design. Notation: d represents the current dose being investigated in the trial; nd and
yd denote the number of patients enrolled and those with DLT at dose d, respectively.

Condition Decision Dose for next cohort
yd
nd

below EI Escalation (E) d+ 1
yd
nd

inside EI Stay (S) d
yd
nd

above EI and yd−1
nd

below EI Stay (S) d
yd
nd

above EI and yd−1
nd

inside EI De-escalation (D) d− 1
yd
nd

above EI and yd−1
nd

above EI De-escalation (D) d− 1

Also assume the efficacy outcome of each patient to be bi-
nary which is usually observed 10–12 weeks after the treat-
ment for solid tumors in oncology trials. Letting the number
of patients experiencing efficacy be vd and the response rate
qd at dose d, we assume

vd|nd, qd ∼ Bin(nd, qd) d = 1, . . . , D.

The proposed Bi3+3 design extends the algorithm in the
i3+3 design [9] given in Table 1. Let pT denote the tar-
get toxicity probability of the MTD, which is the highest
toxicity rate that can be tolerated in the trial. Define the
equivalence interval (EI) as [pT − ε1, pT + ε2], which de-
scribes a range of toxicity probabilities within which doses
are deemed equivalent to the MTD. For example, pT = 0.25
and EI = [0.2, 0.3]. Then the dose-finding algorithm of the
i3+3 design can be summarised in Table 1. Here, a value
“below” the EI means that the value is less than (pT − ε1),
the lower bound of the EI. A value “inside” the EI means
that the value is larger than or equal to (pT − ε1) but less
than or equal to (pT + ε2), the upper bound of the EI.
A value “above” the EI means that the value is larger than
(pT + ε2). Decisions E, S, and D represent escalation to the
next higher dose, stay at the current dose, and de-escalation
to the next lower dose, respectively.

Phase I oncology trials enroll patients in cohorts, say a
group of three patients per cohort. After a cohort is enrolled
and assigned to a dose level for treatment, the patients are
followed for three to four weeks to evaluate drug safety and
record any DLT outcomes. While the patients are being fol-
lowed, new patients may be eligible for trial enrollment. The
proposed Bi3+3 design allocates these patients, as backfill
cohorts, to lower doses, which have already been tested and
exhibit sufficient safety.

Assume dose d is currently used for treating patients in
the trial. We denote “main cohort” (mc) the cohort of pa-
tients for dose escalation, and “backfill cohort” (bc) the
cohort of patients for backfill at lower doses. At a given
moment of the trial, assume an mc of patients is allo-
cated to dose d. After the mc is allocated, Bi3+3 allocates
bc to one or multiple doses that are lower than the cur-
rent dose d. Denote the set of doses assigned to bc by
Bd = {k0, k0 + 1, . . . , d − 1} where k0 in Bd is the lowest

dose available for backfill. The proposed Bi3+3 design con-
tinuously and adaptively determine k0 throughout the trial.
We will describe a method to determine k0 later in Sec-
tion 2.3. But first, we describe the main algorithm for the
Bi3+3 design next.

2.2 Patient Allocation for Bi3+3
The following algorithm (also summarized in Figure 2)

1. Enroll an mc of patients at dose d in the main cohort.
The default cohort size is 3.

2. Once the enrollment for mc is completed, start enroll-
ment for bc by randomly allocating patients in bc to
doses in Bd. Alternatively, one may restrict the enroll-
ment of bc to dose (d − 1), depending on the specific
situations of the trial.

3. After the DLT outcomes of patients at the mc are ob-
served, obtain the dosing decision Sd ∈ {E,S,D} of
dose d based on the i3+3 design (Table 1), which is E,
to escalate to dose (d+1), S, to stay at dose d, or D to
de-escalate to dose (d− 1). Do not execute the decision
yet. Simply obtain and record it.

4. At the same time, follow the steps below and obtain
the dosing decision Tk for dose k lower than the current
dose d.
(a) If one or more patients at dose k are still being

followed for DLT assessment without an outcome,
apply the POD-i3 design [16] to assess whether the
enrollment must be suspended. If yes for any dose
k, suspend the trial enrollment at all doses and
continue following the patients with pending DLT
outcomes.

(b) As time passes, eventually pending patients in the
backfill cohort will complete follow up and POD-
i3 will be able to generate a decision that is not
to suspend the enrollment. Then obtain a dosing
decision Tk for dose k using the POD-i3 design,
which is E, to escalate to dose k + 1, D, to de-
escalate to dose k − 1, or S, to stay at dose k.
Follow the steps below:

i. If Tk = D for at least one dose k, find k∗ =
min{k : Tk = D} which corresponds to the
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Figure 2: Design flow of Bi3+3 for decision making and patient allocation.

lowest dose k∗ lower than the current dose d
with decision D. Enroll the next mc at dose
1∨ (k∗− 1). When the starting dose has a de-
cision D, i.e., k∗ = 1, one could also consider
inserting a lower dose instead.

ii. Otherwise, enroll the next mc based on Sd.

5. Throughout the trial, if a new outcome is observed at
any dose, apply the safety rule in the i3+3 design at all
doses [9], which is detailed in Section 2.4.

6. Repeat steps 1–5 until the number of patients in the
main cohort reaches a maximum sample size or no doses
are left due to safety rules.

Remark 1. Since the backfill cohort can only be enrolled
after the main cohort is enrolled, and once the main cohort
completes follow up, another main cohort must be enrolled,
the number of patients enrolled in the backfill cohort is ran-
dom and depends on the enrollment speed. If Bd is empty,
there is no need to enroll backfill cohorts since no doses are
allowed for backfill.

