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Abstract
We introduce the anytime-valid (AV) logrank test, a version of the logrank test that provides type-I error guarantees

under optional stopping and optional continuation. The test is sequential without the need to specify a maximum sample
size or stopping rule, and allows for cumulative meta-analysis with type-I error control. The method can be extended
to define anytime-valid confidence intervals. The logrank test is an instance of the martingale tests based on E-variables
that have been recently developed. We demonstrate type-I error guarantees for the test in a semiparametric setting of
proportional hazards, show explicitly how to extend it to ties and confidence sequences and indicate further extensions
to the full Cox regression model. Using a Gaussian approximation on the logrank statistic, we show that the AV logrank
test (which itself is always exact) has a similar rejection region to O’Brien-Fleming α-spending but with the potential to
achieve 100% power by optional continuation. Although our approach to study design requires a larger sample size, the
expected sample size is competitive by optional stopping.
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1. INTRODUCTION
The logrank test is arguably the most important tool

for the statistical comparison of time-to-event data between
two groups of participants. Our main focus is when the two
groups refer to the treatment and control groups in a ran-
domized controlled trial; the outcome of interest are event
times, that is, the time elapsed until an outcome of inter-
est. The logrank test, in turn, uses a simplified version of
the proportional hazard ratio model of Cox [3]. For a fixed
sample size and under this model, Cox gave a simple but
profound insight: inference can be performed using the par-
tial likelihood of having observed the events in the particu-
lar order that they were observed. To this end, the logrank
test [20, 24], the score test associated to the Cox’ partial
likelihood, is optimal for fixed sample size and a restricted
alternative. Large-sample properties of the logrank test are
known in very general settings [41, 32, 1]. Nevertheless, it
is clear that the fixed-sample regime can be overly restric-
tive. Indeed, due to ethical and practical constraints in hu-
man survival-time medical trials, interim analyses may be
performed to terminate the study earlier than planned if
needed. Consequently, it has been of fundamental impor-
tance to develop methods for the sequential analysis of time-
to-event data in general; for the logrank test, in particular.
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In order to legitimate the use of sequential boundary de-
cisions, asymptotic approximations over the study period
have been developed for the logrank statistic [42, 36, 38].
The results in this line of work show the convergence of the
sequentially computed logrank statistic to a rescaled Brow-
nian motion under very general censoring and participant-
arrival patterns. When interim analyses are only performed
at discrete times, the decision boundaries based on con-
tinuously monitoring the logrank statistic are known to be
overly conservative. This deficiency is addressed by group-
sequential and α-spending methods, which, using knowledge
of the interim analysis times relative to a predefined maxi-
mum number of events, allow for tighter decision boundaries
[25, 22, 14]. These sequential methods allow several interim
looks at the data to stop for efficacy (if the treatment shows
to be beneficial) or futility (if the study is no longer likely
to reach statistical significance).

Despite the profound impact that these methods have
had in statistical practice, the requirement of a maximum
sample size limits the utility of a promising but nonsignif-
icant study once the maximum sample size is reached. Be-
cause of their design, extending such a trial makes it im-
possible to control their type-I error. Moreover, the evi-
dence gathered in new—possibly unplanned—trials cannot
be added in a typical retrospective meta-analysis, when the
number of trials or timing of the meta-analysis are depen-
dent on the trial results. Such dependencies introduce ac-
cumulation bias and invalidate the assumptions of conven-
tional statistical procedures in meta-analysis [34]. In order
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to address these deficiencies, we look for flexible anytime-
valid methods that provide type-I error control in two sit-
uations: (1) optional stopping, which refers to halting the
experiment earlier or later than planned under arbitrary
stopping rules, and (2) meta-analysis and optional continua-
tion, which refers to the aggregation of evidence of possibly
interdependent studies. Just as the existing methods, our
approach is connected to early work by H. Robbins and col-
laborators [5, 16]. Most notably, existing approaches come
with fixed stopping rules, which are not desirable in the use
cases that are of our present interest. The details of the
present approach are very different, and to some extent, as
we will see, more straightforward.

The main result of this work is the anytime-valid (AV)
logrank test, an anytime-valid test for the statistical com-
parison of time-to-event data from two groups of partici-
pants. The AV logrank test uses the exact ratio of the se-
quentially computed Cox partial likelihood as test statistic.
This is in contrast to the conventional logrank test, that
can be interpreted as transforming a test statistic into a p-
value whose distribution is, in all applications we are aware
of, not determined exactly but rather approximated by a
normal or a generalized beta distribution [24]. Such approx-
imations are valid only in asymptotic senses, and even then,
some further conditions must often hold. In contrast to these
approximations, the exact anytime-valid logrank test has
guaranteed type-I error control also for small sample sizes,
without worries whether asymptotic approximations to the
sampling distribution are justified. The advantage of having
an exact test becomes particularly clear in the case of unbal-
anced allocation, when both control and treatment groups
start with different numbers of participants. For this case,
it has been documented that α-spending approaches do not
provide strong type-I error guarantees due to the approxi-
mations involved [51]. The basic version of the AV logrank
test is, however, exact; unbalanced allocation presents no
difficulties.

From a technical point of view, we show, under general
patterns of incomplete observation, that under the compos-
ite null hypothesis our test statistic is a continuous-time
martingale with expected value equal to one. Statistics with
this sequential property are referred to as test martingales;
they form the basis of anytime-valid tests [28]. The AV lo-
grank test is a concrete instance of such a test martingale
derived from the recent theory of anytime-valid hypothe-
sis testing based on E-processes [29, 9, 37, 46]. At each
time an event takes place, it takes on the form of a like-
lihood ratio ratio between two multinomial distributions in
a sampling-without-replacement setting. Together with the
underlying assumption of continuous time, this without-
replacement property makes the test martingale and cor-
responding filtration different in spirit than in most exist-
ing work (such as Lindon and Malek [19] who consider dis-
crete test martingales for multinomial experiments under
sampling-with-replacement). Nevertheless, just as in [48, 49]

who also considered a sampling without-replacement (but
otherwise quite different) setting, we can show similar re-
sults on anytime-validity as in discrete-time, sampling-with-
replacement settings.

In contrast to p-values, an analysis based on E-processes
can extend existing trials as well as inform the decision to
start new trials and meta-analyses, while still controlling
type-I error rate. Type-I error control is retained even (i) if
the E-process is monitored continuously and the trial is
stopped early whenever the evidence is convincing, (ii) if
the evidence of a promising trial is increased by extending
the experiment and (iii) if a trial result spurs a new trial
with the intention to combine them in a meta-analysis.

The AV logrank test was developed with a specific ap-
plication in mind and it illustrates its usefulness. Some of
the authors were involved in applying the AV logrank test
to the continuous meta-analysis of seven Coronavirus dis-
ease (COVID-19) clinical trials—the results are available as
a living systematic review including code and summary data
to reproduce the analysis [33]. This analysis was performed
concurrently with the trials in a so-called Anytime Live and
Leading Interim (ALL-IN) meta-analysis [35]. We remark
that even in the presence of dependencies between the exis-
tence and size of the trials, the test based on the multiplica-
tion of the values of E-processes retains type-I error control
as long as all trials test the same global null hypothesis,
as was the case in the above application. This is generally
useful if we want to combine the results of several trials in
a bottom-up retrospective meta-analysis, where ‘bottom-up
retrospective’ means that the trials did not happen in coor-
dination, and the decision to group them together was made
after they had already started, so that no coordinated ‘top-
down’ stopping rule can be enforced. It is even possible to
obtain an interim meta-analysis result by combining interim
results of ongoing trials by multiplication, stepping beyond
the realm of existing sequential approaches.

1.1 Contributions and Outline
We begin with Section 2, where we review the special in-

stance of Cox’ proportional hazards model for the two-group
setting. There, we set the assumptions and notation used in
the rest of the article. The definitions presented there are
standard. In Section 3, we define the AV logrank test and
prove that is indeed anytime valid. We first do this for (a) the
case with only a group indicator (no other covariates) and
without simultaneous events (ties). There, we also discuss
its optimality properties and extend it to (b) the case with
ties and to (c) the case when one wants to learn the ac-
tual effect size from the data. As usual for anytime-valid
tests, they keep providing nonasymptotic type-I error con-
trol even if the alternative is wildly misspecified. This is of
particular interest for the important case in which the null
expresses ‘both groups are indistinguishable’, highlighted in
Example 3.2.
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These results hinge on showing that the likelihood un-
derlying Cox’ proportional hazards model can be used to
define E-variables and test martingales. In Section 4, we
show a Gaussian approximation to the AV logrank statistic
that is useful in the common situation when only summary
statistics are available. We then provide extensive computer
simulations to compare the AV logrank test to the classic
logrank test and α-spending approaches. In Section 4.1, we
show that the exact AV logrank test has a similar rejection
region to O’Brien-Fleming α-spending for those designs and
hazard ratios where it is well-approximated by a Gaussian
AV logrank test. While always needing a small amount of ex-
tra data in the design phase (the price for indefinite optional
continuation), the expected sample sizes needed for true re-
jections remain very competitive. During the design phase
of a study, we might want to design for a maximum sample
size in order to achieve a certain power, but need a smaller
sample size on average during the study since we can safely
engage in optional stopping. In Section 5, we show that AV-
logrank-type tests can be combined through multiplication
to perform meta-analysis, and in Section 6, we show how the
test can be used to derive confidence sequences for the haz-
ard ratio. In Section 7, we compare the sample sizes that
are needed during the design phase in order to achieve a
targeted power. Throughout the paper, we present several
different instantiations of the AV logrank test. In the final
Section 8 we provide recommendations for which one to use
in which practical situation. There we also make concluding
remarks and discuss future research directions, in particu-
lar the possibility to include covariates other than group
membership, i.e. the full Cox model, which is theoretically
straightforward but practically challenging unless the num-
ber of covariates remains small.

We remark that once the definitions are in place, the tech-
nical results are mostly straightforward consequences from
earlier work; in particular, of the work of Cox [4], Slud [39]
and Andersen et al. [1]. The novelty of the present work
is thus mainly in defining the AV logrank test and show-
ing by computer simulation that, while being substantially
more flexible, it is competitive with existing approaches—
the classic logrank test with fixed design and in combination
with α-spending.

Next to the main body of this article, we provide two ap-
pendices. We delegate to Appendix A proofs and remarks
that, while important, are not needed to follow the main de-
velopment. Most importantly, the particular E-variable we
design is growth-rate optimal in the worst case, GROW (see
Section 3.1). Grünwald et al. [9] provide several motivations
for this criterion; we provide an additional one using an ar-
gument of Breiman [2], which does not seem to be widely
known. This argument shows a connection between growth-
rate optimality and tests with minimal expected stopping
time. In Appendix B, we discuss additional details of the
extension to the case of general covariates.

2. PROPORTIONAL HAZARDS MODEL
AND COX’ PARTIAL LIKELIHOOD

We begin by describing the hypothesis that is being
tested, the data that are available, and Cox’ proportional
hazards model. We are interested in comparing the sur-
vival rates between two groups of participants, Group A and
Group B. In a randomized controlled trial, Group A would
signify the control group; Group B, the treatment group.
We assume that the available data about m participants
are a subset of {(Xi, gi, δi) : i = 1, . . . ,m}, where Xi =
min{T i, Ci} is the minimum between the event time T i and
the (possibly infinite) censoring time Ci; gi is a zero-one
covariate depending on group membership (gi = 0 signifies
that i ∈ A; gi = 1, that i ∈ B); and δi = 1{Xi = T i} is the
indicator of whether the event was witnessed before censor-
ing or not. The idea is that at (continuous) time t, we have
observed all (and only) those tuples (Xi, gi, δi) with Xi ≤ t,
i.e. those participants that have experienced an event. Let
mA be the number of members of Group A and mB the
number of members of Group B—then mA +mB = m. De-
fine g = (g1, . . . , gm), the vector of group memberships. We
assume that T 1, . . . , Tm, C1, . . . , Cm are independent and
have continuous distribution functions. The continuity as-
sumption precludes tied observations; we relax this assump-
tion later on, in Section 3.3. For i = 1, . . . ,m, the survival
rates are quantified by the hazard functions λi = (λi

t)t≥0 for
Ti, given by

λi
t = − d

dt
lnP{T i ≥ t}. (2.1)

As is customary, the hazard function λi at t can be inter-
preted via the conditional probability of witnessing an event
in a short time span provided that the event has not been
witnessed up to t, that is,

P{t ≤ T i < t+Δt | t ≤ T i} = λi
tΔt+ o(Δt) as Δt → 0.

(2.2)

Given our interest in comparing the survival rates between
the two groups, suppose that all participants i of Group
A have a common hazard function λi

t = λA
t ; members i

of Group B, λi
t = λB

t (thus, for all participants i within
the same group, the event times Ti are identically dis-
tributed). Using the data, we wish to test proportional haz-
ards hypotheses. Concretely, we test the hypotheses H0 that
the hazard function of the members of both groups sat-
isfy λA

t = θ0λ
B
t , against an alternative hypothesis H1 that

λB
t = θλA

t for a θ �= θ0. As a first application of the methods
that we develop, we consider a left-sided alternative, that is,

H0 : λB
t = θ0λ

A
t vs. H1 : λB

t = θλA
t

for some θ ≤ θ1 < θ0 and all t, (2.3)

where θ is known as the hazard ratio and is the main quan-
tity of statistical interest, and θ1 would be, in a clinical trial,
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a minimal clinically relevant effect size. The alternative is
what we hope for in case of negative events, such as death,
with treatments that are set out to lower (relative to the con-
trol condition) the hazard rate. Notice that the hypotheses
in (2.3) are, in fact, nonparametric. Similarly, if the event is
positive, e.g., recovery from an infection, we would typically
set a right-sided alternative, which can be also be treated
with the present methods. Two-sided alternatives and also
the full alternative hypothesis H′

1 : θ �= θ0 are also amenable
to the methods that will follow. We remark, however, that
all the methods retain their type-I error guarantees irre-
spective of the specific alternative that we use. As will be
seen in Example 3.2 below, this is of particular interest in
the simple, yet important case with θ0 = 1 and full alter-
native H′

1 : θ �= 1—in that case, we can think of our test
as really testing ‘the treatment has no effect’ against gen-
eral alternative ‘the treatment has an effect’ (even though
the proportional hazard assumption may be substantially
violated).

We now turn to defining Cox’ partial likelihood PLt,
which is at the center of our approach. To that end, we
need a battery of standard definitions—we lay them out to
establish the notation. Let yit = 1{Xi ≥ t} be the at-risk
process, that is, the indicator of whether participant i is still
at risk at time t, and let ȳAt =

∑
i∈A yit and ȳBt =

∑
i∈B yit

be the number of participants at risk in each of the groups
at time t. Define yt = (y1t , . . . , y

m
t ), the vector of at-risk pro-

cesses, and Rt = {j : yjt = 1}, the set of participants at risk
at time t. Let T (1) < T (2) < · · · < T (N̄∞) be the set of or-
dered events times that were witnessed (not censored). Note
that, if all participants witness the event and censoring is
absent, N̄∞ = m. For each k = 1, . . . , N̄∞, let I(k) be the in-
dex of the individual that witnessed the event at time T (k).
This means, for example, that if participant with label three
was the fifth to witness the event, then I(5) = 3. Abbreviate
by yi(k), ȳA(k), ȳB(k), R(k) the corresponding quantities at event
time T (k), and define g(k) := gI(k) . Cox’ partial likelihood
PLθ,t can be sequentially computed by

PLθ,t =
∏

k:T (k)≤t

θg
(k)∑

l∈R
T (k)

θgl =
∏

k:T (k)≤t

θg
(k)

ȳA(k) + θȳB(k)
. (2.4)

Cox’ likelihood evaluated at the event times T (1), T (2), . . .
coincides to that of a sequence of multinomial trials where,
at event time T (k), each of the participants i ∈ R(k) wit-
nesses the event with probability

pθ,(k)( i ) := P{I(k) = i | y(l),g; l = 1, . . . k},

pθ,(k)( i ) =
θg

i

ȳA(k) + θȳB(k)
.

(2.5)

We note that if, under the null, the groups are indistinguish-
able (see also Example 3.2 below), θ = θ0 = 1, (2.4) reduces
to the likelihood of a sequence of draws-with-replacement

from an urn that initially contains mA marbles of color A
and mB marbles of color B:

PLθ,t =
∏

k:T (k)≤t

θg
(k)

ȳA(k) + ȳB(k)
. (2.6)

Cox showed that, indeed, conditionally on all the informa-
tion accrued strictly before T (k), the probability that partic-
ipant i observes an event at time T (k) is exactly pθ,(k)( i ) as
long as the hazard ratio is θ. With these likelihood computa-
tions at hand, we are in place to show the main contribution
of this article, the AV logrank test, which uses the partial
likelihood ratio as the test statistic.

3. THE AV LOGRANK TEST
In this section the AV logrank test for (2.3) is introduced;

its type-I error guarantees and optimality properties are in-
vestigated. We give a solution to the first of the purposes
laid down in the introduction: we show that the AV logrank
test is anytime valid—its type-I error guarantees are not af-
fected by optional stopping. The fact that it is also type-I-
error-safe under optional continuation, our second purpose,
is proven in Section 5. Without further ado, we define the
AV logrank statistic Sθ1

θ0,t
, typically, θ0 = 1, for (2.3) as the

partial likelihood ratio

Sθ1
θ0,t

=
PLθ1,t

PLθ0,t
=

∏
k:T (k)≤t

pθ1,(k)(I(k))

pθ0,(k)(I(k))
. (3.1)

Here, pθ,(k) is as defined in (2.5); the product that defines
our statistic Sθ1

θ0,t
runs over the events that have been wit-

nessed up to and including time t, and the empty product is
taken to be equal to one. As is conventional with likelihood
ratios, high values of Sθ1

θ0,t
are indicative that the alternative

hypothesis is better than the null hypothesis at the describ-
ing the data. Given a tolerable type-I error bound α and
an arbitrary random time τ , the AV logrank test is the test
that rejects the null hypothesis if Sθ1

θ0τ
is above the threshold

1/α, that is,

ξθ1θ0,τ = 1{Sθ1
θ0,τ

≥ 1/α} :=

{
1 if Sθ1

θ0,τ
≥ 1/α

0 otherwise.
(3.2)

As we will see, by its sequential properties, Sθ1
θ0,t

takes large
values with small probability under the null hypothesis uni-
formly over time, which translates into type-I error control
for the test ξθ1θ0,τ . This observation is behind the any-time
validity of the AV logrank test, and of anytime-valid tests in
general (more details and general constructions to the effect
of anytime-valid sequential testing can be found in the work
of Ramdas et al. [28]). We show in the following proposition
that the test ξθ1θ0,τ has the desired type-I error control.
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Proposition 3.1. Let P0 be any distribution under which
the hazard ratio is equal to θ0, and let τ be any random time.
The test ξθ1θ0,τ = 1{Sθ1

θ0,τ
≥ 1/α}, where Sθ1

θ0,t
is as in (3.1),

has level α, that is,

P0{ξθ1θ0,τ = 1} ≤ α.

This result can be readily obtained using the sequential-
multinomial interpretation of Cox’ likelihood ratio. As we
will see, in Section 3.1, this result can be interpreted in
terms of E-variables and E-processes [9]. Define the pro-
cess (Sθ1

θ0,(k)
)k=1,2,... as the value of the AV logrank statistic

at the event times T (k), that is, Sθ1
θ0,(k)

:= Sθ1
θ0,T (k) . In this

time discretization, the AV logrank statistic is the product
of random variables

Rθ1
θ0,(k)

= pθ1,(k)(I(k))/pθ0,(k)(I(k)), (3.3)

the one-outcome partial likelihood ratio for the kth event,
where pθ0,(k) is as in (2.5) and k = 1, 2, . . . .

Proof of Proposition 3.1. Under any distribution under
which the hazard ratio is θ0, the fact that the likelihood
of observing I(k) conditionally on {y(l) : l = 1, . . . , k} equals
pθ0,(k)(I(K)) implies that

E[Rθ1
θ0,(k)

| y(1), . . . ,y(k)] =
∑

j∈R(k)

pθ0,(k)(j)
pθ1,(k)(j)

pθ0,(k)(j)
= 1.

(3.4)
This immediately shows that Sθ1

θ0,(k)
=

∏
i≤k R

θ1
θ0,(k)

is a
test martingale, a nonnegative martingale with expected
value equal to one, with respect to the filtration F− =
(F(k)−)k=1,2,... of sigma-algebras F(k)− = σ(y(k) : k =

1, . . . , k). Next, the type-I error control for the the test ξθ1θ0
follows from Ville’s inequality, which asserts that, under the
null hypothesis, the test martingale Sθ1

θ0,(k)
takes large values

with small probability. Ville’s inequality [44] implies that

P

{
sup

k=1,2,...
Sθ1
θ0,(k)

≥ 1/α

}
≤ E[Sθ1

θ0,(1)
]α = α.

The previous display is a bound on ever making a type-I
error when using the AV logrank test ξθ1θ0,τ .

Proposition 3.1 is a variation of the standard statement
and result establishing that tests based on E-processes are
anytime-valid [29]. As remarked by a referee, one notable dif-
ference is that, within a clinical trial setting, in the standard
statement each subsequent factor in Sθ1

θ0,t
would refer to an

additional participant coming in, whereas in our setting, it
corresponds to an event, meaning that a patient leaves. Nev-
ertheless, the technique used to prove Proposition 3.1 is en-
tirely analogous to the proof of the standard result (namely,
Ville’s inequality), as has previously shown to be also the
case in other anytime-valid work that deals, like ours, with
a drawing-without-replacement setting [48, 49].

Under general patterns of incomplete observation—like
independent censoring or independent left truncation—, the
AV logrank test provides the same type-I error guaran-
tees. To prove this we do need to go beyond the standard,
discrete-time setting: we give an alternative proof of Propo-
sition 3.1 in Appendix A using the counting-process formal-
ism [1]. There, we show that if the compensators of the un-
derlying counting processes have a certain general product
structure—which is the case under complete observation—,
the AV logrank test is anytime-valid. We then refer to An-
dersen et al. [1], who show that this structure is preserved
under said patterns of incomplete observation.

The AV-logrank test is optimal—in a sense to be de-
fined in the next section—among a large family of statis-
tics. A second look at the proof of Proposition 3.1 suggests
a generalization of the AV logrank statistic given in (3.1).
Let, for each k, q(k) be a probability distribution on partic-
ipants in the risk set R(k) which is only allowed to depend
on y(1), . . . ,y(k). Analogously to (3.3), we define the one-
outcome ratio Rq

θ0,(k)
:= q(k)(I(k))/pθ0,(k)(I(k))—we now use

q(k) instead of pθ1—, and

Sq
θ0,t

:=
∏

k:T (k)≤t

Rq
θ0,(k)

=
∏

k:T (k)≤t

q(k)(I(k))

pθ0,(k)(I(k))
. (3.5)

A modification of the previous argument shows, for any ran-
dom time τ , a type-I error guarantee for the test ξqθ0,τ based
on the value of Sq

θ0,τ
, that is, ξqθ0,τ := 1{Sq

θ0,τ
≥ 1/α} (see

Proposition 3.1). Any such test is also anytime valid as long
as each q(k) depends on the data only through y(1), . . . ,y(k).
In Section 3.2, we use this generalization to provide tests
when no value of θ1 is available. This generalization raises
a natural question about the optimality of the AV logrank
test based on (3.1) among test statistics of the form (3.5).
This is the subject of the next section.

3.1 E-variables and Optimality
The random variables {Rθ1

θ0,(k)
}k=1,2... from (3.3) and

{Rq
θ0,(k)

}k=1,2... from (3.5) are examples of (conditional)
E-variables—nonnegative random variables whose (condi-
tional) expected value is below 1 under every distribution
in the null hypothesis. E-variables and E-processes are the
“correct” generalization of likelihood ratios to the case that
either or both H0 and H1 are composite and can be inter-
preted in terms of gambling [9, 37, 28]. Under this gambling
interpretation, a test martingale, a product of conditional
E-variables, is the total profit made in a sequential gam-
bling game where no earnings are expected under the null
hypothesis. The analogy is thus between profit and evidence:
no evidence can be gained against the null hypothesis if it
is true. Just as p-values, the definition of E-variables and
test martingales does not need any mention of an alterna-
tive hypothesis. However, if a composite set of alternative
distributions is available, a gambler who is skeptical of the
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null distribution might want to maximize the speed of ev-
idence accumulation (or of capital growth) under the al-
ternative hypothesis. The worst-case growth rate is defined
(conservatively) as the smallest expectation of the logarithm
of the E-variable under the alternative. Consequently, any
E-variable achieving it is called GROW, for Growth-Rate
Optimal in the Worst case (see the work of Grünwald [9]
and Shafer [37] for additional reasons to use this optimality
criterion).

We instantiate this reasoning to our present problem. For
the left-sided alternative (2.3), the choice Rθ1

θ0,(k)
is condi-

tionally GROW because it maximizes the worst-case condi-
tional growth rate

Rq
θ0,(k)

�→ min
θ≤θ1

Eθ[lnR
q
θ0,(k)

|y(1), . . . ,y(k)],

over all valid choices of q(k) (which can only depend on the
data through y(1), . . . ,y(k)), that is,

min
θ≤θ1

Eθ[lnR
θ1
θ0,(k)

|y(1), . . . ,y(k)]

= max
q

min
θ≤θ1

Eθ[lnR
q
θ0,(k)

|y(1), . . . ,y(k)].

In Appendix A.1, we show that in the limit that the risk sets
are much larger than the number of events that are wit-
nessed, this worst-case growth criterion yields a test that
minimizes the worst-case expected stopping time—under
the alternative hypothesis—among the tests that stop as
soon as Sq

θ0,t
≥ 1/α. Thus, among all possible AV lo-

grank tests of the form (3.5), there are strong reasons to
choose ξθ1θ0,τ .