Remark 2. In step 4, alternative approaches such as POD-
i3+3 [15] may be applied as an alternative to POD-i3. The
main feature of both designs is to consider a risk-speed
tradeoff when it comes to making a decision based on in-
complete DLT data.

2.3 Determine the Doses for Backfill
In the Bi3+3 algorithm described above, when the mc is

allocated to dose d, in principle all doses lower than d are
available for backfilling, i.e., Bd = {k0 = 1, 2, . . . , d−1}. Due
to the up-and-down nature of the decisions in Table 1, all
doses lower than d must have been tested and their safety
has been established by the DLT data observed from the
patients treated at these doses. Otherwise, it is impossible
for the design to reach dose d for mc if any lower dose ex-
hibits excessive toxicity, in which case the dosing decision
would not have been E, to escalate. Therefore, all the doses
in Bd are deemed safe based on observed data. To this end,
to determine Bd, we consider efficacy data from patients and
exclude low doses with insufficient efficacy. These doses are
considered having little chance to induce beneficial efficacy
response from cancer patients and therefore are not worth
further exploration.

We follow the idea in [3]. We slightly abuse the notation
d hereinafter to either denote the current dose in the trial
or a general index of any doses when needed. Occasionally,
we also use k or i to index doses when d is used to denote
the current doses. Given context, these notations should be
clear to readers. We start with Bd = {k0 = 1, 2, . . . , d − 1}
assuming the current dose is d for the mc. When a new
efficacy outcome is observed from either mc or bc, we refresh
the lowest dose k0 in Bd based on the following procedure.
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Recall the efficacy is assumed to be a binary outcome, e.g.,
objective response (OR) as in Response Evaluation Criteria
in Solid Tumors (RECIST).

To update k0, we first define for a dose k ∈ Bd,

qk+ =

∑D
i>k niqi∑D
i>k ni

,

where qi is the true efficacy probability for dose i, and ni

denotes the number of patients with available efficacy out-
comes at dose i. By convention, 0/0 = 0. The quantity qk+
represents the expected response rate at doses higher than
dose k. Under a Bayesian model that will be presented later,
we compute the posterior probability ξk = Pr{qk+ > qk |
D}, k ∈ Bd, where D = {(vd, nd), d = 1, . . . , D}, the ob-
served efficacy data. If ξk > ξ0, say ξ0 = 0.8, dose k is
deemed to be less efficacious than doses higher than k. The
first dose k0 in Bd is set to dose (k + 1), i.e., k0 = k + 1.

Throughout the trial, posterior probabilities ξk for k ∈ Bd

are monitored continuously to determine k0 and update Bd.

2.4 Safety Rule
Following the i3+3 design [9], two safety rules are added

as ethical constraints to avoid excessive toxicity. Both rules
are applied in step 5 of the Bi3+3 design (Section 2.2).

• Rule 1 (Dose Exclusion): If the current dose is con-
sidered excessively toxic, i.e., Pr{pd > pT | H} > η,
where H = {(yd, nd), d = 1, . . . , D} and the threshold η
is close to 1, say 0.95, the current and all higher doses
are excluded and never be used again in the remainder
of the trial.

• Rule 2: Early Stop: If the current dose is the lowest
dose (the first dose) and is considered excessively toxic
according to Rule 1, stop the trial for safety.

In safety rules 1 and 2, Pr{pd > pT | H} is under the
posterior distribution Beta(α0 + yd, β0 + nd − yd) which
corresponds to an independent Beta(α0, β0) for pd, and
α0 = β0 = 1 is used. As a special case of the safety rule
1, if the decision for the current dose d is “E” according
to the decision rule in Section 2.2, and if the next higher
dose (d+ 1) level has been excluded due to Rule 1, the de-
cision for the current dose is changed to “S” Stay for the
current dose because there is no available dose to escalate
to.

3. MTD AND OBD SELECTION
3.1 MTD Selection

After a prespecified maximum sample size of the trial is
reached, all the DLT and efficacy data will be collected for
all patients enrolled in the trial. We apply the same MTD
selection procedure as in many recent designs based on the
isotonic regression [7, 5, 9]. In particular, an independent
Beta(0.005, 0.005) prior is assumed for pd, d = 1, . . . , D.

And the pooled adjacent violators algorithm (PAVA) [13]
is applied to calculate the posterior mean toxicity proba-
bilities for all doses, p̂d, d = 1, . . . , D, subject to the order
constraints p̂k > p̂d for ∀k > d. Among all tried doses, select
as the estimated MTD d̃ the dose with the smallest differ-
ence |p̂d − pT | and p̂d ≤ pT + ε2, i.e.,

d̃ = argmin
{d:nd �=0,p̂d≤pT+ε2}

|p̂d − pT | .

3.2 OBD Selection
To select the OBD, we modify the change-point model

in [3] and construct a four-parameter model for the dose-
efficacy response. Specifically, recall that qd is the probabil-
ity of efficacy at dose d. Then assume

logit(qd) = β0 + β1 {xdI(xd ≤ h) + (β2 + h)I(xd > h)} .