In a similar fashion, a test can be constructed for two
sided alternatives. Indeed, consider a testing problem of the
form

H0 : λB = λA vs.
H1 : λB = θλA for some θ ≤ θ1 or θ ≥ 1/θ1,

(3.6)

where θ1 < 1. For this problem, we can create a weighted,
conditionally GROW, E-variable by using R2−sided =
1
2R

θ1
θ0,(k)

+ 1
2R

1/θ1
θ0,(k)

.

3.2 Learning the Hazard Ratio from Data
So far, the alternative hypotheses that we have studied

are of the form H1 : θ ≤ θ1 for some value of θ1 < 1. In
some cases, such a value of θ1 is available from the context
of the analysis. For instance, θ1 can correspond to a mini-
mal clinically relevant effect that is satisfactory in a medical
trial. However, sometimes it is not clear which value θ1 to
chose. Still, statistics of the form (3.5) are useful to test a
null hypothesis H0 as in (2.3). Indeed, for each k, we can
use conditional probability mass functions q(k) that depend
on data observed on t < T (k) and enable us to implicitly
learn the hazard ratio θ. Two standard types of such al-
ternatives are readily available [29]: a prequential plug-in

likelihood and a Bayes predictive distribution. We proceed
to describe the former, on which we base our experiments.
For completeness we also briefly describe the latter in Ap-
pendix A.4.

Using only the data observed in t < T (k), let θ̆(k) be the
smoothed maximum likelihood estimator

θ̆(k) = argmax
θ≥0

⎛
⎝pθ,0 ×

∏
k′:T (k′)<T (k)

pθ,(k′)(I(k′))

⎞
⎠ , (3.7)

where pθ,0 is a smoothing based on the likelihood of hav-
ing observed two “virtual” data points prior to the observed
data, that is, pθ,0 = 1/(ȳA0 +1+θ(ȳB0 +1))×θ/(ȳA0 +θ(ȳB0 +
1)). The statistic Spreq

θ0,t
is (3.5) with q(k) = pθ̆(k),(k)

, and it
can also be used to define an anytime-valid test. With this
choice, the process q(1), q(2) . . . , is a typical instance of a
prequential plug-in likelihood, that is often based on suit-
able smoothed likelihood-based estimators [11]. The phrase
‘prequential’ is due to [6], who reinvented and investigated
the method, which is in fact much older, going back to [45];
see [29] for its history. The rationale behind this method is
the following. Suppose the data are actually sampled from
a distribution according to which the hazard ratio is θ. For
sufficiently large initial risk sets, that is, if ȳA0 and ȳB0 are
not too small, by the law of large numbers, the smoothed
maximum likelihood estimate θ̆(k) will with high probability
be close to θ. Therefore, pθ̆,(k) will behave more and more
like the real pθ,(k) from which data are sampled. Thus, the
process Spreq

θ0
, will behave more and more similarly to the

“correct” partial likelihood ratio (3.1).
Although we will not do so in the experiments to follow,

in principle we could also extend this approach to incorpo-
rate prior knowledge or guesses about the hazard ratio under
H1 by adding more virtual data points when calculating es-
timator θ̆(k). Viz. the remark underneath (3.5), this will not
affect AV Type-I error validity. Technically, we need only
modify the pθ,0 term in (3.7), which then plays a role anal-
ogous to a Bayesian prior: the more virtual data points we
add in each group, the more influence they have on the like-
lihood; the ratio of virtual points in both groups determines
our prior expectation of the hazard ratio under the alter-
native. As shown in Appendix A.4, we could also directly
use a Bayesian prior, making our approach an instance of
Robbins’ [5] method of mixtures.

Example 3.2. If we set θ0 = 1 in (2.3), then the null ex-
presses that both groups are indistinguishable, correspond-
ing to a likelihood that, at each event time T (k), is pro-
portional to the ratio between the number of participants
still at risk in each group at that time. In a randomized
clinical trial this would mean that the treatment has no ef-
fect. Interestingly and importantly, the anytime-valid Type-
I error guarantee holds even if the alternative is arbitrar-
ily misspecified—it may be the case that if the alternative
is true, then the proportional hazard assumption does not
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Figure 1: We show the number of events at which one can stop retaining 80% power at α = 0.05 using the process Sθ1
θ0,t

with θ0 = 1 and θ1 = 0.80 when the true hazard ratio θ generating the data are different from θ1. “Oracle” means that
the method is specified with knowledge of the true θ, which in reality is unknown. Note that the y-axis is logarithmic.

hold. In particular, if we take H′
1 : θ �= 1 and use Spreq

θ0,t
as

defined underneath (3.7), we can think of our test as really
testing ‘the treatment has no effect’ against general alterna-
tive ‘the treatment has an effect’, where the test will have
power as soon as there exists some θ �= 1 that will eventu-
ally lead to a higher partial likelihood than θ = 1—this will
often be the case even if the proportional hazards assump-
tion is substantially violated. On the other hand, we can, of
course, not make any claims about optimality in the GROW
or any other sense in this misspecified case.

Now assume again that the model is well-specified (data
are generated from a distribution satisfying proportional
hazards for some θ). Then given a target value θ1—a min-
imal clinically relevant effect size—the worst-case logarith-
mic growth rate of Spreq

θ0,t
will in general be smaller than that

of the GROW Sθ1
θ0,t

. Nevertheless, Spreq
θ0,t

can come close to
the optimal for a whole range of potentially data-generating
θ and may thus sometimes be preferable over choosing Sθ1

θ0,t
.

More precisely, the use of a prior allows us to exploit favor-
able situations in which θ is even smaller (more extreme)
than θ1. In such situations, the GROW Sθ1

θ0,t
is effectively

misspecified. By using Spreq
θ0,t

that learns from the data, we
may actually obtain a test martingale that grows faster than
the GROW Sθ1

θ0,t
, which is fully committed to detecting the

worst-case θ1.
In Figure 1, we illustrate such a situation where we start

with 1000 participants in both groups (we defer general rec-
ommendations for when to use Sθ1

θ0,t
and when to use Spreq

θ0,t

to Section 8.4; for now, we merely aim to explain the dif-
ference). We generated data using different hazard ratios,
and used a ‘misspecified’ Sθ1

θ0,t
that always used θ1 = 0.8.

Note that while this is still the GROW (minimax optimal)
test martingale for H1 : θ ≤ θ1 ≤ 0.8. If we knew the true
θ, we could use the test martingale Sθ

θ0,t
—it grows faster.

We will call the test based on this latter martingale the
oracle exact AV logrank test because it is based on inacces-
sible (oracle) knowledge. We estimated the number of events
needed to reject the null with 80% power for S0.8

θ0,t
, the or-

acle Sθ
θ0,t

, and the prequential plug-in Spreq.
θ0,t

. In all cases,
we used the aggressive stopping rule that stops as soon as
the statistic in question crosses the threshold 1/α = 20. We
see that, as the true θ gets smaller than 0.8, we need fewer
events using the GROW test S0.8

θ0,t
(the data are favorable

to us), but using the oracle exact AV logrank test we get a
considerable additional reduction. The prequential plug-in
Spreq.
θ0

‘tracks’ the oracle Sθ
θ0,t

by learning the true θ from
the data: for θ near 0.8, it behaves worse (more data are
needed) than S0.8

θ0,t
(which knows the right θ from the start),

but for θ < 0.6 it starts to behave better. For comparison we
also added the methods discussed in Section 4.1. Notably,
the O’Brien-Fleming procedure, even though unsuitable for
optional continuation, needs even more events than the mis-
specified AV logrank test S0.8

θ0,t
as soon as θ goes below 0.8.

The simulations were performed using exactly the same al-
gorithms as for Figure 4 so the y-axis at θ = 0.8 coincides
with that of Figure 4, but now with absolute rather than
relative numbers; details are described in Appendix A.5.
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3.3 Tied Observations
Here, we propose a sequential test for applications where

events are not monitored continuously, but only at certain
observation times. In this case, more than one event may be
witnessed in the time interval between two observation mo-
ments. Since the order in which these observations are made
would be unknown, our previous approaches fail to offer a
satisfactory sequential test. Assume that we make observa-
tions at times t0 < t1 < t2 < · · · that are fixed before the
start of the study. Even though we assume the absence of
censoring in this section, this approach can be adapted to its
presence under an additional common assumption: that the
events reported between two observation times tk−1 and tk
precede any censorings, so that censored patients contribute
fully to the risk sets under consideration. We assume that
the available data are of the form (OA

1 , O
B
1 ), (OA

2 , O
B
2 ), . . . ,

where OA
k and OB

k are the number of events witnessed in
each group in the time interval (tk−1, tk], and Ok = OA

k +OB
k

is the total. Notice that since the observation times are dis-
crete, we can index the observations by k instead of tk. For
each k, let ȳAk =

∑
j∈A yjtk the number of participants at risk

at time tk, define similarly ȳBk , and let ȳk = ȳAk + ȳBk be the
total. We derive an anytime-valid test—a test valid at any
observation time—for the problem (2.3), where the hazard
ratio under the null hypothesis is θ0 = 1, as in Example 3.2.
The reason for this restriction in the null hypothesis—only
θ0 = 1 is allowed—will soon become clear. Observe that, at
time tk, conditionally on (ȳAk−1, ȳ

B
k−1) and the total number

of events Ok, the number of events OB
k in group B follows

a hypergeometric distribution. This implies that, condition-
ally on (ȳAk−1, ȳ

B
k−1, Ok), the conditional likelihood of ob-

serving OB
k is pk(O

B
k ) = pHyper(O

B
k ; ȳk−1, ȳ

B
k−1, Ok), where

pHyper is the probability mass function of a hypergeometric
random variable, that is,

pHyper.(o
B ; ȳ, ȳB , o) =

(
ȳB

oB

)(
ȳ−ȳB

o−oB

)(
ȳ
o

) .

With this observation at hand, we can build, analogously
to (3.5) from the continuous-monitoring case, anytime-valid
tests based on partial likelihood ratios,

Sq
1,k =

∏
l≤k

ql(O
B
l )

pl(OB
l )

, (3.8)

where each qk is a conditional distribution on the possible
values of OB

k that only depends on the data up to time tk−1.
Following the same steps as in Section 3, a sequential test
based on monitoring whether Sq

1,k crosses the threshold 1/α
is also anytime valid at level α.

Lemma 3.3. Let tκ ∈ {t1, t2, . . . } be an arbitrary random
time. The test ξq1,κ given by ξq1,κ = 1{Sq

1,κ ≥ 1/α}, where
Sq
1,κ is as in (3.8), has type-I error bounded by α, that is,

P0{ξq1,κ = 1} ≤ α,

under any distribution P0 such that the hazard ratio is
θ = 1.

Just as in the proof of Proposition 3.1, this lemma is
shown by a combination of the martingale property of Sθ1

1,k

and Doob’s maximal inequality. Therefore, we omit the
proof of Lemma 3.3.

In order to obtain an optimal test under a particular
hazard ratio θ1—an alternative hypothesis—, it is neces-
sary to compute the partial conditional likelihood for the
data under the alternative of having observed OB given
(ȳAk−1, ȳ

B
k−1, N̄k−1) (here N̄k is the total number of observa-

tions up until time tk). This conditional likelihood is given
by Fisher’s noncentral hypergeometric distribution with pa-
rameter ω. Unfortunately, ω depends on the baseline haz-
ard function λ, which is assumed to be unknown (see Ap-
pendix A.3 for details). It is for this reason that we restrict
the null hypothesis to θ0 = 1. Luckily, since the test based on
Sq
θ0,t

remains valid even if q is only approximately correct,
this problem can be skirted. As also noted by [21], when
the times between observations are short, the parameter ω
is well approximated by θ1, the hazard ratio under the al-
ternative hypothesis—no knowledge of λ is needed for the
approximation. With this in mind, we put forward the use
of Sθ1

θ0,k

Sθ1
1,k :=

∏
l≤k

pθ1,k(O
B
k )

p1,k(OB
k )

,

where Sθ1
1,k is a an instance of (3.8) with qk(O

B
k ) = pθ1,k(O

B
k )

and pθ1,k(O
B
k ) is Fisher’s noncentral hypergeometric distri-

bution with parameter ω = θ1, that is,

pθ1,k(o
B) = pFNCH(o

B ; ȳ, ȳB , o, ω = θ1)

=

(
ȳB

oB

)(
ȳ−ȳB

o−oB

)
θo

B

1∑
max{0,oB−ȳB}≤u≤min{ȳB ,oB}

(
ȳB

u

)(
ȳ−ȳB

oB−u

)
θu1

.

We remark that despite p(θ1),k being only approximately the
correct distribution for the observations under the alterna-
tive, type-I error guarantees are not compromised (see the
discussion on luckiness in Section 3.2). In any case, this ap-
proximation is accurate when the time between two consecu-
tive observation times is not very long and when the number
of tied observations is small. Two reassuring remarks are in
order. First, in the special case when only one observation
is made in each time interval between two consecutive ob-
servation moments, the statistic Sθ1

1,k reduces to the contin-
uously monitored AV logrank test (3.1) at time tk. Second,
the score test associated to Sθ1

1,k coincides with the logrank
test as is conventionally computed in the presence of ties.

4. A GAUSSIAN APPROXIMATION TO THE
AV LOGRANK TEST

In this section we present an approximation to the AV lo-
grank test introduced in the previous section. This is based
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on a Gaussian approximation to the logrank statistic. The
approximation is of interest for two reasons. First, in prac-
tical situations, only the logrank Z-statistic (a standardized
form of the classic logrank statistic) and other summary
statistics may be available—and not the full risk-set pro-
cess. This is often the case in medical meta-analyses, where
the full data sets (Individual Participant Data, IPD, for
each trial) are often not available, but summary statistics
are. The Gaussian approximation to the AV logrank statis-
tic can then often still be used (we remark though that in
the BCG trial meta-analysis [33] referred to in the Intro-
duction, there was IPD access and the exact anytime-valid
logrank test was performed). The second reason, which we
address in Section 4.1, is related to the fact that α-spending
and group-sequential approaches, which we use as bench-
marks, are also based on Gaussian approximations to the
classic logrank statistic. Consequently, the behavior of the
Gaussian approximation gives further insights into how the
AV logrank statistic compares to group-sequential and α-
spending approaches as well. We henceforth focus on θ0 = 1,
a central case of interest also considered in Example 3.2.

Our general strategy is close in spirit to that followed in
the construction of the exact AV logrank statistic in Sec-
tion 3. We build likelihood ratios using a classic Gaussian
approximation for the distribution of the original logrank
statistic [32]. If the distribution of this statistic was exactly
normal, we could monitor continuously its likelihood ratio.
We show through extensive simulation in which regimes this
approximation behaves similarly to the AV logrank statistic.

We begin by recalling the definition of the Z-score as-
sociated to the classic logrank test. Let EB

i = Oip
B
i with

pBi = ȳBi /(ȳAi + ȳBi ) be the expected (under the null) num-
ber of events witnessed in the time interval (ti−1, ti] in group
B, and let V B

i = Oi p
B
i (1− pBi )

ȳi−Oi

ȳi−1 be its variance. After
k observations the Z-score associated to the classic logrank
statistic, Zk, is given by

Zk =

∑
i≤k

{
OB

i − EB
i

}√∑
i≤k V

B
i

. (4.1)

The numerator in the definition of Zk is the classic logrank
statistic Hk =

∑
i≤k

{
OB

i − EB
i

}
, which is typically inter-

preted as the cumulative difference between observed counts
OB

i and the expected counts EB
i in Group B. The factor

ȳi−Oi

ȳi−1 found in V B
i can be interpreted as a multiplicity cor-

rection, that is, a correction for ties [15, p. 207]. When only
one event is witnessed between two consecutive observation
times, then Oi = 1, EB

i = pBi , and V B
i = pBi (1 − pBi ). We

remark that the above formulation is also found in the work
of Cox [3, (26)].

Fix some initial mA, mB and let γ = mB/mA. Schoen-
feld [32] showed that in the limit for mA → ∞, mB = γmA,
k → ∞, k/mA → 0, and log θ = O((mA + mB)−1/2), the
distribution of Zk under any distribution with hazard ra-
tio θ1 converges to the distribution of a normal with unit

variance and mean

μ1 = log(θ1)
√

mBmA/(mA +mB)2. (4.2)

Appendix C provides more details about this result. If Zk

were exactly N(μ1, 1) distributed, then an easy calculation
shows that the logrank partial likelihood ratio statistic Sθ1

1,k

would be equal to a likelihood ratio of two Gaussians, given
by

SG
k := exp

(
−1

2
N̄kμ

2
1 +

√
N̄kμ1Zk

)
, (4.3)

where N̄k is the total number of observations up until time
tk and μ1 is given by (4.2). We thus put forward SG

k as a
Gaussian approximation to the logrank statistic Sθ1

1,k. For
an arbitrary random observation time tK ∈ {t1, t2, . . . },
we refer to the test ξGK = 1{SG

K ≥ 1/α} as the Gaus-
sian AV logrank test for (2.3). Recall that we test θ0 = 1,
which corresponds to the asymptotic mean of the Z-score
under the null hypothesis being μ0 = 0. Clearly, the ap-
proximation may fail in practice for at least two reasons:
first, mA, mB , k and θ1 may not fall under Schoenfeld’s
asymptotic regime; second, Schoenfeld’s result has been de-
rived in a nonsequential setting, whereas we aim to use it
in a sequential setting with optional stopping. Thus, in Ap-
pendix C.1 extensive simulations are performed to show in
which regimes the Gaussian logrank test retains type-I error
guarantees. In Appendix C.2, it is shown that, under contin-
uous monitoring, the Gaussian AV logrank test tends to be
more conservative—it needs more data than the exact one.
The conclusion is the following: SG

K can be used for designs
with balanced allocation, and it approximates Sθ1

1,K well for
hazard ratios between 0.5 and 2.

We now compare the rejection regions defined by the
Gaussian logrank test to those of continuously monitoring
using α-spending and group-sequential approaches.

4.1 Rejection Region and α-Spending
In this section we compare the rejection regions of the

Z-scores for which α-spending approaches and the AV lo-
grank test for the null hypothesis of no effect (hazard ratio
θ0 = 1, Example 3.2). The two main α-spending approaches
discussed here are due to Pocock [25] and O’Brien and Flem-
ing [22]. We provide two reasons why the main focus of the
comparison, however, will be on the O’Brien-Fleming ap-
proach. Firstly, in retrospect, Pocock himself believes that
his approach leads to boundaries that are unsuitable [26].
One main feature of the Pocock procedure is that the rejec-
tion regions are the same regardless of whether the (interim)
analyses are conducted at the start or the end of the trial. In
practice this leads to many stopped trials for benefits based
on (too) small sample sizes and with unrealistically large
treatments effects [26]. In contrast, the rejection boundary
of the O’Brien-Fleming is more conservative at the start
than at the end of the trial. Secondly, the Pocock procedure
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only allows for a finite number of planned analyses and,
therefore, cannot be monitored continuously, whereas this
is possible with the O’Brien-Fleming α-spending approach.
Hence, the fair comparison is between the two procedures
(the AV logrank test and the O’Brien-Fleming α-spending
approach) that allow for continuous monitoring.

We begin by specifying the rejection regions for both the
Gaussian AV logrank test and that of the O’Brien-Fleming
α-spending procedure. For the Gaussian AV logrank we
compute the region for the Z-score that rejects the null hy-
pothesis. Indeed, using (4.3), we can compute that whenever
mA = mB , the null hypothesis is rejected as soon as

Zn ≥
√
n

4
ln(θ1)−

2√
n

log(α)

log(θ1)
if θ1 > 1, or

Zn ≤
√
n

4
ln(θ1)−

2√
n

log(α)

log(θ1)
if θ1 < 1.

The O’Brien-Fleming procedure is based on a Brownian-
motion approximation to the sequentially computed logrank
statistic Z-score. Indeed, for large values of nmax and t ∈
[0, 1], the process t �→

√
�tnmax�
nmax

Z�tnmax� can be approxi-
mated by a Brownian motion Bt. We stress the fact that
nmax has to be set in advance.1 If Bt is a Brownian motion,
the reflection principle, a well-known but nontrivial appli-
cation of the symmetry of Bt, implies that

P{max
0≤t≤1

Bt ≥ c} = 2P{B1 ≥ c}

Since B1 is Gaussian with mean zero and standard deviation
1, setting c = q1−α/2, the (1 − α/2)-quantile of a standard
Gaussian distribution, then

P{max
0≤t≤1

Bt ≥ q1−α/2} = α.

This implies that

P{ max
n≤nmax

√
nZn ≥ √

nmaxq1−α/2} ≈ α,

or, in other words, the procedure that continuously moni-
tors whether the Z-score crosses the boundary √

nmaxq1−α/2

guarantees approximate type-I error α. Given a hazard ra-
tio θ1 under the alternative hypothesis, nmax can be set
to achieve a desired type-II error. The left-handed pro-
cedure can be worked out similarly, and we obtain that,
for mA = mB , the continuous-monitoring version of the
O’Brien-Fleming procedure rejects as soon as

Zn ≥
√

n

nmax
q1−α/2 if θ1 > 1 (right-sided test), or

1One might think that a maximum sample size is implicit also in the
AV logrank test: if we start with m = mA + mB participants, then
there can be no more observations after m events have taken place.
However, in many practical applications, this may take exceedingly
long (or may never even happen), and then the α-spending approaches
discussed here would have to set an nmax � m. Once this nmax has
been chosen, one cannot go beyond it, whereas with the AV logrank
test, there is no such restriction.

Zn ≤
√

n

nmax
q1−α/2 if θ1 < 1 (left-sided test).

The two regions of the Z-statistic values share an impor-
tant feature: they are more conservative to reject the null
hypothesis at small sample sizes than at larger ones, re-
quiring more extreme values for the Z-statistic at the start
of the trial. This sets them apart from the Pocock spend-
ing function that requires equally extreme values for the
Z-statistic at small and large sample size. Figure 2 shows
both the Gaussian AV logrank and the O’Brien-Fleming α-
spending rejection regions. Additionally, Figure 2 shows the
boundary of the Pocock α-spending function for 10 interim
analyses. Note that the definition of the AV logrank test re-
jection region requires a very explicit value for the effect size
θ1 = θmin of minimum clinical relevance, while that value is
implicit in the definition of the α-spending rejection region:
To specify an maximum sample size nmax to achieve a cer-
tain power, an effect size of minimal interest is also assumed.
A fixed-sample-size analysis designed to detect a minimum
hazard ratio of 0.7 would need 195 events to achieve 80%
power if the true hazard ratio is also 0.7. A sequential anal-
ysis using α-spending requires a slightly larger maximum
number of events: 205 with the O’Brien-Fleming spending
function; 245, with the Pocock α-spending function—when
we design for 10 interim analyses. We investigate the num-
ber of events needed by the Gaussian AV logrank test in
Appendix C.2. For the α-spending procedures continuing
beyond nmax is problematic. This is not the case for the AV
logrank test, as it allows for unlimited monitoring, then nmax

is only a soft constraint on the study—there is no penalty
in type-I error for continuing after nmax events have been
witnessed.

The benefit of a sequential approach is that if there is
evidence that the hazard ratio is more extreme than it was
anticipated under the alternative hypothesis, we can detect
that with fewer events than the maximum sample size. The
left column of Figure 3 illustrates that we benefit because
the true hazard ratio could be more extreme than we de-
signed for (e.g. 0.5 instead of 0.7; a larger risk reduction in
the treatment group) and the data reflects that. We also
benefit from a sequential analysis if the true hazard ratio
is 0.7 but by chance the values of our Z-statistics are more
extreme than expected. The major difference between α-
spending approaches and the AV logrank test is that the
AV test does not require to set a maximum sample size. It
in fact allows to indefinitely increase the sample size with-
out ever spending all α. An α-spending approach designed
to have 80% power will miss out on rejecting the null hy-
pothesis in 20% (the type-II error) of the cases as is illustrate
in the bottom middle plot of Figure 3 by the sample paths
that remain (dark) green. In contrast, the AV logrank test
can potentially reject with 100% power by continue sam-
pling. In the sample paths of 500 events in Figure 3, all but
one sample path of Z-statistics could be rejected at a larger
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Figure 2: Left-sided rejection regions for continuous-monitoring using O’Brien-Fleming α-spending or the Gaussian AV
logrank test. Allocation is balanced (mA = mB) and α = 0.05. Also shown are the O’Brien-Fleming and Pocock α-
spending boundaries for 10 interim analyses. The α-spending boundaries are designed to have 80% power when detecting
a hazard ratio 0.7. For more details, including the values of nmax, see Section 4.1.

sample size by the AV logrank test. By extending the trial,
the AV logrank test can potentially have 100% power if the
true hazard ratio is at least as small as the hazard ratio set
for minimum clinical relevance in the design of the test. Still,
type-I error is controlled. The bottom right plot of Figure 3
shows two null sample paths with a true hazard ratio of 1
that are rejected by the O’Brien-Fleming α-spending region,
but not by the AV logrank test. Here, the AV logrank test
is more conservative.

It is known that α-spending methods behave poorly in
case of unbalanced allocation [51]. In Appendix C.1 we
showed that our Gaussian approximation to the logrank test
is also not an E-variable in case of unbalanced allocation.
Our exact AV logrank test, however, is an E-variable un-
der any allocation since it is defined directly on the risk-set
process (3.3). This suggests that if the complete data set
is available and allocation is unbalanced, the exact logrank
test should be preferred over the Gaussian approximation
and the α-spending methods.

5. OPTIONAL CONTINUATION AND LIVE
META-ANALYSIS

In this section, we address optional continuation and live
meta-analysis—the continuous aggregation of evidence from
multiple experiments. For instance, data could come from
medical trials conducted in different hospitals or in different
countries. In such cases, we compare a global null hypothe-
sis H0 that is addressed in all trials (for instance, θ0 = 1) to
an alternative hypothesis H1 that allows for different haz-
ard ratios in each experiment. The present approach covers
even the case in which the decision to start each exper-
iment might depend on the observations made in experi-
ments that are already in progress. Assume that there are
kE experiments, E(1), . . . , E(kE), ordered by their respective

starting times V(1) ≤ · · · ≤ V(kE), each performed on differ-
ent and independent populations. Assume further that the
starting time V(k), of experiment E(k) depends only on the
data observed in the ongoing experiments E(1), . . . , E(k−1).
If each experiment E(k) monitors the AV logrank statistic
Sk
θ0,t

, where Sk
θ0,t

= 1 for t ≤ V(k), then the product statistic
Smeta
θ0,t

=
∏

i≤kE
Si
θ0,t

is a test martingale with respect to the
filtration generated by all observations. Consequently, the
meta-test based on it enjoys anytime validity.