Here xd ∈ {1, . . . , D} denotes the D discrete dose levels, β0

is the intercept, β1 is the slope, and h ∈ {1, . . . , D} is the
change point of the model after which efficacy is assumed to
plateau. Under this model, when the dose level is less than or
equal to h, by assuming β1 > 0, there is a positive monotonic
relationship between dose level and efficacy response rate;
when the dose level is higher than h, efficacy response rate
no longer increases with dose level and stays as constant
β0 + β1(β2 + h) at the logit scale. Quantity β1β2 represents
the increment in comparison to the response rate β0 + β1h
at the change point h. This increment is needed to describe
the response rate of the dose immediately after the change
point h due to discrete dosing.

The prior of β1 is set as log-normal distribution with
mean 0 and a large variance. Parameter β2 describes a jump
after the change point in response rate, and its prior distri-
bution follows another log-normal. We use a normal prior
with mean −2 for β0 so that the prior probability of response
when there is no treatment is small. As for parameter h, we
set a discrete prior where h takes the value of each dose
level from the starting dose 1 to the highest dose D with a
probability. Specifically, we set the prior probability to be a
small value e, say e = 0.05, for any dose with no enrolled
patients, and divide the remaining prior probability evenly
across doses with enrolled patients. We use D′ ≤ D to de-
note the number of doses with enrolled patients. The prior
distributions are given as follows.

β0 ∼ N(−2, 10), β1 ∼ LN(0, 10), β2 ∼ LN(0, 10),

and h ∼ Cat(r1, . . . , rD) where

rd = e ∗ I(nd = 0) +
1− (D −D′) ∗ e

D′ I(nd > 0),

where Cat(r1, . . . , rD) is a discrete distribution taking values
in {1, . . . , D} with corresponding probabilities (r1, . . . , rD),
respectively. Note rd is simply the mathematical expression
that gives us the aforementioned prior probability for h.
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Given available efficacy data D = {(vd, nd), d = 1,
. . . , D}, the posterior probability φd = Pr{h = d | D},
d = 1, . . . , D, can be calculated and used to select OBD.
The change point h∗ is estimated as

h∗ = D′ ∧ (argmax
d

φd).

Considering both toxicity and efficacy effects of these doses,
we finally select the OBD d∗ based on the selected MTD d̃
and the estimated change point h∗ as

d∗ = d̃ ∧ (h∗ + 1).

4. SIMULATION
We conduct simulated trials to assess the performance of

the Bi3+3 design. We generate patient toxicity and efficacy
data based on a set of scenarios. For each scenario, we run
1,000 simulated trials. To mimic real-world situations, we
assume the toxicity and efficacy outcomes of any patients
are not immediately observed. Instead, we assume the time
to DLT follows a uniform distribution ranging from 0 to the
maximum DLT follow-up time if a DLT occurs for the pa-
tient; otherwise we assume DLT is censored. The efficacy
outcomes are observed 90 days after patients’ enrollment.
Also, the arrival time of patients is assumed to follow an ex-
ponential distribution with a mean of 10 days, which means,
on average, every 10 days a new patient is eligible for en-
rollment of the trial, and hence the trial would enroll about
three patients per month.

In Section 4.1,we specify several scenarios with different
target toxicity probabilities and different numbers of doses,
and compare Bi3+3 with the Backfill CRM design [3]. In
Section 4.2 we compare Bi3+3 with the mTPI-2 design [5]
for trial duration.

4.1 Comparison with Backfill CRM
We first compare Bi3+3 with the Backfill CRM design

in [3]. We briefly summarize the Backfill CRM design below,
which provides instructions for allocating patients in the
main cohort and backfill cohort.

• Main cohort allocation
1. A one-parameter CRM model [12] is used for dose

assignment and MTD selection, only using data in
the main cohort.

• Backfill cohort allocation
1. Starting with the second cohort of patients in the

main cohort, a backfill cohort with three patients
will be enrolled after the main cohort enrollment
is complete.

2. The patients are randomly assigned to backfill
doses with equal probability.

3. Similar to the rules in Section 2.3, doses with low
efficacy response rates are removed from backfill
doses.

• OBD selection
1. After the trial ends, model selection is performed

to select a monotonic logistic regression or a
change-point logistic regression.

2. The OBD is decided based on the selected model.
If the change-point model is selected, doses are
divided to two parts, monotone and plateau parts.
The dose on the plateau and closest to the change
point is selected as the OBD.

We implement the Backfill CRM design and benchmark
our implementation against the simulation results in [3]. Our
results, shown in Appendix B, are very close to those pre-
sented in [3], thus assuring our implementation. We then
compare the Bi3+3 design with Backfill CRM on a vari-
ety of scenarios. See Figure 3 for the five scenarios used
in our simulation. In the subsequent simulation, the tar-
get probability of toxicity for MTD is set to pT = 0.3, and
the equivalence interval for Bi3+3 is EI = [0.25, 0.35]. As
the backfill strategy is different in Bi3+3 design and Back-
fill CRM design, we try to match the overall sample size
(main cohorts + backfill cohorts) for both designs for fair
comparison. For the Bi3+3 design, 30 patients are enrolled
in the main cohorts which result in an average sample size
of 42.8, with the additional 12.8 patients coming from the
backfill cohorts. As for the Backfill CRM design, we set 24
as the main cohort sample size which produces an average
of 45.0 patients for the entire trial. We use the skeleton
in [8] for Backfill CRM, a popular choice in practice. The
operating characteristics of both designs are presented in
Table 2.