Proposition 5.1. Let τ be any random time. The test ξmeta
θ0,τ

given by 1{Smeta
θ0,τ

≥ 1/α}, where Smeta
θ0,t

=
∏

i≤kE
Si
θ0,t

, has
type-I error smaller than α.

This result follows from a reduction to independent left-
truncation—we refer to left-truncation in the specific sense
defined by Andersen et al. [1]. Indeed, even in the presence
of dependencies on other studies, the observations made in
E(k) can be regarded as a left-truncated sample. Here, the
time at which observation in E(k) is started is random and
only participants that have not witnessed an event are re-
cruited into the study. One may worry that these depen-
dencies may alter the sequential properties of Smeta

θ0,t
, but

this is not the case. Since the truncation time for E(k) is
based on data that are independent of that of experiment
E(k)—it is possibly based on the observations made in all
other experiments, it follows from results of Andersen et al.
[1] (see Appendix A.2) that the sequential-multinomial in-
terpretation of the partial likelihood for the truncated data
remains valid. Consequently, so does the sequentially com-
puted AV logrank statistic and the product statistic Smeta

θ0,t
.

By continuously monitoring Smeta
θ0,t

, we effectively perform
an online, cumulative and possibly live meta-analysis that
remains valid irrespective of the order in which the events
of the different trials are observed. Importantly, unlike in
α-spending approaches, the maximum number of trials and
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Figure 3: Null hypothesis rejections on simulated data. The rejection regions are the same as shown in Figure 2 (designed
to detect a hazard ratio of 0.7 with 80% power). Data are simulated under balanced allocation (m1 = m0 = 5000) and
as time-to-event data with possible ties. The logrank Z-statistic does not have a value for all n; it sometimes jumps with
several additional events at a time.

the maximum sample size (number of events) per trial do
not have to be fixed in advance; we can always decide to
start a new trial, or to postpone to end a trial and wait for
additional events.

6. ANYTIME-VALID CONFIDENCE
SEQUENCES

Anytime-valid (AV) confidence sequences correspond to
anytime-valid tests in the same way fixed-sample tests cor-
respond to confidence sets. Indeed, it is possible to “invert”
a fixed-sample test to build a confidence set: the parameters
of the null hypothesis that are not rejected by a the test
form a confidence set. Analogously, test martingales can be
used to derive AV confidence sequences [5, 16, 12, 13]. In
our setting, a (1− α)-AV confidence sequence is a sequence
of confidence sets {CIt}t≥0, such that

Pθ{θ /∈ CIt for some t ≥ 0} ≤ α. (6.1)

We call it an AV confidence interval if each confidence set
CIt is itself an interval. A standard way to design (1 − α)-
AV confidence intervals, translated to our logrank setting,
is to use a prequential plug-in test martingale Spreq

θ0,t
as in

Section 3.2 (or the Bayesian alternative discussed in Ap-
pendix A.4). At time t, one reports CIt = [θLt , θ

U
t ] where CIt

is the smallest interval containing the values of θ0 such that
Spreq
θ0,t

> 1/α outside this interval. Ville’s inequality readily
implies that this is indeed an AV confidence interval. The
same construction can be made for arbitrary instances of
Sq
θ0,t

as in (3.5).

7. POWER AND SAMPLE SIZE
In this section, we investigate the power properties of

the AV logrank test—we will study specific stopping times.
We have seen that by observing arbitrarily long sequences of
events the logrank test can achieve type-II errors that are as
close to zero as desired. However, in practice it is necessary
to plan for a maximum number of events nmax so that either
the experiment is stopped as soon as the null hypothesis is
rejected or when nmax events have been observed. In the lat-
ter case, there is no evidence to reject the null hypothesis.
We assess via simulation the value of nmax needed to guar-
antee 20% type-II error (80% power) for the exact and Gaus-
sian AV logrank tests. We compare this to the nmax needed
to achieve the same power using the continuous-monitoring
O’Brien-Fleming α-spending procedure introduced in the
previous section, and the fixed-sample-size classic logrank
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Figure 4: Maximum, expected (Mean) number of events needed to reject the null hypothesis with 80% power. ‘Conditional
Mean’ makes reference to the number of events needed given that the null hypothesis is indeed rejected. The maximum
number of events needed using AV logrank statistics is higher than that of a fixed-sample test, but lower in expectation
(see Section 7). All simulations are performed with α = 0.05 and tests are designed to detect the hazard ratio θ1 shown
on the x-axis. Data are generated using that same hazard ratio. The classical logrank test needs the following sample
sizes (number of events) n(θ1) for an 80%-power design to detect hazard ratio θ1: n(0.1) = 5, n(0.2) = 10, n(0.3) = 18,
n(0.4) = 30, n(0.5) = 52, n(0.6) = 95, n(0.7) = 195, n(0.8) = 497 and n(0.9) = 2228. These sample sizes represent the
100% line in all plots.

test. Figure 4 show simulation results establishing three
types of sample sizes. The leftmost panels (“Maximum”)
shows the sample size nmax described earlier, which would
be required to design the experiment. We stress the fact that
using the classic logrank test or α-spending designs events
beyond nmax cannot be analyzed. The rightmost panel of
Figure 4 (“Mean”) shows the sample sizes that capture the
expected duration of the trial. It expresses the mean num-
ber of events, under the alternative hypothesis, that will be
observed before the trial can be stopped. Here, for the AV
logrank tests, we use the aggressive stopping rule that stops

as soon as Sθ1
θ0,t

≥ 1/α = 20 or n = nmax. In case of α-
spending approaches and the AV logrank test this number
of events is always smaller than the maximum needed in the
design stage. Lastly, the middle panel (“Conditional Mean”)
shows an even smaller number for those tests that have a
flexible sample size: the expected stopping time given that
the trial is stopped before the maximum nmax was reached—
this only happens if the null is rejected. For comparison pur-
poses, all sample sizes are shown relative to (i.e., divided
by) the fixed sample size needed by the classical logrank
test to obtain 80% power. Note that for small sample size
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(for small hazard ratios), both the classic logrank test and
O’Brien-Fleming α-spending are not recommended due to
lack of type-I error control. They are based on Schoenfeld’s
Gaussian approximation, which underestimates the number
of events required for hazard ratios far away from 1. For
example, simulations show that for θ1 = 0.1, n = 6 or 7
events will be necessary—for small sample sizes the classi-
cal logrank test is not recommended due to lack of type-I
error control. We give further details in Appendix A.5 (see
also Figure 4). In summary, at all hazard ratios at which the
Gaussian approximation to the classic logrank test is accu-
rate (say for θ1 ≥ 0.3), the mean number of events needed by
the AV logrank tests is about the same or noticeably smaller
than that needed when using a fixed-sample-size analysis.

8. DISCUSSION, FUTURE WORK AND
RECOMMENDATIONS FOR PRACTICE

We introduced the AV logrank test, a version of the lo-
grank test that retains type-I error guarantees under op-
tional stopping and continuation. Extensive simulations re-
veal that, if we do engage in optional stopping, it is com-
petitive with the classic logrank test (which neither allows
in-trial optional stopping nor optional continuation) and α-
spending procedures (which allow forms of optional stopping
but not optional continuation). We provided an approximate
(Gaussian) test for applications in which only summary
statistics are available and also showed how the AV logrank
test can be used in combination with prequential learning
approaches, when no effect size of minimal clinical relevance
can be specified. The GROW AV logrank tests (exact and
Gaussian) are available in our safestats R package [43].

We end this paper by discussing how we avoid the is-
sue of so-called doomed trials (Section 8.3) and providing
a practical guideline for what method to use in what situa-
tion (Section 8.4). But first we discuss two highly important
potential extensions: including covariates other than group
membership and staggered entries.

8.1 Covariates: The Full Cox Model
From a purely theoretical perspective, it is straightfor-

ward to extend the AV logrank test to the situation when
time-dependent covariates are present, making the underly-
ing model equivalent to the full Cox proportional hazards
model. We sketch how to do this extending the notation
of Section 3. Assume therefore the presence of d covariates
and let, for each participant i, zit = (zit,1, . . . , z

i
t,d) be the co-

variate vector consisting of left-continuous time-dependent
covariates zit,1, . . . , z

i
t,d. Denote by zi(k) the value of the co-

variates of participant i at the time T(k) when the kth event
is witnessed. We let random variable I(k) denote the index of
the patient to which the kth event happens, and consider the
extended process I(1), I(2), . . . where the information that is
available at time T(k) is, I(1), I(2), . . . , I(k), and z(1), . . . , z(k).

The conditional partial likelihood is now denoted Pβ,θ with
θ > 0, β ∈ R

d, and βθ = ln θ ∈ R, defined as follows:

Pβ,θ{I(k) = i | zj(l), y
j
(l); j = 1, . . . , n; l = 1, . . . , k}

:= Pβ,θ{I(k)=i | zj(k), y
j
(k); j = 1, . . . , n},

Pβ,θ{I(k) = i | zj(k), y
j
(k); j = 1, . . . , n}

:= pβ,θ,(k)( i ) :=
exp(〈β, zi(k)〉+ giβθ)∑

j∈R(k)
exp(〈β, zj(k)〉+ gjβθ)

.

(8.1)

This is consistent with Cox’ [3] proportional hazards re-
gression model: the probability that the ith participant wit-
nesses an event, assuming he/she is still at risk, is propor-
tional to the exponentiated weighted covariates, with group
membership being one of the covariates. In case β = 0, this
is easily seen to coincide with the definition of Pθ via (2.5)
with θ = eβθ .

For simplicity we focus on the central case that H0 ex-
presses that there is no treatment effect, i.e. we have com-
posite null H0 : β ∈ R

d; θ = 1. First we simplify even further
and consider a simple alternative H1 : β = β1, θ = θ1 for
a specific fixed vector β1 ∈ R

d and θ �= 1, with partial
likelihoods given as above. We now want to extend (3.1)
so that the corresponding test (3.2) is anytime-valid under
all elements of H0, i.e. the appropriate extension of Propo-
sition 3.1 holds (technically, for this we need the partial
likelihood ratio to define an e-process). The factors in the
numerator in (3.1) may simply be replaced by the corre-
sponding partial likelihood factors pβ1,θ1,(k)

( i ). Since the
null is now composite, it is not immediately clear what to
use for the denominator. However, there exist two (by now
standard) methods to set the numerator such that the ratio
does become an e-process [29], the Universal Inference (UI)
method [47] and Reverse Information Projection (RIPr, [9]).
In the present setting, UI is much more straightforward to
use: it amounts to set the denominator, at each time t, equal
to the running-maximum likelihood estimator β̂(kt) based on
the kt events that happened before time t, i.e. for given t,
kt is the largest k such that T (k) < t. The partial likelihood
ratio (3.1) then becomes

∏
k:T (k)≤t

pβ1,θ1,(k)
(I(k))

pβ̂(kt)
,1,(k)(I(k))

. (8.2)

We can now easily extend this approach to deal with the full
H1 : θ �= 1 (testing whether there is any treatment effect at
all, see Example 3.2) by learning (β1, θ1) using a prequential
approach as in Section 3.2. It is straightforward to extend
Proposition 3.1 to show that with this choice, (8.2) provides
an anytime-valid test. The advantage of this UI method is
that it can be readily implemented by small modifications of
existing software for finding the MLE in the Cox model; the
disadvantage is that we may expect it to have suboptimal
power unless the number of covariates is small compared to
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the number of observed events [40]. Alternatively, we may
employ a sequential version of the RIPr method. This will
also lead to an anytime-valid test, but, at least currently, we
do not know how to calculate it efficiently; for completeness,
we describe this approach in Appendix B, where we also
provide additional details about covariates in combination
with ties. In future work, we aim to investigate and compare
the UI and the RIPr approach in detail.

8.2 Staggered Entry
Earlier approaches to sequential time-to-event analysis

were also studied under scenarios of staggered entry, where
each patient has its own event time (e.g., time to death since
surgery), but patients do not enter the follow-up simultane-
ously (such that the risk set of, say, a two-day-after-surgery
event changes when new participants enter and survive two
days). Sellke and Siegmund [36] and Slud [38] show that,
in general, martingale properties cannot be preserved under
such staggered entry settings, but that asymptotic results
are hopeful [36] as long as certain scenarios are excluded
[38]. When all participants’ risk is on the same (calendar)
time scale (e.g., infection risk in a pandemic; staggered en-
try now amounts to left-truncation, which we can deal with),
or new patients enter in large groups (allowing us to strat-
ify), staggered entry poses no problem for our methods. But
research is still ongoing into those scenarios in which our
inference is fully AV for patient time under staggered entry,
and those that need extra care.

8.3 Your Trial Is Not Doomed
In their summary of conditional power approaches in se-

quential analysis Proschan, Lan, and Wittes [27] write that
low conditional power makes a trial futile. Continuing a trial
in such case could only be worth the effort to rule out an
effect of clinical relevance, when the effect can be estimated
with enough precision. However, if “both conditional and
revised unconditional power are low, the trial is doomed be-
cause a null result is both likely and uninformative” [27,
p. 63]. While this is the case for all existing sequential ap-
proaches that set a maximum sample size, this is not the
case for AV tests. Any trial can be extended and possibly
achieve 100% power or in an anytime-valid confidence se-
quence show that the effect is too small to be of interest.
This is especially useful for time-to-event data when sample
size can increase by extending the follow-up time of the trial,
without recruiting more participants. Moreover, new partic-
ipants can always be enrolled either within the same trial or
by spurring new trials that can be combined indefinitely in
a cumulative meta-analysis.

8.4 Recommendations for Practical Use
Throughout this paper, we encountered different instan-

tiations of the AV logrank test. Specifically, for alternatives
as introduced in Section 2 that are ‘disconnected’ from H0,
such as in (2.3) (for left-sided alternatives) or (3.6) (for

two-sided alternatives) we presented partial likelihood ra-
tios Sθ1

θ0,t
with the numerator based on a point alternative

θ1 as in (3.1) (one-sided case) or a mixture of two point alter-
natives (below (3.6)). For the full alternative H1 : θ �= θ0 we
presented partial likelihood ratios Spreq

θ0,t
with the numerator

based on prequential plug-in likelihood as in Section 3.2.
However, all these versions continue to provide anytime-
valid Type-I error bounds under H0, no matter what the
potential ‘real’ alternatives we may encounter; they may not
even satisfy proportional hazards (Example 3.2). So, what
instantiation of the test should we choose in practice?

This depends on the situation. If we have a clearly defined
one-sided minimum clinically relevant effect and we are con-
vinced that the proportional hazards assumption holds, then
this provides a strong motivation for using the point alterna-
tive version Sθ1

θ0,t
since it has GROW status (Section 3.1): by

Breiman’s result detailed in Appendix A.1 it will give us the
smallest expected stopping time in the worst-case over all al-
ternatives. In contrast, if we are interested in whether there
is treatment effect at all (i.e. H1 : θ �= θ0), but also if mis-
specification might be an issue (proportional hazards might
be substantially violated, and then ‘effect size’ is not really
well-defined) we should use the prequential version Spreq

θ0,t
,

learning an alternative from the data. Yet, even if we have
a minimally clinically relevant effect size in mind and we
may assume proportional hazards, there are cases in which
we advocate to use the prequential version after all, for the
reason that, by varying θ0 in Spreq

θ0,t
via the construction in

Section 6, this provides us with anytime-valid confidence se-
quences with width that is guaranteed to shrink toward the
actual effect size—in contrast, it is easily seen that if we
vary θ0 in Sθ1

θ0,t
then the resulting AV confidence sequences

may remain wide forever. Well-behaved (i.e., shrinking) AV
confidence sequences can be useful or even essential if we
aim to communicate the results (confidence sequences are
much more intuitive to practitioners than accept/reject de-
cisions accompanied by partial likelihood ratios). Also, in
some cases it cannot be ruled out that, and it would be really
useful to know whether, the actual effect is much stronger
than the minimum clinically relevant one. A case in point are
the covid vaccination trials in which the original test had as
alternative H1 that vaccine efficacy was above 50%, which
was viewed as the minimum clinically relevant value, but the
data suggested it was really more than 80%, which changed
the outlook altogether (for example, suggesting vaccination
campaigns for the entire adult population rather than just
the elderly). A test based on the point alternative Sθ1

θ0,t
with

θ1 corresponding to 50% could not easily have been trans-
formed post-hoc into a test for testing whether the efficacy
is larger than 80%, whereas with an AV confidence sequence
based on Spreq

θ0,t
this can be established right away [35]. Fi-

nally, we note that we only recommend use of the Gaussian
AV log rank test if one really has to, for example, as in
the situation described in Section 4, when only logrank Z-
statistics are available; and even then, only in the regime
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where it provides anytime-valid Type-I error guarantees, as
explored in that section.

APPENDIX A. OMITTED PROOFS AND
DETAILS

In this section we provide proofs and remarks omitted
from previous sections. In Appendix A.1 we relate growth-
rate optimality to the minimum expected stopping time. In
Appendix A.2, we show that the AV logrank statistic is a
continuous-time martingale, and show that this is also true
for general patterns of incomplete observation, such as left
truncation and filtering as a consequence of the results of
Andersen et al. [1]. In Appendix A.3, we proof the claims
made in Section 3.3 about the martingale structure of the
AV logrank test under the presence of ties. Appendix A.4
shows how to learn the alternative from the data using a
Bayesian prior rather than the prequential plug-in approach
that was explained in Section 3.2 in the main text. Lastly,
in Appendix A.5, we give further details on the simulations
used to compute the planned maximum sample sizes for a
given targeted power. Under the alternative and optional
stopping, the observed sample size is in many cases lower.

A.1 Expected Stopping Time, GROW and
Wald’s Identity

Here we motivate the GROW criterion by showing that
it minimizes, in a worst-case sense, the expected number of
events needed before there is sufficient evidence to stop. Let
P0 represent our null model, and let, as before, the alterna-
tive hypothesis be H1 : θ ≤ θ1 for some θ1 < θ0. Suppose we
perform a level-α test based on a test martingale Sq

θ0,t
using

the stopping rule τ that stops as soon as Sq
θ0,t

exceeds the
threshold 1/α, that is, τ q = inft{t : Sq

θ0,t
≥ 1/α}. In the

main text we elaborated on how Sθ1
θ0,t

is optimal with respect
to the GROW criterion. We now show that the problem of
minimizing the worst-case, the expected number of events
Eθ[N̄τq ] over q is approximately equivalent to finding the
GROW test martingale. To do so, we make simplifying as-
sumptions that reduce the problem to an i.i.d. experiment.
This allows us to employ a standard argument based on an
identity of Wald [45], originally due to Breiman [2]. For this
we assume that the initial risk sets (i.e., ȳA0 and ȳB0 ) are large
enough so that, for all sample sizes we will ever encounter,
ȳAt /ȳ

B
t ≈ ȳA0 /ȳ

B
0 . This allows us to treat the likelihood of

the participant(s) I(k) having witnessed the event at time
T (k) to be independent of t, that is, as an i.i.d. experiment.

The argument of Breiman [2] relates the expected num-
ber of events to the expected value of our stopped AV
logrank statistic. Suppose first that we happen to know
that the data come from a specific θ in the alternative hy-
pothesis. Then Sq

θ0,τ
is the product of N̄τ factors of ratios

Rq
θ0,(i)

= q(i)(I(i))/pθ0,(i)(I(i)) at the ith event. Wald’s iden-

tity applied to its logarithm implies

Eθ[N̄τ ] =
Eθ[lnS

q
θ0,τq ]

Eθ[lnR
q
θ0,(1)

].
. (A.1)

For simplicity we will further assume that the number of
participants at risk is large enough so that the probability
that we run out of data before we can reject is negligible.
Because of the choice of the stopping rule τ q, the right-hand
side of the last display can then be further rewritten as

Eθ[lnS
q
θ0,τq ]

Eθ[lnR
q
θ0,(1)

]
=

ln(1/α) + very small

Eθ

[
ln

(
q(1)(I(1))/p(1),θ0(I(1))

)] ,
where very small between 0 and log |θ1/θ0|. The equality
follows because we reject as soon as Sq

θ0,t
≥ 1/α, so Sq

θ0,τ

cannot be smaller than 1/α, and it cannot be larger by more
than a factor equal to the maximum likelihood ratio at a
single outcome (if we would not ignore the probability of
stopping because we run out of data, there would be an
additional small term in the numerator).

With (A.1) at hand, we can relate our choice of q to the
expected number of events witnessed before stopping. If, for
a fixed θ, we try find the q that minimizes the expected
number of events Eθ[N̄τq ], and, as is customary in sequen-
tial analysis, we approximate the minimum by ignoring the
very small part, we see that the expression is minimized
by maximizing the numerator Eθ

[
ln
(
Q(1)/Pθ0,(1)

)]
over q.

The maximum is achieved by Q(1) = Pθ,(1); the expression
in the denominator then becomes the Kulback-Leibler diver-
gence between two Bernoulli distributions. It follows that,
under θ, the expected number of outcomes until rejection
is minimized by Q(1) = Pθ. Thus, in this case, we use the
GROW Sθ

θ0,t
as test statistic. However, we still need to con-

sider the fact that the real H1 is composite: as statisticians,
we do not know the actual θ; we only know 0 < θ ≤ θ1.
A worst-case approach uses the q achieving

max
q

min
θ≤θ1

Eθ

[
ln
(
p(1)(I(1))/q(1),θ0(I(1))

)]
since, repeating the reasoning leading to (A.1), this q should
be close to achieving the min-max number of events until
rejection, given by

min
q

max
θ≤θ1

Eθ[N̄τq ]

But this just tells us to use the GROW E-variable relative
to H1, which is what we were arguing for.

A.2 Continuous Time and Anytime Validity
In this section, we show the anytime validity of the AV

logrank test. This is done via Ville’s inequality for which
it suffices to show that Sq

θ0
= (Sq

θ0,t
)t≥0 is a nonnegative

(super) martingale. To do so, we use the counting process
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formalism. A few definitions are in order. Only in this sec-
tion, we assume knowledge of counting process theory [see
1, 8]. Denote, for i = 1, . . . ,m, Ñ i

t = 1{t ≤ T i} the counting
processes associated to each participant, and let yit be the
at-risk process. For each participant, the censored process
N i

t , which is observed, is given by dN i
t = yitdÑ

i
t—we use

this convention to signify that N i
t =

∫ t

0
yisdÑ

i
s. We define

the sigma-algebra Ft := σ(N j
s : 0 ≤ s ≤ t, j = 1, . . . , n),

which, as usual, can be interpreted as the information in
the study up to time t.

One of the results of the counting process theory is that
the processes dN i

t − yitdλ
i
t are martingales, where, recall,

yit = 1{Xi ≥ t} is the at-risk process, and λi
t is the hazard

function associated to T i. In that case, yitdλi
t is called the

compensator of N i
t . The result that the AV logrank test is

a martingale hinges specifically on this structure. Thus, any
pattern that preserves this martingale structure also pre-
serves the martingale property for the AV logrank test, and
consequently its type-I error guarantees. Andersen et al. [1,
III.4] show exactly this under general patterns of incomplete
observation provided that the mechanisms are independent
of the observations. With this in mind, in the following, we
only assume that the counting processes N i

t have compen-
sators Ai

t given by dAi
t = yitdλ

i
t.

The filtration F = (Fs)s≥0 is right-continuous and we
can safely identify predictable processes with left-continuous
process. For some θ0, denote by P0 the distribution under
which, for each i = 1, . . . ,m, the hazard function for T i is
λi
t = θz

i

0 λA
t , where gi = 0 if i ∈ A and gi = 1 if i ∈ B.

Recall from Section 2, if participant i belongs to Group B,
λi
t = θ0λ

B
t = θ0λ

A
t ; otherwise, λi

t = λA
t . Let q1t , . . . , q

m
t be

predictable processes such that
∑

i≤m qity
i
t = 1 a.s. for all t,

that is, {qit}i∈Rt at each t is a probability distribution over
the participants at risk at time t. Define rit to be each of the
ratios rit = qit/p

i
θ0,t

. Define the predictable process Sq
θ0,t−

=

lims↑t S
q
θ0,t−

. As such, at each t, the change dSq
θ0,t

= Sq
θ0,t

−
Sq
θ0,t−

of the AV logrank statistic Sq
θ1

at time t, given in (3.5),
can be computed as

dSq
θ0,t

=
∑
i≤m

Sq
θ0,t−

(rit − 1)dN i
t ,

because no two events happen simultaneously with positive
probability. Since Sq

θ0,t−
is predictable, it is enough to prove

that the process Mt defined by dMt =
∑

i≤m(1−rit)dN
i
t is a

martingale [see 8, Theorem 1.5.1]. Recall that ȳAt =
∑

i∈A yit
and ȳBt =

∑
i∈B yit. Then both ȳA and ȳB are left-continuous

processes.

Lemma A.1. Let {qit}i≤m be a collection of nonneg-
ative left-continuous processes qi = (qit)t≥0 such that∑

i≤m yitq
i
t = 1 for all t. Let {piθ0,t}i≤m be the collection

of processes given by

piθ0,t =
θg

i

0 yit
ȳAt + θ0ȳBt

.