For scenarios 1 and 2, the true MTD is the fifth dose
and fourth dose, respectively. The efficacy response rates of
doses reach a plateau at the third dose, which is the true
OBD. In scenarios 1 and 2, Bi3+3 selects the true MTD
in 41.7% and 40.8% of the simulated trials, highest among
all the doses, and it selects the true OBD, dose level three,
34.3% and 39.2% of the times. The Backfill CRM design has
slightly higher percentages in OBD selection in these two
scenarios although it also tends to select the next higher
dose with a high frequency. On average, Bi3+3 assigns 10.3
patients to dose levels three and four in scenario 1, respec-
tively. Compared with Backfill CRM, the total sample size
of Bi3+3 is 2.2 patients smaller, although there is not much
difference in the patient allocation to the OBDs. In scenarios
3 and 4 both toxicity and efficacy increase with dose level
and the MTD and OBD are the same, which is dose level
five. The Bi3+3 model identifies dose five as the MTD, with
frequencies of 36.1% and 42.3%, and as the Optimal Bio-
logical Dose (OBD), with frequencies of 30.5% and 40.1%
in scenarios 3 and 4, respectively. In contrast, the Back-
fill CRM design selects dose three as OBD with probabil-
ities 39.4% and 43.9% in the two scenarios, which is less
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Table 2. Comparison of Bi3+3 and Backfill CRM in five scenarios. The target toxicity probability is 0.3 and EI = [0.25, 0.35].

Bi3+3 Backfill CRM
Dose level 1 2 3 4 5 1 2 3 4 5

Scenario 1
Efficacy probability 0.1 0.3 0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.5
Toxicity probability 0.01 0.05 0.1 0.25 0.31 0.01 0.05 0.1 0.25 0.31
% of OBD selection 0% 17.4% 34.3% 23.7% 24.6% 0% 0.5% 40.1% 43.4% 16.0%
% of MTD selection 0% 0.5% 20.5% 37.3% 41.7% 0% 0.2% 5.0% 35.0% 59.8%
Efficacy estimation 0.22 0.32 0.43 0.48 0.52 0.24 0.32 0.41 0.47 0.51

Number of patients enrolled 7.1 7.4 10.3 10.3 8.1 8.4 9.3 10.3 9.7 7.3
Number of patients backfill 4.0 3.6 3.6 1.9 0 5.3 6.2 6.2 3.3 0

Scenario 2
Efficacy probability 0.05 0.15 0.3 0.3 0.3 0.05 0.15 0.3 0.3 0.3
Toxicity probability 0.06 0.1 0.15 0.3 0.38 0.06 0.1 0.15 0.3 0.38
% of OBD selection 0.5% 13.9% 39.2% 31.3% 15.1% 0% 5.2% 49.9% 37.7% 7.2%
% of MTD selection 0.5% 3.7% 33.7% 40.8% 21.3% 0% 2.5% 22.2% 50.2% 25.1%
Efficacy estimation 0.13 0.18 0.24 0.29 0.34 0.14 0.18 0.23 0.28 0.32

Number of patients enrolled 8.6 8.7 10.9 9.3 4.7 11.2 10.3 10.7 8.4 4.4
Number of patients backfill 4.8 3.7 2.7 1.0 0 7.3 6.5 5.2 2.0 0

Scenario 3
Efficacy probability 0.07 0.14 0.21 0.28 0.35 0.07 0.14 0.21 0.28 0.35
Toxicity probability 0.06 0.12 0.18 0.24 0.3 0.06 0.12 0.18 0.24 0.3
% of OBD selection 0.8% 12.3% 26.3% 30.1% 30.5% 0.2% 8.3% 39.4% 35.2% 16.9%
% of MTD selection 0.8% 6.4% 23.4% 33.3% 36.1% 0.2% 3.4% 21.0% 42.7% 32.7%
Efficacy estimation 0.12 0.16 0.21 0.26 0.31 0.13 0.16 0.20 0.25 0.29

Number of patients enrolled 9.5 9.7 10.1 7.8 6.0 11.8 10.5 10.0 7.8 4.9
Number of patients backfill 5.5 3.8 2.6 1.2 0 7.9 6.4 4.5 2.2 0

Scenario 4
Efficacy probability 0.04 0.08 0.12 0.16 0.2 0.04 0.08 0.12 0.16 0.2
Toxicity probability 0.04 0.08 0.15 0.21 0.32 0.04 0.08 0.15 0.21 0.32
% of OBD selection 0.1% 6.0% 15.6% 38.2% 40.1% 0.1% 2.6% 43.9% 31.7% 21.7%
% of MTD selection 0.1% 3.4% 14.3% 39.9% 42.3% 0.1% 0.5% 10.2% 41.0% 48.2%
Efficacy estimation 0.08 0.10 0.12 0.15 0.19 0.09 0.10 0.12 0.14 0.17

Number of patients enrolled 9.2 8.7 9.8 9.0 7.7 10.7 9.9 9.7 8.4 6.4
Number of patients backfill 5.7 4.0 3.0 1.6 0 7.2 6.4 4.9 2.5 0

Scenario 5
Efficacy probability 0.1 0.2 0.3 0.4 0.4 0.1 0.2 0.3 0.4 0.4
Toxicity probability 0.08 0.16 0.24 0.3 0.38 0.08 0.16 0.24 0.3 0.38
% of OBD selection 3.5% 27.7% 31.3% 25.3% 12.1% 0.1% 16.7% 49.6% 29.5% 4.1%
% of MTD selection 3.5% 19.7% 31.9% 29.2% 15.6% 0.1% 9.9% 41.1% 39.4% 9.5%
Efficacy estimation 0.16 0.21 0.28 0.36 0.40 0.17 0.21 0.27 0.33 0.37