The process M = (Mt)t≥0 given by dMt =
∑

i≤m(1−rit)dN
i
t

is a martingale under P0 with respect to the filtration F =
(Ft)t≥0.
Proof. It suffices to show that the compensator At of Mt,
given by dAt =

∑
i≤m

∑
i≤m(rit − 1)yitλ

i
tdt is zero. Define

q̄At =
∑

i∈A yitq
i
t and q̄Bt =

∑
i∈B yitq

i
t. Notice that by as-

sumption q̄At + q̄Bt = 1., and recall that, under the null
λB
t = θ0λ

A
t . We can compute∑

i≤m

(rit − 1)yitλ
i
t =

∑
i∈A

yitλ
A
t (r

i
t − 1) +

∑
i∈B

yitλ
B
t (r

i
t − 1)

= λA
t [(ȳ

A
t + θ0ȳ

B
t )q̄At − ȳAt

+ (ȳAt + θ0ȳ
B
t )q̄Bt − θ0ȳ

B
t ]

= λA
t [(ȳ

A
t + θ0ȳ

B
t )

=1︷ ︸︸ ︷
(q̄At + q̄Bt )−(ȳAt + θȳBt )]

= 0,

where we used the assumption that
∑

i≤m yitq
i
t = ȳAt q

A
t +

ȳBt qBt = 1. As the compensator At of Mt is zero at each t,
we conclude that Mt is a martingale, as was to be shown.

Our previous discussion and the preceding lemma have
the following corollary as a consequence.
Corollary A.2. Sq

θ0
= (Sq

θ0,t
)t≥0 is a nonnegative martin-

gale with expected value equal to one.
Hence, Ville’s inequality holds for Sq

θ0
, which implies that

P0{Sq
θ0,t

≥ 1/α for some t ≥ 0} ≤ α.

This implies the anytime validity of the test ξqθ0 = (ξqθ0,t)t≥0

given by the AV logrank test ξqθ0,t = 1{Sq
θ0,t

≥ 1/α}.

A.3 Ties
The purpose of this section is twofold. Firstly, we prove

Lemma 3.3. Secondly, we show that the conditional likeli-
hood given in Section 3.3 indeed approximates the true con-
ditional partial likelihood ratio under any distribution such
that the hazard ratio is θ1.

Our general strategy in this case is similar to the one un-
dertaken in the continuous-monitoring case: we build a test
martingale with respect to a filtration G�, and use Ville’s
inequality to derive anytime-valid type-I error guarantees.
Define, for each k = 1, 2, . . . , the sigma-algebra Gk gener-
ated by all observations made in times t1, . . . , tk, that is,
Gk = σ(N i

tl
, Ñ i

tl
: i = 1, . . . ,m; l = 1, . . . , k), and the cor-

responding filtration G = (Gk)k=1,2,.... Under Cox’s propor-
tional hazard model, conditionally on Gk−1, our observations
ΔN̄A

k and ΔN̄B
k are binomially distributed with parameters

depending on the hazard function (see Lemma A.3 below).
By conditioning both on Gk−1 and on the total number of
events ΔN̄k = ΔN̄A

k +ΔN̄B
k , we use the likelihood of having

observed ΔN̄B
k , which follows Fisher’s noncentral hypergeo-

metric distribution, as detailed in Corollary A.4. We gather
these observations in the following two lemmas.
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Lemma A.3. Conditionally on Gk−1, the following hold:

1. The number of events ΔN̄A
k has a binomial distribu-

tion with parameters ȳAk and pAk where pAk = 1 −
exp(−

∫ tk
tk−1

λA
s ds).

2. The number of events ΔN̄B
k has a binomial distribu-

tion with parameters ȳBk and pBk where pBk = 1 −
exp(−θ

∫ tk
tk−1

λA
s ds) and θ is the hazard ratio.

Proof. The result is standard, and it follows from explicitly
solving for λ in (2.1) and computing the conditional proba-
bility in (2.2) for each group.

Next, we use a standard result: given two binomially dis-
tributed random variables X and Y , the distribution of X
conditionally on X +Y is Fisher’s noncentral hypergeomet-
ric distribution. We apply this to ΔN̄A

k and ΔN̄B
k from the

previous lemma and spell out the corresponding parameters
in the following corollary.

Corollary A.4. Let G�
k−1 = Gk−1 ∨ σ(ΔN̄k), and let

pAk and pBk as in Lemma A.3. Define the odd ratios
ωA
k = pAk /(1 − pAk ), ωB

k = pBk /(1 − pBk ) and the ra-
tio ωk = ωB

k /ωA
k . Then, conditionally on G�

k−1, the like-
lihood of having observed ΔN̄B

k events in group B is
given by Fisher’s noncentral hypergeometric distribution
pFNCH(ΔN̄B

k ; ȳBk−1, ȳ
A
k−1,ΔN̄k, ωk), where

pFNCH(n
B ; ȳB , ȳA, n, ω)

=

(
ȳB

nB

)(
ȳA

n−nB

)
ωnB∑

max{0,nB−ȳB}≤u≤min{ȳB ,nB}
(
ȳB

u

)(
ȳA

nB−u

)
ωu

.

Naively, one could use a partial likelihood ratio just as
in the absence of ties to derive a sequential test. This, how-
ever, is not satisfactory, because, in general, the parameter
ωk depends heavily on the unknown baseline hazard func-
tion λA. Contrary to the general case, when the hazard ra-
tio θ is one, the parameter ωk = 1, and Fisher’s noncentral
hypergeometric distribution reduces to the conventional hy-
pergeometric distribution. With this observation at hand, if
{qk}k=1,2,... is a sequence of conditional distributions qk( · )
on the possible values of ΔN̄B

k , we can build a sequential
tests for (2.3), with its corresponding type-I error guaran-
tee. We give the details in the following corollary, and sub-
sequently point at a useful choice for q that approximates
the real likelihood.

The choice of q for our statistic presented in Section 3.3
follows from an approximation of the parameter ω for small
Δtk = tk − tk−1. As noted by [21], if

∫ tk
tk−1

λ1(s)ds is small,
then pAk ≈ λtk−1

Δtk and pAk ≈ θpAk . With these two approx-
imations, ωk ≈ θ. This means that the choice qk(ΔN̄B

k ) =
pθ1,k(ΔN̄B

k ) := pFNCH(ΔN̄B
k ; ȳBk , ȳAk , ΔN̄k, ω = θ1) ap-

proximates the real conditional likelihood under any alter-
native for which the true hazard ratio is θ1. Hence, the se-

quentially computed statistic

Sθ1
k =

∏
l≤k

pθ1,k(ΔN̄B
k )

p1,k(ΔN̄B
k )

approximates the true partial likelihood ratio of the data
observed up to time tk in the presence of ties, and we rec-
ommend its use.

A.4 Bayesian Approach for Numerator
In Section 3.2 we showed how one can deal with alterna-

tives such as H1 : θ �= θ0 by learning θ from data, leading
to a process q(1), q(2), . . . with q(k) determined by a plug-
in estimate of θ. Alternatively, it is also possible to use a
Bayes predictive distribution based on a prior W on θ. If
W(k) = W | y(1), . . . ,y(k) is the Bayes posterior on θ based
on a prior W and the data up to time t < T (k), then

q(k) = pW,(k) :=

∫
pθ,(k)dW(k)(θ),

where W(1) = W. Hence, pW,(k) is the Bayesian predictive
distribution. The resulting statistic SW

t is the result of mul-
tiplying the conditional probability mass functions pW,(k),
and we obtain that

SW
θ0,t =

n∏
k:T (k)≤t

pW,(k)(I(k))

pθ0,(k)(I(k))
(A.2)

is a Bayes factor between the Bayes marginal distribution
based on W and θ0. This technique has been employed in
sequential analysis; it is known as the method of mixtures [5,
31] and has been compared to the plug-in method discussed
in the main text by [30]. We do not know of a prior for
which (A.2) or the constituent products have an analytic
expression, but it can certainly be implemented using, for
example, Gibbs sampling.

As shown in Section 3 and discussed in Section 3.2, the
use of any Sq

θ0,t
instead of Sθ1

θ,t does not compromise on
safety: a test based on monitoring Sq

θ0
is anytime-valid,

whether q makes reference to plug-in estimators or Bayes
predictive distributions, no matter what prior W was cho-
sen. The type-I error guarantee always holds, also when the
prior is “misspecified”, putting most of its mass in a region
of the parameter space far from the actual θ from which the
data were sampled. Thus, our set-up is intimately related
to the concept of luckiness in the machine learning theory
literature [10] rather than to “pure” Bayesian statistics.

A.5 Details of Sample Size Comparison
Simulations

In this section we lay out the procedure that we used to
estimate the expected and maximum number of events re-
quired to achieve a predefined power as shown in Figure 4
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and Figure 1 in Section 7. First we describe how we sam-
pled the survival processes under a specific hazard ratio. We
then describe how we estimated the maximum and expected
sample size required to achieve a predefined power (80% in
our case) for any of the test martingales that we considered
(that of the exact AV logrank, its Gaussian approximation,
and the prequential plugin variant). Finally, we explain how
the same quantities for the classical logrank test and the
O’Brien-Fleming procedure were obtained.

In order to simulate the order in which the events in a sur-
vival processes happens, we used the sequential-multinomial
risk-set process from Section 3. As before, we consider the
general testing problem with θ0 = 1 and a minimal clinically
relevant effect size θ1 < 1, and we denote the true data gen-
erating parameter by θ, typically, θ ≤ θ1. Under θ, the odds
of the next event at the ith event time happening in Group
B are θȳB(i) : ȳ

A
(i)—the odds change at each time step. Thus,

simulating in which group the next event happens only takes
a biased coin flip. For the problem of testing (3.6) with θ0
we fix the tolerate a type-I error to α = 0.05 and the type-II
error to β = 0.2. For each test martingale Sq

θ0
of interest we

first consider the stopping rule τ q = inf{k : Sq
θ0,(k)

≥ 1/α},
that is, we stop as soon as Sq

θ0,(i)
crosses the threshold 1/α.

Recall that in the worst case, θ = θ1 the expected stopping
time τ q is lowest when we use Sθ1

θ0,(k)
, see Appendix A.1.

To estimate the maximum number of events needed to
achieve a predefined power with a given test martingale, we
turned our attention to a modified stopping rule τ̃ q. Under
τ̃ q we stop at the first of two moments: either when our test
martingale Sq

θ0,(k)
crosses the threshold 1/α (i.e., at τ) or

once we have witnessed a predefined maximum number of
events nmax. More compactly, this means using the stop-
ping rule τ̃ q given by τ̃ q = min(τ q, nmax). In those cases
in which the test based on the stopping rule τ q achieves a
power higher than 1−β, a maximum number of events nmax

smaller than the initial size of the combined risk groups can
be selected to achieve approximate power 1 − β using the
rule τ̃ q.

A quick computation shows that nmax has the following
property: it is the smallest number of events n such that
stopping after n events has probability smaller than 1 − β
under the alternative hypothesis, that is,

Pθ{τ q ≥ n} ≤ 1− β.

More succinctly, nmax is the (approximate) (1− β)-quantile
of the stopping time τ q, which can be estimated experimen-
tally in a straightforward manner.

To estimate nmax for an initial risk set sizes m1, m0, we
sampled 104 realizations of the survival process (under θ)
using the method described at the beginning of this section.
This allowed us to obtain the same number of realizations of
the stopping time τ q. We then computed the (1−β)-quantile
of the simulated first passage time distribution of τ q, and

reported it as an estimate of the number of events nmax in
the ‘maximum’ column in Figure 4.

We assessed the uncertainty in the estimation nmax us-
ing the bootstrap. We performed 1000 bootstrap rounds on
the sampled empirical distribution of τ q, and found that
the number of realizations that we sampled (104) was high
enough so that plotting the uncertainty estimates was not
meaningful relative to the scale of our plots. For this reason
we omitted the error bars in Figure 4 and Figure 1.

In the “mean” column of Figure 4 and Figure 1 we
plot an estimate of the expected number of events τ̃ q =
min(τ q, nmax). For this, we used the empirical mean of the
stopping times that were smaller than nmax on the sample
that we obtained by simulation, with 20% of the stopping
times being nmax itself. In the “conditional mean” column,
we plot an estimate of τ̃ q | τ̃ q < nmax, i.e., the stopping
time given that we stop early (and hence reject the null).

For comparison, we also show the number of events that
one would need under the Gaussian non-sequential approx-
imation of Schoenfeld [32], and under the continuous mon-
itoring version of the O’Brien-Fleming procedure. In order
to judge Schoenfeld’s approximation, we report the number
of events required to achieve 80% power. This is equivalent
to treating the logrank statistic as if it were normally dis-
tributed, and rejecting the null hypothesis using a z-test
for a fixed number of events. The power analysis of this
procedure is classic, and the number of events required is
nS
max = 4(zα+zβ)

2/ log2 θ1, where zα, and zβ are the α, and
β-quantiles of the standard normal distribution. In the case
of the continuous monitoring version of O’Brien-Fleming’s
procedure, we estimated the number of events nOF

max needed
to achieve 80% as follows. For each experimental setting
(mA,mB , θ), we generated 104 realizations of the survival
process under θ and computed the corresponding trajecto-
ries of the logrank statistic. For each possible value n of
nOF
max, we computed the fraction of trajectories for which

the O’Brien-Fleming procedure correctly stopped when used
with the maximum number of events set to n. We report as
an estimate of the true nOF

max the first value of n for which
this fraction is higher than 80%, our predefined power.

APPENDIX B. COVARIATES: THE FULL
COX PROPORTIONAL

HAZARDS E-VARIABLE
In the concluding Section 8.1, we indicated how to ex-

tend our approach to the full Cox’ proportional hazards
model with covariates, using the Universal Inference (‘run-
ning MLE’) approach. Here we show that we may also pro-
ceed using the Reverse Information Projection (RIPr) ap-
proach pioneered by [9]. Our starting point are the partial
likelihoods (8.1).

Since the RIPr approach inevitably requires the use of
prior distributions on the parameters β ∈ R

d appearing in
H0, it is more convenient to also treat composite alterna-
tives H1 in a Bayesian manner as described in Appendix A.4
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rather than using the prequential plug-in approach of Sec-
tion 3.2, so for simplicity, below we will only describe this
approach. To be sure though, we may use the plug-in ap-
proach here as well, if we are so inclined.

B.1 E-Variables and Martingales
Let W be a prior distribution on β ∈ R

d for some d > 0.
(W may be degenerate, i.e., put mass one on a specific pa-
rameter vector β1, and this will allow us to deal with the
analogue of the one-sided tests of Section 2 rather than just
‘learning the alternative distribution’ tests of Section 3.2).
For each such W, we let qW,θ,(k) be the probability distri-
bution on R(k) defined by

qW,θ,(k)( i ) :=

∫
pβ,θ,(k)( i )dW(β),

with pβ,θ,(k) as in (8.1). Consider a measure ρ on R
d (e.g.,

Lebesgue or some counting measure) and we let W be the
set of all distributions on R

d which have a density relative
to ρ, and W◦ ⊂ W be any convex subset of W (we may take
W◦ = W , for example). We define q̃←W,θ0 to be the reverse
information projection [18] (RIPr) of qW,θ,(k) on {qW,θ0,(k) :
W ∈ W◦}, defined as the probability distribution on R(k)

such that

KL(qW,θ1,(k)‖q̃←W,θ0,(k))

= inf
W◦∈W◦

KL(qW,θ1,(k)‖qW◦,θ0,(k)).

We know from Li [18] and Grünwald et al. [9] that q̃←W,θ0,(k)

exists for each k. Grünwald et al. [9] show, in the context of
E-variables for 2 × 2 contingency tables, that the infimum
in the previous display is in fact achieved by some distribu-
tion W� with finite support on R

d if the random variables
y1(k), . . . , y

m
(k) constituting our random process have a finite

range. For given hazard ratios θ0, θ1 > 0, let

Rθ1
W,θ0,(k)

=
qW,θ1,(k)(I(k))

q←W,θ0,(k)(I(k))
(B.1)

be our analogue of (3.3).

Theorem B.1 (Corollary of Theorem 1 from Grünwald et
al. [9]). For every prior W on R

d, for all β ∈ R
d,

Eβ,θ0 [R
θ1
W,θ0,(k)

| zi(l), yi(l); i = 1, . . . ,m; l = 1, . . . , k]

=
∑

i∈R(k)

qβ,θ0,(k)(i)
qW,θ1,(k)(i)

q←W,θ0,(k)(i)
≤ 1

so that Rθ1
W,θ0,(k)

is an E-variable conditionally on zi(l), yi(l)
with i = 1, . . . ,m; l = 1, . . . , k.

Note that the result does not require the prior W to
be well specified in any way: under any (β, θ0) in the null
distribution, even if β is completely disconnected to W,
Rθ1

W,θ0,(k)
is an E-variable conditional on past data.

In particular, since the result holds for arbitrary priors,
it holds, at the kth event time, for the Bayesian posterior
Wk+1 = W1 | zi(l), yi(l); i = 1, . . . ,m; l = 1, . . . , k, based
on arbitrary prior W1 with density w1, i.e., the density of
Wk+1 is given by

wk+1(β) ∝
∏
l≤k

qβ,θ,(l)(I(l))w1(β).

In parallel to the discussion in Section 3.1, we can there-
fore, for each prior W1, construct a test martingale Sk :=∏

l≤k R
θ1
Wl,θ0,(l)

that “learns” β from the data, analogously
to (A.2), and computes a new RIPr at each event time k.

B.2 Finding the RIPr
While it is not clear how to calculate the RIPr q←W,θ0,(k)

in general, it can be well approximated with the effi-
cient algorithm design by Li [18] and Li and Barron [17].
Their algorithm is computationally feasible as long as we
restrict W◦

δ to be the set of all priors W for which
mini∈R(k)

qW,θ0,(k)(i) ≥ δ, for some δ > 0. In that case,
when run for M steps, the algorithm achieves an approxi-
mation error of O(ln(1/δ)/M), where each step is linear in
the dimension d. Since the approximation error is logarith-
mic in 1/δ, we can take a very small value of δ, which makes
the requirement less restrictive. Exploring whether the Li-
Barron algorithm really allows us to compute the RIPr for
the Cox model, and hence Rθ1

Wk,θ0,(k)
in practice, is a major

goal for future work.

B.3 Ties
Without covariates, our E-variables allow for ties corre-

spond to a likelihood ratio of Fisher’s noncentral hyperge-
ometric distributions (see Section 3.3), the situation is not
so simple in the presence of covariates. Although deriving
the appropriate extension of the noncentral hypergeomet-
ric partial likelihood is possible, one ends up with a hard-
to-calculate formula [23]. Various approximations have been
proposed in the literature [3, 7]. In case these preserve the E-
variable and martingale properties, they would retain type-I
error probabilities under optional stopping and we could use
them without problems. We do not know whether this is the
case however; for the time being, we recommend handling
ties by putting the events in a worst-case order, leading to
the smallest values of the E-variable of interest, as this is
bound to preserve the type-I error guarantees.

APPENDIX C. GAUSSIAN AV LOGRANK
TEST

In this section we heuristically derive the Gaussian AV
logrank test of Section 4, and investigate the validity of the
Gaussian approximation. In Appendix C.1, we show by sim-
ulation that this approximation is only valid when the al-
location of participants to each group under investigation
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is balanced, that is, when mA = mB . In Appendix C.2 we
investigate numerically the sample size needed to reject the
null hypothesis under both the exact AV logrank test and
its Gaussian approximation.

We start with the derivation of (4.3). For this we use (lo-
cal) asymptotic normality of the Z-score (4.1). Under the
null distribution, Zk from (4.1) has an asymptotic standard
Gaussian distribution. Under any alternative distribution
under which the hazard ratio is θ, Schoenfeld [32] showed
that, in the absence of ties, the Z-statistic also asymptoti-
cally follows a Gaussian distribution with unit variance, but
this time with mean μ�

1 given by

μ�
1 =

∑
i≤k E

B
i (1− EB

i )√∑
i≤k E

B
i (1− EB

i )
log(θ).

In the above, ‘asymptotically’ means in the limit mA → ∞,
mB = γmA for some fixed γ, k → ∞. log θ = O((mA +
mB)−1/2). Note that μ�

1 depends on more than the sum-
mary statistic Zk. In the case that the number of observed
events is much smaller than the initial risk set sizes (i.e. ad-
ditionally we require k/mA → 0), the mean μ�

1 under the
alternative can be further approximated by

μ�
1 ≈

√
N̄kμ1 =

√
N̄k

√
mBmA

(mB +mA)2
log(θ), (C.1)

where N̄k is the total number of observations up until time
tk, and the resulting approximation only depends on sum-
mary statistics. It is exactly this value μ1 that we use in
the Gaussian AV logrank test. Inspecting the proof of the
asymptotic result of Schoenfeld, we find that it relies on
two conditions: (1) that the hazard ratio θ1 under the al-
ternative is close enough to one so that a first-order Taylor
approximation around θ0 = 1 is adequate; (2) that the ex-
pected number of events EB

k stays approximately constant
over time, that is, close to the initial allocation proportion
EB

1 = mB/(mB +mA). This indicates that the asymptotic
approximation is reasonable for values of θ1 close to 1 and
the initial risk sets are both large in comparison to the num-
ber of events witnessed. Notice that in this regime of large
risk sets the multiplicity correction in Vk is also negligible.

This raises the question whether a sequential Gaussian
approximation is sensible for the logrank statistic—a priori
it is not at all clear whether Schoenfeld’s asymptotic fixed-
sample result still provides a reasonable approximation for
the partial likelihood ratio under optional stopping. We now
investigate this question empirically (as remarked by a ref-
eree, it may be that the techniques of [50] on time-uniform
central limit theory could be extended to investigate this
more rigorously, but the details being far from evident, we
have refrained from doing so). Define the logrank statistic
per observation time

Zi =
OB

i − EB
i√

V B
i

.

We investigate whether the exact AV logrank statistic be-
haves similarly to the Gaussian likelihood ratio

S′G
k =

∏
i≤k

φμ1

√
Oi
(Zi)

φμ0(Zi)

= exp

⎛
⎝−1

2

∑
i≤k

{
Oiμ

2
1 − 2μ1

√
OiZi

}⎞⎠
for θ0 = 1 we have μ0 = 0, μ1 =
log(θ)

√
mBmA/(mA +mB)2, and φμ is the Gaussian den-

sity with unit variance and mean μ. Note that the statistic
still depends on elements of the full data set; more approx-
imations are needed. Write the Gaussian densities, and use
that in the limit of large risk sets pBi ≈ mB/(mA + mB)

and that consequently Vi ≈
√
Oi

mAmB

(mA+mB)2
. These approx-

imations are valid under Schoenfeld’s second assumption.
With these approximations at hand, the Z-statistic is
approximated by

Zk ≈
∑

i≤k

{
OB

i − EB
i

}√
Oi

mAmB

(mA+mB)2

and consequently

S′G
k ≈ SG

k = exp

(
−1

2
N̄kμ

2
1 +

√
N̄kμ1Zk

)
,

where SG
k is as in (4.3). In Figure 5 we show, in case of

balanced allocation, that the Gaussian approximation SG
k

at a single event time is very similar to the exact Sθ1
θ0,(k)

for
alternative hazard ratios θ1 between 0.5 and 2.

C.1 Safety Only for Balanced Allocation
In order to assess whether the Gaussian AV logrank test

is indeed AV, that is, whether the type-I error guarantees
holds, we inspect whether the expected value of each of
its multiplicative increments is bellow 1. In relation to our
discussion in Section 3.1, this would imply that all mul-
tiplicative increments are conditional E-variables and that
the resulting test is, at least approximately, a test martin-
gale. Figure 6 shows the expectation of these increments as
a function of the hazard ratio for several initial allocation
ratios. In case of balanced 1:1 allocation SG

k is an E-variable,
since its expectation is 1 or smaller. However, in case of un-
balanced 2:1 or 3:1 allocation and designs with hazard ratio
θ1 < 1, SG

k is not an E-variable. Of course, even if the initial
allocation is balanced, it can become unbalanced. Figure 6
shows that in case of designs outside the range 0.5 ≤ θ1 ≤ 2
the deviations from expectation 1 can be problematic. Hence
we do not recommend to use the Gaussian approximation on
the logrank statistic for unbalanced designs and designs for
θ1 < 0.5 or θ1 > 2. For balanced designs with 0.5 ≤ θ1 ≤ 2,
we found that in practice they are safe to use, the reason
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Figure 5: For balanced allocation (mA = mB) S′G
1 is very similar to S(1) when 0.5 ≤ θ1 ≤ 2. Here θ0 = 1, μ0 = 0, and

μ1 = μ1(θ1) as in in (C.1). Note that both axis are logarithmic.

Figure 6: Expected value of the increments of the Gaussian AV logrank statistic as a function of the hazard ratio θ1. For
balanced allocation RG

i is an E-variable, but it is not for unbalanced allocation. The risk set can also start out balanced
but become unbalanced; this is unlikely under the null hypothesis (see Appendix C.1). Note that the x-axis is logarithmic.

being that scenarios in which the allocation becomes highly
unbalanced after some time (e.g. yBi = 80, yAi = 20) are
extremely unlikely to occur under the null.

C.2 Sample Size
In this section we compare the stopping time distribution

τG := inf{k : ξGk = 1} of the Gaussian approximation to
that of τ = inf{k : ξk = 1}. We use tests with tolerable
type I error α = 0.05, thus, the threshold 1/α = 20 for both
tests. In the previous section we showed that the Gaussian

approximation to the AV logrank statistic is valid when the
initial allocation is 1:1 and for values 0.5 ≤ θ1 ≤ 2, where θ1
is the hazard ratio under the alternative. In these scenarios,
we simulate a survival process from a distribution according
to which the true data generating hazard ratio is θ = θ1 and
sampled realizations τG and τ for the same data set. The
results of the simulation are shown in Figure 7, where we
plot the realizations of τG against those of τ . We see that in
most cases both tests reject at the same time τG = τ , and
that the approximation becomes better as θ1 moves closer
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Figure 7: Stopping times for the Gaussian and exact AV logrank tests under continuous monitoring (no ties) with threshold
1/α = 20. The stopping times under the Gaussian approximation often coincide with the exact ones, and are often more
conservative (see Appendix C.2). Note that both axes are logarithmic.

to θ0 = 1 (Schoenfeld’s assumption 1). When both tests do
not reject at the same time, the Gaussian approximation errs
on the conservative side. The deviations from the constant
large and balanced risk set do not seem to occur often for
this range of hazard ratios. After all, the risk set needs to
be large to observe the number of events to detect hazard
ratios in the range 0.5 ≤ θ1 ≤ 2.
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