Number of patients enrolled 10.3 11.4 10.2 6.2 3.2 13.1 11.9 10.6 6.4 2.9
Number of patients backfill 5.3 3.3 1.8 0.7 0 8.7 6.8 4.0 1.5 0

desirable. For patient allocation, Bi3+3 allocates on aver-
age 6.0 and 7.7 patients to dose five compared to 4.9 and
6.4 by Backfill CRM in scenarios 3 and 4, respectively. In
the last scenario 5, efficacy plateaus at the true MTD, in-
dicating that the true MTD is the same as the true OBD,
which is dose four. However, dose three has a toxicity rate
close to the MTD, which makes it difficult for both de-
signs to differentiate the two doses. This can be seen in
the selection percentages of the MTD and OBD for both
designs. Across all the scenarios, Backfill CRM is slightly
more conservative than Bi3+3 as it allocates more patients

to lower doses. However, it tends to select doses in the mid-
dle. This could be desirable if the true OBD is near the
middle like in scenarios 1 and 2. In contrast, in cases where
the true OBD is at a high dose, like scenarios 3 and 4, Back-
fill CRM may have less chance finding them. In summary,
both designs exhibit desirable features in these five scenar-
ios.

Apart from these features, we also calculate the mean
of efficacy using the regression model in each scenario. The
results are reported in Table 2 corresponding to the line
“Efficacy estimation”. The estimated efficacy response rates
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Table 3. Comparison of Bi3+3 and mTPI-2 in five scenarios. The target toxicity probability is 0.3, EI = [0.25, 0.35], sample
size is 42.8 for Bi3+3 and 43.0 for mTPI-2.

Bi3+3 mTPI-2
Dose level 1 2 3 4 5 1 2 3 4 5

Scenario 1
Efficacy probability 0.1 0.3 0.5 0.5 0.5
Toxicity probability 0.01 0.05 0.1 0.25 0.31 0.01 0.05 0.1 0.25 0.31
% of OBD selection 0% 17.4% 34.3% 23.7% 24.6%
% of MTD selection 0% 0.5% 20.5% 37.3% 41.7% 0% 0.4% 20.5% 42.4% 36.7%
Efficacy estimation 0.22 0.32 0.43 0.48 0.52

Number of patients enrolled 7.1 7.4 10.3 10.3 8.1 3.1 3.8 8.7 13.4 14.0
Number of patients backfill 4.0 3.6 3.6 1.9 0

Trial Duration 494 619
Scenario 2

Efficacy probability 0.05 0.15 0.3 0.3 0.3
Toxicity probability 0.06 0.1 0.15 0.3 0.38 0.06 0.1 0.15 0.3 0.38
% of OBD selection 0.5% 13.9% 39.2% 31.3% 15.1%
% of MTD selection 0.5% 3.7% 33.7% 40.8% 21.3% 0.1% 3.5% 39.4% 41.7% 15.3%
Efficacy estimation 0.13 0.18 0.24 0.29 0.34

Number of patients enrolled 8.6 8.7 10.9 9.3 4.7 3.8 5.4 12.1 13.7 8.0
Number of patients backfill 4.8 3.7 2.7 1.0 0

Trial Duration 490 615
Scenario 3

Efficacy probability 0.07 0.14 0.21 0.28 0.35
Toxicity probability 0.06 0.12 0.18 0.24 0.3 0.06 0.12 0.18 0.24 0.3
% of OBD selection 0.8% 12.3% 26.3% 30.1% 30.5%
% of MTD selection 0.8% 6.4% 23.4% 33.3% 36.1% 0.2% 6.6% 25.5% 35.9% 31.8%
Efficacy estimation 0.12 0.16 0.21 0.26 0.31

Number of patients enrolled 9.5 9.7 10.1 7.8 6.0 4.0 6.7 10.4 10.7 11.1
Number of patients backfill 5.5 3.8 2.6 1.2 0

Trial Duration 493 619
Scenario 4

Efficacy probability 0.04 0.08 0.12 0.16 0.2
Toxicity probability 0.04 0.08 0.15 0.21 0.32 0.04 0.08 0.15 0.21 0.32
% of OBD selection 0.1% 6.0% 15.6% 38.2% 40.1%
% of MTD selection 0.1% 3.4% 14.3% 39.9% 42.3% 0% 2.9% 17.0% 45.7% 34.4%
Efficacy estimation 0.08 0.10 0.12 0.15 0.19

Number of patients enrolled 9.2 8.7 9.8 9.0 7.7 3.5 4.9 8.6 12.5 13.4
Number of patients backfill 5.7 4.0 3.0 1.6 0

Trial Duration 495 621
Scenario 5

Efficacy probability 0.1 0.2 0.3 0.4 0.4
Toxicity probability 0.08 0.16 0.24 0.3 0.38 0.08 0.16 0.24 0.3 0.38
% of OBD selection 3.5% 27.7% 31.3% 25.3% 12.1%
% of MTD selection 3.5% 19.7% 31.9% 29.2% 15.6% 2.6% 21.8% 34.7% 30.2% 10.6%
Efficacy estimation 0.16 0.21 0.28 0.36 0.40

Number of patients enrolled 10.3 11.4 10.2 6.2 3.2 5.1 10.2 12.6 9.4 5.6
Number of patients backfill 5.3 3.3 1.8 0.7 0

Trial Duration 489 613
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Figure 3: The five simulation scenarios with target toxicity
probability of 0.3. The (MTD, OBD) are (5,3), (4,3), (5,5),
(5,5), and (4,4) for scenarios 1–5, respectively.

in general do not appear to deviate much from the true
efficacy probabilities.

4.2 Comparison with the mTPI-2 Design
Given pT = 0.3

Next, we apply mTPI-2 [5] to illustrate some features of
Bi3+3 as mTPI-2 is a design that does not allow patient
backfill. For fair comparison, we first enroll 30 patients for
mTPI-2, select an MTD, and allow thirteen more patients to
be enrolled at the selected MTD (to adjust for the fact that
Bi3+3 would enroll more patients in the backfill cohorts).
After the additional thirteen patients are enrolled and their
DLT data are observed, we re-select the MTD based on the
additional data. We report the frequency of the re-selected
MTD in the simulation results for mTPI-2.

The results comparing Bi3+3 and mTPI-2 are presented
in Table 3. Bi3+3 has an advantage in many scenarios as
it allows patients to be backfilled. For example, it does not
increase trial duration while allowing more patients to be
assigned to lower doses, resulting in better OBD selection.
See Table 3 for a summary.

As a sensitive analysis, we vary the target toxicity prob-
ability from pT = 0.3 to pT = 0.25 and change the EI from
[0.25, 0.35] to [0.2, 0.3] (Table 6). We also construct four
more scenarios to assess the trial duration and patients en-
rollment. Bi3+3 shows desirable results as expected, thanks
to the ability to backfill patients and time-to-event modeling
(Table 4).

5. DISCUSSION
The backfill strategy in phase I trials has been routinely

applied to allow accumulation of information at low but
potentially efficacious doses, despite lacking formal statisti-
cal designs. Here, we propose a statistical framework based
on model-based inference to allow patient backfilling. The
main contributions are to apply POD for patients with pend-
ing outcomes and to model potentially plateau dose-efficacy
response for OBD selection. We show that the proposed
Bi3+3 design is able to put more patients at lower doses
without increasing the trial duration. For the selection of
OBD, we develop a four-parameter regression model that as-
sumes a change-point dose-response relationship. More com-
plex models may be considered, such as model average over
possible dose-efficacy models. These models may require a
larger sample size as they involve more parameters. In gen-
eral, tradeoff between statistical principles on using opti-
mal models and simplicity and interpretability of results
must be balanced. Also, in recent oncology drug develop-
ment, occasionally a new drug may manifest non-monotone
dose-efficacy relationship in which the efficacy may initial
increase but later decrease with dose. Therefore, a second-
order dose-response model might be needed to address such
relationship.

In Bi3+3, for simplicity we apply the POD-i3 design at
a backfill dose. The POD-i3 design only uses the data from
that dose to generate a dosing decision. Alternatively, one
could combine the POD framework with designs like CRM
(i.e., POD-CRM) so that data from all the doses are used
for statistical inference and decision making at each backfill
dose. This will be left for future work.

We adopt the i3+3 design for the main cohort dose esca-
lation. This is optional. Any sensible design may work well
under the proposed framework. In addition, no constraints
are imposed on the number of patients enrolled at a single
dose. In practice, for the purpose of controlling resources, a
max number of patients at a dose can be specified, such as
12 patients.

APPENDIX A. THE POD-I3 DESIGN
After the outcomes of patients in the main cohort (mc)

are observed, some pending patients at lower doses are still
being followed. Generally, trial designs would make a dose
decision immediately after the observation of outcomes at
the main cohort and explore more doses as soon as possible.
The issue is how the partial information from the pending
patients can be incorporated for the dosing decision. We
follow the POD framework [17] to analyze and utilize in-
formation of pending outcomes. Specifically, we develop a
POD-i3 design as suggested by the authors.

Unlike the TITE-CRM design [2], the POD framework
considers probability of making a dosing decision (E, S, or
D) where the randomness is induced by the uncertainty in
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Table 4. Comparison of trial duration and patients’ enrollment of Bi3+3 and mTPI-2.
Dose Toxicity Bi3+3 mTPI-2 Bi3+3 mTPI-2

1 2 3 4 5 Trial Duration Trial Duration Patients enrolled Patients enrolled
Scenario 1 0.15 0.3 0.45 0.6 0.75 476 588 37.0 42.5
Scenario 2 0.06 0.12 0.18 0.24 0.44 491 613 42.7 43
Scenario 3 0.05 0.1 0.15 0.2 0.25 495 625 43.9 43
Scenario 4 0.27 0.37 0.47 0.57 0.67 435 541 31.4 38.3
Total Mean 474.2 591.9 38.7 41.7

Table 5. Comparison of Reproduction of Backfill CRM.
Reproduced Backfill CRM Backfill CRM

Dose level 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Scenario A

Efficacy probability 0.05 0.15 0.25 0.25 0.25 0.25 0.25 0.05 0.15 0.25 0.25 0.25 0.25 0.25
Toxicity probability 0.01 0.04 0.08 0.16 0.25 0.35 0.46 0.01 0.04 0.08 0.16 0.25 0.35 0.46
% of OBD selection 0% 0.3% 29.2% 47.2% 17.4% 5.5% 0.4% 0% 0% 29% 46% 16% 8% 1%
% of MTD selection 0% 0% 2.0% 26.9% 52.0% 17.6% 1.5%
Efficacy estimation 0.15 0.17 0.20 0.23 0.25 0.28 0.29

Number of patients enrolled 8.9 10.4 11.1 11.9 9.2 4.3 1.3 9.1 10.3 11.4 10.8 9.7 5.1 1.1
Number of patients backfill 5.8 7.3 7.1 4.9 1.7 0.3 0

Scenario B
Efficacy probability 0.05 0.1 0.15 0.15 0.15 0.15 0.15 0.05 0.1 0.15 0.15 0.15 0.15 0.15
Toxicity probability 0.01 0.04 0.08 0.16 0.25 0.35 0.46 0.01 0.04 0.08 0.16 0.25 0.35 0.46
% of OBD selection 0% 0.4% 28.2% 49.2% 17.0% 4.7% 0.5% 0% 0% 32% 46% 15% 6% 1%
% of MTD selection 0% 0% 1.8% 26.2% 52.9% 17.8% 1.3%
Efficacy estimation 0.10 0.11 0.13 0.14 0.15 0.17 0.18

Number of patients enrolled 9.5 10.6 10.8 11.4 9.1 4.3 1.3 10.3 10.8 10.3 10.3 9.7 4.6 1.1
Number of patients backfill 6.4 7.5 6.9 4.4 1.6 0.3 0

Scenario C
Efficacy probability 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.04 0.08 0.12 0.16 0.2 0.24 0.28
Toxicity probability 0 0 0.01 0.04 0.08 0.16 0.25 0 0 0.01 0.04 0.08 0.16 0.25
% of OBD selection 0% 0% 0% 25.1% 23.0% 4.9% 47.0% 0% 0% 0% 30% 10% 9% 51%
% of MTD selection 0% 0% 0% 0.1% 0.7% 6.6% 92.6%
Efficacy estimation 0.10 0.12 0.14 0.16 0.19 0.21 0.24

Number of patients enrolled 8.3 8.0 8.1 7.7 7.4 6.8 10.8 9.7 9.1 8.0 7.4 6.3 5.7 10.9
Number of patients backfill 5.3 5.0 5.0 4.6 4.1 2.9 0

Scenario D
Efficacy probability 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.07 0.14 0.21 0.28 0.35 0.42 0.49
Toxicity probability 0 0 0.01 0.04 0.08 0.16 0.25 0 0 0.01 0.04 0.08 0.16 0.25
% of OBD selection 0% 0% 0.2% 12.2% 19.7% 8.7% 59.2% 0% 0% 0% 14% 13% 13% 60%
% of MTD selection 0% 0% 0% 0% 0.8% 6.6% 92.6%
Efficacy estimation 0.15 0.18 0.23 0.28 0.33 0.39 0.44

Number of patients enrolled 8.0 8.0 7.9 7.8 7.6 6.9 10.8 8.6 8.6 8.0 7.4 6.8 6.3 10.8
Number of patients backfill 5.0 5.0 4.9 4.7 4.3 3.1 0

Scenario E
Efficacy probability 0.05 0.1 0.15 0.2 0.2 0.2 0.2 0.05 0.1 0.15 0.2 0.2 0.2 0.2
Toxicity probability 0.04 0.08 0.16 0.25 0.35 0.46 0.56 0.04 0.08 0.16 0.25 0.35 0.46 0.56
% of OBD selection 0% 3.7% 47.1% 38.7% 9.9% 0.6% 0% 0% 5% 45% 36% 11% 2% 0%
% of MTD selection 0% 1.6% 26.1% 49.0% 21.3% 2.0% 0%
Efficacy estimation 0.10 0.12 0.14 0.17 0.20 0.22 0.25

Number of patients enrolled 12.0 12.8 13.3 11.1 5.8 1.7 0.3 12.0 12.5 13.7 10.8 5.7 1.7 0.6
Number of patients backfill 8.5 8.4 6.3 3.0 0.7 0.1 0

Scenario F
Efficacy probability 0.04 0.08 0.12 0.16 0.2 0.24 0.24 0.04 0.08 0.12 0.16 0.2 0.24 0.24
Toxicity probability 0.04 0.08 0.16 0.25 0.35 0.46 0.56 0.04 0.08 0.16 0.25 0.35 0.46 0.56
% of OBD selection 0% 3.8% 48.2% 37.7% 9.2% 1.1% 0% 0% 6% 45% 34% 13% 3% 0%
% of MTD selection 0% 1.7% 25.9% 50.5% 19.5% 2.3% 0.1%
Efficacy estimation 0.08 0.10 0.12 0.14 0.17 0.20 0.22

Number of patients enrolled 11.9 12.7 13.4 11.0 6.0 1.7 0.3 12.0 12.5 13.1 10.8 6.3 1.7 0.6
Number of patients backfill 8.4 8.3 6.3 3.0 0.8 0.1 0
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the pending DLT outcomes. Let Ad denote the decision func-
tion of a complete-data design for the current dose d, such
as the i3+3 design, which requires the complete DLT eval-
uation of all the enrolled patients. Given the target toxicity
probability pT and EI = [pT − ε1, pT + ε2], the decision of
dose d, Ad, only depends on nd and yd, i.e., a deterministic
function of nd and yd, Ad = Ad[yd, nd] ∈ {−1, 0, 1}, where
−1, 0, and 1 correspond to the decisions of de-escalating to
the next lower dose (−1), stay at the current dose (0), and
escalating to the next higher dose (1), respectively. Then,
we use yk,obs to denote the observed toxicity outcomes at a
backfill dose k (k < d) and denote the unobserved DLT out-
comes as Yk,mis. Thus, letting a takes values in {−1, 0, 1},
the decision function in the presence of pending outcomes
at dose k can be expressed as Ak = Ak[(yk,obs, Yk,mis), nk].
As Yk,mis is a random variable, the POD method calculates
the posterior probability γk,a ≡ Pr(Ak = a | H) as

γk,a =
∑

yk,mis:Ak=a

Pr(Yk,mis = yk,mis | H),

k = k0, . . . , d− 1, and a ∈ {−1, 0, 1}.

Here, H denotes the observed data of all enrolled patients,
including the dose assigned to each patient, whether or not
each patient experiences DLT within the follow-up window,
and the follow-up time of each patient. The posterior prob-
ability γk,a is the POD for decision a at dose k.

Let A∗
k = argmax

a
γk,a denotes the decision at dose k with

the highest POD. If multiple decisions tie for the highest
POD, we choose the more conservative one. To ensure the
safety of the design, we apply a suspension rule similar to
[17]. If A∗

k = 0, i.e., stay at dose k, we recommend to suspend
the trial if the posterior probability of de-escalation γk,−1 >
πD for a pre-specified threshold πD. In the original paper
by [17], there is another suspension rule for dose escalation.
However, since we are working with backfill doses which have
already shown initial safety, we decide not to enforce that
rule. See more detail in [17].

APPENDIX B. BENCHMARK RESULTS FOR
THE BACKFILL CRM

DESIGN
The reproduced outcome of the 7 scenarios presented in

[3] is in Table 5 where the same skeleton of CRM is used.

APPENDIX C. COMPARISON WITH THE
MTPI-2 DESIGN GIVEN

pT = 0.25

The five scenarios used in our simulation are presented in
Figure 4, and the operating characteristics of both designs
are presented in Table 6.

Figure 4: The five simulation scenarios with target toxicity
probability of 0.25. The (MTD, OBD) are (4,3), (4,3), (5,5),
(5,5), and (4,4) for scenarios 1–5, respectively.
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Table 6. Comparison of Bi3+3 and mTPI-2 in five scenarios. The target toxicity probability is 0.25, EI = [0.2, 0.3], sample size
is 42.4 for Bi3+3 and 43.0 for mTPI-2.

Bi3+3 mTPI-2
Dose level 1 2 3 4 5 1 2 3 4 5

Scenario 1
Efficacy probability 0.1 0.3 0.5 0.5 0.5
Toxicity probability 0.06 0.13 0.19 0.25 0.31 0.06 0.13 0.19 0.25 0.31
% of OBD selection 3.1% 34.4% 34.2% 19.0% 9.3%
% of MTD selection 3.1% 20.2% 32.4% 28.3% 16.0% 4.6% 26.6% 37.2% 23.3% 8.3%
Efficacy estimation 0.20 0.31 0.43 0.49 0.53

Number of patients enrolled 9.1 10.3 10.3 6.6 4.2 6.4 12.3 12.6 7.8 3.8
Number of patients backfill 4.4 2.9 2.2 0.9 0

Trial Duration 491 600
Scenario 2

Efficacy probability 0.1 0.2 0.3 0.3 0.3
Toxicity probability 0.06 0.13 0.19 0.25 0.31
% of OBD selection 3.1% 28.4% 32.3% 23.3% 12.9%
% of MTD selection 3.1% 18.9% 33.6% 28.8% 15.6%
Efficacy estimation 0.16 0.20 0.26 0.31 0.34

Number of patients enrolled 10.0 10.9 10.2 6.6 4.2
Number of patients backfill 5.3 3.5 2.1 0.9 0

Scenario 3
Efficacy probability 0.08 0.16 0.24 0.32 0.4
Toxicity probability 0.04 0.08 0.13 0.17 0.25 0.04 0.08 0.13 0.17 0.25
% of OBD selection 0.3% 10.3% 20.5% 35.0% 33.9%
% of MTD selection 0.3% 5.6% 17.6% 37.9% 38.6% 0.6% 9.7% 25.4% 37.2% 27.1%
Efficacy estimation 0.14 0.18 0.24 0.30 0.35

Number of patients enrolled 8.6 8.9 9.4 8.3 8.3 4.5 7.7 10.6 11.0 9.3
Number of patients backfill 5.0 3.9 2.9 1.7 0

Trial Duration 495 608
Scenario 4

Efficacy probability 0.07 0.14 0.21 0.28 0.35
Toxicity probability 0.04 0.08 0.13 0.17 0.25
% of OBD selection 0.3% 9.7% 20.4% 34.7% 34.9%
% of MTD selection 0.3% 5.6% 16.4% 37.6% 40.1%
Efficacy estimation 0.13 0.16 0.21 0.26 0.31

Number of patients enrolled 8.8 8.9 9.5 8.3 8.4
Number of patients backfill 5.1 3.9 3.1 1.7 0

Scenario 5
Efficacy probability 0.1 0.2 0.3 0.4 0.4
Toxicity probability 0.04 0.08 0.16 0.25 0.35 0.04 0.08 0.16 0.25 0.35
% of OBD selection 0.3% 19.5% 38.3% 30.6% 11.3%
% of MTD selection 0.3% 10.8% 39.7% 35.7% 13.5% 0.7% 15.3% 44.6% 33.2% 6.2%
Efficacy estimation 0.16 0.22 0.29 0.36 0.41

Number of patients enrolled 8.6 9.4 11.2 8.2 4.9 4.5 9.0 14.7 10.6 4.2
Number of patients backfill 4.9 3.7 2.4 1.0

Trial Duration 491 600
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